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Abstract

A direct numerical simulation (DNS) of a wall jet is performed at Re = 7500.
To the authors’ knowledge, this is the highest Reynolds number DNS study of a
wall jet. The heat transfer process is studied with an iso-thermal boundary con-
dition at the wall. The molecular Prandtl number is Pr = 0.71. Mean flow and
heat transfer parameters are contrasted with available measurements and Nusselt
number coefficient correlations. The scaling parameters for heat transfer variables
are investigated. The mean temperature (7"), temperature root mean square 7}.,,,s,
streamwise (u'T”) and wall normal (v'T") heat flux profiles show collapse in the
streamwise direction, with the inner scaling, the outer scaling and the thermal
scaling parameters. The complete budgets for temperature variance (7"7T") and
turbulent heat fluxes are also presented.

Keywords: Wall jet; Heat transfer; Direct numerical simulation (DNS); Prandtl
number; Turbulent Prandtl number.

Nomenclature

A log-law constant

Ay log-law constant for the temperature
C Nusselt number correlation coefficient
Cp specific heat capacity

h wall jet slot height

he convective heat transfer coefficient
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k thermal conductivity

L length scale

L,,L,, L., domain length in streamwise, wall-normal and spanwise directions
Nu  Nusselt number

P pressure

Pr molecular Prandtl number = £

Pr;  Turbulent Prandtl number

Quw wall heat flux

R radius of curvature of inlet nozzle

Re  Reynolds number

St Stanton number = m

T non-dimensional temperature

t time

T,  non-dimensional free stream temperature
T, friction temperature = m‘f%"cp

T,  non-dimensional wall temperature

U, free stream velocity

Uy friction velocity = %’“

u;, u,v,w instantaneous velocity components in the streamwise, wall-normal and
spanwise direction (in direction 7)

Ui half of maximum velocity U,,q,
U.onw convective velocity at exit plane

Unmar time averaged local maximum velocity at any given streamwise location
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Wi

averaging weight

xi, T,y, 2 Cartesian coordinates in the streamwise, wall-normal and spanwise di-

rection (in direction %)

Budget terms
€ Dissipation of temperature flux or variance
(3 convection of temperature flux or variance
9 molecular diffusion of temperature flux or variance
Z production of temperature flux or variance
T turbulent diffusion of temperature flux or variance
v Temperature-Pressure diffusion of temperature flux or variance
Greek symbols
o turbulent eddy diffusivity = — <%>

v
o thermal boundary layer thickness
o5 thermal displacement thickness
K von Karman constant
Ko von Karman constant for temperature
v kinematic viscosity
vy turbulent eddy viscosity = — <%Z;>

v

p density
pur  velocity temperature correlation coefficient
Tw wall shear stress
0 temperature
0~  free stream temperature



O wall temperature

subscript

1/2  values at half width

00 properties in the free stream
6/2  values at thermal half width
maxr maximum value

rms root mean square

w properties at the wall
superscript

! fluctuating component

+ scaling in viscous wall units
() average over time or spanwise direction
n number of time steps

1. Introduction

A high momentum fluid issuing from a narrow slot along a flat plate forms a
wall jet. The near wall region, called the inner layer, acts like a turbulent boundary
layer flow. The region away from the wall, called the outer layer, acts like a free
shear flow. Due to its practical applications in film cooling for gas turbine blades
and boundary layer control on high lift airfoils it has been studied extensively,
Launder and Rodi provide a review of the state of the art until 1983 in (Launder
and Rodi, 1983). Determination of self-similar behaviour in wall jets is important
for turbulence modelling. The required eddy viscosity depends on the different
flow regions and uncertainties in turbulent statistics have been found to be high
(Launder and Rodi, 1983). It has been shown by George et al. (2000) that with ap-
propriate scaling, velocity and Reynolds stress profiles collapse at infinitely large
Reynolds number. There are two different scalings for the two wall jet regions,
namely, the inner and outer scaling. These are presented in Figure 1. For the
inner layer, friction velocity u, and v /u, are the velocity and length scales. The
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Figure 1: Parameters for inner and outer scaling.

outer scaling parameter for the velocity is the local maximum mean streamwise
velocity Uy, and for the wall normal distance it is 3 /2, which is the wall normal
distance of a point where the mean streamwise velocity (u) is half of the U,,,;.
In the outer layer, Reynolds shear stress scales with friction velocity u?, whereas
normal stresses and mean velocities scale with maximum velocity U,

Several studies with measurements and simulations are available, investigat-
ing the flow physics of wall jets (Launder and Rodi, 1983). The heat transfer
from an isothermal wall, which is an important aspect of the wall jet applications,
has received little attention. There is significant variation in suggested constants
for log-law (£ Iny™ + A) type flow behaviour in planar wall jets (for example
041 < k < 0.6and 5 < A < 6.8 (Banyassady and Piomelli, 2015)) and this
poses a problem for flow and thermal predictions and measurements. Ahlman
et al. (2007) performed a DNS of a wall jet with scalar transport, at a relatively
lower Reynolds number of 2000 to study inner and outer scalings showing self
similarity behaviour at several downstream locations. Banyassady and Piomelli
(2015) use LES and joint probability density functions to assess the level of in-
fluence of the outer layer on the inner. They conclude an independent scaling at
infinite Reynolds number and a larger scaling overlap region as local Reynolds
number decreases as suggested by George et al. (2000). For a Re = 9600 wall
jet, Dejoan and Leschziner (2005) compute turbulence budgets and realizability
maps highlighting turbulent stresses, length and time scales to differ substantially
from channel flows. These are important turbulence modelling aspects. They em-
ploy LES, finding minor subgrid model effects on an 8 million cell mesh. Dacos



et al. (1984) measured temperature, heat fluxes and the triple-velocity-temperature
product for a plane wall jet with isothermal boundary conditions. They note that
over 90% of the temperature change from the wall is effected in the inner layer
and compare temperature profile scalings using wall coordinates. For a planar
wall jet, AbdulNour ef al. (2000) measure the convective heat transfer coeffi-
cient. The authors focus on the developing flow region at smaller axial distances
(0 < x/h < 13) for automotive defroster applications. Insensitivity to the thermal
boundary condition was found at locations (5 < z/h), where the outer layer has
diffused into the inner jet. A minimum in heat transfer coefficient is also found
at ©/h ~ 5. The correlation between the turbulence and heat transfer processes
is also poorly understood. Pouransari et al. (2015) study the effect of passive and
reactive scalar fields on the anisotropy of a wall jet using DNS. Anisotropy is ac-
centuated near the wall but persists throughout the wall jet. Strong intermittency
and anisotropy persistence at small scales is hence a challenge to predict.

In the current work a direct numerical simulation of a plane wall jet is per-
formed to investigate the heat transfer process from an isothermal wall. The sim-
ulations are conducted at a significant Reynolds number, Re = 7500 for which
Rostamy et al. (2011) have performed flow measurements. The emphasis in this
paper is on the scaling properties of the flow and heat transfer variables. In addi-
tion to the inner and outer scaling for heat transfer variables, the so called thermal
scale is also considered. In thermal scaling, the thermal half width yy 5, is defined
as the wall normal distance of a point where the temperature is half of the maxi-
mum local temperature. The results for velocity field, turbulent heat flux and their
budgets will also be discussed and contrasted with other flows and literature.

2. Simulation Details

The wall jet is simulated with the conservation of mass and momentum equa-
tions for unsteady three dimensional incompressible flow:

8uj
gt/ 1
5. = 0 (1)
ou;  Ouju, dp 1 %y
- — : 2
ot + 0z; 0x; + Re 0x;0z;’ @)

where {x1, 29,23} = {x,y, 2} are the coordinates in the streamwise, wall-
normal and spanwise directions, respectively. {uy,us, us} = {u,v,w} are the



corresponding instantaneous velocities. p is the instantaneous pressure. e =
U,h/v is the Reynolds number based on the jet velocity Uj, the jet slot height h
and the molecular viscosity v.

Heat transfer is simulated with a scalar transport equation:

or  JdTu; 1 0T

E—'— ox; " RePr 0x;0z;’ )

where 7' is the non-dimensional instantaneous temperature and Pr is the molec-
ular Prandtl number. The non-dimensional temperature is defined as 1" = %,
whereas 6 is the physical temperature, 6, is the wall temperature and 6., is the
temperature of the incoming fluid at the inlet plane. These governing equations
are discretised with a second-order, collocated, finite volume solver. The solver
is based on fractional step scheme, which uses semi-implicit time advancement.
The scalar convection term is descretized with the QUICK (Quadratic Upstream
Interpolation for Convective Kinetics) scheme (Leonard, 1979). Further details
of numerical methods and examples of application of this code can be found in
previous publications (Radhakrishnan et al., 2006; Naqavi et al., 2014).

The computational domain has the dimensions of L, /h = 43.0, L,,/h = 40.0
and L,/h = 9.0 in the streamwise, wall-normal and spanwise directions, respec-
tively. At the inflow plane a velocity profile is specified for the wall jet up to
y/h = 1.0 and the rest of the plane has a uniform co-flow of 0.06U;. This uni-
form co-flow provides the fluid for the jet entrainment. The lower wall obeys the
no slip and impermeability conditions. The upper boundary has a free slip bound-
ary condition and a periodic condition is applied in the spanwise direction. At the
outflow plane a convective boundary condition is applied as 887?' + Uconv 5;’ The
convective velocity Uy, 1s the mean streamwise velocity at the outflow plane.
It is calculated as a running average. The initial transients are eliminated with

weighted averaging in time given as;

US)Z}) = %<un>z + (1 - g) UthU’ (4)
At is the time step size, n is the number of time step, ( ), represents the spanwise
averaging and W, is the averaging weight. When the simulation is started from a
uniform flow, W; = 10 for initial t* = tU;/h = 200 time units. Once the flow is
developed, W, = 100 is used for the next t* = 500 time units. Finally, a simple
running time average is used to calculate U™

conv?
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Figure 2: (a) Schematic of the inlet nozzle from the experiment (Rostamy et al., 2011). (b) The
inlet profiles for the mean streamwise velocity ( ) and the Reynolds stress (———).
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Figure 3: (a) Grid spacing in wall units along the streamwise direction. (b) The distribution of
Ay in the flow region. The solid line gives the location of y = ¥, /2-

UZ)TMI) - U;nv + (Ugmv - <un>2> /n : (5)

At the jet inlet plane, Rostamy et al. (2011) did not provide any mean or
turbulent velocities. Hence, based on the inlet configuration (Figure 2(a)) given
by Rostamy et al. (2011), a precursor RANS calculation is used to calculate the
mean inlet velocity profile. To add small, time dependent perturbations at the
inlet, a separate channel flow simulation is used. The channel dimensions are
2mh X h x mh, in the streamwise, wall-normal and spanwise directions, respec-
tively. The periodic condition is defined in the streamwise and spanwise directions
and no-slip condition at the top and bottom wall of the channel. The channel flow
Reynolds number is Recpanner = % = 7500. The mean channel flow velocity
is removed from the instantaneous channel flow field and the remaining fluctua-
tions are scaled to give a turbulence intensity of less than 0.1%. These fluctuations
are superimposed on the RANS velocity profile. These help to initiate shear layer
transition in the wall jet. Figure 2(b) shows the resulting profiles of the mean
velocity and Reynolds stress in the streamwise direction at the jet inlet.

The heat transfer equation (3) is solved for temperature 7', with a periodic
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Figure 4: Comparison of fine ( ) and coarse (———) grid for mean streamwise velocity (u)
and turbulent kinetic energy tke = 0.5((u'u’) + (v'v') + (w'w’)).

boundary condition in the spanwise direction. A uniform temperature 7., = 0.0
is defined at the inlet plane. A convective boundary condition, as described previ-
ously for the flow equations, is used at the outflow plane. The lower wall has the
isothermal condition of 7}, = 1.0 and the upper wall is adiabatic. The Reynolds
number is Re = 7500 and the Prandtl number is Pr = 0.71 for the current sim-
ulations. The domain is discretized with 1652 x 344 x 302 grid points in the
streamwise, wall-normal and spanwise directions, respectively, giving a total of
172 million cells. Figure 3(a) shows the grid spacing in wall units, based on local
friction velocity, along the streamwise direction, with a maximum of Azt < 10.5,
Ayt < 0.7and Azt < 12.0. The Ay grid varies in both streamwise and wall-
normal direction to follow the spreading of the jet. The contours of Ay™ in Fig-
ure 3(b) show that the maximum Ay* < 10.0 in the active flow region. There
are six points below y* = 5 and twelve points below y* = 11. The simulation is
performed for ¢* = 1300 time units to remove the initial transients. The statistics
are collected for next ¢t* = 1200 time units.

The simulation is also performed on a coarse grid with 1250 x 344 x 194
grid points, totalling 83 million cells. Figure 4 compares the mean streamwise
velocity and turbulence kinetic energy at /h = 30.0 for the two grids. There is
no significant difference between the mean flow for the two grids. The turbulent
kinetic energy shows a maximum of 4% difference. All the results presented in
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Figure 5: Profiles of mean streamwise velocity, mean streamwise Reynolds stress, mean wall-
normal Reynolds stress and mean Reynolds shear stress at # = 30.0h: Current DNS ( ),
(Banyassady and Piomelli, 2014) ( o ), (Rostamy et al., 2011) ( o ) and (Eriksson et al., 1998) ( A

).

this work are for the fine grid.

3. Results and Discussions

The main focus of this work is to present the heat transfer properties of the
wall jet. However, the mean flow parameters are also included to asses the quality
of the underlying flow field.

3.1. Mean flow properties

Figure 5 shows the profiles for mean streamwise velocity () /Uppq., Reynolds
normal stresses (u'v) /U2 .., (v'v') /U2, and Reynolds shear stress (u/v') /U2,
at /h = 30.0. Uy, is the local maximum streamwise velocity and ( ) repre-
sents time averaging. The current DNS results are compared with an LES study
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Figure 6: Inner scaled mean velocity profiles: Current DNS & = 25.0h (—— ), z = 30.0h (
——=), 2 =35.0n(—-—); log-law gz Iny™ + 5.2 (—--—).

Banyassady and Piomelli (2014) at the same Reynolds number and two different
experiments at Re = 7500 (Rostamy et al., 2011) and Re = 9700 (Eriksson et al.,
1998). The mean streamwise velocity profile from the DNS matches well with the
LES (Banyassady and Piomelli, 2014) and the experiment (Rostamy et al., 2011).
The Reynolds normal and shear stresses for the experiment at Re = 7500 (Ros-
tamy et al., 2011) have a higher overall level than the current DNS, the LES of
(Banyassady and Piomelli, 2014) and experimental values at Re = 9700 (Eriksson
et al., 1998). However, the current DNS has the same level of Reynolds stresses
as the LES of (Banyassady and Piomelli, 2014) and the experimental values at
Re = 9700 (Eriksson et al., 1998). Banyassady and Piomelli (2014) used a time
dependent fully developed turbulent channel flow field at Re = 7500 as an inflow
boundary condition in their LES. They also used scaled Reynolds stress profiles
from the experiment (Rostamy et al., 2011) to force the flow at x/h = 2.0, 4.0,6.0
and 8.0. However, with the fully developed turbulent inflow and forcing, their
Reynolds stress levels are still lower than the experiment for Re = 7500 (Ros-
tamy et al., 2011). The current DNS relies almost entirely on natural shear layer
and wall transition for turbulence development. Despite this, it reaches the same
turbulence level as the LES (Banyassady and Piomelli, 2014).

Figure 6 shows the inner scaled mean streamwise velocity (u)* profiles at
different streamwise locations of x/h = 25.0,30.0 and 35.0. The profiles give
good collapse in the near wall region up to y*™ = 200.0. The inner scaled profiles
are also in agreement with the log-law, (u)™ = <Iny™ + A with x = 0.4 and
A = 5.2, from y™ = 30.0 to 90.0. The current values are close to the reported
values of k = 0.41 and A = 5.0 in several other studies, for example, see (Dejoan
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Figure 7: (a) Jet half width, 0.0732z/h + 0.332 ( o ), (b) maximum local velocity and (c) wall
shear stress : Current DNS (——); (Banyassady and Piomelli, 2014) (o).

and Leschziner, 2005; Eriksson et al., 1998; Abrahamsson et al., 1994).

The growth rate of the wall jet is measured as the streamwise variation of the
jet half width y, /». Figure 7(a) shows that the variation of ¥, » from the DNS is
in agreement with the linear relationship 0.0732z/h + 0.332 proposed by Abra-
hamsson et al. (1994). However, George et al. (2000) have argued that dy, /dx
is dependent on z. The Reynolds number and the streamwise distance consid-
ered here are not large enough to show such dependence. The variation of the
maximum local velocity U,,,, and the wall shear stress 7,, are compared with the
LES (Banyassady and Piomelli, 2014) in Figure 7(b) and (c), respectively. The
predicted 7, 1s close to the LES (Banyassady and Piomelli, 2014), whereas U,;,q,
has a slower decay rate. The difference might be due to the different conditions
employed for the entrainment in current DNS and LES (Banyassady and Piomelli,
2014).
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Figure 8: Coherent vortical structures in the wall jet visualised by iso-surfaces of ) = 0.9. The
iso-surfaces are coloured with wall normal distance y/h.

3.2. Instantaneous flow and temperature field

The instantaneous flow field provides an overall picture of the jet shear layer
and its interaction with the wall. In this simulation several instantaneous fields are
saved and visualised through iso-surfaces of the second-invariant of the velocity
gradient tensor ) = —(0Ju;/0x;)(0u;/Ox;) (Hunt er al., 1988). Figure 8 shows
one such realisation of the wall jet indicating large scale vortical structures. The
(@ iso-surfaces are coloured with the wall normal distance y/h. Initially roll struc-
tures are formed in the outer shear layer within 2 /h < 3.0. They become unstable
and streamwise structures are formed. As a result, large roll structures collapse
downstream. Under the influence of passing shear layer structures, the near wall
flow also transitions to turbulence. These near wall and shear layer structures de-
velop strong interaction and mixing, which is responsible for momentum and heat
transfer in the wall jet.

The effect of turbulence on the heat transport is shown by the iso-thermal
surfaces at 7' = 0.50 and 0.25 in Figure 9. The surface at 7' = 0.25 is shifted
upward in the wall normal direction for the clarity. The surfaces are coloured with
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Figure 9: Iso-thermal surfaces at 7' = 0.25 and 0.50 are coloured with wall normal height y/h.
The surface T = 0.25 is shifted vertically upward by y/h = 4.5. The low penetration spots are
marked with white circles.
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Figure 10: Instantaneous fluctuating flow and temperature fields at y™ & 7, (a) u'* and (b) T"7.
Few high velocity and corresponding low temperature patches are marked on the contours.

the wall normal distance y/h and represent the same instant as in Figure 8. Once
the flow undergoes transition, the iso-thermal surface area starts to increase, which
indicates enhanced mixing and transport. This mixing and transport of heat away
from the wall, increases farther downstream. The heat transport away from the
wall is inhomogeneous. There are certain low penetration spots which are marked
on the iso-thermal surfaces.

Figure 10 shows the contours of instantaneous streamwise velocity fluctua-
tions ' = (u — (u))/u, and temperature fluctuations 7" = W at
yT ~ 7 corresponding to the same instant in Figure 8 and 9. Here, u, is the
local friction velocity, p is the density, ¢, is the specific heat capacity of the fluid,

Gw = —k g—g is the heat transfer from the wall to the fluid and k is the ther-
y=0
mal conductivity of the fluid. The u/* contours show low velocity streaks, how-

ever they are different from fully developed boundary layer structures presented
in other studies, see, for example (Kline et al., 1967; Li et al., 2009) and (Kong
et al., 2000). In a fully developed boundary layer, low velocity streaks are sepa-
rated by wider high velocity zones in the spanwise direction. In the current wall
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jet simulation, low velocity streaks are not regularly spaced with high velocity
zones. However, the character of low velocity streaks in terms of heat transfer is
similar to a turbulent boundary layer. The low speed streaks coincide with high
temperature streaks, whereas high speed streaks coincide with low temperature
streaks (Iritani et al., 1985). The low speed streaks form near the wall, which
convect away the heat. The high speed streaks transport cold fluid from the fast
moving outer flow. Several cold patches and corresponding high velocity zones
are marked on the contours in Figure 10, which are coincident with the low pene-
tration zones in Figure 9.

3.3. Mean heat transfer properties

The development of the thermal boundary layer is shown in Figure 11(a). The
thermal boundary layer thickness dr/h identifies the outer edge. It is defined as
a distance from the wall, where an arbitrary value of the temperature is achieved.
Two different values of temperature 7' = 0.107’, and 0.017,, are considered. The
arbitrary nature of these definitions is reflected by the two substantially different
profiles presented. The thermal boundary layer shows a slow growth up to x/h <
8.0. After the transition it grows at a faster rate. Figure 11(a) also shows the
variation of thermal displacement thickness o5 = [ 7—=dy, which is free
from any arbitrary definition. The thermal displacement thickness shows a linear
growth in the fully developed region (x/h > 20.0) of the wall jet.

Figure 11(b) shows the variation of the Stanton number S¢, which is defined
as;

S — h. _ Nu _ G 7 ©)
PUnazCpy  RePr  pUnancy(Ty — Tio)
where h,. is the convection heat transfer coefficient and /N u is the Nusselt number.
The Stanton number provides a measure of the ratio of the heat transferred to
the fluid relative to it’s heat capacity. It also relates the wall shear stress to the
total heat transfer at the wall. The current DNS gives almost a constant St value
of 4.0 x 1072 in the fully developed region, which is compared to the measured
values reported by Nizou (1981) for a plane wall jet (Re = 9000) and Dacos et al.
(1984) for a wall jet with an external stream at Re = 30, 000. The DNS is in good
agreement with the plane wall jet measurements (Nizou, 1981).
Figure 11(c) shows the variation of Nusselt number Nu, which gives the ratio
of convective to conductive heat transfer at the wall. It is defined as;

A(Tw—T)
heL 9 |y=0
Nu=—=—=—mm @)
L
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Figure 11: The streamwise development of (a) Thermal boundary layer 7 and thermal displace-
ment thickness d7., (b) Stanton number (St) : Current DNS ( ); Experiment (Dacos et al.,
1984) (m), (Nizou, 1981) ( e ) and (c) Nusselt number Nu : Current DNS ( ); Experiment
(AbdulNour et al., 2000) (0); 0.071(z/h) =96 (Akfirat, 1966) (——-); 0.115(x/h) %6 (Mabuchi
and Kumada, 1972) (—--—).
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Figure 12: Contours of turbulent heat flux components in the streamwise direction (u/T”) and the
wall-normal direction (v'T").

where L is the characteristic length scale of the flow, here taken as the jet height, h.
The Nusselt number coefficient is presented in a non-dimensional form NuRe %%
and compared with the experimental data of AbdulNour et al. (2000) for a wall
jetat Re = 7700. The experimental measurements are only available up to x/h =
20.0. At fully developed downstream locations x/h > 30.0, the Nusselt number
coefficient can be related to the streamwise distance as NuRe "% = C'(x/h)™%5,
where (' is a numerical coefficient. Empirical data suggests C' has a range from
0.071 (Akfirat, 1966) to 0.115 (Mabuchi and Kumada, 1972). However, these
correlations are only valid for z/h > 30.0. The relation given by the current DN'S
lies within the two constants, yet is closer to (Mabuchi and Kumada, 1972).

The turbulent heat flux shown in Figure 12 is a major component of heat trans-
fer from the wall to the outer flow. As shown in Figure 12(a), the streamwise com-
ponent (u'T") of the heat flux is negative near the wall. The production of (u'T")
depends on Py ~ —(u'v')0(T)/0y. With both shear stress and tempera-
ture gradient negative near the wall, the streamwise turbulent heat flux becomes
negative. It transports heat against the direction of the mean flow. The wall-
normal heat flux component (v'T") is positive and responsible for heat transfer
away from the wall. The dominant term in the wall-normal turbulent flux produc-
tion is Py ~ —(v'v")0(T)/Oy. Figure 12(b) shows a high value of (v'T") is
generated near the wall due to a high negative temperature gradient.

The fluctuating streamwise velocities and temperature contours in Figure 10
show that a high level of correlation exists in the streamwise velocity v and tem-
perature 7T". The correlation can be quantified through a correlation coefficient

ljﬂ/
pur = fu T> , where the root mean square (rms) values are ., = /(u'u’)
rms4Lrms

and T,.,s = \/(T"T"). Figure 13 shows the near wall variation of correlation co-
efficient. The current DNS results are compared with fully developed turbulent
boundary layer (Antonia et al., 1988) and fully developed pipe (Bremhorst and
Bullock, 1970) flows. Antonia et al. (1988) have suggested that p, approaches
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Figure 13: The correlation coefficient p,r in the near wall region: Current DNS at z = 25.0h (
), x = 30.0h (=—=), z = 35.0h (—-—); boundary layer by Antonia et al. (1988) ( o );
pipe flow by Bremhorst and Bullock (1970) (e ).

unity at the wall. It is difficult to measure temperature and velocity close to the
wall and other studies (Bremhorst and Bullock, 1970; Wardana et al., 1995) re-
sulted in a value less than one. The current DNS also indicates values of p,r
less than one. After peaking at y© =~ 6, it decreases with increasing distance
downstream.

3.4. Turbulent Prandtl number

The turbulent Prandtl number Pr, is an important parameter for heat transfer.
It is defined as the ratio of the turbulent eddy viscosity v; and eddy diffusivity oy
i.e. Pr, = v /oy, where

u'v’ v"T”
Vt:—<a<u>> and O‘t:_<a<T>>' (8)
By By

For many flows Pr; is considered as a constant value. It is used to evaluate
oy from vy, for heat transfer calculations. In the case of turbulent boundary layers
with isothermal boundary conditions, Pr; reaches ~ 1.1 (Li et al., 2009) in the
near wall region. It is well known that for the wall jet, 14 becomes negative before
reaching ¥ = 9,4, and the Boussinesq approximation is not valid (Launder and
Rodi, 1983). Figure 14 shows Pr; profiles plotted against y/v1/2, y/ys/2 and y™.
Pry is not a constant for this flow. It is higher than 1.0 below y* ~ 1, constant in
the viscous sublayer (y* < 10.0) and decays rapidly on moving away from it. Pr,
becomes negative before ¥ = Yar- At Y = Ymaz, 0(u) /Oy = 0.0, which makes
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—-—). (Dacos et al., 1984) (o).

v, and Pr; infinite. This is reflected in the discontinuity in Figure 14(a) and (b) at
y/y1/2 = 0.2 and y/yg/2 = 12, respectively.

3.5. Scaling of heat transfer parameters

Figure 15 shows the outer scaled, thermal scaled and inner scaled mean tem-
perature (1) profiles at z/h = 25.0, 30.0 and 35.0. The inner scaled temperature
(T')™ is defined as;

<T>+ — (Tw _ T)

T Qu
[ d T 3 9
T n PULCp ( )
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Figure 16: The outer scaled profiles of (a) Typ,s, (b) (u/T') and (¢c) (v'T"), at x = 25.0h (
), 2 =30.0h (=—=)and = 35.0h (—-—).

where 7’ is the friction temperature.

The mean temperature profiles show good scaling behaviour for all the three
scaling parameters. The temperature profiles are compared with the experimental
results of Dacos et al. (1984), for a wall jet with an external stream at e = 30000.
There is agreement between the current DNS and the experiment. Several studies
have defined a log-law profile for the inner scaled temperature as Hie Iny™ + Ay.
Such a log-law based on the current DNS, with xy = 0.48 and Ay = 3.5 is shown
in Figure 15(c), which are comparable to kg = 0.48 and Ay = 3.8 recommended
by Kader and Yaglom (1972). This log-law is valid for a flat plate zero-pressure
gradient thermal boundary layer with Pr = 0.7. Another log-law with kg =
0.82 and Ay = 7.2 is also included in Figure 15(c), which has the same slope as
suggested by Nizou (1981) for a plane wall jet with a Prandtl number Pr = 0.7
and Reynolds number Re = 14400. This log-law comes close to the DNS only
in the range of y* > 80.0, which is beyond the normal log-law region for wall
jets. Dacos et al. (1984) have pointed out that the log-law of Nizou (1981) for
temperature is related to a velocity profile with x = 0.55 and A = 8.1, which is
far from the accepted boundary layer form.
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Figure 19: The inner scaled budget of (7"7") at 2/h = 30.0.

Figures 16, 17 and 18 show the temperature root mean square 7., and tur-
bulent heat fluxes ((«/T”) and (v'T”)), scaled with the outer variable, the ther-
mal variable and the inner variable, respectively. The T, and (u'T") show
good scaling behaviour for both the outer and thermal variables. The profiles
for wall normal heat flux (v"7”) are similar to each other at downstream locations
of z/h = 30.0 and 35.0 with both outer and thermal scaling. In the near wall re-
gion, 7T.,,s and turbulent heat fluxes scale with the inner variable, which are given
as T+ = Dms (/T)F = WL gpg (y/T7)*+ = L)

rms T urTr urTr *

3.6. Temperature variance and heat flux budgets

The budget for the temperature variance (7"71”) is given as,

Cory = Py + ey + Ty + Dy (10)
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where

Corry = (uz>8<§;T/> Convection

Py = —2<U2T'>8a<—g> Production
2 T\ ? o

ey = — ReDPr <( c%i) > Dissipation

Ty = —% Turbulent diffusion

Dy = RelPr > g;; ) Molecular diffusion

Figure 19 shows all the terms for the temperature variance (7'7”) budget,
where all the terms are explicitly evaluated. The budget terms are scaled with
the inner variables parameter “3# The balance for all the terms is also included,
which is O(1073). In the viscous sub layer, for y© < 5, the convection term
is negligible. In this region, molecular diffusion is important, which balances
the high dissipation close to the wall. The highest production level is around
y™ = 10.0, which coincides with the highest level of 7 = (Figure 18). This
high production in the near wall region is due to a high negative temperature
gradient 9(T") /Oy and high negative turbulent heat flux (u'T”). The high levels
of production, up to y* = 20.0, are balanced by all the other terms of the budget.
The production is small beyond y* = 50.0 and mainly balanced by dissipation
and convection. In the near wall region 4y < 20 turbulent diffusion is dominant
in transporting (7"T") rather than mean convection.

The budget for the turbulent heat flux (u,7”) is given as,

Gy = Pty + iy + Turry + Yiry + Dty (11
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where

T/
Gy = (uj) (ng ) Convection
o(T

Py [ + (uu) 8<x]>] Production
1 1 oT" ou; Dissipati

W Ty = issipation

i Re RePr Oz Ox; P

 Ou; e

Ty = 8 Turbulent diffusion
,6’19 e

\Il<u;T/> = T — . Temperature-Pressure diffusion

1 [0 ou 1 0 o1’
Doy = — T — ! Molecular diffusi
@' ™ Re {axj < oz, >} + RePr L‘?xj <u18:17j >] olecuiar ciiusion

Figure 20(a) and (b) show the inner scaled budgets for the turbulent heat fluxes
(u'T") and (v'T"), respectively. The production for (u/T”) is negative. The molec-
ular diffusion term is significant in the near wall region, where it balances the
high dissipation value. The production term is balanced by all the other terms
of the budget. The temperature-pressure diffusion term becomes larger than the
dissipation beyond y* = 20.0. The wall normal heat flux (v'T") budget shows
that the dissipation and molecular diffusion are negligible except in the viscous
sublayer. The convection term is also insignificant. The production is balanced
by the temperature-pressure diffusion term. It can be observed generally, that the
temperature-pressure diffusion term is always on the loss side, balancing produc-
tion for both turbulent heat fluxes. This behaviour is similar to turbulent boundary
layers (Li et al., 2009).

4. Conclusions

Direct numerical simulation of a wall jet at Re = 7500, with heat transfer
from an iso-thermal wall, is performed. The resulting mean flow and Reynolds
stresses compare well with the available data from various wall jet studies. The jet
spreading rate, maximum velocity decay and wall shear stress are also compared
with the available data.

Mean heat transfer properties in terms of Stanton number S¢, Nusselt number
Nwu and velocity-temperature correlation p, are presented and compared with the
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existing data. The Nusselt number follows the empirical correlation NuRe % =
C(x/h)7%5, with C' = 0.07 — 0.115. p,r < 1.0 near the wall, which indicates
that the fully developed boundary layer state has not been achieved at the given
Reynolds number and that the outer layer is influencing the inner layer.

The turbulent Prandtl number Pr; is not constant in the near wall region y* <
100. It fluctuates between large negative and positive values around the maximum
velocity location.

The scaling properties of velocity and heat transfer parameters are presented.
The mean temperature (1), T}.,,s, streamwise (u'T”) and wall normal (v'T") heat
flux profiles collapse with inner, outer and thermal scaling.

The temperature variance (7"7") and heat flux (u;7") budgets are presented.
For the (v'T") budget production is balanced by the pressure-temperature diffusion
term, which is identical to turbulent boundary layer behaviour.
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