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Abstract. To achieve high levels of reliability, availability and perfor-
mance in cloud environments, a fault tolerance approach to handle fail-
ures effectively is needed. In most existing research, the primary focus has
been on explicit specification-driven solutions which requires too much
effort for application developers, and leads to inflexibility. We propose
a fuzzy job distributor (load balancer) for fault tolerance management
to reduce levels of management complexity for the user. The proposed
approach aims to reduce the possibility of fault occurrences in the sys-
tem by a fair distribution of user job requests among available resources.
In our self-adaptive approach, the system manages anomalous situations
that might lead to failure by distributing the incoming job request based
on the reliability of processing nodes, i.e., virtual machines (VMs). The
reliability of VMs is a variable parameter and changes during its life-
time. Our approach is implemented and comparatively analysed using
OpenStack. The experimental results show a significant reduction in the
occurrence of faults in comparison with other load balancing algorithms.
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1 Introduction

Cloud computing offers a large-scale distributed computing environment through
a pool of abstracted, virtualized, dynamically-scalable and configurable comput-
ing resources. Unfortunately, due to unreliability in hardware or software, failure
as the major obstacle to high service availability in cloud computing, is unavoid-
able. A fault tolerance feature provided by cloud vendors aims to overcome the
impact of system failures and continue their functionality correctly even after
the occurrence of failures, is needed. Currently, several fault tolerance models [8,
1, 6] are proposed generally involving the application developer to configure and
operate cloud software based on cloud-specific features in order to run reliably.
The major drawback and limitation of this type of approach is that requiries
knowledge and experience from the developer in order to configure and integrate
applications in an available fault-tolerance framework. This difficulty arises due



to (i) high complexity of the cloud platform, (ii) low available information about
the underlying cloud infrastructure to its users. This results in intransparency
and inflexibility of the Cloud architecture, and requiring too much effort by the
application developer. Therefore, there is a demand for a reliable and automatic
fault-tolerance management system without requirement for configuration and
integration of applications by user. An efficient job distributor (load balancer)
helps to remove critical conditions such as overload that causes a system failure
and aims to improve system performance to make systems more reliable and
fault-tolerant. Furthermore, as a part of a service layer, it brings more trans-
parency in cloud infrastructures from a user’s perspective. Recently, intelligent
approaches have received attention for cloud job distribution and load balancing.
Fuzzy theory [24], as a well-known artificial intelligence approach, has various
characteristics that make it a suitable for control problems [12]. For us, it allows
multiple possibly conflicting options – whether arising from an automated (ma-
chine) learning approach as multiple options or provided by different experts [3]
– to be joined into a single decision that can be effectively enforced.

This paper proposes a fuzzy job distributor technique that ensures fault
tolerance by properly distributing user job requests load among current available
resources using anomaly and fault detection. By monitoring the current state of
system and fairness in job distribution, we calculate the priority value for each
resource and try to avoid overloading problems that are the cause of system
failure. Upon detection of anomalies, the algorithm directs the system to apply
a fault rejuvenation mechanism to an anomalously behaving virtual machine.

2 Fault Tolerance: Related Work and Positioning

Fault tolerance (FT) is the ability of a system to perform its function correctly
even in the presence of internal faults. The purpose of fault tolerance is to in-
crease the dependability of a system. Fault recovery mechanisms enable systems
to correct the damaged state and restore to a known safe state after the system
detects and verifies faults and anomalies leading to faults. Fault tolerance tech-
niques can be classified into three main categories [6]: (i) redundancy techniques,
(ii) load balancing strategies, and (iii) fault tolerance policies.

Redundancy is providing replication of system components such as hardware
and software to provide more reliability in systems. Hardware redundancy tech-
niques exploit additional hardware components. All redundant hardware exe-
cutes the same task in parallel, and fault detection and masking can be achieved
by majority voting techniques [18].

Load balancing fault tolerance strategies are based on improving fault toler-
ance based on load balancing performed using software models. In this case, a
load dispatcher component distributes all incoming job requests among avail-
able resources. For example, Amazon EC2 uses elastic load balancing (ELB) to
control how incoming requests are handled. Basically, in this context, it tries to
reduce the likelihood of fault occurrences in the system by adequately distribut-
ing user job requests among available resources.



Fault tolerance policies can divided into proactive and reactive policies. The
principle of proactive fault tolerance is to avoid recovery from errors and failure
through preventative measures and proactively replace the suspected anomalous
components by other working components. In contrast, reactive fault tolerance
policies performs recovery from experienced failures.

Reactive Fault Tolerance is implemented in different ways. Firstly, Check-
pointing records the system state periodically, allowing to restart the failed task
from a recent checkpoint rather than from the beginning. Zhang et al. [26] pro-
pose a checkpointing strategy at user-level. The main drawback of this method
is cost, which is significant in the case of large numbers of VM images in terms of
storage space and restore processes. [25] proposes an asynchronous FT approach
based on checkpointing by preserving data on surviving nodes to potentially
accelerate recovering lost data with no overhead for checkpointing.

Secondly, Replication runs several task replicas on different resources. In
the active model, all replicas receive the requests in the same order. In the
passive model, one replica as the primary node receives the requests and all other
replicas interact with the primary replica. To address reliability demands in PaaS
cloud, a framework that automatically coordinates fault-tolerant applications
based on the Byzantine fault-tolerant (BFT) protocol is proposed in [16]. In [19]
an FT approach is proposed based on a checkpoint/replay technique for real-
time computing to reduce the service time on the cloud infrastructure. Another
reactive approach is Job migration, which migrates the failed task to another
resource. Task resubmission is also widely used: the failed task is recommitted
either to the same or a different resource.

Proactive Fault Tolerance can be distinguished into two important types:
Software Rejuvenation: it immediately terminates an application and restarts it
with a clean state at every rejuvenation interval [10]. Pre-emptive Migration: it
counts on a feedback-loop control mechanism, i.e., constantly monitors and ana-
lyzes. It migrates the parts of an application that show anomalous behaviour and
are likely to fail [7, 20]. In [17], a proactive coordinated FT (PCFT) approach
based on particle swarm optimization (PSO) to minimizing the overall transmis-
sion overhead, overall network resource consumption is proposed. In [5], a VM
placement model based on adaptive selection of fault-tolerant strategy for cloud
applications is proposed. A predictive control approach for fault management in
computing systems is presented in [14]. In most current clouds, (i) checkpointing,
the process of recording and capturing recovery system state periodically dur-
ing failure-free execution, and (ii) replication, the process of replicating tasks,
are the most common fault tolerance strategies. The drawback of replication
strategies is that they are rather expensive, i.e., higher cost for a device which
contains multiple replicas. The advantage of checkpointing is that it does not
require a high amount of hardware redundancy. However, the major drawback
of checkpointing strategies is the time overhead of performing checkpoints.

Positioning of presented approach. Usually, the time overhead due to usage of
fault tolerance policies may result in a negative impact on resource performance.
In this work, in order to reduce the time overhead and improve the resource



utilization during the life cycle of system, we consider proactive fault tolerance
strategies using load balancing as the central controller function [11, 13] and
propose a fuzzy load balancer for fault tolerance management.

The proposed framework considers multiple objectives: (i) resource CPU uti-
lization, (ii) fairness of distribution of job requests, and (iii) the history of fault
rates for each resource. Our solution combines proactive techniques such as soft-
ware rejuvenation with pre-emptive migration.

3 Fault Tolerance Management System

The first step of designing a fault tolerance mechanism as a service in cloud
infrastructure is defining how the system works.

3.1 Self-Adaptive Anomaly and Fault Management Framework

Generally, the client jobs are deployed in VM instances. The fault tolerance
properties of the system should be obtained through a core service that applies
a coherent fault tolerance mechanism in a transparent manner. To this end,
we define a fault tolerance controller as the fundamental module that monitors
the current system state and enacts a fault tolerance mechanism. It allows us
to control and handle hardware failure of user applications at the virtualization
layer rather than for the application itself. The proposed fault tolerance approach
is coded and run inside of it. Additionally, we use two more modules, namely
job distributor and anomaly/failure detector components in our solution. The
job distributor has the duty to distribute client job requests across a set of
computing resources in resource pool based on current request load, priority
and weight value for each resource. The anomaly and failure detector monitors
resources to detect anomalies that might lead to failure and server crashes. A
recovery mechanism can be applied after a failure is detected by this module. In
this context, detection of node failures and application of the recovery mechanism
are performed without requiring any changes to integrate a user application with
fault tolerance approach.

Figure 1 shows the complete process of how the proposed fault tolerance sys-
tem works. The fault tolerance controller gathers information from ceilometer

and the current state of computing nodes in a resource pool. The ceilometer

component provides telemetry services to collect metering data in OpenStack
(which we use for implementation [2]). Then, the fault tolerance controller de-
cides how to modify the priority and weight value of each node in the resource
pool to reduce future anomalous behaviour. The job distributor distributes sub-
mitted jobs based on the weight value of each resource. During the life cycle of
the system, the failure detector module detects anomaly and fault occurrences
in the system and sends a recovery mechanism signal to the faulty node. Note
that each module in Figure 1 has its own set of functional attributes.

Our anomaly detection framework aims to proactively prevent or detect
faults: (i) detect anomalous undesirable performance degradation (as a concrete
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Fig. 1. Our fault tolerance framework
Fig. 2. interval check

anomaly) that might lead to failure, (ii) identify the symptoms and root causes
of anomalous performance degradation to apply a proper corrective action, here
using fuzzy job distribution, (iii) manage the relationships and dependencies be-
tween the symptoms, which are external manifestations of anomalous behaviour,
and root causes, which are the reasons behind the performance degradation, and
(iv) refine the future detection through applying a recovery mechanism on the
identified faults and learning from the verified results to enhance the future fault
detection and to continuously improve the deployment and the integration pro-
cesses by using weight and priority adjustments. The following steps, aligned
with the MAPE-K control loop framework [12], are carried out (see Figure 1):

– Monitoring: Anomaly/Failure Detection. This step collects data from the
controller using ceilometer, structures this data to provide a sequence pre-
sentation that can be used to detect the obfuscated behaviour in data.

– Analysis: Anomaly Identification and Diagnosis. To be able to identify and
diagnose the fault root cause, we label the sequence representation in the
anomaly detection step. The main points of that step are specifying the
dependency and the relationships between faults, estimating the fault type
(fault intensity level or the dispersal of anomaly within the managed re-
source) and distinguishing between fault (true anomaly diagnosing) and noise
(false anomaly diagnosing). The distinction is specified based on assigning
numerical values for each.

– Planning and Execution: Anomaly Recovery. After identifying and diagnos-
ing faults, a recovery mechanism is applied to correct faults and remove
their effects. The objective of fault removal is to isolate the affected com-
ponent from the sequence presentation and delegate the incoming requests
to another component or choosing an alternative solution to be used in the
healing. This step is connected to the fault tolerance controller VM to re-
assign a new weight for the affected component(s) to be able to store the
verified path(s) according to their new weight.

Furthermore, Recovery Validation evaluates the effectiveness of the previous
steps in detecting faults, in which different types of faults can be considered
(such as CPU-related fault, memory-related fault, disk-related fault and VM-
related fault). The latency, throughput and response time are measured to infer



the performance of the measured components after faults isolation. The verified
results are pushed back into the cloud (resource pool).

To gather status information from computing nodes in the resource pool,
we use three different time windows during detection. ∆t1 specifies an interval
after which the ceilometer component performs an update of the specified me-
ter for the resource. ∆t2 is the sampling interval used by the fault tolerance
controller machine, and the ∆t3 is used for sending periodic updates to the
failure detector component. Generally, the time intervals ∆t2 and ∆t3 are pro-
portional to the ceilometer interval parameter, i.e., ∆t1, in Fig. 2. For instance,
if ∆t1 = 10 seconds, the value of ∆t2 and ∆t3 can be 10 minutes and 1 hour.

3.2 OpenStack

An important feature for users relates to the service uptime. To achieve high
cloud availability and improve Service Level Objectives (SLOs) satisfaction, an
efficient fault tolerance strategy needs to be employed. In contrast with a tradi-
tional manually configured approach, we propose an approach that used active
and runtime monitoring for fault tolerance. It consists of several independent
modules that work separately from each other in order to handle incoming job
request load and perform fault tolerance in the target system.
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Fig. 3. An OpenStack block diagram

In order to implement the
fault tolerance controller and
demonstrate its properties in
an open IaaS solution, we have
chosen the open-source Open-
Stack IaaS platform. It con-
sists of components that con-
trol hardware pools of process-
ing, storage, and networking
resources throughout a data
center. Users either manage
it through a web-based dash-
board, through command-line
tools, or through a RESTful
API. Fig. 3 shows the OpenStack core services. 1) Neutron is a system for man-
aging networks and IP addresses; 2) Nova is the computing engine for deploying
and managing virtual machines; 3) Glance supports discovery, registration and
delivery for disk and server images; 4) ceilometer provides telemetry services
to collect metering data; 5) Keystone provides user/service/endpoint authenti-
cation and authorization and 6) Heat is a service for orchestrating the infras-
tructure needed for cloud applications to run.

3.3 Job distributor strategies

Individual compute resources can easily suffer from heavy load or underload in
the absence of a sufficient task dispatcher. The major cause for failure of the



process at the VM layer is, however, overloading. The job distributor strategies
can be classified into two major categories: (i) Static approaches divide the load
evenly among all available resources. They do not consider the current state
of the system, which may lead to heavy system load or underload conditions.
(ii) Dynamic approaches monitor the current state of the system for managing
the load and aim for a more efficient load distribution. The main aim of a job
distributor is to improve system performance by efficient usage of resources. The
most common job dispatcher/controller strategies are:

– Round-Robin (RR): In this strategy, as the name suggests, jobs are assigned
to all servers in round-robin manner. RR does not consider factors such as
the number of assigned job to the resource, CPU utilization, etc. Instead it
treats all resources as equal and divides the traffic equally. It is the simplest
strategy for implementation.

– Weighted Round-Robin (WRR): It is an extension RR strategy where re-
sources receive jobs according to their given weight value. Each resource can
be assigned a weight. Resources with higher weights receive new job requests
first compared to those with less weight, and resources with higher weights
get more jobs than those with less weights.

– Dynamic Weighted Round-Robin (DWRR): Since RR and WRR are static
job distribution strategies and have to have knowledge of subsequent job re-
quests, there are situations when already overloaded resources keep receiving
more job requests although other idle resources are still available. By consid-
ering the real-time information and metrics of each resource such as current
CPU utilization, DWRR applies dynamic weight assignment to avoid over-
loading and improves throughput of the whole system. The DWRR strategy
reassigns a new weight value to the resources periodically.

3.4 Fuzzy Logic

Fuzzy logic [24] is an effective technique to describe complex systems with lin-
guistic descriptions. A linguistic variable is a variable whose values are words
in a natural language. For example, ”load” is a linguistic variable, which can
take the values as ”heavy”, ”medium”, ”light” and so on. A Fuzzy Logic Sys-
tems (FLS) architecture consists of several components as shown in Figure 4:
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Fig. 4. Basic configuration of FLS

The Fuzzification module transforms the
system inputs, which are crisp numbers,
into fuzzy sets. The Rules (Knowledge
Base) module stores IF-THEN rules pro-
vided by experts or learned from other
sources. The Inference Engine simulates
the human reasoning process by making
fuzzy inference on the inputs and IF-THEN

rules; the Defuzzification module trans-
forms the fuzzy set obtained by the in-
ference engine into a crisp value.



A membership function (MF) is a curve that defines how each point in the
input space is mapped to a membership value (or degree of membership) between
0 and 1. MFs are used in the fuzzifier and defuzzifier modules of a FLS to map
the non-fuzzy input values to fuzzy linguistic terms and vice versa.
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Fig. 5. Example of MFs

For example, Figure 5(a) shows a smoothly varying curve that passes from a
not loaded system to heavily loaded system. The curve is known as a membership
function (µ). Both systems are busy to some degree, but one is significantly
less busy than the other. An important characteristic of fuzzy logic is that a
value can belong to multiple sets at the same time. There are different forms of
membership functions. For example, according to Figure 5(b), a CPU utilization
value can be considered as ”normal” and ”busy” at the same time, with different
degree of memberships. The most common types of membership functions are
triangular, trapezoidal, and Gaussian shapes.
In a FLS, a rule base is constructed to control the output variable. Fuzzy rules
are linguistic IF-THEN constructions that have the general form ”IF A THEN B”
where A and B are propositions contain linguistic variables. For instance, IF load
is high and target is medium THEN command is reduce.

3.5 Fuzzy Fault Tolerance Management
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Fig. 6. Fuzzy membership func-
tions for the input variable

Fuzzy control provides a solution to design
a controller for a dynamic process based
on available heuristic knowledge. Figure 1
earlier showed the general overview of our
fault tolerance framework. Resulting from the
Resource pool are the current weight and
priority values for each available resource.
Additionally, any changes of CPU utilization
between two predefined intervals are collected from the ceilometer. The out-
put of the fault tolerance controller is the modified weight value that determines
whether the assigned job request for a resource should be increased or decreased
in the next interval.

According to current state, the change of the weight value between two inter-
vals is calculated by the fuzzy controller and send to the job distributor module
as the adaptive weight value for the resource to be used for the next interval.
Based on the change of CPU utilization and loaded job request to the resource



in the previous interval, the fuzzy fault tolerance controller determines the new
value for weight and priority of each available resource for the next interval.

As it described before, the fuzzifier and defuzzifier modules (Figure 4) in
the fuzzy controller internally work with linguistic variables and values. The
input numeric values are measured and converted to the corresponding linguistic
values by the fuzzification module, and the reverse operation is performed by
the defuzzification module.

Based on the linguistic input value, the interface module selects the appro-
priate rule to be applied and produces the linguistic output value. Both fuzzifier
and defuzzifier use an MF to convert numeric values to linguistic values and
vice versa. The MF maps each numerical value to a membership value (certainty
level) between 0 and 1 (0 completely uncertain, 1 completely certain). Figure 6
represents our membership function, where the x-axis represents CPU utiliza-
tion values and the y-axis membership values. Based on possible levels of CPU
utilization, which is the metric that represents how busy a processor core is, in
this work, the linguistic variables representing the value of resource utilization
level are divided into four levels: idle, normal, busy and very busy. To determine
the boundary values of each linguistic variable, we collected the required data
from several experts in cloud application management, and used the average of
all the responses for each variable.

Our fuzzy fault tolerance controller uses the following anomaly identification
rules that help in recognising possible failure and that result in job distribution
and weight/priority adjustment as the response:

– A resources is defined as overloaded if its CPU utilization exceeds a given
threshold for a predefined time frame. In this situation, the fuzzy controller
determines the appropriate values of load weight and priority parameters for
the target resource according to its current level of CPU usage. By adjust-
ing the weight value, the job distributor will send less job requests to this
resource until its CPU usage is in a safe mode.

– An underload situation occurs whenever the CPU usage of the resource be-
comes low value for a given time window, i.e., the resource has a low number
of jobs to execute and mostly is in idle mode. In this case, the fuzzy con-
troller modifies and increases the weight and priority value of idle resources
to receive more job requests from job distributor, thus reducing likely failure
elsewhere on other nodes.

Anomaly management happens in the following two ways. Firstly, overloading
is an anomaly taken as an indication that failure is likely to happen, i.e., per-
formance degradation is a root cause for failures, and underload is an anomaly
that signals an opportunity to reduce likely failure elsewhere by allocating load
to the current node. Secondly, a further hypothesis of the anomaly framework is
that incorrect weight and priority negatively impacts on fault occurrences. The
incoming job load to each resource are determined based on its weight and pri-
ority values. Therefore, in order to have a fair distribution on user job requests
and avoid of over/under load situations, our fuzzy controller has duty to modify
these parameters based on loaded job request to the resource, the history of



Technique Strategy Weight Value

Equal weighted
job distributor
(Equal-W)

Resources receive job requests in a circular fashion
without considering resource metric such as CPU uti-
lization and fault tolerance, i.e., all resources have same
weight value (W )

∀ ri, rj ∈ RP |
W (rj) = W (ri)

least-CPU uti-
lization weighted
job distributor
(cpuutil-W)

Resources are weighted based on their CPU utilization,
and job requests are distributed in proportion to the
weight value. Higher values will be assigned to the re-
source with lower CPU utilization

∀ rj ∈ RP | W (rj) =
100− cpuutil(rj , ∆t2)

Fuzzy weighted
job distributor
(Fuzzy-W)

Resource weight value is obtained by the fuzzy fault tol-
erance controller based on the current CPU utilization
and the history of weight value for the resource

∀ rj ∈ RP | W (rj) =
Fuzzy(rj , ∆t2)

(1) Resource Pool contains of available resources.
(2) Average CPU utilization of resource rj during previous time window ∆t2.
(3) Weight value of resource rj based on CPU utilization during previous time window ∆t2.

Table 1. Description of compared strategies used in the controller evaluation

fault rates and the change of CPU utilization for target resource. In this way, a
proactive pre-emptive migration FT strategy is applied.

4 Implementation

We implemented a prototype of the proposed fuzzy logic fault tolerance con-
troller in OpenStack. The Fuzzy Fault Tolerance controller is a based on a fuzzy
logic-based feedback control loop. It continuously monitors the resource utiliza-
tion (using ceilometer) and triggers the controller at each interval check period.
According to the utilization values for each available resources, the fuzzy con-
troller module identifies appropriate load weight values in anomalous situations.

In our implementation, we assume one or more VM instances as members in
the Resource pool. We use a minimal Linux distribution, namely the cirros

image that was specifically designed for use as a test image on cloud platforms
such as OpenStack. Each instance (VM) receives a job request and executes it.
In our experiment, we consider all job requests submitted by different users as
a CPU bounded type. In order to control and manage weight values of available
resources by a fuzzy logic controller, we added an additional VM resource, which
acts as a fault tolerance controller and decides and reassigns weight values pe-
riodically. For the fault tolerance controller, due the impossibility of installing
any additional package in the cirros image, we considered a VM machine run-
ning Linux Ubuntu-based images. Figure 7 illustrates the implemented system
in OpenStack. The created job distributor distributes user job requests across
a set of resources, i.e., the Resource pool. The strategies used in the job dis-
tributor controller VM for evaluation (a comparison between our proposed fuzzy
controller and two other traditional approaches) are summarized in Table 1.

Figure 7 shows the complete process of the proposed fuzzy fault tolerance
approach. First, the fault tolerance controller gathers information from the job
distributor, ceilometer and the current state of members (available resources) in
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the resource pool, then identifies appropriate load weight value for a resource
according to the situation in order to adjust anomalous situations. For example,
if a resource is overloaded, the controller determines that the incoming job load
to the resource should be decreased, therefore it reassigns a new weight value
for the resource to reduce the submitted job requests. The proposed fuzzy logic
controller is coded and run inside of the fault tolerance controller machine.

For some parameters in the proposed algorithm, such as the current number
of VM instances or workload, we need to call the OpenStack API. For example,
the command nova list shows a list of running instances. The API is a RESTful
interface, which allows us to send URL requests to the service manager to execute
commands. Due to the unavailability of direct access to the OpenStack API
inside of the fault tolerance controller machine, we used the popular command
line utility cURL to interact with a couple of OpenStack APIs. cURL lets us
transmit and receive HTTP requests and responses from the command line or a
shell script, which enabled us to work with the OpenStack API directly.

In Figure 8, the process of using cURL to call OpenStack APIs is shown. First,
we send a request authentication token by passing credentials (username and
password) from OpenStack Identity service. After receiving Auth-Token from
Keystone, the user can combine the authentication token and Computing Service
API Endpoint to send a HTTP request and receive the output. We use inside
the fault tolerance controller machine to execute OpenStack APIs and collect
required outputs. By combining these settings, we are able to run the fuzzy logic
approach as the controller of fault tolerance management in OpenStack.

5 Experimental Comparison

The evaluation aims at showig the effectiveness of our fuzzy logic controller for
fault tolerance management in comparison to other job distribution strategies.

5.1 Experimental setup and benchmark

In our experiment, the proposed fuzzy logic approach was implemented as full
working systems and was tested in the OpenStack platform. The number of



available resources considered in our experiment was set to 4 VMs. The term
job workload refers to the user request arrival. Job workload is defined as the
sequence of users submitting the job request that needs to be handled by the
job distributor. To evaluate our proposed approach, we considered a multiple
number of workloads. In each workload scenarios, there are a set of job requests
submitted by individual users. Each job request submitted by a user is considered
as a CPU bounded job. At each workload scenario, the duration of job execution
was set by Poisson Distribution. Several workload scenarios were executed and
the total duration of our experiment was 2 weeks.

In order to evaluate the proposed approach and generate/manage faults in the
target system, we used a fault detector VM, shown in Figure 1, as a single system
fault model. By gathering information from the ceilometer about the current
situation of each available VM, the fault detector is able to detect whether
the resource goes into an anomalous state (over/underload) or not. Based on
current CPU utilization of the resource in the defined time window, the fault
detector module detects if a target resource is overloaded for a period, and sends
a recovery signal to the target resource. To simplify the fault recovery process
here, we consider hardware rejuvenation as the recovery fault tolerance strategy.

Additionally, we compared the proposed fuzzy fault tolerance approach with
two other algorithms, namely Equal-W and cpuutil-W, as shown in Table 1.
In the Equal-W approach, each available resource receives job requests in a
circular fashion without considering resource metrics such as CPU utilization and
fault tolerance, i.e., all resources have the same weight value (W ). In contrast,
the cpuutil-W approach, by monitoring resource CPU utilization, the weight
values are assigned dynamically, and job requests are distributed in proportion
to the weight value. There is other research on load balancing strategies [15,
23, 4], which aims to improve objectives such as resource response time, which
are similar in terms of the monitoring set up, but not the configuration of the
analyses and enactment strategies for fault tolerance.

5.2 Comparison metrics

We measure the performance of the cloud environment during the whole period
for each executed scenario. The metrics used for comparison are:

– CPU utilization: as a key metric considered in resource management across
clouds, it is a function of time and is denoted by the amount of time a
CPU is busy for handling work during a specific interval. It is reported as
a percentage. CPU anomalies appear if its utilization goes beyond a high
threshold (e.g., 80%) for a sustained period of time.

– Failure rate: is the representation of the total number of failures experienced
during the experiment for each scenario. It widely used to represent the
stability and reliability of a target system.



5.3 Results and discussion

Figure 9 shows the distribution of the CPU utilization metric (cpu util) ob-
tained by comparing the algorithms during our experiment for each individual
available resource. For all VMs, our approach (Fuzzy-W) obtained a better dis-
tribution range, with cpuutil-W consistently second best, followed by Equal-W
as last. The wider range of CPU usage distribution shows that the job request
load has a more fair distribution among all available resources. Fairness is defined
based on the CPU usage of each resource and tries to avoid CPU overloading
for a long period. In this context, fairness represents the quality of service pro-
vided by a cloud service and it tries to avoid SLA (Service Level agreement)
violation due to host overloading. By using dynamic weight and priority values
for load job request distribution, both Fuzzy-W and cpuutil-W algorithms try
to overcome the overloading anomaly situation that causes system failures.
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Fig. 10. Failure Rates

In figures 11(a), 11(b), and 11(c), the bars represent the percentage frequency
of CPU utilization among all available resources for the compared algorithms,
i.e., Equal-W, cpuutil-W and Fuzzy-W, respectively.
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Fig. 11. Percentage frequency of CPU utilization

5.4 Comparison of effectiveness

Figure 10 shows the distribution of reboot occurrences (resulting from failures)
for individual resources during of our experiment under several workload sce-
narios. As it mentioned before, both Fuzzy-W and cpuutil-W approaches have
better CPU usage distribution compared to Equal-W (Figure 11). However, due
to a higher distribution of CPU utilization in Fuzzy-W, at each time interval
for the failure detector, we have lower average values for CPU utilization, and
it shows a significant reduction of the number of reboot occurrences.



6 Conclusion

We have proposed a new fuzzy logic-based load balancer for fault tolerance in
IaaS cloud platforms. The proposed approach employs a fuzzy logic strategy
to assign a weight and priority value to each available resource as a proactive
strategy in anomalous situations. By monitoring the current state of a system, it
tries to adjust the weight value for each resource in order to achieve: (i) fairness
job distribution, (ii) avoid anomalous situations such as overloading that causes
a system failure, and (iii) improve throughput of the whole system. Overloading
of a system may lead to poor performance which can increase failure rates and
SLA violation. Underload is also dealt with to reduce anomalies elsewhere.

The assignment mechanism for choosing the appropriate weight value in the
proposed approach is based on a fuzzy logic system (FLS) and collected metering
data as its input. By considering the real-time information and collected metrics
of each resource, it achieves a more efficient load distribution and reduces the
occurrence of failures in the system. The proposed approach was coded and
implemented in OpenStack, an open-source IaaS platform, to demonstrate the
practical effectiveness of proposed approach, and evaluated based on important
metrics, including distribution of CPU utilization and failure rate during of our
experiment for each individual resource. The experimental results revealed that
using a fuzzy approach the proposed approach outperformed the other strategies
considering all the above mentioned metrics, especially in failure rate parameters,
which is the main objective here.

We plan to apply the solution also to container-based virtualisation [21, 9]
towards an edge-cloud management platform [22] in the future.
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