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1. Abstract 37 
There is a growing recognition that application of mechanistic approaches to 38 

understand cross-species shared molecular targets and pathway conservation in the 39 

context of hazard characterization, provide significant opportunities in risk assessment 40 

(RA) for both human health and environmental safety. Specifically, it has been 41 

recognized that a more comprehensive and reliable understanding of similarities and 42 

differences in biological pathways across a variety of species will better enable cross-43 

species extrapolation of potential adverse toxicological effects. Ultimately, this would 44 

also advance the generation and use of mechanistic data for both human health and 45 

environmental RA. 46 

A workshop brought together representatives from industry, academia and 47 

government to discuss how to improve the use of existing data, and to generate new 48 

NAMs data to derive better mechanistic understanding between humans and 49 

environmentally-relevant species, ultimately resulting in holistic chemical safety 50 

decisions. Thanks to a thorough dialogue among all participants, key challenges, 51 

current gaps and research needs were identified, and potential solutions proposed.  52 

This discussion highlighted the common objective to progress toward more predictive, 53 

mechanistically based, data-driven and animal-free chemical safety assessments. 54 

Overall, the participants recognized that there is no single approach which would 55 

provide all the answers for bridging the gap between mechanism-based human health 56 

and environmental RA, but acknowledged we now have the incentive, tools and data 57 

availability to address this concept, maximizing the potential for improvements in both 58 

human health and environmental RA. 59 
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2. Introduction 64 
It is recognised that new scientific improvements and their integration in risk 65 

assessment have the potential to improve human health risk assessments by enabling 66 

a mechanistic understanding of adverse effects and more accurate predictions of 67 

biological responses [1]. Current regulatory-accepted approaches to assess chemical 68 

safety are often based on a battery of in vivo methods and a limited number of 69 

accepted in silico or in vitro approaches. However, performing toxicity studies for all 70 

existing chemical substances using in vivo methods is not physically, ethically, or 71 

financially possible. Chemical or biological read-across approaches are being 72 

considered by industry and chemical management agencies as an alternative to 73 

reduce the reliance on these highly resource-intensive in vivo tests. There is an urgent 74 

need to improve current capabilities to perform chemical read-across and cross-75 

species extrapolation (biological read-across) through an improved mechanistic 76 

understanding of the basic biology underlying toxicity and the chemistry-biology 77 

interactions involved. Development of descriptors and alerts that facilitate chemical 78 

grouping and a better understanding of the species hazard space (i.e. species that are 79 

sensitive to certain chemical classes) would also be highly beneficial. In this respect, 80 

there have been many efforts focused on the challenges involved in the development 81 

of chemical read across, improving its scientific justification and supporting 82 

documentation for use in both chemical hazard and RA. Chemical read-across and 83 

grouping approaches have become some of the most commonly used alternative 84 

approaches for data gap filling within analogue and category approaches [2]. These 85 

efforts have led to a wide recognition of the scientific validity of these and its regulatory 86 

acceptance and recently, ECHA has published a guidance document on how to 87 

perform and document chemical read-across under REACH (Read-Across 88 

Assessment Framework (RAAF) [3]. 89 

Over the last two decades, there has been a scientific and regulatory push towards 90 

the development of novel non-animal approaches for safety assessment [4]. There is 91 

a growing desire within the scientific community to achieve simpler, broader, faster 92 

and importantly, more predictive risk assessment (RA). To achieve the desired 93 

improvements in chemical RA, the current limitations concerning the generation, 94 

integration and interpretation of newer types of data proposed for use in RA need to 95 

be overcome. Recent developments in biotechnology and molecular biology have 96 



 

 

given rise to New Approach Methodologies (NAMs) [5] that are greatly enhancing our 97 

ability to address some of the data gaps faced in both human and environmental 98 

toxicology. NAMs are a recently adopted concept to broadly refer to any non-animal 99 

approach, methodology and / or technology, aimed at providing information on 100 

chemical hazard and RA, including integrated approaches to testing and assessment, 101 

data interpretation, and performance-based evaluation of test methods [6]. NAMs 102 

open new opportunities to ensure RA is grounded in human biology rather than 103 

replicating the results of a prescriptive list of animal tests. This is especially important 104 

for mechanism-of-action-based RA. For instance, effect concentrations based on 105 

perturbations in signalling pathways in human cells will likely be different from those 106 

causing apical effects during rodent studies. The difference in species and level of 107 

biological organization considered in the example suggest that results of such tests 108 

cannot (and should not) be ‘validated’ against each other and should be compared 109 

with caution [7]. In this respect, the use of molecular-based, high content data has the 110 

innate potential to complement traditional human and environmental toxicology 111 

approaches [8-11]. Indeed, their use could catalyse a paradigm shift to more proactive 112 

pathway-based approaches, ultimately facilitating the development of in silico-based 113 

predictive toxicology [12, 13]. Available data on endpoints supporting traditional 114 

approaches to assess environmental and human safety, coupled with a growing 115 

weight of in silico / in vitro biological pathways-based data raise the question: are we 116 

already at a point where we can consider new types of data  and incorporate them in 117 

a new or augmented approach to RA?  118 

For this to happen, frameworks such as the Adverse Outcome Pathway (AOP) 119 

concept, which links the description of biological cascade from the insult at the 120 

molecular initiating event (MIE) to the adverse outcome (i.e. AO - the apical 121 

toxicological endpoint of concern), can be utilised [14-16]. In addition to the mapping 122 

of data, the AOP concept also allows for qualitative evaluation of a pathway and its 123 

overall reliability through a weight-of-evidence approach [17]. In some cases, for 124 

example in the regulatory assessment of endocrine disruption hazard, a weight-of-125 

evidence-based approach has been advocated [18]. However, the next and ultimate 126 

step required for this approach to be fully implemented in RA is the development of its 127 

quantitative aspect [19, 20]. 128 
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Use of cross-species extrapolation is a well-established concept for RA for 130 

environmental safety (e.g. using toxicity data from a reduced number of model species 131 

to represent the entire ecosystem biodiversity), but also for human health (e.g. using 132 

laboratory studies from rodents to infer effects on humans). However, an improved, 133 

more comprehensive and reliable extrapolation of biological pathways across species 134 

would facilitate the use of already available toxicity data across human health and 135 

environmental RA and allow for a more coherent and efficient characterization of 136 

overall hazard [21]. Whilst the potential of molecular-based, high-content data and 137 

mechanistic approaches has been recognized[5, 22], there are limited examples 138 

where molecular level data have been extrapolated across species, including human, 139 

to inform cross-species mechanistic understanding as part of the next-generation RA 140 

of chemicals[5, 23, 24]. There is an urgent need for new approaches to classify and 141 

(ideally) quantify inter-species similarities / differences based on mechanisms of 142 

action. However, there are some pragmatic first steps that can be taken using 143 

emerging and developing technologies (including OMICS) [25-27]. 144 

Motivated by these questions, a workshop was organized, entitled “Vision of a near 145 

future: bridging the Human Health - environment divide. Roles of molecular and data-146 

rich approaches as part of an integrated strategy to understand mechanisms across 147 

species for chemical safety assessment”, held at Colworth Science Park (Sharnbrook, 148 

UK) on April 18th-19th, 2018. Representing academia, industry and government, thirty 149 

experts were brought together from diverse fields, including human and environmental 150 

toxicology and regulatory safety science, to foster this dialogue. The overall purpose 151 

was to discuss how existing data can be better exploited and how new data can be 152 

generated to improve mechanistic understanding across humans and environmentally 153 

relevant species to better inform chemical safety decisions.  154 

3. Workshop outline 155 
Participants were selected based on their domain of expertise as well as their 156 

affiliation, to ensure a broad coverage both in sense of background and areas of 157 

interest as action domain. Stakeholders from universities (U. Cambridge, U, California 158 

Berkeley, U. Birmingham, U. Liverpool, U. Exeter, U. Amsterdam, Brunel U.), private 159 

sector i.e. industries (Unilever, Astra Zeneca), and governmental / regulatory bodies 160 

(USEPA, EC-JRC and NC3Rs) were invited to discuss current problems and needs 161 



 

 

concerning biological read-across and its implementation in current practices of RA. 162 

New strategies and solutions were also proposed.  163 

In preparation for the workshop, delegates were asked to reflect and share their 164 

opinion on two key questions prior to the event:  165 

(1) what are the main drivers to develop cross-species understanding of mechanisms 166 

of action in the context of RA?  167 

(2) what approaches / techniques do we foresee as better suited to provide scientific 168 

evidence and increase confidence in cross-species extrapolation and what are the 169 

main limitations? 170 

All feedback received was analysed and provided the basis for a focussed discussion 171 

in breakout groups. Based on their expertise and opinions shared prior to the 172 

workshop, delegates were divided into three work groups, each addressing a different 173 

level of biological organization: (WG1) target-level, (WG2) pathway-level and (WG3) 174 

physiological-level, including exposure. Each group was asked to discuss the current 175 

science and knowledge available and the scientific research needed to achieve full 176 

potential as outlined in Table 1, focusing on the main challenges, benefits and hurdles. 177 

 178 

Table 1- List of the challenges considered by each of the three working groups 179 

Challenge 1 Improve basic knowledge of Molecular Initiating Events (MIE) across 
species 

● Improve knowledge of target homologue/orthologue characterization 
through evolutionary (and functional) conservation 

● Develop an understanding of the chemistry of MIEs with a cross 
species perspective  

Challenge 2 Develop basic knowledge of pathway conservation across species 

● Increase scientific knowledge for pathways-based comparison to 
support extrapolation from a higher-tier perspective 

● Develop species-specific pathway-to-phenotype association analysis 
in a chronic exposure scenario 

Challenge 3 Refine understanding of biological processes impacting internal exposure 

● Understand species-specific physiological processes (ADME) to 
predict chemical effective doses at the target site in different species  

● Develop and refine PBK models for key species and link them to 
understand where there are common and species-specific processes 

 180 



 

 

This report describes the proceedings of the workshop and presents the highlights of 181 

the discussion. All opinions were treated equally and were consensually accepted by 182 

all participants. 183 

  184 
Figure 1-Holistic schematic of how to perform chemical risk assessment using mechanistic knowledge improving the cross-185 
talk between human health and environmental safety. 186 

4. Breakout Discussion group summaries 187 

4.1 Work group 1: “The Challenge: Improve our knowledge of MIE across species” 188 

Key shortcomings regarding the use of MIEs (the initial chemical–biological interaction 189 

that starts the AOP [28]) to identify and understand common pathway signal 190 

transduction for cross-species extrapolation were considered by WG1. When 191 

considering a MIE for RA across human health and the environment, it is important 192 

first to recognize that there are different aims and diverging protection goals. In fact, 193 

for humans the protection goal is optimally set at the individual level, aiming at 194 

protecting each individual against harm; for the environment, this is more often 195 

established at the population or ecosystem level [29]. Similarly, there may be varying 196 

layers of complexity to consider, for example general narcosis vs. specific Mode of 197 

Action (MoA), or a MIE with multiple interactions (e.g. skin sensitizers) vs. a MIE that 198 

leads to one specific adverse event (e.g. estrogenic receptor agonist). Challenges also 199 

differ substantially depending on the goal for extrapolation between datasets / species, 200 

i.e. to assess for a similar MoA / AOP (or toxicity pathway) across species or to 201 

extrapolate effect levels across species. If the aim is to assess for similar MoA / AOP 202 

across species (but not effect levels), current state of the art ortholog predictions (e.g. 203 



 

 

OrthoDB [30] or EggNOG [31]) can provide a good starting point, provided the 204 

mechanism of toxicity is specific and the MIE limited to one (few) specific protein 205 

targets. However, there are many uncertainties associated with ortholog predictions. 206 

For example, uncertainty increases with evolutionary distance between species as 207 

well as for some types of protein families such as CYP450 or G-proteins [32]. In the 208 

pharmaceutical field this has been addressed by using a majority vote across three 209 

prediction platforms in a web-based application that looks for protein target 210 

conservation between human and a range of sequenced phyla (www.ecodrug.org) 211 

[33]. Furthermore to this, another tool facilitates summary, comparison and access to 212 

various sources of ortholog predictions and provides a comparison of 17 different tools 213 

and algorithms to increase the confidence in the orthologue prediction 214 

(http://www.flyrnai.org/diopt) [34]  215 

To understand how a MIE could be used to inform RA and enable cross-species 216 

extrapolation, the extent of functional conservation of downstream effects across 217 

species also needs to be resolved. This could be achieved by deploying new functional 218 

in vitro assays, although this is expected to be time and resource intensive. However, 219 

some compounds will interact with multiple targets, and may lead to different 220 

downstream events. This highlights the importance of understanding the response of 221 

biological systems from a network perspective [20, 35]. Moreover, since chemical-222 

target(s) interaction networks are often driven by internal exposure dynamics, it is also 223 

essential to enhance the understanding of adsorption, distribution, metabolism and 224 

excretion (ADME) processes, especially in lower species, where current knowledge is 225 

limited. This will allow enhanced consideration of chemical-target interaction networks 226 

that may occur following diverse exposure scenarios, thus simplifying and boosting 227 

the cross-species extrapolation process.  228 

Furthermore, it was agreed that the pathway leading to the AO itself needs to be fully 229 

understood to prioritize testing needs. Understanding how gene / proteins relate to 230 

downstream functions through evolutionary relationships between protein families and 231 

super-families may also be informative and more meaningful than a one-to-one 232 

comparison. Therefore, it is important to understand the available data including 233 

substrate specificity and related potencies to discern how the level of gene / protein 234 

similarity influences the target affinity and the impact on potency.  235 



 

 

While doing so, it is important to keep in mind the whole decision-making process, to 236 

better and more efficiently define what is the minimum but necessary information 237 

required to enable decision-making for RA purposes and thus reduce overall 238 

uncertainty. Pertinent to this, it will also be paramount to consider the different needs 239 

of different stakeholders (e.g. regulators vs. industry).  240 

The need for a deeper understanding of the difference between receptor-mediated 241 

and more general stress responses was also discussed. Potential solutions included 242 

the idea of developing directed functional bioassays, as well as building a library of 243 

target-knockout systems encompassing several species. To ensure meaningful 244 

results and application, any of these approaches would need to make use of a broad 245 

selection of chemicals, representing a variety of chemical classes and MoAs / AOPs, 246 

as well as to cover different suitable exposure durations and time points (including life 247 

stages), ensuring coverage of potential sources of variability. Ultimately, these 248 

approaches would generate a repository which could then be interrogated for hazard 249 

characterization every time a new substance comes in for hazard evaluation. There 250 

are already ongoing efforts pointing to this same direction, including the Library of 251 

Integrated Network-Based Cellular Signatures (LINCS) Program 252 

(http://www.lincsproject.org/) [36], providing a first attempt to create a network-based 253 

library of biological signatures by cataloguing changes in gene expression and other 254 

cellular processes occurring when cells are exposed to a variety of perturbing agents. 255 

While this represents a powerful source of information, it is currently limited to human 256 

and more of these kinds of approaches are needed to support the evidence across 257 

species. Nevertheless, it is recognised that chemical exposure levels in the 258 

environment are often very low at a cellular level and producing assays with 259 

environmentally relevant cellular exposure becomes difficult (reiterating the need for 260 

cell level exposure considerations). Another discussed alternative, and potentially 261 

more efficient, way to test this concept would be to start using available data, 262 

comparing current existing human toxicity signatures (for instance, from the LINCS 263 

database, among others) to available historical toxicity records in the ecotoxicology 264 

literature. The proposed database would be used as a surrogate to define the 265 

biological target space and could be interrogated to identify potential consensus 266 

hazard signatures, based on effect conservation. However, this approach would also 267 

pose several other practical questions: what data types would that database include, 268 



 

 

such as life-history, transcriptomics, metabolomics, etc.? On which species and 269 

chemicals? How would it be prioritized? All of these questions highlighted the recurrent 270 

need to increase the ecological realism by considering a larger number of species and 271 

thus, related delivered ecosystem functions. This also implies that thorough 272 

predictions of pathway-based signatures are urgently needed to better estimate risk, 273 

especially when trying to define the most relevant / appropriate species under each 274 

scenario. Increasing the two-way data flow (human health to ecotoxicology and vice-275 

versa) would undoubtedly improve the understanding in this field. 276 

The final note from the Work group 1 discussion was the recognition that 277 

environmental RA information is not currently being fully exploited within the human 278 

health arena (and vice-versa). In fact, there is still a great potential for developing 279 

additional biological read-across and extrapolation processes from human health to 280 

environmental safety science (and vice-versa), but their different needs and priorities 281 

need to be acknowledged. In this sense, generation of new data may not be a priority 282 

need, but rather the development of new / improved data mining tools to interrogate 283 

the wealth of data that is already available.  284 

4.2 Work group 2: “The Challenge: Develop our basic knowledge of pathway 285 

conservation cross-species” 286 

This group addressed how to tackle cross-species extrapolation at a pathway-level 287 

and discussed several key issues that need to be resolved to increase confidence 288 

before application. It was identified that gene function is the crucial aspect in this 289 

respect and the concept of “functional orthology” [37] was considered a beneficial 290 

approach to predict the conservation of the (adverse) outcome across species. To 291 

address and expand this concept, investigations on different levels are needed. 292 

(Re)defining and cataloguing the orthologs by function would help sorting and 293 

functionally annotating them into the relevant pathways. There is high probability that 294 

a number of genes and gene subfamilies are divergent across species, and 295 

additionally, multi-purpose enzymes found in lower species may replace their role and 296 

thus belong to multiple pathways. A first attempt in this same direction is provided by 297 

the new available software Gene2Function (http://www.gene2function.org/) [38] 298 

whose primary goal is to facilitate the development of new hypotheses regarding the 299 

function of a given gene based on what is known about the function of orthologs of 300 

that gene in other species. 301 



 

 

Going beyond a better functional annotation, before stepping-up to a purely pathway-302 

level analysis, the need for a more human and environmental toxicology-relevant gene 303 

annotation was also acknowledged. In fact, essential genes / gene families involved 304 

in human health (inferred by the many medical / pharmacological studies available) 305 

may not always be the same as those that are of ecotoxicological concern. Therefore, 306 

as a possible solution, it was suggested to map the human genome against existing 307 

ecotoxicology literature in a newly designed, fit-for-purpose database, thus re-308 

annotating genes based on ecotoxicological needs.  309 

The participants acknowledged attempts to define all known AOPs in human and 310 

environmental toxicology, however the data are currently far from complete and little 311 

is known about cross-species evaluation. The need to define a priority list of the most 312 

relevant pathways was discussed and agreed it would provide a good starting point 313 

for deeper exploration. One proposed hypothesis was that the “key” pathways that are 314 

essential for life are likely to be the more evolutionarily conserved. These could include 315 

pathways such as oxidative stress, Nrf2, the p53 DNA damage response, the unfolded 316 

protein response (UPR) and mitochondrial injury, among others [39]. Exploration here 317 

should be focused both on improving understanding on both an evolutionary scale and 318 

on an experimental level. For example, it was suggested the creation of a priority 319 

pathways screening panel across relevant species, including new in vitro assays for 320 

toxicity and stress responses coupled with Physiologically based Kinetic (PBK) 321 

models. However, improved insights on the level of pathway conservation is required 322 

to be able to interrogate their (potential) de-regulation to the initiation of apical effects 323 

(or the lack thereof). This would also serve to improve the functional annotation of the 324 

pathways themselves, as mentioned above, thus developing a new “apical functional 325 

ontology”. Though, even if some of the pathways are conserved between species, the 326 

apical endpoint might not be present, could be organ-specific or could manifest itself 327 

in a different (not directly identifiable) way. AOP-Wiki (https://aopwiki.org), the central 328 

repository for all AOPs developed so far, represents a good source of information to 329 

identify the known links between MIEs, and the cascade of key events (KE) leading to 330 

the apical endpoints / AO [15]. A good example of the former is AOP 150 “Aryl 331 

hydrocarbon receptor activation leading to early life stage mortality, via reduced 332 

VEGF” where the developing embryos of birds and fishes are most sensitive to the 333 

stressors activating this AOP, ultimately leading to embryo death and population 334 



 

 

trajectory decline; mammals appear to be less sensitive, leaning towards cardiotoxicity 335 

that persists into adulthood, and increasing susceptibility to heart disease rather than 336 

embryo-lethality. It was also discussed that sub-pathway modules / key events might 337 

be more conserved, thus easier to track, and might give more information between 338 

different species than investigating the whole pathway. While it is appreciated that we 339 

cannot expect to unravel all AOs for all toxicity pathways of concern in all species, 340 

moving toward these kinds of approaches would help to increase confidence in toxicity 341 

predictions. Also, it would be a significant advancement to know when a pathway is 342 

conserved and disrupted across which species, thus defining with more confidence 343 

the space for environmental risk. 344 

In this respect, it was acknowledged that the aim of research is always to advance 345 

science to serve society with the maximum knowledge possible. As scientists, it is 346 

appreciated that curiosity drives the understanding of every mechanism and 347 

interaction between a chemical and an organism. Regulatory pressures require data 348 

underpinning human health or ecological assessment to be consistent and robust, with 349 

the goal of ensuring safety to humans and the environment. This raises the challenge: 350 

when do we have enough data for RA? An admittedly complex question to which there 351 

is no easy answer. The ultimate goal is to achieve enough confidence to enable 352 

decision-making without endless laboratory testing and years of research. Starting 353 

from the point that it is not realistic to cover all aspects for assessment contexts, it was 354 

suggested that it may be easier to know when the data is not enough. It is a matter of 355 

increasing confidence and reducing uncertainty: for instance, one could hypothesize 356 

that enough data might mean having several pathways annotated to allow satisfactory 357 

toxicity predictions, although we don’t know all of them. Thus, to answer the question 358 

on how much investment is acceptable to reduce the uncertainty of risk, we first need 359 

to think of how current uncertainties are preventing decisions to be made and how 360 

much we are willing to invest (in time, money and effort) to improve this certainty. The 361 

current revolution in digital technology and machine learning approaches may well 362 

help to address both the question of how much data is required, and what information 363 

is retrievable from existing data [40] .  364 

From an environmental RA standpoint, it will never be possible to consider all 365 

environmental species and all possible exposure scenarios (time, doses, frequency 366 

and ecological circumstances). As such, there is a need to derive sufficient evidence 367 



 

 

allowing to build models and provide enough scientific basis to support reasonable 368 

predictions based on relatively small datasets. There is not one unique environmental 369 

relevant species that is better, more representative or more appropriate than others. 370 

A concept currently being explored by evolutionary biologists considers several 371 

species (5-8 species) covering the phylogenetic tree in its main branches. This could 372 

be considered the minimum number of species needed to reflect the main 373 

distinctiveness of evolution. In any case, it continues to be very challenging to include 374 

species-specific physiology into the equation as well as the ecological traits that are 375 

unique to each (sub-)species. Similarly, it is important to understand how to consider 376 

and account for genes that may exert different roles simultaneously, or different 377 

functions throughout the lifetime of the organism; how to deal with epigenomics and 378 

the knowledge that genomes are adaptive to environmental conditions and / or 379 

external stimuli; how to overcome the potential problem that genes may behave 380 

differently when tested in controlled lab conditions as compared to their native state. 381 

All of these remain open questions: although much work has been done to try to 382 

answer these questions, comprehensively addressing these and other concerns on a 383 

case-by-case basis are still far from application and beyond the current requirements 384 

for RA. 385 

4.3 Work group 3: “The Challenge: Refine our understanding of biological processes 386 

impacting internal exposure”  387 

Consideration of the main biological processes impacting internal exposure, and 388 

particularly, how species-specific ADME processes influence chemical concentrations 389 

at target sites, is critical to the application of mechanistically-based species 390 

extrapolation. The concept of “exposure” cannot usefully be discussed in isolation, but 391 

rather as an integrated part of the RA question. Without inclusion of exposure, any 392 

discussions on chemical-target interactions and species extrapolation of the 393 

responses remain theoretical, limited purely to the identification of similar hazards. In 394 

order to translate an identified hazard into a risk, considering and understanding 395 

exposure is essential. Being RA is driven by exposure, it is not relevant that the 396 

molecular target triggered by a given compound is conserved across species, if the 397 

exposure level is below the activation threshold of the MIE. Thus, it becomes essential 398 

to understand the RA question, and link to the specific exposure scenario, and the 399 

required level of confidence needed to make an early decision on risk. At sufficiently 400 



 

 

high chemical exposure doses, organisms and cells often exhibit acute effects related 401 

to general membrane perturbation, e.g. narcosis, whereas at continuous but lower 402 

doses, different pathways may trigger measurable effects at various thresholds. In 403 

addition, complexity is also added by differences in sensitivity between different cell 404 

types as well as different rates of metabolism across tissues and organisms. Indeed, 405 

when extrapolating from in vitro to in vivo, or from species to other species, differences 406 

in both biokinetic and biodynamic properties are of central importance and neither can 407 

answer the question of risk independently. 408 

Lessons can be learned from human health where for decades animal effect data have 409 

been utilised to extrapolate to potential human effects. More recently, research has 410 

been focused on extrapolating from in vitro to in vivo effects to eliminate and overcome 411 

the need for animal testing. The magnitude of the challenge of applying the same 412 

strategies to environmental RA is apparent: rather than dealing with one very well 413 

characterised organism, thousands of diverse, highly variable and poorly 414 

characterised organisms need to be considered. Given this complexity, the workgroup 415 

focussed discussion mostly around fish, where extrapolation approaches from existing 416 

data is key, given the desire to eliminate animal (i.e. vertebrate) testing. 417 

In order to meet these needs, the MERLIN-Expo software (https://merlin-expo.eu/) 418 

was developed, which contains a library of models for exposure assessment coupling 419 

environmental multimedia and pharmacokinetic models, and aims to link 420 

environmental fate of chemicals and internal concentrations in humans, thus 421 

integrating environmental exposure assessment and human exposure assessment. 422 

Although it represents a very significant step in this space, it is centred over human 423 

health RA and does not cover the heterogenicity found in the environment in terms of 424 

species and ecosystems, that still need to be addressed further for its implementation 425 

in ERA. 426 

Across the pharmaceutical industry as well as pesticides and biocides, chemicals of 427 

interest are designed for high levels of specificity and potency, and effective 428 

absorption. This combination of chemical attributes can often lead to measurable 429 

effects at realistic exposure scenarios for aquatic species despite being designed for 430 

low bioaccumulation potential [41]. As such, there has been a pressing need for a 431 

common strategy for environmental RA for these industries. In contrast, ingredients 432 



 

 

used in Home and Personal Care (HPC) products are designed to be of low bioactivity 433 

as possible. As such, toxicological concern associated with these types of chemicals 434 

is reduced, though the volumes used are greater compared to pharmaceuticals, for 435 

example. 436 

It is therefore understandable that the greatest examples forward in terms of MIE 437 

identification and species extrapolation come from the pharmaceutical sector. One of 438 

the most prominent strategies for environmental RA coming from this sector is the 439 

Hugget approach (Fig 1) [42-45]. This method presents an approach for biological 440 

read-across from human therapeutic doses to environmental species (e.g., fish). It 441 

rather simplistically compares internal concentrations in fish and human based on 442 

toxico-kinetic modelling and environmental fate calculations. 443 

 444 

Figure 2 Hugget approach scheme. Acronyms PoD: Point of Departure, PBTK: 445 
Physiologically-based ToxicoKinetics 446 

However, the application of this approach in other sectors is more challenging 447 

because, for instance, HPC ingredients rarely have a full package of ADME data 448 

associated with them, predominantly because they were not designed for biological 449 

interaction in the same way that pharmaceuticals are. This could suggest that for many 450 

chemicals the Hugget approach may be excessive due to its extensive data 451 

requirements. However, the exploitation of existing data from other compounds or from 452 

other species may obviate the need for extensive testing if the uncertainties 453 

surrounding these data can be addressed. These uncertainties result from 1) whether 454 



 

 

we can assume metabolic machinery is significantly similar across species to predict 455 

metabolism in relevant species and 2) whether the potency of target effects is the 456 

same in different species.  457 

Given the relative abundance of data generated regarding human metabolism, a 458 

consideration to be made regards how acceptable it is to read across from data 459 

generated to satisfy human safety needs (using in vitro assays) to fish and other 460 

species. This raises a number of research questions: a) Can we cover all the biological 461 

space for fish using existing human cell lines? b) Can we use existing cell line data 462 

sources (e.g. American Tissue Cell Collection or Cellosaurs) to define suitable cell 463 

lines to cover that biological space? c) have we performed extensive comparisons 464 

between these human-fish cell lines and if required can we establish new lines to fill 465 

the gaps? d) Can we use existing untargeted chemistry data e.g. a metabolomics 466 

study, to see and / or model metabolism patterns for selected chemical classes across 467 

human and model species? Can we take broader approaches for understanding 468 

metabolism in environmental species? For example, can we classify clearance in fish 469 

as high-medium-low and can we establish uptake rates for chemical classes? In this 470 

regard, the workgroup also discussed the possibility to perform computational 471 

simulations to address the uncertainty across a range of species and use randomness 472 

to generate draws from a probability distribution. Main strength of this approach is the 473 

possibility of considering any potential outcome of a process and thus, assessing the 474 

whole impact of risk and allowing for better decision making under uncertainty and 475 

deficiency of data. 476 

When looking into the application of these approaches for RA, it was acknowledged 477 

that additional careful consideration is needed in designing a new exposure-driven 478 

environmental RA strategy. The conventional Predicted Environmental Concentration 479 

/ Predicted No Effect Concentration (PEC / PNEC) strategy for assessing 480 

environmental risks is often criticised for its lack of environmental realism and its 481 

conservative nature. The strategies adopted by the pharmaceutical sector require 482 

extensive data generation that may not always be feasible for other products or 483 

ingredients. However, a strategy based on maximizing read-across data from other 484 

species principally focussing on understanding and characterising metabolism may 485 

negate the need for large-scale metabolism data generation. Additionally, this should 486 

enableto maximize the value of existing PBK approaches to establish internal 487 



 

 

exposure concentrations as part of a broad modelling approach for environmental RA. 488 

Gaps in knowledge still exist in order to determine which approach is most appropriate 489 

and more species-specific PBK models and metabolism data is required to be 490 

generated to support. Overall, the group concluded that there is a need to develop 491 

further approaches to capitalize on the advances made in molecular target discovery 492 

and being able to determine internal exposure to a sufficient level of accuracy, whilst 493 

still maintaining a pragmatic approach. 494 

5. Discussion and future outcomes  495 

Over the last decade, there has been advancement in the way that chemical RA is 496 

performed and there has been an accelerating global shift toward animal-free 497 

methods. The International Cooperation on Cosmetics Regulation (ICCR) recently 498 

defined Application of ‘Next Generation RA’, as an exposure-led, hypothesis-driven 499 

RA approach that integrates in silico, in chemico and in vitro approaches, and provides 500 

an example of how this framework is becoming more embedded [7]. Nevertheless, 501 

current environmental RA standard regulation guidelines still rely on extrapolating 502 

largely in vivo data from a limited number of model species to a multitude of species 503 

of environmental concern using safety factors to account for uncertainties. This 504 

protective rather than predictive (or realistic) approach to biological read-across 505 

presents significant barriers to the broader use of the increasing wealth of NAMs-506 

derived data for inferring impacts across organisms within a Next Generation RA 507 

framework. At present, biological read-across tends to be constrained by its large 508 

degree of uncertainty due to inherent physiological diversity (obvious at the organ to 509 

species-level, but less obvious at the sub-cellular MIE-level), the wide range of 510 

sensitivities to chemicals and the limited mechanistic understanding of toxicity in non-511 

target species. In fact, the general lack of comparative cross-species sensitivity data 512 

(including human) limits the ability to make robust taxonomic extrapolations in support 513 

of RA. Overall, it is essential to increase trust in these methods, by building confidence 514 

among regulators and the broader scientific community that the necessary biology is 515 

comprehensively and adequately incorporated into the proposed animal-free 516 

strategies, so that they can be applied and used for both human health and 517 

environmental RA. To encourage this process and to reduce the associated 518 

uncertainty, it is imperative to identify and explain the relevant inter-species similarities 519 



 

 

/ differences, to allow more evidence-based extrapolations and an improved 520 

assessment of uncertainty.  521 

There are several ways to achieve this. A common concept is based on pure orthology, 522 

which relies heavily on sequence similarity and phylogenetic events, and is illustrated 523 

by SeqAPASS (Sequence Alignment to Predict Across Species Susceptibility, 524 

https://seqapass.epa.gov/) [46]. This tool attempts to answer the question whether or 525 

not a known protein target is present in another species for a chemical to act upon. 526 

Information from SeqAPASS, in concert with AOP descriptions can begin to inform the 527 

potential for cross-species effects propagating from a MIE to an AO. Another approach 528 

"Interspecies Correlation Estimates” (https://www3.epa.gov/webice/) [47], was 529 

developed by the USEPA with two aims: the estimation of acute toxicity from a 530 

surrogate species, and a species sensitivity distribution model which generates a 531 

prescribed hazard level. The main disadvantage of this approach is that it is based on 532 

statistical inference and modelling and is not inclusive of any biological or mechanistic 533 

information. While acknowledging the added value of these approaches in providing 534 

additional lines of evidence applicable to a WOE evaluation in a decision-making 535 

context, they presently still lack the underlying mechanistic understanding needed to 536 

improve safety decisions. Yet, the tools are not static and continue to evolve as the 537 

science advances in this area of bioinformatics. 538 

The workshop discussed the opportunity for application and the limitations of the 539 

current approaches, along with proposing NAMs that could improve biological read- 540 

across while reducing the inherent uncertainty embedded in the process. At the same 541 

time, it would allow greater re-use of existing data sources. In this regard the main 542 

outcomes of the workshop can be distilled into an augmented concept of “functional 543 

orthology”, in which the common orthology concept should be merged with functional 544 

and mechanistic information, namely the information being generated by ToxCast, 545 

SEURAT-1, EU-ToxRisk projects among others [48-51], thus expanding the 546 

understanding of the underlying processes leading to toxicity. Although this is not a 547 

completely new concept, it is only now that the latest advances in technology and 548 

knowledge will allow “functional ontology” to be fully achieved. In this perspective, the 549 

most effective and unbiased way to determine gene function is through functional 550 

genomic studies, which usually involves (systematic) knockout of genes, followed by 551 

assessment of phenotypes such as lethality / viability, growth, development, etc. 552 



 

 

These “genotype-to-phenotype” approaches can also provide insight into chemical 553 

mechanisms of action, helping to define more specific toxicological endpoints and 554 

informing the development of novel mechanistic-based toxicity bioassays. New 555 

powerful molecular techniques are now available to obtain targeted knockouts, such 556 

as homologous recombination, RNA interference (including siRNA and shRNA), 557 

engineered site-specific nucleases (i.e. zinc-fingers, TALEN, CRISPR). However, 558 

using only sequence homology (and / or orthology) as a basis for extrapolation may 559 

be somewhat limited (as discussed previously) and not a guarantee of the 560 

conservation of function. Thus, managing to overcome this assumption by considering 561 

the functional level would lower the ambiguity and reduce overall uncertainty. The 562 

translation of these new understanding into novel pathway maps could be used to 563 

better define the species-impact space for well-defined toxicity pathways. This is not 564 

a trivial task; though, if collective and coordinated efforts are brought forward, ensuring 565 

gaps are addressed a by all the relevant stakeholders and  new knowledge is then 566 

translated into regulatory changes, the benefits for both human health and 567 

environmental RA are expected to be highly significant.  568 

Since most of the currently generated NAMs data are designed to inform human health 569 

assessment, ecotoxicology has much to gain from an increased knowledge of pathway 570 

homology. There is high potential to benefit from a comprehensive and well 571 

understood mechanistic-based predictive science, addressing the long-standing issue 572 

of chronic (i.e. long term) sub-lethal exposure. Nevertheless, there are also potential 573 

advantages for human health RA, such as the concept of new PBK and dynamic 574 

models developed for chosen invertebrate species that may be the missing piece of 575 

the puzzle and provide the evidence of whole-organism function. This will offer human 576 

health researchers a new multi-dimension, fully functional biological model, helping 577 

better inform the processes involved in toxicity and / or disease.  Human health 578 

researchers have recently developed several approaches to overcome the 579 

shortcomings of single cell line testing (e.g. lack of biological relevance, impaired 580 

metabolism) by using multicell plates, organotypic 3D models, among others. Although 581 

a big step forward and more relevant in vivo conditions, these approaches may not yet 582 

be sufficiently representative of the dynamics of a whole organism. In this sense, the 583 

development of a deeper biological / physiological knowledge of invertebrate species 584 

and how they deal with stress, can have a large impact. Existing vertebrate-based 585 



 

 

PBK models can already provide valuable information on internal concentrations 586 

(particularly in fish) to support RA decisions, although broader applicability of such 587 

models may be obtained through closer investigation of data read-across potential for 588 

some input values and the associated uncertainties.For instance, until recently, when 589 

considering the traditional protection goal of environmental RA as the population level, 590 

decision-making, , has largely been based on the test chemical concentration able to 591 

disrupt apical processes, (i.e. development, growth, reproduction, and survival) in 592 

environmental species, which may ultimately alter population dynamics. In this regard, 593 

the issue of estrogenic chemicals in the aquatic environment provides an interesting 594 

example of the practical significance of this aspect. The intersex condition (i.e. 595 

presence of eggs in the testis) observed in male fish in the rivers of many western 596 

countries is probably one of the most dramatic phenotypic effects observed in 597 

freshwater wildlife associated with chemical contamination [52, 53]. The discovery of 598 

intersex in wild fish, in the 1990s, triggered an entirely new stream of research, 599 

endocrine disruption in the aquatic environment. The evidence produced by this large 600 

volume of research led, in 2015, to the inclusion of 17-Alpha-ethinylestradiol (EE2), 601 

17-Beta-estradiol (E2), and estrone (E1) in the surface water Watch List under the 602 

Water Framework Directive. However, concurrently, a large study carried out in the 603 

UK demonstrated that populations of cyprinid fish are self-sustaining despite 604 

widespread feminization of males [54], raising a new challenge for the interpretation 605 

of the relevance of testicular intersex for decision-making in environmental RA. This 606 

suggests that more efforts should also be dedicated to the evaluation of whether 607 

implementation of the latest mechanism-based predictive toxicology approaches 608 

would bring significant benefits compared to the traditional approach. Regardless the 609 

aim of the RA, predicting adverse phenotypes triggered by exposure to chemicals 610 

remains an essential aim of modern toxicology. This challenge is particularly pressing 611 

if we consider that millions of animals would be required to test the potential toxicity of 612 

the thousands of chemicals currently in commerce. The application of the AOP 613 

concept to frame existing toxicological knowledge from a mechanistic perspective has 614 

been proven to provide a good platform to bridge the gap between human and 615 

environmental RA [20], and to support the regulatory acceptance of mechanistic 616 

considerations in an environmental RA context. 617 



 

 

6. Conclusion and recommendations: 618 

Overall, the workshop highlighted a clear and common motivation to progress towards 619 

the application of mechanistic-based animal-free chemical safety assessment 620 

methods. However, there is no single fit-for-all approach and it is clear that seldom will  621 

be possible to directly replace animal testing with NAMs, but rather coordinated efforts 622 

aimed at an integrative implementation of new approaches are required. As a first step, 623 

it was urged further exploitation and integration of the wealth of already available 624 

information. Better employment of existing data and tools may drive toward an 625 

improved cross-species extrapolation and lead to reduced reliance on animal data. 626 

This is particularly true for environmental toxicology where similar tests are traditionally 627 

required in multiple species to meet global regulatory requirements, but also useful to 628 

bridge the existing knowledge gap between human and environmental toxicology. 629 

Moreover, further targeted development of NAMs and generation of ad-hoc data would 630 

greatly increase confidence and scientific evidence for extrapolating MIEs, KEs, or 631 

entire pathways (e.g. MoAs / AOPs) between human and environmental relevant 632 

species, thus consolidating the shift to a more mechanistic-based predictive RA and 633 

support the use of a broader landscape of data across both human health and 634 

environmental RA fields. 635 

The identified and prioritized research needs and key recommendations from the 636 

workshop cover both current technical challenges (i.e. required research & capability-637 

build) and decision-making challenges (i.e. development & evaluation for RA), as 638 

follows: 639 

● Research needs:  640 

o To setup collaborations between relevant stakeholders (academia, industry, 641 

regulators, NGOs) to define endpoints or AOs of concern across human models 642 

and environmental species, leading to prioritized testing needs. 643 

o Define a priority list of pathways of environmental toxicological concern, which 644 

are key to organism survival, growth and / or reproduction and describe the 645 

extent of their conservation across species. 646 



 

 

o Build a database designed around functional gene annotation to enable full 647 

exploitation of data from all relevant species coupled with improved mining tools 648 

to adequately interrogate this data. 649 

o Address uncertainties in orthology assignment by re-designing and deploying 650 

functional assays to report downstream / upstream pathway-based effects. 651 

o To develop cross-species relevant screening panels for the identification of 652 

priority pathways able to predict AOs of concern. 653 

o To develop approaches linking the environmental / external concentration to the 654 

cellular / internal concentration at the target tissue and the AO in order to 655 

understand the minimum level of perturbation necessary to trigger toxicity. 656 

o Improve the understanding of ADME processes across key relevant biological 657 

classifications (e.g. family or species).   658 

o Develop computational tools (i.e. models) to enable prediction or classification 659 

of chemical clearance rates for species relevant to RA, namely simplified PBK 660 

models. 661 

● Decision-making challenges: 662 

o Identify current technology and application gaps which need to be addressed 663 

for the successful implementation of NAMs in RA.  664 

o Establish and promote confidence in extrapolating effects across species using 665 

mechanistic data, through the development of case-studies  666 

o Develop a new globally harmonized RA framework incorporating NAMs and 667 

making use of all the data available (using well established chemical read-668 

across as well as cross species extrapolation where possible)  669 

o Improve the understanding of exposure scenarios, namely reducing its 670 

granularity, so that those considerations can be better incorporated into RA.  671 

o Ensure early engagement and maximize communication of the private sector 672 

(i.e. industry) and regulatory agencies to drive and ensure future fit-for-purpose 673 

in the scientific / technical development of NAMs. 674 

As a last note from the workshop, it was remarked that it is imperative to continue the 675 

flow of these discussions to include the wider scientific community, regulators, and 676 



 

 

industry, while continuing to progress the development of novel scientific approaches 677 

to fully explore the potential of NAMs. All relevant stakeholders should be involved in 678 

this discussion to ensure its proper development. Only by having developers and end-679 

users discussing the advancement of new approaches together we can ensure that 680 

they are fit-for-purpose and meet the innovation and decision-makers’ needs.  681 

Disclaimer: 682 

All authors are employees of their respective organisations. Their views expressed in 683 

this manuscript are their own and do not necessarily represent those of their 684 

institutions or companies. 685 
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