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ABSTRACT 

The  method  of  lines   is   used  to  approximate  explicit   and 

implicit   free   boundary  problems   for  a  linear  one   dimensional 

diffusion   equation  with  a  sequence  of  free  boundary  problems 

for  ordinary   differential  equations.  It   is   shown  that  these 

equations  have   solutions  which  can  be  readily  obtained  with 

the  method  of  invariant   imbedding.  It  also  is   established 

for  a  model  problem  that  the  approximate  solutions   converge 

to  a  unique  weak  and  (almost)   classical  solution  as   the 

discretization  parameter  goes   to   zero. 



 

 



1. 
One  Dimensional  Parabolic  Free  Boundary  Problems 

1. Introduction.     Among  the  class  of  free  boundary  problems  for 

have  been  examined  in  some  detail.     Perhaps  the  best  understood 

problem  of  this  kind  is  the  formulation  for  the  melting  of  a  slab 

of  ice  in  contact  with  a  viscous   fluid.     If  one  assumes  that  the 

ice  is  held  at  0°C  throughout,  and  that  heat  transfer  in  the  fluid 

occurs  by  conduction  only,  then  the  temperature  distribution  is 

described  by  the  usual  heat  equation 

                                                    0=− txx cuu  

subject  to  the  initial  and  boundary  conditions 

 ( )( ) ( ) ( ) .s,dt
ds)t,ts(u,t,tsu),t,()t,(u x 00000 =λ−==α=  

Here    u    denotes  the  temperature  in  the  fluid between  a  wall  at  x  -  0 

held  at  temperature  α( t )    and  the  unknown  and  moving  boundary  s(t)  be- 

tween  the  fluid  and  ice.   The  flux  condition ( )( ) isdt
dst,tsu x λ−=  

obtained  from  an  energy  balance  and  indicates  that  the  heat 

flowing  toward  the  ice  is  used  to  melt  it  rather  than  raise  its 

temperature.     The  condition     s ( 0 )   =  0    means  that  initially  no 

fluid  is  present.     The  constants     c     and    λ     are  determined  from 

the  conductivity,  heat  capacity,   and  latent  heat  of  water. 

This  problem  and  some  natural  generalizations  to  two  phase  systems 

(where  also  the  solid  has  a  variable  temperature)  were  studied 

around   1890  by  J.   Stefan  and  today  are  commonly  called  Stefan 

problems.     Over  the  years  more  and  more  technical  applications  were 

seen  to  lead  to  problems  of  Stefan  type  and  as  a  result  a 

substantial  body  of  literature  has   accumulated  on  the  analytical 

and  numerical  solution  of  such  free  boundary  problems.     A  discussion 

of  the  formulation  of  one  dimensional  free  boundary  problems  for 

change  of  phase,  filtration,  viscoplastic  flow  and  impact  processes 

as  well  as  a  detailed  mathematical  treatment  of  certain  model 

problems  may  be  found  in  the  monograph  of  Rubinstein   [14]  and  in 

the  proceedings  of  a  recent  conference  on  Stefan  problems  [10]. 



2. 

A  common  technique  for  the  solution  of boundary  value  problems  for 
the  diffusion  equation  in  one  space  dimension  is  the  so-called 
method  of  straight  lines  in  which  the  partial  differential  equation 
is  replaced by  a  sequence  of ordinary  differential  equations  at 
discrete  time  levels.    For  fixed boundary  problems  this  method  is 
long  established  as  an  analytical  and  numerical  tool  {see,  e.g.   [6  ], 
[12]  and  [2]).     Moreover,  although  not  mentioned  in  [14]  the  theory 
has  been  adapted  frequently  to  free  boundary  and  interface  problems 
(see,  e.g.   [  1  ],   [7 ],  [16],   [17]  [18],   [19]  and  the  references 
given  there).     These  latter  papers  differ  substantially  in  detail 
because  a  variety  of problems  are  considered,  but  all  follow  the 
same  general  outline  and  use  the  same  basic  mathematical  techniques. 
It  is  the  purpose  of this  paper to  give  an  exposition  of the method 
of  lines  for  free  boundary  problems  which  illustrates  this  general 
outline.    Five  distinct  steps  may  be  identified  in  the  solution  process. 
1)    The  formulation  of the  by-lines  approximation;    2)    The  solution 
of  the  by-line  equations;    3)    The  derivation  of  a-priori  bounds  on 
the  by-lines  solution;    4)    The  definition  of  a  solution  of  the  given 
free  boundary  problem,  and  5)    The  convergence  of the  method  lines 
solution. 

Steps  1  and  2  are  algorithmic  and will be  formulated  for  quite  general 
problems.     In  contrast,  the  a priori  bounds  and the  convergence  depend 
crucially  on  the  given  data  and hence will be  treated  for  a model 
problem.     Finally,  it  must  be  mentioned  that  in  two  respects  the  work 
of this  author  differs  from most  of the  cited  literature.    Step  2 
is  carried out  with  the method of invariant  imbedding which  converts 
the  by-lines  boundary  value  problems  into  initial  value  problems, 
and  Step  5  uses  the  concept  of weak  solutions  rather  than  classical 
solutions.    However,  the  general  outline  will  always  be  adhered to. 

 
2. Straight  lines  approximation  and  invariant  imbedding.    The  following 

problem will  be  considered 
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( ) ( ) ( ) ( ) ,t;,t)t,(utt,u)t(b. x 002
2

1
20012 21 >≠α+αα=α+α  

(2.1c)   u(x,0)  =  u0(x)   ;    0<x<s(0) 

subject  to 

( ) ( ) ( ) ( ) ( ) ( )( ) 0022 >= t;t,t's,ts,t,su,t,su,t,suH. tx  

where  H  =  (H1  ,H2  )  is  a  given  function with  values  in  R2  .    Throughout 

this  discussion  all  data  functions  are  assumed  to be  as  smooth  as 

required  for  subsequent  operations  on  the  set  Ω∞    =  {(x,t):    0≤x<∞,  0≤t≤T} 

where  T  is  some  arbitrary  but  fixed upper  time  limit. 
 

The  formulation  ( 2 . 1 , 2 )   includes  a  variety  of  free  boundary problems , 

among  them: 
 

i)    Stefan  problem:  H  ≡ , or more  generally  H ≡ 'su
u

x
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ii)  optimal  stopping  theory  [17]  and  Bingham plastic  flow  [14]:  H  ≡    ⎟
⎠
⎞⎜

⎝
⎛

xu
u

(to  be  analyzed  in  the  next  section) 

iii)  one  phase  filtration  [16],  [193:  H ≡ ⎟
⎠
⎞

⎜
⎝
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iv)  Gibbs-Thompson model  for  the  growth  of  a bubble  in  a  chemical 

solution  [3]: 
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v)    Radiation  and  Arrhenius  ablation  on  the  free  surface 
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where  all  µi.  may  be  functions  of t  and s.    In  addition,  functional 

relations  on  the  free  boundary  can be  accommodated  (see,  e.g.  the 

formulation  for  viscoplastic  impact  [ 5  ]  and the  heat  transfer  problem 

for  fluidized-bed  coating  [8 ]  ) .  
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All  these  problems  have  in  common  that  the  diffusion  equation,. 
whether  cartesian,  radial  or  spherical,  with  or  without  additional 

convection  terms,   and  with  a  problem  dependent  source  term,  must  be 

solved  subject   to  the  affine  relation   (2 .1b)    and  the  two  relations   (2.2). 
If  s(t)  were  given, the  problem  would  be  over-determined  and  in 

general  have  no  solution.     However,   s ( t )    is  not  known  a  priori   and 

must  be  determined  such  that  the  given  boundary  data  are 

consistent.     If  one  of  the  equations  of  (2 .2)    can  be  solved  for 

s(t)   or  s'(t),   then  the  problem  is  known  as   an  explicit  free  boundary 

problem,   otherwise  it  is  called  implicit.     The  Stefan  problem  is  an 

explicit,  the  optimal  stopping  problem  an  implicit   formulation. 
It  is  possible  to  introduce  the  method  of  straight  lines   for  the 

formulation  (2.1)  without  further  specifying  the  structure  of  the 

equations.     For  this  purpose  we  shall  define  a  partition 

{0  =  t0<t1  <   . .   <tN  =  T}  of  [0,T],  which  for  ease  of  notation  is 

assumed  to  have  equal  subintervals  Δt  = t i    - t i - 1  ,   i  =  1,   ...,  N. 

The  simplest,  and  most   commonly  used,  method  of  lines  approximation 

for   (2.1)   requires  the  substitution 
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which  reduces  the  partial  differential  equation   (2.1)   to  a  sequence 

of  free  boundary  problems   for  a  second  order  differential  equation 
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equations  must  be  solved  for  the  function  un    and  the  free  boundary  sn   .

(if  necessary,  u n-1   is  extended  differentiably  as  a  linear  function 

over  [sn-1  , ∞). ) 
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The  equations   (2.3)   constitute  a  fully  implicit   approximation  of 
order  Δt  since  all  time  derivatives  are  replaced   by  simple  backward 
difference  quotients.     Higher  order  approximations,   such  as  the 
Crank-Nicolson     scheme,   would  appear  equally  feasible   although  care 
must  be  taken  to  insure  that  the  truncation  error  on  the  free 
boundary  is  likewise  improved.     However,   for  theoretical  and 
numerical  work,   especially  on  Stefan  problems,  the  above  formulation 
was   found  to  be  attractive  because  of  its   simplicity  and  stability, 
especially  when  the  initial  and  boundary  data  are  incompatible, 
i.e.   α1( 0 ) u 0 ( 0 )    +  α2 ( 0 ) u 0 ' ( 0 )  ≠  α( 0 ) .  

A  by-lines   approximation  in  which  time  derivatives   are  approximated 
by  forward  difference  quotients   is  meaningful  only  if  the  differential 
equations   in  x  are   discretized  as  well  in  order  to  observe   a 
stability  constraint   on  the  ratio  Δt / Δx2.      For  explicit   free 
boundary  problems  this   approach  is   simple  to  use; 

however,   for  implicit  problems  the  prediction  of  the   free  boundary 
at  the  new  time  level  may  require   considerable  continuity  of  the 
solution  of   (2 .1)   because   Taylor  expansions   of  s ( t )    are   commonly 
used  [4 ]. We   shall  bypass  explicit  and  semi—explicit 
approximations   of   (2 .1 ,2 )    in   favor  of  the   fully  implicit   formulation 
(2.3)   since  the  solution  algorithm  chosen  here   for  its   solution  is 
only  minimally  affected  by  the  presence  of  the   free  boundary  sn   . 
 
It  may  be  noted  that  the  by-lines   approximation  involves   simply 
the  replacement   of  time  derivatives  by  difference   quotients   and 
does  not  depend  on  the  linear  structure  of  the  equations  in   (2.1). 
However,   for  a  linear  parabolic  operator  the  equations   (2.3)   can 
usually  be   solved  in   a   consistent  manner.      In   some   of  the   earlier 
work  the  linearity  of  the  differential  equation  was   exploited  by 
finding  fundamental  solutions   and  a  particular  integral  for   (2.3)   and 
combining  them  in  such  a  manner  that  the  boundary  conditions   are 
satisfied.      For  example.   if  L  in   (2 .1 )    is  the  heat   operator 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂−

∂
∂

tX2

2
then  the   solution  of   (2.3)   has  the  representation 
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which  on  substitution  into  the  boundary  conditions  yields  three 

equations.   in  the  three  unknowns  { }.s,c,c nnn 21  This   approach 

in   the  basis  of  the  numerical  results   reported  in  |16 |.     However, 
UB  pointed  out  in   |  7   |   use  of  the  fundamental  solutions  may  lead 
to  severe  numerical  instabilities  due  to  the  exponential  growth 
of the  basis  solutions. 

The  linearity  of  the  differential  equation  for  u n   may  be  used 
in  another way  which  is  known,  at  least  for  Stefan  problems   [15 ], 
to  avoid  the  instability.     The  technique  to  be  presented  is  known 
as  the  method  of  invariant  imbedding  and  has  been  described  in 
detail  in  [7 ].    We  shall  give  a  short  summary.    Problem  (2.3) 
can  be  written  as  the  first  order  system 
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subject to the given boundary conditions.     For definiteness let us 
assume that α2(t) ≠ 0 on [0,T] and for convenience let us set α2 ≡ 1. 
(For the case of α1( t )    ≠ 0 the roles of un    and vn    should be reversed. 
Details may be found in [7 ],   [9 ].)      Then the boundary conditions 
for  (2.4)  are 

 

vn (0)  = α (tn)  - α1 (tn )un (0) 

(2.5) 
.)t,t
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The  solution  of  (2 .4 .5) ,   if  it  exists,  is  imbedded  in  the  family 
{vn  (x ,r) ,un(x,r)}  of  solutions  of ( 2 . 4 )   subject  to 

 

vn(0)  =  α (tn)  -  α1(tn)r 
(2.6) 

un (0)  =  r 
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where  r  is  a  free  parameter  ranging  over  all  real  numbers. 
(Searching  for   the  value  of  r  consistent  with   (2 .5 )   would  be 
the  usual  shooting  method  for  boundary  value  problems).     It 

is  well  known  that  un  and  vn    have  the  variation  of  constants 

representation 
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where   Φ  is  the  fundamental  matrix  which  satisfies 

                             ,I)y,y(,)t,x(ĉ)t,x(â' nn =φφ⎟
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 If  the   second  equation  of   ( 2 . 7 )    is   solved  for  r,   and  this   expression 

is   substituted  into  the  expression  for  v n ,  we  obtain  the  following 

relation  between  un   and  vn    for  all  r ∈   (-∞,∞) 

 
(2.8)  vn  (x,r)   =  Rn  (x )  u n   (x,r)   +  zn  (x)    . 
 
This   expression  is  the  well  known  Riccati  transformation  for  second 
order  ordinary  differential  equations.     Since  it  has  to  hold  for  all 
r  a  comparison  with   ( 2 .6 )    shows  that 
 

Rn (0)    =  -  α1( t n ) ,   zn  (0)    =  α(tn )   . 

Moreover,  since  u n    and  v n   satisfy   ( 2 . 4 )    and  R n    and  z n     are  simple 

combinations   of  the  components  of  Φ  and  the  particular  integral  in 
(2.7),  the  expression   (2 .8)   may  he  differentiated  to  give 
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Substitution  of the  differential equation  for v n   and collecting all 

terms  involving  un   leads to 
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This  relation  has  to  hold  for  all  r  and  since  the  "bracketed  terms  are 

independent  of  r  they  must  vanish.     Thus  we  finally  obtain  that  the 

functions  Rn    and  zn    in  the  Riccati  transformation  (2.8)  are  the 

solutions  of  the  following  well  defined  initial  value  problems,  the 

so-called  invariant  imbedding  equations,  
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The  representation  (2.8)  has  to  hold  for  all  x,  hence  also  at  the  free 

boundary  sn  . Thus,  un (sn   )  and  sn   must  be  determined  such  that 
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ss,s,t
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In  other words,  the  free  boundary  s    and  the  value  un  (sn   )  are  roots 

of  the  following  two  equations 

     0112 11 =Δ
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Δ
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nn
nn  

If  such  a  root  {un (sn  ),sn  }  can  be  found  then   (2.3)   is  reduced 

to  an  ordinary  two-point  problem subject  to  vn(0)  =  α(tn)-α1(tn) un(0) 

with  un (sn )  as  computed  from  (2.11).  over  the  fixed  interval  [0,sn].  

Alternatively,  one  may  obtain  u n (x)  by  integrating  the  Riccati  

transformation  (2.8) 
 

 
 
 
 
 
 
 
 
 
 



9. 
(2 .12)k(x, t n )u’

n ≡ v =Rn  ( x ) u n +zn  ( x ) ,    with  un (sn )  as determined  from 

(2.11),  backward  from  sn   to  0.     The  latter  approach  is  commonly  taken 

in  numerical  work.     In  addition,   it  is   frequently  possible  to  reduce 

(2.11)  to  a  scalar  equation  φ (x)  =  0  by  eliminating  either  u  or  u x . 

For  example,  only  the  following  scalar  equations  need  be  solved  for 

the  special  problems  introduced  above 
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Thus,  for  all  the  sample  problems  introduced  above  the  same  approach 

may  be  taken.     The  invariant  imbedding  equations   (2.9,10)   are 

integrated  forward  in  x  and  the  functional  φ  (x)  is  evaluated.    Where 

it  crosses  the  x-axis  the  free  boundary  sn     is  placed  and  un (s   )   is 

determined  from  (2.11)  which  allows  the  computation  of  un  over  [0 , sn   ] 

for  example  by  integrating  (2 .12) .      It  is  apparent  that  each  of  these 

steps  can  be  realized  numerically. 

From  an  analytical  point  of  view  several  questions  now  arise.     Do 

the  above  equations  always  have  a  solution,   and  do  these  solutions 

converge,  in  some  form,  to  a  solution  of  the  time  dependent  problem  (2.1). 



10. 
Many  problems,  particularly  those  with  a  nonlinear  coupling  u,  ux 

and  s(t)   on  the  free  surface,  have  not  yet  been  examined.     However, 

for  Stefan  and  filtration  problems  the  method  of  lines  is  known  to 

converge  whenever  the  data  satisfy  certain  sign  and  growth  conditions 

[1],   [9 ] ,   [19 ].     We  shall  obtain  comparable  results  for  a  different 

model  problem. 

3.       Convergence  of  the  method  of  lines.     In  order  to  demonstrate  how  the 

above  solution  technique  may be  used  to  give  an  existence  proof we 

shall  consider  the  model  problem 

(3.1)       uxx  -  ut  =   f(x,t) ;       0  <  x  <  s(t),  t  ∈   (0,T] 

ux(0,t)   =  α( t )  ;       t  ∈   (0,T] 

u ( s ( t ) , t )   =  ux  ( s ( t ) , t )   =0        ;       t  ∈   (0,T] 

u(x,0)  =  s (0)    =  0   . 

As  stated,  this  type  of  problem  occurs  in  the  theory  of  optimal 

stopping  where  u  is  related  to  the  reward  function  associated 

with  a  Brownian  motion  and  s ( t )    is  the  optimum  stopping  boundary 

for  the  process   (see  [17]   and  the  references  given  there.) 

The  equations  are  simple  but  of  some  mathematical  interest  since 

previous  method  of  lines   existence  proofs   for  implicit  problems 

specifically  rule  out  the  case  of  vanishing  gradients  on  the  free 

boundary  [16],   [19].     Thus  some  of  the  following  results  are  new; 

however,  they  differ  only  in  detail  from  those  of  earlier  work. 

We  shall  prove  in  succession  that  under  certain  hypotheses 

i)    the  method  of  lines  equations for  (3.1)  have  a  solution  at  each 

       time  level 

ii)   that  un  ,  u’
n , ,t

uu nn
Δ
− −1  and t

ss nn
Δ
− −1 are  uniformly  bounded 

   iii)  that  approximate  solutions  for  (3.1)  defined  in  terms  of 

 (un  ,s n  )  converge  to  a  solution  of  (3.1). 

Two  basic  tools  are  used  time  and  again,  namely  the  maximum  principle 

for  (elliptic)  ordinary  differential  equations   (see  e.g.[11])   and 

Ascoli's  theorem  about  the  compactness  of  a  uniformly  bounded  sequence 

of  equicontinuous  functions   (see  e.g.   [13]). 
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The  method  of   lines   approximation  for  the   free  boundary  problem 

(3.1)   is 

  

0
0

011

1123

0

1

1

=
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α=Δ−+Δ=

=Δ==−Δ−

−

−

u
.)s(v)s(uv'u

)t()(v)x(ut)t,x(fut'vor

,N
Tt,N..,,n;)t,x(f))x(uu(tnu).(

nnnnnn

nnnnnn

nnn
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The  corresponding   invariant   imbedding  equations  are 
 

(3.3a) vn (x)   =  R(x)un  (x)   +  zn  (x) 

,)t()(z,)x(ut)t,x(fz)x(R'z)c.(

)(R,Rt'R)b.(

nnnnnn α=Δ−+−=

=−Δ=

− 0133

00133

1

2

 

 

and the  free boundary  is  determined as  a root   sn  of  the  equation 

 

(3.3d) Φn (x) =   zn (x)   =  0   . 

 

Let   us  now  establish  the   existence   of  a   solution   {un  ,sn }   at   each 

time  level  and   its   convergence.     Two   sets   of  hypotheses  will  be 

required 

 

H1: α(t)   ≤   0,   t  ∈     (0,T];       f ( x , t )    ≥  c   >   0   ,    (x,t)   ∈    (0, ∞ )x (0,T]. 

H2:1)   There   exist   Lipschitz   constants        Li   ≥   0,   i=1,2,3   such  that 

α(t)   -  α(r)   ≤  L1(r-t) ,  t , r    ∈    (0,T] 

f ( x , t )    -  f(x,r)   ≤  L2   (r-t) ,   t , r    ∈     (0,T]  uniformly  in  x 

)r,x(x
f)t,x(x

f
∂
∂−∂

∂ ≤  L3   | t-r |    ,   t,r   ∈    (0,T] uniformly in X

2)   The   boundary  values  are   consistent   so  that   α(0)   =   0. 

The  existence  of  {un , sn  }   is   easy  to  obtain. 
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Lemma  3.1.     Under  the  hypotheses  H1   the  method  of  lines  solution 

{un   ,sn  }   exists  for  n  =   1,   . . ,   N. 
  

Proof.     For  given    t  the  Riccati   equation  has  a  monotone   solution 

which  is  bounded  above  by .
tΔ

1   Thus,   z n  (x)   exists  on  [0,∞)   . 

Suppose  that   sn-1   is  known,  then  un-1   ≡   0  for  x  ≥  sn-1     and  hence 

Z′n(x)   ≥  c   on   [sn-1 ,∞)   as   long  as  zn  (x)   ≤  0 ;      because  zn  (0)   ≤  0 

this  implies  that  zn  (sn )  =  0  for  some  sn  ∈  [0,∞) .      Since  {u0  ,s0  }  is 

given the  lemma follows by induction. 

 

In order to  demonstrate convergence  it must  be  shown that the computed 

free boundaries { }  can be used to define a Lipschitz   continuous 
0i

N
Si =

boundary  s(t)   as  Δt  → 0 .     An estimate of the form 

| sn  -  sn-1 |   ≤  K∆t 

is  required  for  this  purpose  which  will  be  obtained  from  the  Taylor 

expansion  

)s,s()s()(n
"u)s()s('u)s(u)s(u).( nnnnnnnnnn 1

2
111 2

143 −−−− ∈ζζ++=  

by  bounding  un  (sn-1)   above  and  below. We  shall  assume  that  the )(n
"u ζ

hypotheses  H1   and  H2  always  apply. 

 

Lemma  3.2.     The  following  monotonicity  conditions  hold 

 

un  (x)   ≥  un-1 (x)   ,    sn   ≥  sn-1   
 

Proof.      It   follows  by  inspection  from   (3.3  c  and  d)   that   s1 ≥  S0 ≡ 0 

and  from   (3.2)  that  u1    is  convex  on  [ O , S 1 ] .      Hence  u1  ≥  0.     Suppose 

next  that  un-1  ≥  un-2 , sn-1 ≥ sn-2   .   Then 

 
.)z(zR(x)

)(x)u(x)(u
Δt
1

)tf(x,)tf(x,)z(zR(x)')z(z

1nn

2n1n1nn1nn1nn

−

−−−−−

−−≤

−−−+−−=−
 

 



13. 

and   (zn - zn-1 ) (o)   imply  that   zn - zn-1   ≤  0 and  hence  that   sn   ≥  sn-1  . 
    

Finally  it   follows  from  the  maximum  principle  applied  to 

,)t,x(f)t,x(f)uu(t)uu(t)"uu( nnnnnnnn 011
12111 ≤−+−Δ−=−Δ−− −−−−−

 

un (0) -  un-1  (0)   ≤  0 

that  un - un-1    does  not   have  a  negative  minimum  on  [0,s n-1 ].     Since 

by   (3.2)   un - un-1    is   convex  on  [sn-1  ,sn  ]  the  conclusion  un  ≥   un-1

holds   for   x  ∈  [ 0 , sn ]. 

In  the  Stefan  and  filtration  problems  the  term  u'n (sn  )   does  not  vanish 
and  it   suffices  to  derive  a  bound  like  u n  (s n-1 )   ≤  K∆t   for  the  Taylor 

series (3.4)   ( [9],   [19] ).       For  the problem   (3.2)   a bound like 

|u n  (s n-1 ) |   ≥   K∆t (s n  -  s n-1 )   is  necessary which will be  obtained by 

bounding   | u′n |   by K∆t   on  [sn-1  , sn  ]   . 
 

Lemma   3·3.     There  exists  a  constant  K  such that   |u'n   - u'n-1 |   ≤  K∆t  on  [0 , sn ] . 
 

Proof.     Let K1   = max }cL,L{ 21 2 and  define  K n   =  K  n+1      +  L3∆t.     Since 

u1 is convex  it follows  that  0  ≥  u'1(x)   ≥   α(∆t)   ≥  -L∆t   or   |u'1   - u'0 |   ≤  K1 

∆t. Suppose  next  that   |u'n-1 - u'n-2 |  ≤  Kn-1    ∆t   on  [0,sn-1 ].     The  

maximum 

principle  applied  to 

     )t,x(x
f)t,x(x

f)'u'u(t)'u'u(t")'u'u( nnnnnnnn 12111
11

−−−−− ∂
∂−∂

∂+−Δ−=−Δ−−  

assures  that   at   a  relative  maximum  or  minimum  on   (0, sn-1) 

|u'n - u'n-1 |  ≤  (Kn-1 + L3∆t) ∆t = Kn ∆t. 
Since u'n(0) - u'n-1(0)  ≤  0,   u'n(sn-1 )  -  u'n-1(s n-1 )   ≡   u'(sn-1 )   ≤  0 we  see that 

]s,[x
max

n0∈  u'n(x)   -  u'n-1 (x) ≤   Kn∆t.    If  the  minimum  occurs  at  x  =  0 

then min [u'n -  n'n-1 (x) ]   ≤  L1∆t   ;   if the minimum occurs  at  x =   sn-1
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or)t,x(f)t,x(f)s(ut)s(n
"u)s(n

"uthen nnnnnn 01
1 1111 −−−− −+Δ=−−  

un   (sn-1  )  ≤  L2 ∆t2   .     Since  u"n   ≥  c  on  | sn-1 , sn |     it  follows  that 

L2∆t2 ≥ un (sn-1)  ≥  2
c  (sn  - sn-1)2  and  u'n(sn-1)   ≥    -  c(sn  -  sn-1 ) 

.tKtcL n Δ−≥Δ≥ 22  

Since  the  sequence  {Kn }  is  uniformly  bounded  by  K 0   +  L3T it  follows 

that 

| u'n  -  u'n-1  |  ≤    K∆t   ,   x  ∈  [0,sn ]   . 

 

Theorem  3.1.    Under  the  hypotheses  H1,  H2  there  exists  a  constant 

K  independent  of  Δt  such  that 

sn+1  - sn   ≤  K∆t   . 

Proof'     By  convexity  un(sn-1)   ≤  u'n(sn_1)(sn_l  -  sn)  and  hence  by  lemma  3.3 

un (sn-1 )   ≤  K∆t   (sn  -  sn-1) 

Sine    (x)   ≥ c  for x ∈  [s n
"u n-1  ,sn  ] the Taylor  series   (3.4)  leads to  

c (sn-sn-1)2  ≤  2K∆t(sn - sn-1) 

which  proves  the  theorem. 

It  follows  from this  theorem  that  sn    ≤  KT  for  some  constant  K  so  that 

henceforth we need to consider problem  (3.2)  only on the  interval 

[0, X ]  for X  = KT.  Moreover, it  follows  from lemma 3.3 

that   |un (x)  - un-1  (x)| ≤   K∆t |sn  - x|   so that 

 

(3.5)     Kt
)x(u)x(u nn ≤Δ

− −1  

uniformly  in  x  and  n  for  x  ∈  [0, X   ]. 

The  method  of  lines  solution  {un ,sn}  can  now be  used  to  define 

approximate  solutions  for  the  free  boundary  problem  (3.1).     We  shall  set 
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(3.6)  SN(t) = tΔ
1 {(t - tn-1)sn + (tn - t ) sn-1 } 

t   ∈ (t n-1, t n] 

                                 })x(u)tt()x(u)tt({t)t(U nnnnN 11
1

−− −+−Δ=  

It  follows  from Theorem  3.1  that   |S N ( t ) |  ≤  X   and  S'N(t)  ≤  K  a.e.. 

Inequality  (3.5)   shows  that   | UN(x,t) |   ≤  K , t)(x,
t
u

| N

∂
∂  ≤  K a.e.  while 

lemma  3.3  assures  that  x
UN
∂

∂ ≤ K  uniformly  with  respect  to  N.    By 

Ascoli's  theorem  there  exists  a  subsequence  {Nℓ}  such  that  SN ℓ    (t) 

and UNℓ  (x,t)   converge  uniformly to  Lipschitz  continuous  limit  functions 

s(t)  and  u(x,t).    In  what  follows  we  shall  consider  only this  subsequence. 

{N ℓ }  and,  for  ease  of  notation,  suppress  the  subscript  ℓ  . 

In  order  to  show  that  s ( t )   and  u(x,t)   solve  the  problem  (3 .1)   we  will 

find  it  convenient  to  introduce  the  concept  of  a  weak  solution  for  the 

free  boundary  problem.    The  appropriate  definition  is  obtained  in  the 

usual  manner  by  integrating  (uxx  -  ut   -  f). φ over  Ω  { (x,t) :0<x<s(t) ,t ∈(0,T]} 

subject  to  the  given  boundary  conditions.    Here  φ is  an  arbitrary 

element  in  a  set  of  test  functions  D  which  is  chosen  so  as  to  annihilate 

all  boundary  terms  in  the  integration  for  which  no  data  are  prescribed. 

For  the  model  problem  (3.1)  we  choose  for  D  the  set  of  all  functions  defined 

on  [0,X]x[0,T]  which  are  twice  continuously  differentiable  in  x  and 

continuously  differentiable  in  t  on  [0, X ]x[0,T]  and  for  which  φ(x,T)  =  φx( 0 , t )≡0 .  

Definition  3.1.    A  weak  solution  of  the  free  boundary  problem  (3.1) 

is  a  bounded  measurable  function  u    and  a  continuous  function  s(t) 

with  s(0)  =  0  which  for  arbitrary  φ ∈  D  satisfies 

 

(3.7)  .0dt(t)αt)φ(0,fφφ]dxd)uφ[φ
t

0txx

s(t)

0

T

0
=−−+ ∫∫∫
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As   in  fixed  boundary  problems  the  observation  applies  that  a 

sufficiently   smooth  weak  solution   is   necessarily  a  classical   solution 

of   (3.1).     Moreover,   it   is  readily  shown  that  there  can  "be  only  one 

weak   solution  of   (3.1). 

Lemma  3.4.     The  weak  solution  of  the  free  boundary  problem   (3.1)   is  unique. 

Proof.     Assume  that   {u,s}   and   {û,ŝ}  are  weak  solutions.     Since  s   and  ŝ 

are  continuous  we  may  assume  that   s  ≤   ŝ   on  [0, ]   for   some  ∈  [0,T]. t̂ t̂

Let  Φ   be  the   classical   solution  of  the  boundary  value  problem 

φxx + φt  =  0   ,  (x,t)   ∈   (0 , X )x(0,T) 

φ(x, )   =0,  0   ≤  x  ≤  t̂ X  

φ ( X ,t)  =  ( -t)t̂ 2  ,  t  ∈  (0, ) t̂

φx (0,t)  = 0  ,  t  ∈  (0, ) t̂

After, the  change  of  variable       =   -  t     this  problem  is  seen  to  be τ t̂

a  standard  boundary  value  problem  of  the  first   kind  with  smooth  boundary 

data  and  hence  has  a  smooth  solution      φ     which,   if  extended  over     [ ,T] t̂

as  the  zero  function  is   seen  to  belong  to  D.     Substitution  of     φ     into 

(3·6)   for   {û,ŝ}  and   {u,s}   and  subtraction  lead  to 

fφφdxdfφφdxdfφφdxdo
(t)s

s(t)

T

0

s(t)

0

T

0

(t)s

0

T

0 ∫∫∫∫∫∫ −=+−=
ˆˆ

 

However,   by  the  strong  maximum  principle   φ   >  0  on   (0, X ) x(0,T).     Since 

f  ≥ c >  0  this   implies  that   s(t)   =ŝ(t)   for  t   ∈  [0, ].     Hence  we t̂

cannot  have  two  distinct  free  boundaries.     To   show  that  u  =  û  a.e. 

we  choose  as   φ  the  solution  of  φxx + φt   =  g(x,t)   φx (0,t)   = φ(x,0) 

= φ( X ,t)   =   0,   where  g   is  an  arbitrary  C ∞   function  on  [0, X ] x[0,T]. 

Since  s  =  ŝ   it   follows  that 

                                                              0
00

=−∫∫ dxdt)ûu()t,x(g
)t(sT

This  has  to  hold  for  arbitrary  g,   hence  u  -  û  =  0    a.e. 
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For  given  K  and  N  let   us   define  the  Riemann   sum 

                         ∫∑ ∂
∂φΔ=

=

)kt(NS

k
N

k

K

k

dx)t,x(
x
U)t,x(t)N,K(A

0
2

2

1

where  φ   ∈  D,   ∆t  K
T and  tk    =  k∆t,   and  where  SN  and  UN  are  given  by   (3.6). 

Integration  "by  parts   shows  that 

                
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−= ∫∑
=

)t(0,
x
U

)t(0,φdx)t(x,U)t(x,φΔtN)A(K, k
N

kkNkxx

)(tS

0

K

1k

kN

The   convergence   of  A(K,N),   uniformly  with  respect   to  K  as   N  →  ∞  , 

and  for  all  N  as  K →∞   ,   allows  the  conclusion  that 

            .dt(t)αt)φ(0,dxdtt)(x,ut)(x,φN)A(N,N

lim T

0xx

s(t)

0

T

0 ∫∫∫ −=∞→

Similarly, we  can  conclude  that  

                  ∫∫∫∫ ∞→=
(t)S

0 Nt

T

0t

s(t)

0

T

0

N
.dxdtt)(x,Ut)(x,φN

lim
t)dxdtt)u(x,(x,φ

Integration  by  parts   applied  to  the  last  term  yields  

           .dt)t('S)t,)t(S(U)t,)t(S(dxdtUdxdtU NNN

)t(NS

N

T

N

T)t(NS

Nt

T

∫ ∫∫∫∫ φ−φ−=φ
0 0000

It   follows   from  lemma  3.3  and  theorem  3.1   that   0  ≤  UN  (SN  (t),(t)   ≤  K∆t 

so  that  

                      .dt)t('S)t,)t(S(U)t,)t(S(N
lim

NNNN

T
0

0
=φ∞→ ∫

In  other  words,  

                         .udxdtdxdtUN
lim

t

)t(sT

tN

)t(NST
φ−=φ∞→ ∫∫∫∫ 0000
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We   further   observe   that   for    φ  ∈   D 

 

.]t,t(t,tKdx)t,x(U)t,x(dx)t,x(U)t,x( nn
ns

tN

)t(NS

ntNn 10 0 −∫ ∫ ∈Δ≤φ−φ

 

Hence   if  we   set 

 

        ∫∑∫∫ Δ
−φΔ≡φ= −

=

ks
kk

k

N

k
ntNn

nsT
dxt

)x(u)x(u)t,x(tdx)t,x(U)t,x()N(B
0

1

1
00

 

it  follows  that  

                                              .udxdt)N(BN
lim

t

)t(sT
φ−≡∞→ ∫∫ 00

Finally, if 

                                             dx)t,x()t,x(ft)N(C kk
ksN

k

φΔ= ∫∑
=

0
1

then  

 

                                        .dx)t,x()t,x(f)N(CN
lim )t(sT

φ=∞→ ∫∫ 00

 

These  relationships  will  now  he  used  to  prove  the  main  result  of  this  paper,, 

Theorem  3.2.     Under  the  hypotheses  H1,  H2  the  method  of  lines 

solution  defined  by  (3.6)  converges  uniformly  to  a  classical 

solution  of  the  free  boundary  problem  (3.1). 

Proof.    Let  us  consider  first  the  subsequence  {UN  , SN }  whose  uniform 

convergence  is  assured  by Ascoli's  theorem.     It  follows  from 

equation   (3.2)  that  

       ∑ ∫
=

− =−−Δ−φΔ≡−−
N

k
kkk

ks

k .])t,x(f)uu(tk
"u[)t,x(t)N(C)N(B)N,N(A

1
10

01  
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and  consider  Instead 

   wxx   -  wt   =  fε  (x , t ) ,     wx   (0,t)   =  αε  (t) 

(4.1)    w ( s ( t ) , t )   =  w x ( s ( t ) , t )   =  0,   s(0)  
=  0   . 

It   is   apparent  that   for  fixed  ε  the  functions   f  and  a  satisfy 
the  hypotheses  H1   and  H2.     Hence  for  ε   >  0  the  solution  w  of 
(4.1)   exists   and  is  unique. 

Problem  (4.1)  was  solved  numerically  with  the  invariant  imbedding 
algorithm  of  section  2.      The  Riccati   equation   (2 .9)   has  the 
analytical  solution 
 
                                           ,

t
xtanh

t
)x(R

ΔΔ
= 1

 
while  the  equations   (2.10)   and  (2.12)  were  integrated  numerically 
with  the  trazezoidal  rule.     The   free  boundary  sn     at  the  nth  time 
level  is   a  root  of  zn(x)  =  0  and  was   found   by  linear  interpolation 
between  successive  mesh  points   for  which  zn  changed  its  algebraic 
sign. 
Since  the   case   ε  =  0   is   really  of  interest,   a  sequence   {wε   (x,t),   sε  (t)} 
was  computed  where  ε  =  ∆t   (i.e.   the  singularity  of  the  data  was  ignored). 
Although  the  computation  showed  some  sensitivity  to  the  space  and  time 
step   (thought  to  be  largely  due  to  the  limited  capability  of  the  BASIC 
compiler)  the  results   converged  as  ∆t,   ∆x  →  0.     Table   1   lists  the 
location  of  the  free  boundary  s ( t )    at  selected  times  obtained  for 
(4.1),   as  well  as  the   corresponding  values   given   in   [17]. 
Table   1   -  Location  of  the  Free  Boundary  s(t)   of  Problem  (4.1) 

t s(t) s(t)  in  [17] 

 

.05 

. 1 

.2 

.3 

.4 

. 5 

.8 
1.0 
1.4 
1.8 
2.0 

.0025
 .0100 

.0398 

.0886 

.1543 

.2343 

.5317 

.7565 
1.2289 
1·7059 
1.9420 

 
  .0099943 
  .0398054 
  .0885481 
  .1542611 
  .2341754 
  .5307290 
  .7544931 
1.223219 
1.693958 
1.941728 
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The  time  and  space  steps  were  ∆t  =  10-2      and  ∆x  =  2  x  10 -3     at 

which,  point  the  computed  solution  appeared  to  have  settled  down 

since  further  mesh  refinements  did  not  change  our  results. 

 

It  is  apprent  that  the  method  of  lines  approach  for  the  formulation 

in  [17]  and  for  ( 4 . 1 )   yield  consistent  results.     However,  the 

method  of  lines  solution  technique  of  this  exposition  is  tied  neither 

to  the  heat  equation  nor  the  specific  form  of  the  "boundary  data  on 

the  fixed  and  free  boundary. 
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