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Abstract
By utilizing data from the literature, we examine the effects of superheat and solute additions on the grain size (as measured 
by columnar grain length) in binary copper alloys. Our investigation provides support for an Arrhenius-like behavior of the 
superheat on the grain size. We also find a correlation between the columnar grain length at a constant degree of superheat 
and the variation of the reciprocal of the true growth restriction factor (1/Q) with P, Mg, Mn, Pb, and Sn solute additions to 
be a power of law of 1/3, which gave a better fit than a linear one.
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Introduction

Grain refinement of copper and copper alloys has recently 
attracted the interest of the scientific community [1–7]. It is 
worthwhile briefly highlighting previous studies on grain 
refinement in copper and copper alloys [8–13]: in air, in the 
late 1930s by Northcott [8, 9], and in a protective atmos-
phere of pure Ar (99.997 pct), in the early 1990s by Bustos 
and Reif [10–13].

Potent, efficient, and sufficient number of highly dis-
persed particles of a required size distribution and compo-
sition during solidification at large undercoolings are neces-
sary conditions but not sufficient, as solute is also needed in 
the melt to restrict grain growth [14].

Since Easton and StJohn [15] first proposed the concept 
of thermodynamically determined Q from the initial slope 

in the constitutional supercooling, it has been adapted by 
several researchers [16–18]. Quested et al. [16] calculated 
Q values in the L + α region for some hypothetical ternary 
Al–X1–X2 systems. Schmid-Fetzer and Kozlov [17] evalu-
ated Q in multicomponent alloys.

where ΔTcs is the constitutional undercooling and fs is the 
solid fraction.

Q reflects the phase diagram of the alloy system and has 
a relationship with grain size [17], which was empirically 
found in some cases to be linear, as illustrated with some 
examples from the literature for Mg [19, 20] and Al [21] 
alloys in Ref. [22], where Q values were calculated from the 
conventional relationship:

where m is the slope of the liquidus, c0 is the solute concen-
tration, and k is the equilibrium distribution coefficient [5].

In the aforementioned study, Men and Fan [22] developed 
an analytical model for determining the effects of different 
solute additions on grain refinement under isothermal solid-
ification. The grain size was found to be directly related to 
(1/Qconv.)1/3 through a parameter B, which is dependent on the 
diffusion coefficient of the solute in the liquid phase, under-
cooling, growth velocity, and solid fraction at the moment of 
recalescence—in that solute enrichment at the solid/liquid 
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interface can reduce the growth velocity and can increase the 
maximum undercooling before recalescence.

where B is a constant independent of alloy composition. 
Equation 3 gave a better fit to the experimental data than 
a linear one for binary Al–Zn and Al–Si alloys as well as 
Al-based wrought alloys solidified under TP-1 casting con-
ditions [22].

We have found it of interest to explore the efficacy of the 
1/3 power law (Eq 3), but from the true growth restriction fac-
tor framework, in binary copper alloys. By using experimental 
data from Northcott’s work [9], the effect of solute additions 
on the grain size has been evaluated in binary copper alloys 
using the analytical model provided by Men and Fan [22] for 
constant and various degrees of superheat. Liquid superheat 
is one of the main factors controlling heat transfer phenomena 
and solidification in upcasting of copper and brass and hence 
fundamental to understanding and predicting heat extraction 
rates [23]. The true growth restriction factor Qtrue has been 
calculated rigorously for binary Cu–X alloys, where X = Al, 
Zn, P, Mg, Mn, Ni, Pb, and Sn.

Thermodynamically Determined Q

Qtrue was thermodynamically calculated for each amount of 
solute present in binary copper alloys using the methodology 
described by Cziegler and Schumacher [3] based on the pro-
cedure given by Schmid-Fetzer and Kozlov [17] as follows. 
The development of the solid fraction (fs) was calculated using 
the Scheil–Gulliver solidification equation generally for a tem-
perature step of 0.01 °C, unless otherwise stated in Table 1. 
Software package Pandat (version 8.0) and the thermodynamic 
databases available in the literature [24–30] were used to cal-
culate cooling.

where TL is the liquidus temperature.

The derivative of the second-order polynomial at fs → 0 
leads to Qtrue = b

It is of interest to note that, in the limit fs → 0, the true and 
conventional growth restriction factors are identical (see the 
derivation in Ref. [17]).

In this work, Q refers to Qtrue.
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Results and Discussion

Superheat Effect

The effect of both cast at 1200 °C and at a constant super-
heat of 100 °C on the grain size (as measured by colum-
nar grain length) in binary Cu–XAl alloys of Ref. 9, where 
X = 0.1–7 wt.%, is shown in Fig. 1a, from which it can be 
seen that the grain structure of the binary Cu–Al system is 
representative of a type of an unrestricted columnar grain 
growth (101.6 mm) due to a high thermal gradient from 
liquid to solid at 1/Q ≥ 10 (1/K). This behavior is reflected 
in a low correlation coefficient of the 1/3 power law of Eq 3 
(Fig. 1a). These results were confirmed again by an addition 
of 0.21% of Al–5Ti–1B grain refiner to deoxidized copper, 
cast at 1150 °C under TP-1 casting conditions—constant 
cooling rate of 3.5 K/s at the center of a cross section located 
38 mm from the base of the TP-1 sample—as described in 
Ref. [5]. As a result, excessive coarsening occurred as shown 
in Fig. 1b.

Again, it is also worthwhile reiterating the earlier point 
on the effect of solidification conditions on the grain size. 
Therefore, in theory, when comparing grain sizes from dif-
ferent alloys, those should have been cast at the same degree 
of superheat. However, in practice, this is not always the 
case, as generally reported in the literature [31]. Bolzoni and 
Babu [31] investigated superheat effects in binary Al–XSi 
alloys, where X = 4–10 wt.%, while fitting the experimental 
data to the Arrhenius-like relation (Eqs 7–8) that associated 
the grain size variation (Δd) to the inverse of the difference 
between superheat (ΔT) because solidification is a diffusive 
process.

where Δd is the corresponding change in the difference 
in grain size from an alloy cast at a constant temperature 
compared with that cast from a constant superheat; A is the 
pre-exponential constant; Ea is the activation energy; and R 
is the gas constant 8.3145 J/mol K.

The positive effect of decreasing the casting tempera-
ture (superheat) on grain size at two cooling rate conditions 
was highlighted in Ref. [10]. Northcott also observed this 
trend in his study [8] and reported that the average length 
of columnar grains decreased, from 20.32 to 12.7 mm for a 
binary Cu–0.5Sn alloy (in wt.%), on decreasing the super-
heat from 200 to 100 °C, and from 20.32 to 10.16 mm for a 
binary Cu–1Ca alloy (in wt.%), on decreasing the superheat 
from 140 to 10 °C. From Fig. 1a, the length of columnar 
grains decreased from 37.59 to 25.4 mm for Cu–5Al alloy 
(1/Q = 0.28 1/K) and from 60.96 to 34.54 mm for Cu–7Al 
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alloy (1/Q = 0.12 1/K), when cast at 1200 °C to cast at a 
constant superheat of 100 °C, respectively. The A value 
obtained from Eq 8 is 89.56, and the Ea value is 474.7 J/mol.

Solutal Effect

Q values obtained in the present investigation are given in 
Table 1 as well as those of Ref. [3] obtained for a constant 
solute addition of 1% of Al, Zn, P, Mg, Mn, Ni, Pb, and Sn. 
From Table 1, it can be seen that similar Q values at 1% of 
solute addition were obtained when comparing FactSage and 
Thermo-Calc databases with those of this study. Columnar 
grain length values of Ref. [9] which were determined for 
additions into copper rapidly cast in air (~ 3.175 kg ingot 
castings, 76.2 mm diameter and ~ 76.2 mm height) are plot-
ted against the corresponding calculated 1/Q values using 
Eq 3 in Figs. 1a , 2, 3, 4, 5, 6, 7, and 8. The results were fitted 
to the 1/3 power law Eq 3. It can be seen that the 1/3 power 
law model can generally explain the experimental data for 
casts at a constant superheat.

Zn has a rather high equilibrium vapor pressure which 
can be found in thermodynamic tables [32, 33]. As a result, 

Fig. 1  (a) Variation of the average columnar grain length values [9] 
with growth restriction factor Q for Cu–XAl, where X = 0.1–7 wt.% 
and (b) macrograph of copper with an addition of 0.21% of Al–5Ti–
1B grain refiner, cast at 1150 °C

Fig. 2  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XZn, where X = 0.2–15 wt.%

Fig. 3  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XP, where X = 0.1–2 wt.%

Fig. 4  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XMg, where X = 0.1–3 wt.%
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these Cu–Zn alloys would be expected to have a lower Zn 
content in the base composition than its corresponding 
nominal composition, which in turn may have resulted in 
a lower correlation coefficient of the 1/3 power law of Eq 3 
(Fig. 2) compared with those of Figs. 3, 4, 5, 7, and 8. Those 
examples illustrate the need for consistency when comparing 
not only the superheat effect but also the solutal effect on the 
grain size of in copper alloys.

All that brings back to the point that both nucleating 
particles and solute additions are needed for effective grain 
refinement. This situation is qualitatively exemplified in 
Fig. 9, which shows (in wt.%) that 0.4Zr; 0.4Zr–0.15P; 
and 0.4Zr–0.015Ag alloys had a columnar grain structure, 
whereas 0.4Zr–0.04P and 0.4Zr–0.04P–0.015Ag alloys gave 
columnar-to-equiaxed transition (CET). The reason for vari-
ation in grain structure was ascribed to be due to the ease 
of nucleation [5] rather than only the effect of Zr additions 
of 0.4%.

Conclusions

This study has examined the effect of superheat and solute 
additions on the grain size (as measured by columnar grain 
length) in copper alloys by utilizing data from the literature 
and by thermodynamically calculating the growth restriction 
factor for each amount of solute present in binary copper 
alloys.

An Arrhenius-like behavior has been exemplified for 
the corresponding change in the difference in grain size 
(columnar grain length) for solute additions of Cu-5Al 
and Cu-7Al (in wt.%) cast at 1200 °C compared with that 
cast from a constant superheat of 100 °C. It has also been 
found a correlation between the columnar grain length at 
a constant degree of superheat and the variation of the 

Fig. 5  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XMn, where X = 0.5–20 wt.%

Fig. 6  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XNi, where X = 0.1–40 wt.%

Fig. 7  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XPb, where X = 0.2–30 wt.%

Fig. 8  Variation of the average columnar grain length values [9] with 
growth restriction factor Q for Cu–XSn, where X = 0.5–10 wt.%



571Metallography, Microstructure, and Analysis (2019) 8:566–572 

1 3

reciprocal of the true growth restriction factor (1/Q) with 
P, Mg, Mn, Pb, and Sn solute additions to be a power of 
law of 1/3, which gave a better fit than a linear one.
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