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             John A. Gregory 

1. Introduction

Smooth or blending function interpolants, which 
match a given function and slopes on the boundary of 
a rectangle or a triangle, usually require that the 
cross derivative or twist terms be defined unam- 
biguously at vertices. For example, the surfaces of 
Coons[3] over rectangles and the interpolation schemes 
of Barnhill, Birkhoff, and Gordon[l] over triangles 
require that certain cross derivatives be compatible 
at vertices. Smooth interpolation schemes which avoid 
such restrictions could be useful for the piecewise 
generation of surfaces in computer aided geometric 
design. This paper considers two such schemes, one 
over a rectangle and the other over a triangle. 

The interpolation scheme for the rectangle is a 
modification of an interpolant of Coons, which was 
later developed through Boolean sum theory by Gordon 
[4]. The interpolant is modified by the addition of 
rational terms so that the compatibility constraints 
are removed. 

The smooth interpolants over triangles of 
Barnhill, Birkhoff and Gordon can also be modified by 
the addition of rational terms, see for example, 
Barnhill and Gregory[2] or Mansfield[6]. This ap- 
proach, together with a detailed discussion of smooth 
interpolation over triangles, is presented in the 
preceding paper by R.E. Barnhill. This present paper 
describes a new interpolation scheme for the triangle. 
This scheme has a relatively simple construction, it 
is symmetric in that each side of the triangle is 
treated in the same way, and it involves no compati- 
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bility constraints. Further details and general- 
izations of this scheme are given in Gregory[5]. 

For simplicity of presentation, the interpolation 
schemes in this paper are considered as bivariate sur- 
faces which interpolate a function F and its slopes 
defined along the boundary of a rectangle or a triangle 
in cartesian (x,y) space. However, the interpolation 
schemes are immediately applicable to the construction 
of a bivariate vector-valued function 

P_(s,t) - (x(s,t) ,  y(s , t ) ,  z(s , t ) ] ,  

where s and t are parametric variables and the 
rectangles or triangles are defined in the parametric 
(s,t) space, see R.E. Barnhill's paper. 

The smooth interpolants in this paper may be 
pieced together to give a surface which is C1(Ω) over 
a rectangular and/or triangular subdivision of a poly- 
gonal region ft. Also, by defining the function and 
slopes along boundary interfaces in terms of data on 
that boundary, C1 (Ω) finite dimensional piecewise 
interpolants can be derived. For example a twelve 
parameter interpolant for the square, and a nine 
parameter interpolant for the triangle, which involve 
the function F and its first two partial derivatives 
at each vertex, can be derived by suitable choice of 
the boundary data. Although, for incompatible boundary 
data, the interpolants have discontinuous cross deriva- 
tives at the vertices, they should compare favourably 
with other known C1 interpolants which impose zero 
second order derivative conditions at each vertex, for 
example the Coons patch with zero twist. (See Example 
4.1.) 

The interpolants considered in this paper have the 
property that they are able to reproduce simple poly- 
nomial surfaces. The set of polynomials which are 
reproduced by an interpolation scheme is defined here 
as the precision set of the interpolant and these sets 
are derived for each of the schemes of this paper. The 
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precision set property gives some indication that the 
interpolation schemes are reasonable for design pur- 
poses. 
2. Smooth C1 Interpolation on Rectangles

The unit square S with boundary ¶S is consid- 
ered with vertices at (0,0), (1,0), (1,1) and (0,1). 
Any arbitrary rectangle can be obtained by an affine 
transformation of this standard square. 

 

 

Figure 1

Figure 2
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For F(x,y) ∈ c1(∂ S) and (x,y) ∈ S, cubic Hermite 
interpolation projectors along parallels to the sides 
x = 0 and y = 0 are respectively defined by 
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are the cardinal basis functions for cubic Hermite 
interpolation on 0 ≤ t ≤ 1, see Figures 1 and 2, 
The function P1F interpolates F and its first 
derivatives on y - 0 and y = 1 and P2F has dual 
properties on x = 0 and x = 1. The Boolean sum 
projector P1 ⊕  + P2 is defined by 

(2.4)        (Pl  + P⊕ 2)F = (Pt + P2 - P1P2)F 

where from (2.1) and (2.2) it follows that 
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If F ∈ C1(∂S) and satisfies the twist compati- 
bility condition 
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at each vertex Vk of the square, then the projectors 
are commutative and the Boolean sum function (2.4) 
interpolates F and its first derivatives on  
(see proof of Theorem 2.1). However, if the compati- 
bility condition (2.6) is not satisfied at each vertex 
then (Pl ⊕  P2)F does not interpolate the x partial 
derivative on x - 0 and x = 1. The following 
theorem removes this discrepancy by the addition of 
rational terms to the Boolean sum function. It should 
be noted that these rational terms are zero for F 
satisfying (2.6), i.e. the modified interpolant 
reduces the standard Boolean sum interpolant when the λ
boundary data is compatible. 

Theorem 2.1. The function 
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where P1 F, P2 F, and P1P2F are defined by (2.1), 
(2.2), and (2.5), interpolates F∈c1(∂S) and its 
first derivatives on the boundary ∂S of the square  

S. 



6. 

COMPUTER AIDED GEOMETRIC DESIGN 

Proof. Consider the Boolean sum function which 
can be written as 

(P, ⊕  P2)F ≡ F- (I-P1) (I-P2)F, 

where I is the identity operator. Then the Boolean 
sum function interpolates F and its first deriva- 
tives on y = 0 and y = 1 since I - P1 and its 
first derivatives are null on these sides. (The 
condition (2.6) would imply a dual result on x = 0 
and x = 1 since P1 and P2 then commute.) Now 
on x = 0 the Boolean sum function interpolates F 
but  
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A dual result attains on x = 1. The discrepancy in 
the interpolation properties of this derivative is 
removed by the rational terms in (2 .7) .  For example, 
the term in (2.8) which involves φl(y) = (y-l)2y is 
removed by the rational term in (2.7) which involves 
the function 
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its first derivatives are zero on ∂S except on 
x = 0 where 
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Remark. A symmetric interpolant on. the 
square can be obtained by taking the average of 
( 2. 7 ) and the dual modified interpolant for (P2 ⊕  P1) F. 

Corollary 2.1, Let F~  ∈ C1(∂ S) be defined by 

(2.9) F~ (x,0) =φ0(x)F(0,0) + φ1,(x)F1 0(0,0) 

+ ψ0(x)F(l,0) + ψl(x)F (1,0) 

(2.10) F~ 0, 1(x,0) = (l-x)F0,1 (0,0) + x F0,1 (1,0), 

with dual expressions for the function and normal de- 
rivatives on (x,l), (0,y),  and (l,y). Then P F~  is 
a twelve parameter interpolant which interpolates F~  
and its first derivatives on the boundary ∂ S of the 
square S. 

Remark. The boundary function F~  on a side is a 
cubic Hermite function interpolating data on that side, 
and the normal derivative is a linear function inter- 
polating data on that side. (The tangential derivative 
is automatically defined by the boundary function.) 
Thus for piecewise interpolation, the function and 
slopes across a side common to two adjacent rectangles 
is maintained by the use of P F~  over each rectangle. 

Theorem 2.2. The set of polynomials for which 
(2.7) is exact is 
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Proof. For polynomial F, (2.7) reduces to the 
commutative Boolean sum function (P1 ⊕  P2)F which is 
precise for the union of the precision sets of P1 
and P2, namely 



8. 
 
 
COMPUTER AIDED GEOMETRIC DESIGN 

P1 x m y n = xm P1yn = xmyn, 0 ≤ n ≤ 3 for all m 

P2 xm yn = yn P2xm = xm yn , 0 ≤ m ≤ 3 for all n ■ 
 

Remark. The twelve parameter scheme defined in 
Corollary 2.1 has a reduced precision set. 

3. Smooth C1 Interpolation on Triangles

It is sufficient to consider the triangle T 
with boundary T and vertices at V∂ 1'= (1,0), 
V2 = (0,1), and V3 = (0,0), The interpolation scheme 
considered below is invariant under an affine trans- 
formation which takes this "standard" triangle T 
onto any arbitrary triangle. The side opposite the 
vertex Vk is denoted by Ek and thus E1 is the 
side x-0, E2 is the side y-0, and E3 is the 
side z=0, where z=1–x–y. For 
 

 

Figure 3
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Figure 4 

F(x,y)  C∈ 1(∂T) and (x,y) ∈ T cubic Hermite inter- 
polation projectors along parallels to the sides 
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where the φi( t )  and ψ1 (t) = (-1)i φi(1-t) are 
defined by (2.3) ,  see Figures 3 and 4. The function 
Pk F interpolates F and its first derivatives on the 

sides Ei, and Ej of the triangle T adjacent to 

the vertex Vk. The symmetric smooth interpolation 

scheme is defined in the following theorem. 

Theorem 3.1. The function 

(3.4) PF - x2(3-2x+6yz)P1F + y2(3-2y+6xz)P2F 

+ z2(3-2z+6xy)P3F, 

where P1F, P2F, and P3F are defined by (3.1) - 
(3.3), interpolates F∈C1( T) and its first de- ∂
rivatives on the boundary ∂T of the triangle T. 

Proof. By symmetry it is sufficient to consider 
the side x = 0 where 

(P2F)(0,y) - (P3F)(0,y) = F(0 ,y) ,  

.)y,(,F)y,(x
FP)y,(x

FP 000 01
32 =⎟
⎠
⎞

⎜
⎝
⎛
∂
∂=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

 

[ ]
{ }

[ ] .)y,0(F)xy6z23(z)xz6y23(y

)y,0(F)xy6z23(z)xz6y23(y
x

)y,0(
x

PF

),y,0(F)xy6z23(z)xz6y23(y)y,0()PF(
thatfollowsit)4.3(fromThus

0,10x2
2

0x
22

0x2
2

=

=

=

+−++−+

⎥⎦
⎤

⎢⎣
⎡ +−++−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+−++−=

 



11. 
 

COMPUTER AIDED GEOMETRIC DESIGN 
 

Now 

(3.5) x2 (3-2x+6yz) + y2 (3-2y+6xz) + z2 (3-2z+6xy) = 1 

and thus 

[ y2 (3-2y+6xz) + z2 (3-2z+6xy) ] x=0 = 1, 
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or, alternatively, the dual argument to the case ∂ /∂ x 

can be applied ■ 

Corollary 3.1. Let F~  ∈ C1(∂T) be defined by 

(3.6) F~ (x,0) φ0(x)F(0,0) φ1(x)F1 , 0 (0,0) 

+ ψ0(x)F(l,0) + ψ l ( x ) F l ,  0 ( l , 0 )  

(3.7) F~ 0 ,1(x,0) = (l-x)F0,1(0,0) + xF0,1(1,0) 

(3.8) F~ (0,y) =  φ 0 (y )F (0 ,0 )  + φ (y)F0,1 (0,0) 

+ ψ0(y) F(0,l) + ψ 1 (y )F 0 ,  l  ( 0 , l )  

(3.9) F~ l , 0 (0,y) = (l-y)F1 , 0 (0,0) + yF1 , 0 (0,l) 
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(3.10) F~ (x, l-x) = φ0 (x )F(0 , l )  + φ1 ( X) [F 1 , 0  (0 ,1 )  

       -F0, l(0.1)] 

+ ψ0(x)F(l,0) +ψ 1 (X)[F I  ,  0 (1 ,0)  - F0 ,1(1,0)] 

(3.11) F~ 1,0 (x, l-x) + F~ 0,1 (x, l-x) = 

(1-X) [F1,0(0,1) + F0,1(0,1)] 

+ x[F 1 ,  0 (1 ,0 ) + F 0 , l  ( l ,0 ) ] .  

Then P F~  is a nine parameter interpolant which inter- 
polates F~  and its first derivatives on the boundary 
∂T of the triangle T. 

Remark. For piecewise interpolation, the nine 
parameter interpolant P F~  is restricted to a regular 
mesh of right angled triangles. This is because the 
transformation of P F~  onto an arbitrary triangle will 
not in general take normals into normals. However, the 
smooth interpolant (3.4) is invariant under affine 
transformation since the P k F  are defined along the 

invariant parallels to the sides Ek . 

Theorem 3.2. The set of polynomials for which 
(3.4) is exact is at least T 3 ,  the set of polynomials 
of degree three or less along parallels to the three 
sides of T, i.e. 

(3.12) T3, = {l,x,y,x2,xy,y2,x3,x2y,xy2,y3,(x+y)x2y, 

(x+y)xy2}. 

 
Proof. The intersection of the precision . set 

of P1, P2, and P3 is T3 . Thus from ( 3 . 5 ) it 

Follows that for F ∈ T3
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PF = x2(3-2x+6yz)P1F + y2(3-2y+6xz)P2F 

+ z2(3-2z+6xy)P3 F 

= [x2(3-2x+6yz) + y2(3-2y+6xz) + z2(3-2z+6xy)]F 

 = F ■

4. Examples. 

The examples discussed in this section have been 
implemented by R.J. McDermott, see the following paper 
of these Proceedings. The examples illustrate the 
twelve parameter interpolation scheme for the rectangle 
described in Corollary 2.1. Examples of interpolation 
schemes for triangles are discussed in R.E. Barnhill's 
paper. The data for each example is supplied by some 
given primitive function F(x,y). 

Example 4.1. F(x,y) = xy. The twelve parameter 
interpolant exactly reproduces thefunction 
F(xy) = xy since it is contained in the precision set 
of the interpolant (see Figure 5). Figure 6 
illustrates the effect of defining zero twist para- 
meters for the Coons patch (16 parameter bicubic tensor 
product with zero twist conditions). Close examination 
reveals the "flat spot" effect at the vertices which 
would be more apparent in a three dimensional model. 

 
Figure 5 Figure 6
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Example 4.2. F(x,y) = (1-x)2(1-y)2. This func- 
tion (see Figure 7) is not contained in the precision 
set of the interpolant. However, the interpolant (see 
Figure 8) is a good approximation to this function. 

 

Figure 7

 

Figure 8
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Example 4.3. F(x,y) = 0.1/(x-0.5). The vertex 
data supplied by this function is well behaved al- 
though the function itself has a line singularity at 
x = 0.5 (see Figure 9). The interpolant (see Figure 
10) smooths out the singularity. 

 

          Figure 9    Figure 10 
 

Example 4.4. F(x,y) = sin (2x)/(y+l). This example 
illustrates the join of four separate patches (see 
Figure 11). The function is shown in Figure 12 and the 
four patch interpolant is shown in Figure 13, this 
being a good approximation to the function. 
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Figure 11 
 
 
 
 

 
 
 Figure 12     Figure 13
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