SMOOTH INTERPOLATIONWITHOUT

TWIST CONSTRAINTS

by
J. A. Gregory

The following paper is to appear in the book: computer Aided Geometric Design, edited by R.E. Barnhill and R.F. Riesenfeld, Academic Press, New York, 1975, being the proceedings of the conference of the same title held at the University of Utah, March 1974.

COMPUTER AIDED GEOMETRIC DESIGN

SMOOTH INTERPOLATION WITHOUT TWIST CONSTRAINTS

John A. Gregory

1. Introduction

Smooth or blending function interpolants, which match a given function and slopes on the boundary of a rectangle or a triangle, usually require that the cross derivative or twist terms be defined unambiguously at vertices. For example, the surfaces of Coons[3] over rectangles and the interpolation schemes of Barnhill, Birkhoff, and Gordon[1] over triangles require that certain cross derivatives be compatible at vertices. Smooth interpolation schemes which avoid such restrictions could be useful for the piecewise generation of surfaces in computer aided geometric design. This paper considers two such schemes, one over a rectangle and the other over a triangle.

The interpolation scheme for the rectangle is a modification of an interpolant of Coons, which was later developed through Boolean sum theory by Gordon [4]. The interpolant is modified by the addition of rational terms so that the compatibility constraints are removed.

The smooth interpolants over triangles of Barnhill, Birkhoff and Gordon can also be modified by the addition of rational terms, see for example, Barnhill and Gregory[2] or Mansfield[6]. This approach, together with a detailed discussion of smooth interpolation over triangles, is presented in the preceding paper by R.E. Barnhill. This present paper describes a new interpolation scheme for the triangle. This scheme has a relatively simple construction, it is symmetric in that each side of the triangle is treated in the same way, and it involves no compati-

COMPUTER AIDED GEOMETRIC DESIGN

bility constraints. Further details and generalizations of this scheme are given in Gregory[5].

For simplicity of presentation, the interpolation schemes in this paper are considered as bivariate surfaces which interpolate a function F and its slopes defined along the boundary of a rectangle or a triangle in cartesian (x,y) space. However, the interpolation schemes are immediately applicable to the construction of a bivariate vector-valued function

$$
\mathrm{P}_{-}(\mathrm{s}, \mathrm{t})-(\mathrm{x}(\mathrm{~s}, \mathrm{t}), \mathrm{y}(\mathrm{~s}, \mathrm{t}), \mathrm{z}(\mathrm{~s}, \mathrm{t})],
$$

where s and t are parametric variables and the rectangles or triangles are defined in the parametric (s,t) space, see R.E. Barnhill's paper.

The smooth interpolants in this paper may be pieced together to give a surface which is $C^{l}(\Omega)$ over a rectangular and/or triangular subdivision of a polygonal region ft. Also, by defining the function and slopes along boundary interfaces in terms of data on that boundary, $\mathrm{C}^{1} \quad(\Omega)$ finite dimensional piecewise interpolants can be derived. For example a twelve parameter interpolant for the square, and a nine parameter interpolant for the triangle, which involve the function F and its first two partial derivatives at each vertex, can be derived by suitable choice of the boundary data. Although, for incompatible boundary data, the interpolants have discontinuous cross derivatives at the vertices, they should compare favourably with other known C^{1} interpolants which impose zero second order derivative conditions at each vertex, for example the Coons patch with zero twist. (See Example 4.1.)

The interpolants considered in this paper have the property that they are able to reproduce simple polynomial surfaces. The set of polynomials which are reproduced by an interpolation scheme is defined here as the precision set of the interpolant and these sets are derived for each of the schemes of this paper. The

COMPUTER AIDED GEOMETRIC DESIGN

precision set property gives some indication that the interpolation schemes are reasonable for design purposes.

2. Smooth $\mathrm{C}^{1} \underline{\text { Interpolation on Rectangles }}$

The unit square S with boundary $\| S$ is considered with vertices at $(0,0)$, $(1,0),(1,1)$ and $(0,1)$. Any arbitrary rectangle can be obtained by an affine transformation of this standard square.

Figure 1

Figure 2

COMPUTER AIDED GEOMETRIC DESIGN

For $F(x, y) \in c^{1}(\partial S)$ and $(x, y) \in S$, cubic Hermite interpolation projectors along parallels to the sides $\mathrm{x}=0$ and $\mathrm{y}=0$ are respectively defined by
(2.1) $P_{1} F=\sum_{j=0}^{1} \psi_{j}(y) F_{0, j}(x, 0)+\sum_{j=0}^{1} \psi_{j}(y) F_{0, j}(x, 1)$,
(2.2) $P_{2} F=\sum_{i=0}^{1} \psi_{i}(x) F_{i, 0}(0, y)+\sum_{i=0}^{1} \psi_{i}(x) F_{i, 0}(\mathbf{1}, \mathrm{y})$, where

$$
\text { (2.3) } \begin{cases}\psi_{0}(t)=(t-\mathbf{1})^{2}(\mathbf{2} t+\mathbf{1}), & \psi_{1}(t)=(t-\mathbf{1})^{2} t, \\ \psi_{0}(t)=t^{2}(-\mathbf{2} t+3), & \psi_{1}(t)=t^{2}(t-\mathbf{1}),\end{cases}
$$

are the cardinal basis functions for cubic Hermite interpolation on $0 \leq \mathrm{t} \leq 1$, see Figures 1 and 2, The function $\mathrm{P}_{1} \mathrm{~F}$ interpolates F and its first derivatives on $\mathrm{y}-0$ and $\mathrm{y}=1$ and $\mathrm{P}_{2} \mathrm{~F}$ has dual properties on $\mathrm{x}=0$ and $\mathrm{x}=1$. The Boolean sum projector $\mathrm{P}_{1} \oplus+\mathrm{P}_{2}$ is defined by

$$
\begin{equation*}
\left(\mathrm{P}_{1} \oplus+\mathrm{P}_{2}\right) \mathrm{F}=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{2}-\mathrm{P}_{1} \mathrm{P}_{2}\right) \mathrm{F} \tag{2.4}
\end{equation*}
$$

where from (2.1) and (2.2) it follows that
(2.5) $P_{1} P_{2} F=\sum_{i, j \leq 1} \psi_{i}(x) \psi_{j}(y)\left[\frac{\partial^{j+i} F}{\partial y^{j} \partial x^{i}}\right](\mathbf{0}, 0)$

$$
\begin{aligned}
& +\sum_{i, j \leq 1} \psi_{i}(x) \psi_{j}(y)\left[\frac{\partial^{j+i} F}{\partial y^{j} \partial x^{i}}\right](\mathbf{1}, \mathbf{0}) \\
& +\sum_{i, j \leq 1} \psi_{i}(x) \psi_{j}(y)\left[\frac{\partial^{j+i} F}{\partial y^{j} \partial x^{i}}\right](\mathbf{0}, \mathbf{1}) \\
& +\sum_{i, j \leq 1} \psi_{i}(x) \psi_{j}(y)\left[\frac{\partial^{j+i} F}{\partial y^{j} \partial x^{i}}\right](\mathbf{1 , 1})
\end{aligned}
$$

COMPUTER AIDED GEOMETRIC DESIGN

If $\mathrm{F} \in \mathrm{C}^{1}(\partial \mathrm{~S})$ and satisfies the twist compatibility condition

$$
\begin{equation*}
\left[\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{x} \partial \mathrm{y}}\right]\left(\mathrm{V}_{\mathrm{k}}\right)=\left[\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{y} \partial \mathrm{x}}\right]\left(\mathrm{V}_{\mathrm{k}}\right) \tag{2.6}
\end{equation*}
$$

at each vertex V_{k} of the square, then the projectors are commutative and the Boolean sum function (2.4) interpolates F and its first derivatives on (see proof of Theorem 2.1). However, if the compatibility condition (2.6) is not satisfied at each vertex then $\left(\mathrm{P}_{1} \oplus \mathrm{P}_{2}\right) \mathrm{F}$ does not interpolate the x partial derivative on $\mathrm{x}-0$ and $\mathrm{x}=1$. The following theorem removes this discrepancy by the addition of rational terms to the Boolean sum function. It should be noted that these rational terms are zero for F satisfying (2.6), i.e. the modified interpolant reduces λ the standard Boolean sum interpolant when the boundary data is compatible.

Theorem 2.1. The function
(2.7) $\mathrm{PF}=\mathrm{P}_{1} \mathrm{~F}+\mathrm{P}_{2} \mathrm{~F}-\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{~F}$

$$
\begin{aligned}
& -\frac{x(x-1)^{2} y^{2}(y-1)^{2}}{x+y}\left[\left[\frac{\partial^{2} F}{\partial x \partial y}\right](\mathbf{0}, \mathbf{0})-\left[\frac{\partial^{2} F}{\partial y \partial y}\right](\mathbf{0}, \mathbf{0})\right] \\
& -\frac{x(x-\mathbf{1})^{2} y^{2}(y-1)^{2}}{-x+y-\mathbf{1}}\left[\left[\frac{\partial^{2} F}{\partial x \partial y}\right](\mathbf{0}, \mathbf{1})-\left[\frac{\partial^{2} F}{\partial y \partial y}\right](\mathbf{0}, \mathbf{1})\right] \\
& -\frac{x^{2}(x-\mathbf{1}) y^{2}(y-\mathbf{1})^{2}}{-x+\mathbf{1}-y}\left[\left[\frac{\partial^{2} F}{\partial x \partial y}\right](\mathbf{1 , 0})-\left[\frac{\partial^{2} F}{\partial y \partial y}\right](\mathbf{1}, \mathbf{0})\right] \\
& -\frac{x^{2}(x-\mathbf{1}) y^{2}(y-\mathbf{1})^{2}}{x-y+y-\mathbf{1}}\left[\left[\frac{\partial^{2} F}{\partial x \partial y}\right](\mathbf{1 , 1})-\left[\frac{\partial^{2} F}{\partial y \partial y}\right](\mathbf{1}, \mathbf{1})\right]
\end{aligned}
$$

where $P_{1} F, P_{2} F$, and $P_{1} P_{2} F$ are defined by (2.1), (2.2), and (2.5), interpolates $F \in c^{1}(\partial S)$ and its
first derivatives on the boundary $\partial \mathrm{S}$ of the square S.

COMPUTER AIDED GEOMETRIC DESIGN

Proof. Consider the Boolean sum function which can be written as

$$
\left(\mathrm{P}, \oplus \mathrm{P}_{2}\right) \mathrm{F} \equiv \mathrm{~F}-\left(\mathrm{I}-\mathrm{P}_{1}\right)\left(\mathrm{I}-\mathrm{P}_{2}\right) \mathrm{F},
$$

where I is the identity operator. Then the Boolean sum function interpolates F and its first derivatives on $\mathrm{y}=0$ and $\mathrm{y}=1$ since $\mathrm{I}-\mathrm{P}_{1}$ and its first derivatives are null on these sides. (The condition (2.6) would imply a dual result on $\mathrm{x}=0$ and $\mathrm{x}=1$ since P_{1} and P_{2} then commute.) Now on $\mathrm{x}=0$ the Boolean sum function interpolates F but
(2.8) $\left[\frac{\partial\left(\mathrm{P}_{1} \oplus \mathrm{P}_{2}\right) \mathrm{F}}{\partial \mathrm{x}}\right]_{\mathrm{x}=0}=\mathrm{F}_{1,0}(\mathbf{0}, \mathrm{y})$

$$
\begin{aligned}
& +\psi_{1}(y)\left[\left[\frac{\partial^{2} F}{\partial x \partial y}\right](\mathbf{0}, \mathbf{0})-\left[\frac{\partial^{2} F}{\partial y \partial x}\right](\mathbf{0}, \mathbf{0})\right] \\
& +\psi_{1}(y)\left[\left[\frac{\partial^{2} F}{\partial \mathrm{x} \partial \mathrm{y}}\right](\mathbf{0}, \mathbf{1})-\left[\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{y} \partial \mathrm{x}}\right](\mathbf{0 , 1})\right]
\end{aligned}
$$

A dual result attains on $\mathrm{x}=1$. The discrepancy in the interpolation properties of this derivative is removed by the rational terms in (2.7). For example, the term in (2.8) which involves $\varphi_{l}(y)=(\mathrm{y}-1)^{2} \mathrm{y}$ is removed by the rational term in (2.7) which involves the function

$$
-\frac{x(x-1)^{2} y^{2}(y-1)^{2}}{x+y}
$$

This function has the desired properties that it and its first derivatives are zero on $\partial \mathrm{S}$ except on $\mathrm{x}=0$ where

$$
\left[\frac{\partial}{\partial x}\left(-\frac{x(x-1)^{2} y^{2}(y-1)^{2}}{x+y}\right)\right]_{x=0}-(y-1)^{2} y
$$

COMPUTER AIDED GEOMETRIC DESIGN

Remark. A symmetric interpolant on. the square can be obtained by taking the average of (2.7) and the dual modified interpolant for $\left(\mathrm{P}_{2} \oplus \mathrm{P}_{1}\right) \mathrm{F}$.

Corollary 2.1, Let $\widetilde{\mathrm{F}} \in \mathrm{C}^{1}(\partial \mathrm{~S})$ be defined by
(2.9) $\widetilde{F}(x, 0)=\varphi_{0}(x) F(0,0)+\varphi_{1},(x) F_{10}(0,0)$

$$
+\psi_{0}(\mathrm{x}) \mathrm{F}(1,0)+\psi_{1}(\mathrm{x}) \mathrm{F}(1,0)
$$

$(2.10) \widetilde{F}_{0,1}(x, 0)=(1-x) \mathrm{F}_{0,1}(0,0)+\mathrm{x}_{0,1}(1,0)$,
with dual expressions for the function and normal derivatives on $(x, 1), \quad(0, y)$, and $(1, y)$. Then $P \widetilde{F}$ is a twelve parameter interpolant which interpolates $\widetilde{\mathrm{F}}$ and its first derivatives on the boundary ∂S of the square S .

Remark. The boundary function \widetilde{F} on a side is a cubic Hermite function interpolating data on that side, and the normal derivative is a linear function interpolating data on that side. (The tangential derivative is automatically defined by the boundary function.) Thus for piecewise interpolation, the function and slopes across a side common to two adjacent rectangles is maintained by the use of $\mathrm{P} \widetilde{\mathrm{F}}$ over each rectangle.

Theorem 2.2. The set of polynomials for which (2.7) is exact is

$$
x^{m} y^{n}\left\{\begin{array}{l}
0 \leq m \leq 3, \text { for all } n \tag{2.11}\\
0 \leq n \leq 3, \text { for all } m .
\end{array}\right.
$$

Proof. For polynomial F, (2.7) reduces to the commutative Boolean sum function $\left(\mathrm{P}_{1} \oplus \mathrm{P}_{2}\right) \mathrm{F}$ which is precise for the union of the precision sets of P_{1} and P_{2}, namely
8.

COMPUTER AIDED GEOMETRIC DESIGN

$$
P_{1} x^{m} y^{n}=x^{m} P_{1} y^{n}=x^{m} y^{n}, 0 \leq n \leq 3 \text { for all } m
$$

$$
P_{2} x^{m} y^{n}=y^{n} P_{2} x^{m}=x^{m} y^{n}, 0 \leq m \leq 3 \text { for all } n
$$

Remark. The twelve parameter scheme defined in Corollary 2.1 has a reduced precision set.

3. Smooth C^{1} Interpolation on Triangles

It is sufficient to consider the triangle T with boundary $\partial \mathrm{T}$ and vertices at $\mathrm{V}_{1}=(1,0)$, $\mathrm{V}_{2}=(0,1)$, and $\mathrm{V}_{3}=(0,0)$, The interpolation scheme considered below is invariant under an affine transformation which takes this "standard" triangle T onto any arbitrary triangle. The side opposite the vertex V_{k} is denoted by E_{k} and thus E_{1} is the side $x-0, \quad E_{2}$ is the side $y-0$, and E_{3} is the side $\quad \mathrm{z}=0$, where $\mathrm{z}=1-\mathrm{x}-\mathrm{y}$. For

Figure 3

COMPUTER AIDED GEOMETRIC DESIGN

Figure 4
$\mathrm{F}(\mathrm{x}, \mathrm{y}) \in \mathrm{C}^{1}(\partial \mathrm{~T})$ and $(\mathrm{x}, \mathrm{y}) \in \mathrm{T}$ cubic Hermite interpolation projectors along parallels to the sides $\mathrm{x}=0, \mathrm{y}=0$, and $\mathrm{z}=0$ are respectively defined by
(3.1) $P_{1} F=\sum_{i=0}^{1} \psi\left(\frac{y}{1-x}\right)(1-x)^{i} F_{0, i}(x, 0)$

$$
+\sum_{i=0}^{1} \psi\left(\frac{y}{1-x}\right)(1-x)^{i} F_{0, i}(x, \mathbf{1}-x),
$$

(3.2) $P_{2} F=\sum_{i=0}^{1} \psi_{i}\left(\frac{x}{1-y}\right)(1-y)^{i} F_{i, 0}(0, y)$

$$
+\sum_{i=0}^{1} \psi i\left(\frac{y}{1-y}\right)(1-y)^{i} \mathrm{~F}_{10}(1-y, y),
$$

(3.3) $P_{3} F=\sum_{i=0}^{1} \psi\left(\frac{x}{x+y}\right)(x+y)^{i}\left(\left[\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right]^{i} F\right)(0, x+y)$

$$
+\sum_{i=0}^{1} \psi\left(\frac{x}{x+y}\right)(x+y)^{i}\left(\left[\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right]^{i} F\right)(x+y, 0),
$$

10.

COMPUTER AIDED GEOMETRIC DESIGN

where the $\varphi_{i}(t)$ and $\psi_{1}(t)=(-1)^{i} \varphi_{i}(1-t)$ are defined by (2.3), see Figures 3 and 4 . The function $P_{k} F$ interpolates F and its first derivatives on the sides E_{i}, and E_{j} of the triangle T adjacent to the vertex V_{k}. The symmetric smooth interpolation scheme is defined in the following theorem.

Theorem 3.1. The function
(3.4) PF - $x^{2}(3-2 x+6 y z) P_{1} F+y^{2}(3-2 y+6 x z) P_{2} F$

$$
+z^{2}(3-2 z+6 x y) P_{3} F,
$$

where $P_{1} F, P_{2} F$, and $P_{3} F$ are defined by (3.1) (3.3), interpolates $F \in C^{1}(\partial T)$ and its first derivatives on the boundary $\partial \mathrm{T}$ of the triangle T .

Proof. By symmetry it is sufficient to consider the side $\mathrm{x}=0$ where

$$
\begin{aligned}
& \left(\mathrm{P}_{2} \mathrm{~F}\right)(0, \mathrm{y})-\left(\mathrm{P}_{3} \mathrm{~F}\right)(0, \mathrm{y})=\mathrm{F}(0, \mathrm{y}) \\
& \left(\frac{\partial \mathrm{P}_{2} \mathrm{~F}}{\partial \mathrm{x}}\right)(\mathbf{0}, \mathrm{y})=\left(\frac{\partial \mathrm{P}_{3} \mathrm{~F}}{\partial \mathrm{x}}\right)(\mathbf{0}, \mathrm{y})=\mathrm{F}_{1,0}(\mathbf{0}, \mathrm{y}) .
\end{aligned}
$$

Thusfrom(3.4)itfollowshat

$$
\begin{aligned}
& \quad(P F)(0, y)=\left[y^{2}(3-2 y+6 x z)+z_{2}(3-2 z+6 x y)\right]_{x=0} F(0, y), \\
& \left(\frac{\partial P F}{\partial x}\right)(0, y)=\left[\frac{\partial}{\partial x}\left\{y_{2}(3-2 y+6 x z)+z_{2}(3-2 z+6 x y)\right\}\right]_{x=0} F(0, y) \\
& +\left[y^{2}(3-2 y+6 x z)+z_{2}(3-2 z+6 x y)\right]_{x=0} F_{1,0}(0, y) .
\end{aligned}
$$

COMPUTER AIDED GEOMETRIC DESIGN

Now
$(3.5) x^{2}(3-2 x+6 y z)+y^{2}(3-2 y+6 x z)+z^{2}(3-2 z+6 x y)=1$
and thus

$$
\begin{aligned}
& {\left[y^{2}(3-2 y+6 x z)+z^{2}(3-2 z+6 x y)\right]_{x=0}=1} \\
& {\left[\left.\frac{\partial}{\partial x}\left\{y^{2}(3-2 y+6 x z)+z^{2}(3-2 z+6 x y)\right\}\right|_{x=0}=0 .\right.}
\end{aligned}
$$

Hence

$$
(\mathrm{PF})(0, \mathrm{y})=\mathrm{F}(0, \mathrm{y}) \text { and }\left(\frac{\partial \mathrm{PF}}{\partial \mathrm{x}}\right)
$$

Also

$$
\left(\frac{\partial \mathrm{PF}}{\partial \mathrm{y}}\right)(\mathbf{0}, \mathrm{y})=\frac{\partial}{\partial \mathrm{y}}(\mathrm{PF})(\mathbf{0}, \mathrm{y})=\mathrm{F}_{0,1}(\mathbf{0}, \mathrm{y})
$$

or, alternatively, the dual argument to the case $\partial / \partial \mathrm{x}$ can be applied

Corollary 3.1. Let $\widetilde{F} \in \mathrm{C}^{1}(\partial \mathrm{~T})$ be defined by
(3.6) $\quad \widetilde{\mathrm{F}}(\mathrm{x}, 0) \varphi_{0}(\mathrm{x}) \mathrm{F}(0,0) \varphi_{1}(\mathrm{x}) \mathrm{F}_{1,0}(0,0)$

$$
+\psi_{0}(\mathrm{x}) \mathrm{F}(1,0)+\psi_{1}(\mathrm{x}) \mathrm{F}_{1,0}(1,0)
$$

(3.7) $\quad \widetilde{\mathrm{F}}_{0,1}(\mathrm{x}, 0)=(1-\mathrm{x}) \mathrm{F}_{0,1}(0,0)+\mathrm{xF}_{0,1}(1,0)$
(3.8) $\quad \widetilde{\mathrm{F}}(0, \mathrm{y})=\varphi_{0}(\mathrm{y}) \mathrm{F}(0,0)+\varphi(\mathrm{y}) \mathrm{F}_{0,1}(0,0)$

$$
+\psi_{0}(\mathrm{y}) \mathrm{F}(0, \mathrm{l})+\psi_{1}(\mathrm{y}) \mathrm{F}_{0,1}(0,1)
$$

(3.9) $\widetilde{\mathrm{F}}_{1},{ }_{0}(0, y)=(1-\mathrm{y}) \mathrm{F}_{1},{ }_{0}(0,0)+\mathrm{yF}_{1},{ }_{0}(0,1)$
12.

COMPUTER AIDED GEOMETRIC DESIGN

$$
\begin{align*}
& \widetilde{F}(x, 1-x)=\varphi_{0}(x) F(0,1)+\varphi_{1}(x)\left[F_{1,0}(0,1)\right. \tag{3.10}\\
&\left.-F_{0,1}(0.1)\right] \\
&+\psi_{0}(x) F(1,0)+\psi_{1}(x)\left[F_{1}, 0(1,0)-F_{0,1}(1,0)\right]
\end{align*}
$$

$$
\left.\begin{array}{rl}
\widetilde{\mathrm{F}}_{1,0}(\mathrm{x}, 1-\mathrm{x})+ & \widetilde{\mathrm{F}}_{0,1}(\mathrm{x}, 1-\mathrm{x})= \tag{3.11}\\
& (1-\mathrm{x})\left[\mathrm{F}_{1,0}(0,1)+\mathrm{F}_{0,1}(0,1)\right] \\
+ & \mathrm{x}
\end{array} \mathrm{~F}_{1,0}(1,0)+\mathrm{F}_{0,1}(1,0)\right] .
$$

Then $P \widetilde{F}$ is a nine parameter interpolant which interpolates \widetilde{F} and its first derivatives on the boundary $\partial \mathrm{T}$ of the triangle T .

Remark. For piecewise interpolation, the nine parameter interpolant $\mathrm{P} \widetilde{\mathrm{F}}$ is restricted to a regular mesh of right angled triangles. This is because the transformation of $\mathrm{P} \widetilde{\mathrm{F}}$ onto an arbitrary triangle will not in general take normals into normals. However, the smooth interpolant (3.4) is invariant under affine transformation since the $\mathrm{P}_{\mathrm{k}} \mathrm{F}$ are defined along the invariant parallels to the sides E_{k}.

Theorem 3.2. The set of polynomials for which (3.4) is exact is at least T_{3}, the set of polynomials of degree three or less along parallels to the three sides of T, i.e.
(3.12) $T_{3},=\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3},(x+y) x^{2} y\right.$,

$$
\left.(x+y) x y^{2}\right\} .
$$

Proof. The intersection of the precision. set of P_{1}, P_{2}, and P_{3} is T_{3}. Thus from (3.5) it Follows that for $\mathrm{F} \in \mathrm{T}_{3}$

COMPUTER AIDED GEOMETRIC DESIGN

$$
\begin{aligned}
P F & =x^{2}(3-2 x+6 y z) P_{1} F+y^{2}(3-2 y+6 x z) P_{2} F \\
& +z^{2}(3-2 z+6 x y) P_{3} F \\
& =\left[x^{2}(3-2 x+6 y z)+y^{2}(3-2 y+6 x z)+z^{2}(3-2 z+6 x y)\right] F
\end{aligned}
$$

$=\mathrm{F}^{\text { }}$

4. Examples.

The examples discussed in this section have been implemented by R.J. McDermott, see the following paper of these Proceedings. The examples illustrate the
twelve parameter interpolation scheme for the rectangle described in Corollary 2.1. Examples of interpolation schemes for triangles are discussed in R.E. Barnhill's paper. The data for each example is supplied by some given primitive function $\mathrm{F}(\mathrm{x}, \mathrm{y})$.

Example 4.1. $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{xy}$. The twelve parameter interpolant exactly reproduces thefunction
$\mathrm{F}(\mathrm{xy})=\mathrm{xy}$ since it is contained in the precision set of the interpolant (see Figure 5). Figure 6 illustrates the effect of defining zero twist parameters for the Coons patch (16 parameter bicubic tensor product with zero twist conditions). Close examination reveals the "flat spot" effect at the vertices which would be more apparent in a three dimensional model.

Figure 5

Figure 6

COMPUTER AIDED GEOMETRIC DESIGN

Example 4.2. $\mathrm{F}(\mathrm{x}, \mathrm{y})=(1-\mathrm{x})^{2}(1-\mathrm{y})^{2}$. This function (see Figure 7) is not contained in the precision set of the interpolant. However, the interpolant (see Figure 8) is a good approximation to this function.

Figure 7

Figure 8

COMPUTER AIDED GEOMETRIC DESIGN

Example 4.3. $\mathrm{F}(\mathrm{x}, \mathrm{y})=0.1 /(\mathrm{x}-0.5)$. The vertex data supplied by this function is well behaved although the function itself has a line singularity at $\mathrm{x}=0.5$ (see Figure 9). The interpolant (see Figure 10) smooths out the singularity.

Figure 9

Figure 10

Example 4.4. $\mathrm{F}(\mathrm{x}, \mathrm{y})=\sin (2 \mathrm{x}) /(\mathrm{y}+1)$. This example illustrates the join of four separate patches (see Figure 11). The function is shown in Figure 12 and the four patch interpolant is shown in Figure 13, this being a good approximation to the function.
16.

COMPUTER AIDED GEOMETRIC DESIGN

Figure 11

Figure 12
Figure 13

COMPUTER AIDED GEOMETRIC DESIGN

Acknowledgement. This paper represents a continuation and extension of Joint work with R.E. Barnhill. The author also wishes to thank R.J. McDermott for the computer-generated pictures.

References

1. Barnhill, R.E., Birkhof f, G. , and Gordon, W.J., Smooth Interpolation in Triangles, J. Approx. Theory 8, 1973, pp. 114-128.
2. Barnhill, R.E., and Gregory, J.A., Compatible Smooth Interpolation in Triangles, J. Approx. Theory (To appear).
3. Coons, S.A., Surfaces for Computer Aided Design, Design Division, Mech. Engin. Dept., MIT, 1964. revised, 1967.
4. Gordon, W.J., "Blending-function" Methods of Bivariate and Multivariate Interpolation and Approximation, SIAM J. Numer. Anal. 8, 1971, pp. 158-177.
5. Gregory, J.A., Symmetric Smooth Interpolation on Triangles, TR/34, Brunel Univ., Uxbridge, England, 1973.
6. Mansfield, Lois, Higher Order Compatible Triangular Finite Elements, Numer. Math. 22, pp. 89-97, 1974.

