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THE  ZEROS  OF  PARTIAL  SUMS  OF  A 

MACLAURIN  EXPANSION 

                    by 

A.   TALBOT 



1. 

1 .        Introduction.     A  problem  in   approximation  theory  on  which  I 

have  recently  worked  [2]   required   for   its   solution  a  proof  that 

the  zeros  of  all  partial  sums  of  the  expansion 
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all  lie  outside  the  unit  circle   │z│   =   1.       It  is  easily  verified 

that  this  is  indeed  true  for  the  first  few  partial  sums,  but  I 

have  been  unable  either  to  devise  a  function-theory  proof  for  the 

general  case  or  to  find  in  the  literature  any  general  theorems  on 

the  zeros  of  partial  sums  which  could  be  applied  to  this  expansion. 

The  proof  to  be  presented  here  proceeds  in  the  following  way. 

We  show  that  the  real  part  of  any  partial  sum  is  positive  on  the 

unit  circle. Being  harmonic,   it  is  therefore  also  positive  inside 

the  circle,  and  hence  the  partial  sum  cannot  vanish  there.       Now 

the  real  part  on  the  circle  is  a  function  of  the  polar  angle  θ,  and 

we  shall  show  separately,  and  by  entirely  different  methods,  that 

it  is  positive  (a)   for  a  range  0  ≤  θ  ≤  θ2,   and  (b)   for  a  range 

θ1  ≤  θ  ≤  π   ,  where θ1   ≤    θ2.       No  single  method  has  been  found 

that   covers  the  whole  range  θ1  ≤  θ2   <  π.        For   (a)    we  approximate  to 

the  trigonometric  sum  involved  by  a  related  integral.       For  (b)  we 

make  use  of  trigonometric  manipulations.     There  is  nothing  fixed 

about  θ1   and  θ2   :  many  variations  of  (a)    and  (b)  can  be  exhibited 

leading  to  different  values  of  θ1  and  θ2.       All  that  is  necessary 

is  that  we  obtain  values  such  that  θ1    <  θ2   ,  thus  making  the  two 

ranges  of  θ  overlap. 

(1) 

(2) 



2. 
It   is  not  difficult  to  convince  oneself  that  the  real  part 

of  every  partial   sum  is  positive  on  the  unit  circle:      if  for 

example  one  tabulates  the  values  of 

1   +  a1 cos θ    + ..........    +  an   cos n θ 

  

for    between  0°   and   180°   at   intervals  of,   say,   10°,   and  for θ

n  =   1,   2,   ...   up  to  say   10  or  20,  the  result   stated  Is   seen  to 

be  highly  likely. But   closer  examination  of  the  values   suggests 

that  an  even  stronger  result  holds,  namely  that  these  values  are 

greater  than  or  equal  to  ½,  with  equality  only  for n   =  1   and  θ =  180°. 

It  turns  out  that   it   is  almost  as  easy  to  prove  this,  by  methods 

(a)  and  (b),  as  to  prove  the  weaker  result,  and  we  shall  therefore 

proceed  to  do  this. Thus,  letting 

sn   (θ)   =   2
1  +  a1 cos θ+  a2cos  2 θ  +   ...   +  an  cosnθ .  (3) 

                   

we  shall  show  that 

sn(θ)   ≥  0,      ∀∀                                                                 (4) 

It   is  clearly  only  necessary  to  consider  the  range  0  ≤  θ   ≤  π . 

2.       Range  0  ≤  θ  ≤  θ2.       The  sum  sn   (θ )   may  be  written,   for  any 

fixed  θ, 

sn(θ)  a∑=
n

O

'
k,   cos k θ  

=  Σ’   f(xk)   , (5) 

where xk    = kθ    and    f(x)   = a ( x / θ ) c o s  x ,   a(t)  being a continuous 

function taking the value  ak    when t  =  k,        (The prime on Σ  denotes 

that  the  first term is halved.)     It   is  clear therefore that   sn   (θ) 

may  be  roughly  regarded  as  a  trapezoidal  approximation  to  the 

integral 

                                         ∫ f(x) dx 
taken  between  appropriate  limits,   and  the  value  of  the  integral 



3. 
gives  an   estimate  for   sn   (θ).        Obviously  for  the  estimate  to  be 

useful    θ  should  not  be  too  large. 

The   formula   (2 )    for  an     is  too  complicated  to  be  practicable 

here,   so  we  obtain  an  approximation  using  Stirling's   formula. 

For  our  purpose  we  need  both  an  upper  and  a  lower  estimate   for 

an   ,   and  these  are   given  by  the   inequalities 
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These  are  proved  as  follows.         By  one  form  of  Stirling's   formula 
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Now  using  Tylor’s Theorem  with  Lagrange  remainder 
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giving  the  first   inequality  in   ( 6 ) .   The  second  follows  at 

once   from   (7). 

We  now  let   f(x)   =
x
xcos and  xk    =  k  θ  ,  with   θ   fixed.     Then  by 

(6)  the  terms  of  (3)   satisfy 

akcos k θ≥  rk )( π
θ f(x

k),     k  ≥   2  , (8) 

where 

rk= 16
15  if f(xk)   >  0, 1   if f(xk)   <  0. 



4. 

If we  write 

np     =   [(2p-1)π /2θ ) ] ,    p =   1,2,   ...    , 

then 

coskθ  ≥0,  k ∈ [0,n1],[n2+1,  n 3 ] , [ n 4 + l ,   n5],   ...   ,                                                                                           (9) 

c o s k θ ≤ 0 ,    k  [ n∈ l  + 1,  n2],[n3+1,  n4], .............                                       (10) 

With the help of (8)  we  shall prove that there exist  θ2,  µ and σ, 
with  µ ≥  σ,   such that   for     0 ≤   θ ≤   θ2   , 

                                                                                     (11) ,okcos
n

O
ka')(ns >μ>θ∑=θ
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2
and 

                             (12) ...
2qn
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Then  clearly        ( θ )    >  0,     q  =   1,2,   ...   ,  and  it  will  follow  at 
qnS

2

once  that 

s ( θ ) > 0 ,   ∀n , 0 ≤ θ ≤ θ 2                            (13) 

For  if 

n∈   [n2q    +1,  n2q+1 ] ,     s n (θ )  ≥   sn2q     (θ )     by  (9), 

while  if 

n ∈  [n2q-1 +1,   n2q     ],     sn   (θ )   ≥   sn2q     ( θ )    by   (10). 

To obtain an inequality of the form (12) ,   let us write for 

simplicity S= (θ )    -    ( θ ) ,       Q = nqns 2 2ns 2q    ,  P = n2   .     Then 

2 S s i n ½θ =   -  ap+1sin )P( 2
1+ θ    +   (aP+1-aP+2)sin( )P( 2

3+ )θ  + . . . + (aQ-1 -aQ   )sin( )Q( 2
1− θ  

+ aQ sin( )Q( 2
1+ θ    .  

Now 

n2 θ  =   P θ  = θ<δ≤δ−π 02
3 where, . (14) 

Thus 

-sin )P( 2
1+  θ  =  cos )( θ−δ 2

1  ≥  cos 2
1 θ  , 

and hence 

2 Ssin 2
1 θ >  ap+1cos 2

1 θ  - (ap+1-ap+2)  -   ...   -   (aQ-1-aQ)  - aQ , 
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i.e. 

.,tanaS P 042
1

1 ∀θ−> +                                                      (15) 

Now  by   (6)   and   (14), .)(aP 3
21

1
θ√π<+    

It   follows  that 

)(tan)(S θσ−=θθ√π−> 46
1   ,   say, 

and  since  0(8)   is  an  increasing  function, 

s  >  - σ ( θ 2   )   if   0 ≤  θ   ≤  θ 2   , (16) 

which  is   (12)   if  we  take     a  =  σ(θ 2 )   . 

For   (11)   we  must   use  an  entirely  different  procedure.     We 

observe  first  that 

f"(x)  =  x-3/2(sinx-   (x-3/4x) cos x ) ,  
which  has  just  one  root   in   (0,   3Π/2) ,   namely  at  x  = ,.2276002

3 −π=γ  

and  is  positive  to  the  left  of  this  point.       Thus  the  graph  of  f(x) 

is  concave  upwards  in  (0,y)   and  any  trapezoidal  sum  of  values  of 

f(x)   in  (0,y)   exceeds  the  corresponding  integral.       By  (8)  we 

deduce  a  similar  inequality  for  a  sum  of  terms  ak  coskθ ,  where 

kθ < .     We  cannot  however  use  concavity  in  this  way  in  ( ,  3π/2), γ γ

where  f(x)   is  concave  downwards.       Instead  we  use  the  standard  result 
))ha,a(in|)x("f|(maxh|dx)x(f))ha(f)a(f(h|
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2  

for  the  error  in  trapezoidal  quadrature-     Now  let 

n =[ /θ ] . γ

Then  it  is  easy  to  see  from the  above  considerations  that  
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c= √θ(θ(n2θ- n θ)  + δ2)  M  , 

M  =  max   | f " ( x ) |   in ( n θ,   3π/2)   . 

We  deal  with  A,  B  and  C  in  turn,  and  shall  assume  that 

0 < θ  < π/4 . 

Then 

                                                   ∫
θ
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.)(

dxxdxxsinxsin /

015
162

21212
2

1 2

0

232

0

2
1

>−πθ√=

πθ√θ
+θ√−>

θ√θ
+θ

√
− ∫∫

θθ

 

 
Thus                                                                              A  ≥  - 
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Again,       δ   = 2

3π -  n2θ  <  θ   ,     θn  >    -  θ  >   γ γ ,6
7

4
π>π−  

and      M  ≤  max  | f"(x) |    in ),( 2
3

6
7 ππ

 .     Now  if  we  write 

v(x)  =  x3/2 f"(x)  -  sinx- )xx( 4
3− cos x  , 

it  is  easily  seen  that  v ' ( x )   <  0  in ),( 2
3

6
7 ππ  . It  follows  that 

M  <  23

6
7 /)( −π     max )|(v|,|)(v| 2

3
6
7 ππ

 , <  0.3559  . 

Further,  we  either  have 
θn  <    <  nγ 2θ   ,   n2θ  - θn  < 3

π ,  and  δ   <- 2
3π  -  <  0.2277, γ

or 
                                                    θn  =  n2θ  ≤     ,     and   γ δ  <  θ .
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Thus   if     θ   <   π/4, 

).(c 2
2

22770122 +ππ√<  M  <   0. 1556√π   . 

Finally,   collecting  results   and  using  the  values   ([1].   p.329) 
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2ns
 
(θ )   > µ( θ )    = 2

13850 +
θ√

. cos θ - 0'827, ,40 π<θ<  

and   since  µ(θ )   is  a  decreasing  function, 

2ns
 
(θ ) >  µ(θ 2 )     if   o  <  θ   <  θ 2  < 4

π . (18) 

Comparing   (16)   and   (18)   with   (12)   and   (11 ),   the  desired  result   (13) 

will  now  follow  if  we   can  find  θ 2   <  π/4   such  that   µ(θ 2 )    ≥  σ(θ 2 ) .  

A  suitable  value   (and  one  near  the  maximum  possible)   is   θ2   =  0.69 , 

for     µ(0.69)   >   0.022     while     σ(0.69)   <   0.019  . 

3.       Range  θ l ≤ θ  ≤ π.        By  multiplying   (3)  by  sin 2
1 θ    it  readily 

follows  that   if  n  ≥  2,  
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Thus  the  b's,  like  the  a 's ,    form  a  positive  decreasing  sequence. 

They  are  in  fact  the  coefficients   in  the  expansion 

(1-z)
2
1

 =   (1-Z)(1-Z)
2
1−

 =   1   -  b1z  -  b2z2  -   ...     . 
We  need  also  to  rewrite   (19)   as 

sn  (θ )   =  Φp  (θ)   + ψn,p( θ) ,       p<n,                                          (22) 
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by   (21). Noting  also   (19)   it  follows  that 

                        sn   (θ) ≥ Φp(θ )    - ,
sin

a p

θ2
12  ∀  θ    ,  n≥p   ,                                            (25) 

with  equality  only  if  n  is  odd,  p  =  n  and  θ   =  π . 

Let  x  denote  cos 0  .     Then  in  the  range  -1 ≤ x≤  1   , 
              s 1 ( θ ) =  2

1 x + 2
1  ≥  0 ,   with  equality  only  when  x  =  -1,                    (26) 
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Now  take  p  =  3  in  (25) .         Since  for  any  k, 
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Thus  the  right  hand  side  of  (25)  becomes  y/32,  where 
y  =  4x2  +  6x  +  9  -

)x( −√
√

1
25 .

 
We may write this  as 

y =   (2x +  1)2  + u  ,     u = 2x + 8  -
)x( −√

√
1

25 , 

and 
y =   (2x -  1)2  + w  ,     w =   10x + 8 -

)x( −√
√

1
25 , 

and  since  u"< 0  and  w"<  0   in   (-1,1),   the  graphs  of  u  and  w  are  both 

concave  downwards,   and  therefore  lie  above  any  chord.       Now    U(-1)   =   1, 

u(0)  =8- 5√2 > 0,  whence  u > 0  in  [-1 ,0].     Similarly  w(0) > 0, 

w(0·8)   =   16  -  5√10 >  0,     so    w > 0   in  [0,0·8],     It  follows  that 

y> 0  in  [-1,  0·8]   , 

and  since     c o s ( 0 · 6 4 4 )   <   0 · 8 ,    we  have  by   (25) ,    (26)   and   (27)       
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                          sn  ( θ ) ≥ 0   , ∀n ,     θ 1   = o.644≤  θ  ≤  π, (28) 

with  equality  only  when  n  =   1   and  0  =  π . 

Since  we  have  proved  (13)  with  θ 2  =  0 . 6 9 > θ 1 , ( 4 )    follows. 

Remark  1.       It  is  in  fact  the  case  that  y> 0  in  a  wider  interval  than 

(-1,   0.8),  namely  in  (-1,  ξ)  where  ξ  =  0.818   ...   ,  this  being  the  only 

root  of y  in  (-1,1).     This  is  not  difficult  to  prove,  with the  help 

of  Rolle's  theorem,  and  gives  a  lower  value  of  θ ,  but  the  above 

method  is  simpler  and  gives  a  low  enough  θ 1  for  our  purpose.    The 

same  applies  to  several  other  possible  variations  on  the  use  of  (25). 

Remark  2. Suppose  it  has  been  proved  that  for  some  value  of  p 

                                             
.,

sin
a)( p

p α≥θ
θ

≥θφ

2
12                                                 

(29) 

 
Then by (25)  it  follows that 
                                                     sn  ( θ ) ≥ 0 ,      θ≥α ,     n ≥ p   . (30) 

Now 
θ

θ−

2
1

2
1

sin

)ksin(
,  k ≥ 2,  decreases  steadily  from the  value  2k - 1   at 

θ   =  0  to  zero  at  θ  = 2π/(2k-1).     Thus  if  we  take 

                                            ,][m 2
1+α

π=                                                                        (31) 
then    α 2π/(2m-l)  and 
                                    φ m  (θ )  >φ m(α )   ,       0≤ θ  <α   .  

Now  suppose  that  m > p   .       (This  is  not  necessarily the  case,  for 

if  a  is  arbitrarily  increased  towards  π ,  m  decreases  towards  1. 

If  however  a  has  the  smallest  value  for  which  (29)  holds,  i.e.   is 
such  that φ p  (α)  =  ap /2 sin

2
1 α,    then  probably  m > p   follows,  but  I 

have  been  unable  to  prove  this.)  Then    φ m   (α )    >  φ p   (α ) ,  since  all 
terms  of  φ m(α)  are  positive  and  they  include  the  terms  of  φ p   (α), 

while  am < ap  .     Thus  if  we  define  α'  by 
                                           sin

2
1α'  = ,)(

a
m

m

αφ2                                                                          
(32) 
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so  that  (30)  can  be  improved  (as  regards  θ)  to 
sn  (θ) > 0,     0 ≥ α1,    n≥m. 

Further,  if  n < m    and    k≤n+1,   (k-
2
1 )α≤π,  and  it  follows  by  (19)  that 

 sn (θ) > 0,   θ ≤ α,   n  <  m, 
and  thus  finally              sn (θ) ≥ 0,   θ ≥ α',  n  ≥  p ,                                                         (33) 
i.e.   (30)  with  a  replaced  by  α' < α. 

The  whole  process  can  now be  iterated:    putting α'   in  place  of 
a  in  (31)  gives  m',  certainly  ≥  m,  and  putting α'  and m'  in  (32)  in  place 
of  a  and m  gives  α",  certainly   < α'   (since  φ m’   ,(α')≥ φ m (α') > φ m  (α)). 

In  this  way  we  produce  a  strictly  decreasing  sequence  a,  α',  α",   .....   . 

If  this  sequence  could  be  proved  to  converge  to  zero,  we  would  have 

a  proof  that  sn  (θ)≥0,  Vθ,  n≥p.   In  fact  however,  taking p  =  1,  2  or  3, 

the  sequence  does  not  appear  to  converge  to  zero,  so  we  cannot  use  this 

method  as  a  means  of  avoiding    the  use  of  the  method  of  section  2. 

This  convergence  behaviour  is  associated  with  the  slow  rate  of  convergence 

to  zero  of  the  sequence  a  ,  and  indeed  this  is  at  the  root  of  failure 

of  several  other  methods  that  have  been  tried  for  solving the  present 

problem. 

Remark  3.     (24),  and  hence  (25),  depends  on  the  bk ‘s  and  an  being  all 

positive,  i.e.  the  ak 's forming  a  positive  decreasing  sequence,  and  the 

same  method  could be  used  to  prove  sn  (θ) ≥ 0  for  θ ≥ θr  whenever  the 

coefficients  have  this  property.       Similarly (15)  also  holds  in  all  such 

cases,  and  the  method  of  section  2  can  be  attempted whenever  bounds  on 

an    as  in  (6)  are  known. 
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4.       Conclusion.       We  have  proved  that  the  trigonometric  series  (3) 
has  the  simply  property ( 4 )   when  the  an    are  the  coefficients  in  the 
Maclaurin  series   ( 1 ) ,   and  hence,  as  a  corollary,  that  all  partial 
sums  of  (1)  have  all  their  zeros  outside  the  unit  circle.  Inspite 
of  its  complicated  nature,  the  present  proof  is  put  forward  in  the 
hope  of  stimulating  the  search  for  a  better  one,  for  surely  such 
exists   ! 
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