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Summary

A study is made of steady state diffusion in two-component 

composites made up of isolated islands of impermeable material 

in a continuum. Advantage is taken of symmetry so that only a 

problem in an L-shaped subregion need be considered. However, 

this problem contains a boundary singularity which causes 

numerical solutions calculated with standard finite element and 

finite difference methods to be inaccurate. The modification 

of these standard methods through the inclusion of terms having 

the form of the singularity or by local mesh refinement to 

provide applicable error analysis and to increase accuracy is 

discussed. Finite element results are given, and these are 

compared with those obtained with finite-difference methods and 

with a numerical conformal transformation method. 



 



1. 

1. INTRODUCTION AND PHYSICAL PROBLEM

In the study of steady state diffusion in heterogeneous mixtures 

some property of the mixture, for example permeability or thermal 

conductivity, has to be determined. This property is itself related 

to a characteristic of the physical situation. Thus permeability is 

related to concentration of diffusing substance and thermal conductivity 

to temperature. In this paper the mixtures under consideration are 

two-component composites made up of isolated islands of impermeable 

material in a continuum. 

We consider a two dimensional model situation of the type described 

above in which the function u(x,y) represents either concentration of 

diffusing substance or temperature. In the composite it is assumed for 

simplicity that rectangular impermeable blocks are present on a regular 

lattice in an isotropic substance, see Figure.1, and that u is held 

constant on the sides of the composite. Advantage can be taken of the 

symmetry so that only a section of the problem in an L-shaped subregion, 

such as = Ω with boundary ∂Ω as in Figure 1, need be considered

   see[5],where 1DECD
2
1FOEFBCOB ======  

ΩThe problem therefore becomes that of finding, u(x,y), the 

solution of the harmonic mixed boundary value problem 

- �[u(x,y)] = 0, (x,y) ε Ω ,  (1.1) 

u(x,y) = 1, (x,y) ε CD,  (1.2) 
u(x,y) = 0, (x,y) ε EF,  (1.3)           
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where the Dirichlet boundary conditions are taken for convenience 
                                                                                     
as zero and unity and can be scaled as necessary. We define the 

two disjoint parts of the boundary 
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3. 

and let Ω ≡ ΩU∂Ω. 

The region Ω contains a re-entrant corner at 0 with internal 

angle 3π/2, and as a result u possesses a boundary singularity in that 

it has derivatives which are unbounded at the corner. This is illustrated 

by the use of an asymptotic expansion of the solution due to Wasow [22] 

which was later adapted by Lehman [14]. In terms of local polar co-ordinates 

(r,θ), with origin at the corner and zero angle along one of the arms of 

the corner, the asymptotic form of u is 

u(r,q) = ∑
i

iΣ ai Φi.(r,q)

(1.6) 

From (1.6) it is clear that ∂u/∂r is unbounded at r=0. 

A problem of this type containing a slit has recently been considered 

by Rosser and Papamichael [18]. For this the re-entrant angle at the tip 

of the slit is 2π. They show that the series expansion about the tip of 

the slit, corresponding to (1.6), is convergent throughout the region of 

the problem so that in their case the exact rather than asymptotic form of 

u is given. 

2. WEAK PROBLEM AND GALERKIN METHOD

Let W 1 (Ω) be the Sobolev space of functions which together with 2

their generalized derivatives of order one are in L2(Ω). The subspace 

of functions in W  (Ω) which satisfy a homogeneous boundary condition on 1
2

∂Ω1 is written W
1  (Ω)∩(∂Ω2 1)0 ; that is for v ε W

1  (Ω)∩(∂Ω2 1 )0, v ε W
1 (Ω) 2

and v = 0 on ∂Ω1. 

The weak problem corresponding to (1.1) - (1.5) is : 

find u ε ψ +W 1  (Ω) such that 2

a(u,v) = 0 �Í v ε W 1  (Ω)∩(¶Ω2 1)o , (2.1) 
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u ε ψ + W12(Ω) means that u = ψ + v, where v ε w12(Ω)∩(¶Ω1 )0 . 
In (2.1) the "bilinear functional a(u,v) is defined as 

 

a(u,v) 
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The energy norm ││ v││E is defined by 

( ) .),( 2
1

vvav E =
(2.2) 

The region Ω is discretized into elements, either entirely into 

triangles or entirely into rectangles so that there are m interior 

mesh points (nodes), n mesh points on and p mesh points on ¶Ω2. 

The elements have generic length h. In similar manner to that in 

(Barnhill and Whiteman 

To be two sets of functions which are biorthonormal (see Davis 10],) 

with respect to point evaluations at the nodes. The Bi. and Ci are 

basis functions for our approximation. They are here taken so that, 

with triangular elements each is linear in x and y, whilst with 

rectangular elements each is bilinear in x and y. 

The set Sh ε ψ h + W 1  (Ω), (i.e. elements of S2
h are in W12(Ω) and 

take value unity at nodes in and zero at nodes in is efined 

to be m + p dimensional set elements of which can be written in the form 

(2.3) 

In (2.3) in Bi, ψ  and Ch
y j. are known and the A. are to be found. 

The m + p dimensional space spanned by the B. is written S  • Note h
o

that elements of S  take on zero value on ∂Ωh
o 1 and that S

h
o C W

1 (Ω)∩(∂Ω2 1)o

In the Galerkin method used here we seek 

U ε Sh such that 

a(U,Bk) = 0 , k = 1,2,...., m + p . (2.4) 
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5. 

The technique (2.4) for determining U is a special case of the more 

general method in which the test functions are all V Є S  . Substitution h
o

of (2.3) for U in (2.4) leads to the system of linear equations for the Ai, 

,),(),(
11
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h
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kii
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=

+

=

−= k = 1,2,.... , m+p. (2.5) 

A best approximation property for the Galerkin solution is proved in 

the Lemma of [3] for the case ∂Ω2 = φ When that Lemma is applied 

here, it is found that the Galerkin solution U to (2.4) is the 

best approximation to the weak solution u of (2.1) from Sh in the 

energy norm (2.2). 

Thus 

││u-U││E    ≤  ││u - w | | E  ∀  w ∈ Sh. (2.6) 

Taking for w in (2.6) the function u ε Sh which interpolates u at 

the m + n nodes in ΩU¶Ω1 , we obtain 

│ │ u - U | | E  ≤ | | u - u  ||E .                        (2.7) 

Many bounds for interpolation errors using rectangular and triangular 

elements have been given: see for example Birkhoff, Schultz and 

Varga [7] or Ciarlet and Raviart [9]. Under assumptions on the shape 

of both the triangular and rectangular elements, for the trial functions 

mentioned above,bounds of the form 

│ │ u - u  │ │ E  ∀  Kh |u|2 (2.8) 

can be found, where X is a constant and  
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Galerkin solutions to the weak problem (2.1) have been calculated

using (2.4) with partitions of consisting either entirely of 



6. 

rectangular or entirely of right triangular elements, as in 

Figure 2. Numerical results are given in Figure 3, and from these 

it is seen that the numerical solutions are inacourate in the 

neighbourhood of 0 so that there they are being adversely affected 

by the boundary singularity. In addition it is clear from (1.6) that 

u ε W 2
1
(Ω) - W 2

2
(Ω) so that for problem (2.1) equations (2.7) and (2.8) 

do not together constitute a meaningful bound for the Gralerkin error. 

In order that the shortcomings of inaccuracy of the Galerkin 

approximation and inapplicability of the error analysis for the standard 

Galerkin method in this context may be overcome, two modifications are 

now proposed. These are 

(i) local mesh refinement in the neighbourhood of 0, 

(ii) inclusion of singular terms from (1.6) in the trial 

functions in elements near 0. 

Local Mesh Refinement

Functions contained in W12(Ω) possess certain continuity properties 

which, since Sh ⊂ W 2
1
 (Ω), also have to be exhibited by functions in Sh . 

The continuity condition which must be satisfied is the conforming 

condition. and in this case it is that Sh ⊂ co (Ω). Thus to be 

conforming the global approximating functions of Section 2 for both 

triangular and rectangular meshes must be continuous over Ω • For a 

standard triangular mesh with linear interpolation to the function 

values at the vertices of each triangle, or a standard rectangular mesh 

with bilinear interpolation to the function values at the four corners 

of each rectangle, the global approximating functions are in C0(Ω). 

Thus the results of Section 2 have been derived with conforming functions. 

Refinement of the mesh will not make the above error analysis 

applicable to singular problems. However, as would be expected, refinement 



 

Figure 2. 

7 



                                            Figure 3 

1.0000 0.9698 0.9425 0.9202 0.9055  At each mesh point P the numbers  
 0.9687 

0.9669 
0.9401 
0.9366 

0.9166 
0.9120 

0.9011 
0.8958 

0.9005 
0.8955 
0.8902 

 

 

 

   the significance. 

 

1.0000 0.9686 0.9398 0.9163 0.9007   CTM [17 ] 
i

 

 0.961k 
0.965

0.9374 
0.9337 

0.9127 
0.9077 

0.8960 
0.8903 

0.8953 
0.8900 
0.8843 

 
  

 
 
 

 
 

 

1.0000 0.9647 0.9319 0.9044 0.8856    See section  4  
 0.9636 

0.9614 
0.9296 
0.9253 

0.9007 
0.8944 

0.8803 
0.8731 

0.8787 
0.8725 
0.8653 

 
 

 
 

 Finite elements with isoscles 
right triangles, h=0.1 

1.0000 0.9584 0.9188 0.8839 0.8581    Finite elements with 
squares, h=0.1  

 0.9573 
0.9551 

0.9166 
0.9119 

0.8802 
0.8725 

0.8521 
0.8409 

0.8482 
0.8394 
0.8296 
 

 
 

 
 

 
 

 
 

 

1.0000 0.9502 0.9013 0.8548 0.8146      

 0.9472 
0.9472 

0.8992 
0.8950 

0.8513 
0.8440 

0.8085 
0.7953 

0.7948 
0.7808 
0.7928 

 
 

 
 

 
 

  

1.0000 0.9411 0.8816 0.8207 0.7560 0.6663 0.4884 0.3580 0.2371 0.1170 0.0000  
 0.9402 

0.9389 
0.8797 
0.8771 

0.8173 
0.8135 

0.7498 
0.7456 

0.6667 
0.6635 

0.5003 
0.5118 

0.3653 
0.3674 

0.2405 
0.2418 

0.1196 
0.1201 

  

1.0000 0.9324 0.8632 0.7897 0.7066 0.6026 0.4788 0.3555 0.2355 0.1174 0.0000  

 0.9319 
0.9311 

0.8622 
0.8606 

0.7885 
0.7864 

0.7068 
0.7043 

0.6096 
0.6048 

0.4847 
0.4891 

0.3602 
0.3637

0.2386 
0.2401 

0.1189 
0.1195 

 
 

 

1.0000 0.9254 0.8487 0.7672 0.6774 0.5760 0.1616 0.3490 0.2326 0.1162 0.0000  

 0.9253 
0.9247 

0.8486 
0.8474 

0.7676 
0.7658

0.6794 
0.6768 

0.5803 
0.5780 

1.4685 
0.4693

0.3522 
0.3541

0.2348 
0.2362

0.1174 
0.1180

  

1 .0000 0.9204 0.8388 0.7528 0.6605 0.5606 0.4539 0.3428 0.2294 0.1149 0.0000  

 0.9206 
0.9200 

0.8393. 
0.8382 

0.7540 
0.7523 

0.6627 
0.6607 

0.5637 
0.5621 

0.4569 
0.4567 

0.3453 
0.3460 

0.2311 
0.2319 

0.1158 
0.1163 

 
 

 

1.0000 0.9175 0.8331 0.7450 0.6516 0.5524 0.4477 0.3387 0.2271 0.1139 0.0000  

 0.9179 
0.9173 

0.8340 
0.8328 

0.7465 
0.7449 

0.6538 
0.6520 

0.5550 
0.5536 

0.4502 
0.4496 

0.2286 
0.2290 

0.1147 
0.1149 

 
 

 

1.0000  0.9163 0.8315 0.7426 0.6486 0.5500 0.4452 

0.3408 
0.3410 
0.3376 

0.2257 0.1140 0.0000  

 0.9170 
0.9164 

0.8323 
0.8311 

0.7440 
0.7425 

0.6510 
0.6193 

0.5522 
0.5509 

0.4480 
0.4473 

0.3393 
0.3393 

0.2277 
0.2279 

0.1142 
0.1145 

  



 

Figure 4. 
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Figure 5. 
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does improve the accuracy of the numerical approximations, particularly 

in the neighbourhood of a singularity. The shortcoming of refining over 

the whole of the region Ω is that many mesh points remote from the 

singularity are introduced needlessly so that the resulting stiffness 

systems are unnecessarily large. In order to keep the total number of 

points in the discretization as small as possible, we refine only in 

the neighbourhood of 0 as indicated in Figures 4 and 5. With right 

triangular elements as many levels of refinement as required can be 

performed (in Figure 4 two levels are shown) and the elements are all 

triangles with nodes at the vertices. The linear trial function interpolating 

the function value at each node is used in each element. A piecewise linear 

trial function is again obtained which satisfies the conforming condition. 

For local refinement with rectangular elements the scheme of Figure 5 

introduces mid-side nodes and special interpolants must be used in the 

five node rectangles so that the global approximating function may again 

be in Co. Five node interpolants of this type have been derived by 

Gregory and Whiteman in [12] and [13] so that merely the general form 

is given here. This is stated for a square element of unit side length, 

but can be scaled for a square of side h or for a rectangle. 

 

Figure 6.



12. 
Consider the five node square element, Figure 6, with nodes at 

the points a ≡ (0,0.), b = (
2
1 ,0), c ≡ (1,0) d ≡ (1,1) and e ≡ (0,1). 

Prom [13] the trial function which is continuous throughout the element, 

which is bilinear for 0 ≤ x ≤ 
2
1  and for 

2
1  ≤ x ≤ 1, which interpolates 
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Incorporation of trial functions of the type (2.9) into the space 

Sh of piecewise bilinear functions will producea C° global approxi- 

mating function.Local rectangular mesh refinement can therefore be 

carried out in the manner of Figure5,where two levels of refinement 

are shown. 

The mid-side nodes are equivalent to the hanging points familiar 

in finite differences. We note that, if the equation corresponding to 

a point in the global stiffness system is considered as a difference 

equation, the resulting difference approximation at the point is inconsistent. 

When refinement is done with triangular elements, no special 

procedure has to be adopted because the elements are all of the same 

form - isosceles right angled triangles. In our numerical experiments 

the mesh has been generated using an automatic mesh generation scheme 

due to A.Bykat [8], which demands as data only the co-ordinates of the 

boundary nodes. These nodes are thus concentrated near the re-entrant 

corner and the refined mesh so produced is in effect a graded mesh. 

This is one advantage over the method of refinement with rectangles where 

a problem defined peripheral node ordering scheme as in [13] has been used. 

Results using local refinement schemes are given in Figure 7. 

We note that at the point of singularity itself the solution appears to 

have converged. This phenomenon occurs repeatedly with local mesh 

the nodal values and which is linear along 
iseaanddecdbcab ,,,,,  

U(x,y) = (1-x)y U(0,1) + xy U(1,1)



1.0000 0.9698 0.9425 0.9202 0.9055 0.9005      

1.0000 0.9693 
0.9693 
0.9686 

0.9414 
0.9412 
0.9398 

0.9184 
0.9182 
0.9163 

0.9034 
0.9031 
0.9007 

0.8981 
0.8977 
0.8953 

     

1.0000 0.9681 
0.9680 
0.9647

0.9388 
0.9386 
0.9319 

0.9146 
0.9144 
0.9044 

0.8985 
0.8981 
0.8856 

0.8927 
0.8924 
0.8787 

  

1.0000 0.9643 
0.9641 
0.9584 

0.9310 
0.9308 
0.9188 

0.9028 
0.9025 
0.8839 

0.8832 
0.8827 
0.8581 

0.8759 
0.8755 
0.8482 

  

1.0000 0.9580 
0.9579 
0.9502

0.9180 
0.9178 
0.9013 

0.8824 
0.8820 
0.8548

0.8553 
0.8549 
0.8146

0.8448 
0.8442 
0.7948 

  

CTM [17 ] 
P Finite elements with 
isosceles 
right triangles, h=0.1 plus 
5 levels of local refinement. 
Finite elements with 
isosceles 
right triangles, h=0.1 plus 
2 levels of local refinpment. 

1.0000 0.9499 
0.9497 
0.9411

0.9006 
0.9004 
0.8816 

0.8535 
0.8531 
0.8207 

0.8112 
0.8106 
0.7560 

0.7923 
0.7913 
0.6663 0.4884 0.3580 0.2371 0.1170 0.0000 

1.0000 0.9408 
0.9407 
0.9324

0.8810 
0.8809 
0.8632 

0.8199 
0.8196 
0.7897 

0.7553 
0.7548 
0.7066 

0.6667 
0.6667 
0.6026 

0.4894 
0.4904 
0.4788 

0.3603 
0.3608 
0.3555 

0.2379 
0.2382 
0.2355 

0.1184 
0.1185 
0.1174

0.0000 

1.0000 0.9323 
0,9322 
0.9254 

0.8629 
0.8628 
0.8487 

0.7895 
0.7895 
0.7672 

0.7077 
0.7077 
0.6774 

0.6039 
0.6043 
0.5760 

0.4811 
0.4817 
0.4646 

0.3569 
0.3574 
0.3490 

0.2365 
0.2376 
0.2326 

0.1179 
0.1179 
0.1162 

0.0000 

1.0000 0.9254 
0.9254 
0.9204 

0.8488 
0.3488 
0.8388 

0.7677 
0.7676 
0.7528 

0.6787 
0.6788 
0.6605 

0.5776 
0.5779 
0.5606 

0.4659 
0.4663 
0.4539 

0.3499 
0.3502 
0.3428 

0.2312 
0.2334 
0.2294 

0,1165 
0.1167 
0.1149 

0.0000 

1.0000 0.9206 
0.9206 
0.9175 

0.8392 
0.8392 
0.8331 

0.7536 
0.7537 
0.7450

0.6618 
0.6619 
0.6516 

0.5620 
0.5622 
0.5524 

0.4550 
0.4553 
0.4477 

0.3436 
0.3438 
0.3387 

0.2298 
0.2300 
0.2271 

0.1151 
0.1152 
0.1139 

0.0000 

1.0000 0.9178 
0.9178 
0.9163 

0.8337 
0.8338 
0.8315 

0.7459 
0.7460 
0.7426 

0.6528 
0.6529 
0.6486 

0.5536 
0.5537 
0.5500 

0.4487 
0.4489 
0.4452 

0.3395 
0.3396 
0.3376 

0.2275 
0.2277 
0.2257 

0.1141 
0.1142 
0.1140 

0.0000 

 0.9169 
0.9169 

0.8319 
0.8319 

0.7434 
0.7435 

0.6500 
0.6502 

0.5510 
0.5514 

0.4466 
0.4468 

0.3381 
0.3382 

0.2267 
0.2268 

0.1137 
0.1138 

 

1
3

Figure 7. 
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refinement, where the effect of the singularity on the numerical 

solution has been removed by the refinement. However, it should 

be remembered that the approximation contains a discretization error 

which at points remote from the singularity is related to the original 

mesh length. Thus the apparent convergence will in all probability 

be to the wrong number, 

2.2 Inclusion of Singular Terms

hThe idea of augmenting the trial function spaces (S  of Section 2) 

with terms having the form of the singularity was proposed by Fix [11], 

who used rectangular elements to solve a second order self-adjoint 

elliptic problem in a rectangular region with homogeneous Dirichlet 

boundary conditions. The technique has been extended to triangular 

elements by Barnhill and Whiteman [2] and [3]. This modification 

of the standard finite element method is undertaken with two aims 

in mind; the adaptation of the error analysis of Section 2 and the 

increase of accuracy of the numerical solution. 

ΩLet the neighbourhoods N(r ) ⊂  of the corner be defined as i

N(ri ) ≡ {(r, θ ) ; 0 ≤ r ≤ ri , 0  ≤ θ  ≤ 3π/2 } , i = 0,1 

where r1 > 0 is some fixed number and ro = qr1 , 0 < q < 1 ; (r,q) as in Section 1; 

(Note that N(r )C N(r1)). The functions w (r, θ ), i = 1,2,...,N i

are constructed in N(r ), where the w.(r, θ ) have the form of the 1

Ω  - N(rsingularity in N(r ), are equal to zero in ( )) and are in o 1

2
2 ΩW  ( - N(r  )). These last smoothness properties can be achieved 0

by taking in N(r1) - N(r ) the functions w (r, θ ) as the product i

of a cubic Hermite polynomial in r and a suitable function of θ ; 

for details see [1 ]. 
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The function 

),(
1

θrwa ii

N

i
∑

=

−w = u 
 

 

2
2can now be formed, such that w would he in W (Ω) if the a. were 

known exactly. Thus w could then be approximated with the Galerkin 
hsolution U ε S  , and clearly if the ai were known the error bound 

formed by combining (2,7) and (2,8) would then apply. 

However, the ai cannot be found exactly, and in practice 

approximations âi are calculated by the method of augmenting with 
hsingular functions from (1.6) the trial functions spaces S  . These 

haugmented spaces are denoted by Aug S  , and in each element the trial 
hfunctions of Aug S  have the form : 

for triangular elements :  

∑
=

N

i 1

a + bx + cy

 
for rectangular elements :- 

 a + bx + cy + dxy   c∑
=

N

i 1
i (r, θ ). 

 

Galerkin approximations Û ε Aug Sh to u are calculated, and 

the best approximation Lemma of [3] is now applied to Aug Sh • Thus 

it follows immediately that 

 
  
In particular let ε Sh interpolate to u-   ∑

=

N

i 1

ai. wi. at the m+p 

nodes in ΩU¶Ω1 and take v ε Aug Sh as 

                      urwav ii
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Than (2.10)gives 
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The Ciarlet Raviart theorem can be applied so that 

.waukhu~)wau( 2ii

N

1i
Eii

N

1i
∑∑
==

−≤−−  (2.12) 

As the ai are the correct values of, and not approximations to, 

ii

N

1i
wa∑

=
−the constants in the expansion (1.6), the function u 

2
2is in W  (Ω) so that (2.11) and (2.12) combined give 

an 0(h) 

bound on the Galerkin error. 

Galerkin approximations have been calculated with the inclusion 

of singular functions in the trial function spaces for both 

triangular and rectangular elements. Augmentation with one singular 

function (N = 1) in each case causes considerable improvement in 

accuracy in the neighbourhood of 0. It is found that the inclusion 

of more singular terms does not appreciably further improve the accuracy. 

This conclusion is in agreement with that of Wait and Mitchell [21] 

who use a combination of mesh refinement and singular function 

augmentation with rectangular elements to solve a harmonic problem 

in a region containing a slit. 
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3. FINITE-DIFFERENCE METHODS

The systems of linear equations which result from the use of 

finite element methods, as considered in the previous Sections, can 

be thought of as systems of difference equations. Many well known 

finite-diffference schemes can thus be produced by the use of the 

finite element method with appropriate trial functions on meshes of 

squares and right angled triangles. Clearly in such case3 error analyses 

as in Section 2 are applicable. 

In particular the use of linear trial functions interpolating 

function values at the element vertices with a mesh of isosceles right 

triangles having short sides of length h, as in Figure 2, produces at 

a mesh point (x,y) the standard five-point finite-difference replacement 

for Laplace's equation 

4U(x,y) - U(x+h,y) -U(x,y+h) - U(x-h,y) - U(x,y-h) = 0. (3.1) 

Thus the relevant results given in Figure 3 are exactly those 

obtained with this scheme for the problem (1.1)-(1.5) with the 

mesh length h as shown. 

If bilinear trial functions are used in the same way with the 

square mesh of side h as in Figure 2, these lead to the non-standard 

nine-point finite-difference replacement for Laplace's equation, see [7], 

8 U(x,y)-{U(x+h,y) + U(x,y+h)+U(x-h,y) + U(x,y-h) } 

-fU(x+h,y+h) + U(x-h,y+h)+U(x-h,y-h)+ U(x+h,y-h) }= 0. (3.2) 

Use of the replacement (3.2) therefore produces again the relevant 

results of Figure 3. 

The standard nine-point replacement for Laplace's equation, 

20 U(x,y)-4{U(x+h,y)+ U(x,y+h) + U(x-h,y) + U(x,y-h)} 

- {U(x+h,y+h)+ U(x-h,y+h) + U(x-h,y-h) + U(x+h,y-h) }, (3.3) 
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has also been used to produce numerical solutions to the problem 

(1.1)-(1.5). For completeness results obtained using (3.3) with a 

square mesh of length h = 0.1 are given in Figure 8. It is seen that 

these results are less accurate in the neighbourhood of the singularity 

than those obtained with (3.1) or (3.2). This might be expected since 

the truncation error in (3.3) involves the sixth derivatives of u, the 

solution of (1.1)-(1.5). Thus use of (3.3) implicitly assumes the 

continuity and boundedness of higher order derivatives of u than those 

presupposed by the use of (3.1) and (3.2). It was shown in Section 1 

that the solution u does not possess these properties. 

Modifications for improving accuracy of finite difference solutions 

can be performed as in Sections 2.1 and 2.2. Experiments using local 

and general mesh refinement have been performed and accuracy is increased. 

The technique of incorporating singular functions into finite-difference 

methods has also been much used ; see Motz [16], Woods [25], Whiteman [23] 

and Bernal and Whiteman [6], 

For non-modified difference methods uniform convergence with 

decreasing mesh size of the finite difference solution to the exact 

solution of the problem defined in a rectangle containing a slit 

considered by Rosser and Papamichael [18] is proved by Whiteman and 

Webb [24]. However, in [24] they exploit the symmetry of the problem 

and reflect the region across those parts of the resulting boundary 

which meet at the singular point. Such reflecting cannot be used for 

the problem in the L - shaped region. 

4. NUMERICAL CONFORMAL TRANSFORMATION METHOD.

As no closed form solution is available for the problem 

(1.1)-(1.5), an accurate approximation, obtained by transforming 

the problem into a simple problem which can be solved by inspection, 
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has been used throughout this paper for comparing the accuracy 

of the finite element and finite difference solutions. This 

method, the Numerical Conformal Transformation Method (NCTM), 

is given in Papamichael and Whiteman [17]. The NCTM consists of 

four successive conformal mappings, the first of which is performed 

numerically using a technique due to Symm [19] which involves 

the numerical solution of a Fredholm integral equation of the first 

kind with a logarithmic kernel. The results for problem (1.1)-(1.5) 

obtained in [17] have been displayed in each of Figures 3, 7and 8. 

They are also quoted by Bell and Crank in [5]. Symm in [20] uses 

an integral equation technique modified to deal with the singularity 

to solve the boundary value problem (1.1)-(1.5) numerically. His 

results are given in Figure 9 together again with those obtained 

with the NCTM. 

5. DISCUSSION

The results of the previous Sections show the shortcomings of 

the finite element and finite difference methods when boundary 

singularities are present. The success of the modifications to the 

finite element method in improving the accuracy of the numerical 

solutions is evident. Indeed with continued local mesh refinement 

the stage has been reached by Gregory and Whiteman in [13] in which 

the Galerkin solutions are more accurate near the singularity than 

they are at points in Ω remote from 0, The effect of the singularity 

on the numerical solution has thus been neutralized by the refinement. 

For problems of this type and magnitude there seems to be little to 

choose between the finite element and finite difference methods when 

comparing accuracy of solutions for a certain amount of computation. 

The NCTM produces accurate approximations in a fraction of the 
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computation time taken by the other methods. However, it is 

a much less general method and the range of problems to which it 

can be applied is limited. 

We have found that for these problems where there is considerable 

regularity of mesh the programming involved to produce the finite 

element solutions can be much simplified. The technique is to divide 

the totality of mesh points into several different classes, whereeach 

mesh point of a class has the same pattern of neighbouring mesh points. 

The linear equation derived with the finite element method for a 

particular point is then treated as a difference equation, and so one 

type of difference equation is associated with each class. This removes 

the need to generate local stiffness matrices ; a fact that will be 

hotly disputed by some as removing one of the main advantages of 

versality possessed by the finite element method. 

In this paper we started by considering a specific class of 

composites. We now return to the physical situation and note than an 

important application of composites of this type is in the production 

of materials that have "effective diffusion properties" which are 

equivalent to those of isotropic materials. In this way the isotropic 

material may be simulated. The pattern of flow in the composite is 

in general dependent on the arrangement of the impermeable islands 

in the continuum. The effect of different arrangements is discussed 

by Barrer [4]. In the study of the flow rates through a composite 

of the type under consideration here, the total flow across a section 

(x = constant) of the L-shaped region will be sought. This total flow is 
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numerical results for a particular value of x. 

We have concentrated on trying to eliminate the effect 

of the singularity on the solution of a particular diffusion problem. 

Another important field is that of stress and deformation of this 

type of composite. Leissa, Claussen and Agrawal [15] have attempted 

an analysis of this using point matching techniques. In the stress 

situation the governing differential equation is biharmonic and, when 

the finite element method is used to solve this, the conforming condition 

1is that the relevant finite dimensional subspace be contained in C  (Ω). 

1Gregory and Whiteman [13] have derived a C  element for the local mesh 

refinement scheme with rectangles as in Figure 4. Thus this local 

refinement scheme may again he used. 

It is clear from the references made throughout this paper 

that much of this work has been done in collaboration with colleagues. 

I acknowledge with great pleasure the contributions of R.E.Barnhill, 

J.A.Gregory, N. Papamichael and J.Barkley Rosser, and also the programming 

assistance of A.Bykat and P.Theodorou. Many of the numerical results 

will appear in the dissertation of Theodorou for the degree of Master of 

Technology at Brunel University. 
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