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Abstract 

The goal of quantitative structure activity relationship (QSAR) learning is to learn a function that, given the structure of 
a small molecule (a potential drug), outputs the predicted activity of the compound. We employed multi-task learn-
ing (MTL) to exploit commonalities in drug targets and assays. We used datasets containing curated records about 
the activity of specific compounds on drug targets provided by ChEMBL. Totally, 1091 assays have been analysed. 
As a baseline, a single task learning approach that trains random forest to predict drug activity for each drug target 
individually was considered. We then carried out feature-based and instance-based MTL to predict drug activities. 
We introduced a natural metric of evolutionary distance between drug targets as a measure of tasks relatedness. 
Instance-based MTL significantly outperformed both, feature-based MTL and the base learner, on 741 drug targets 
out of 1091. Feature-based MTL won on 179 occasions and the base learner performed best on 171 drug targets. 
We conclude that MTL QSAR is improved by incorporating the evolutionary distance between targets. These results 
indicate that QSAR learning can be performed effectively, even if little data is available for specific drug targets, by 
leveraging what is known about similar drug targets.
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Introduction and problem specification
Rich Caruana in his widely cited paper defined multi-task 
learning (MTL) (see the list of Abbreviations below) as 
“an approach to inductive transfer that improves gener-
alization by using the domain information contained in 
the training signals of related tasks as an inductive bias. It 
does this by learning tasks in parallel while using a shared 
representation; what is learned for each task can help 
other tasks be learned better”  [1]. A more formal defini-
tion of MTL is given in  [2]:

Definition (MTL): Given m learning tasks

{Ti}
i=m
i=1

where all the tasks or a subset of them are related but 
not identical, MTL aims to help improve the learning of 
a model for Ti by using the knowledge contained in the 
m tasks.

There are three aspects of the task relatedness: feature, 
parameter, and instance; and correspondingly---three 
types of MTL [2]:

1. Feature-based MTL models assume that different 
tasks share identical or similar feature representa-
tions, which can be a subset or a transformation of 
the original features.

2. Parameter-based MTL models aim to encode the task 
relatedness into the learning model via the regulari-
zation or prior on model parameters.

3. Instance-based MTL models propose to use data 
instances from all the tasks to construct a learner for 
each task via instance weighting.
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In recent years, MTL has been an active research area 
within the machine learning community and beyond. 
Instance-based MTL is among the most popular 
approaches because it often yields improved predictive 
performance   [3, 4]. The intuition is that by combining 
training data across multiple related tasks, each task ben-
efits from the related information in other tasks, resulting 
in higher accuracy learning  [5]. In other words, model 
generalization for individual tasks can be enhanced by 
sharing representations among tasks that are related.

MTL is considered as a sub-area of transfer learn-
ing [6]. The idea of transfer learning is to extract knowl-
edge from one or more source domains, and reuse this 
knowledge in a target domain where data is scarce, with 
the aim of building better performing learning models in 
the target domain [7].

In this work we apply instance-based and feature-based 
MTL for the problem of predicting quantitative structure 
activity relationship (QSAR). The goal of QSAR learning 
is to learn a function that, given the structure of a small 
molecule (a potential drug), outputs the predicted activ-
ity of the compound against an assay (a test that predicts 
the potential of the compound being a drug) [8].

QSAR modelling has come a long way since its estab-
lishment in the early 1960s [9]. Although many drug tar-
gets are well studied and analyzed, a considerable number 
of them is still not, meaning that the quantity of labelled 
data for such targets is scarce (i.e. the number of chemi-
cal compounds with known bioactivity against these tar-
gets is small). Therefore, this leads to poor quality QSAR 
models which hampers understanding of these drug tar-
gets. Accurate predictive QSAR models are key for the 
discovery of new bioactive chemical compounds [10].

A single task Ti is a task of predicting an activity Ai 
given a QSAR dataset of molecular structures (see Table 1 
for a typical example of QSAR dataset and “Data” section 
for further explanations). MTL is a suitable approach for 
the considered problem because:

• Different QSAR learning tasks share identical fea-
ture representations. For example, one of the most 
widely-used representations is fingerprints (see 
“Data” section for further detail).

• There are publicly available datasets for many QSAR 
tasks, and these data instances can be used to con-
struct a learner for each task via instance weighting 
(see “Methods” section for further detail).

• It is also possible to apply parameter-based MTL, 
because there are available parametric QSAR models, 
although this is outside of the scope of this paper.

The application of MTL for QSAR learning in particular is 
beneficial because a considerable number of drug targets 

remains poorly studied and the quantity of labelled data 
for such targets is scarce. It is costly to obtain labeled 
data and this limits opportunities for constructing high-
quality QSAR models and advancing understanding of 
these drug targets. In this paper we report the results of 
the use of existing data from related drug targets, where 
labeled data is aplenty, to predict activities for the drug 
targets where data is scarce. Our method is to use MTL 
where we exploit the drug target relatedness through the 
incorporation of the natural evolutionary metric. Specifi-
cally, in this paper we test the following two hypotheses:

1. MTL can improve on standard QSAR learning 
through the use of related targets.

2. MTL QSAR can be improved by incorporating the 
evolutionary distance of targets.

Related work
Multi‑task learning
MTL has been used in many areas. For example, Chen 
et  al. employed MTL to learn a common feature space 
from multiple related tasks and applied it for web page 
categorization  [11]. Bickel et  al. applied MTL for HIV 
therapy screening data with the focus on assigning 
weights to instances from multiple tasks so that tasks 
can be learned jointly even if data for different tasks have 
arbitrary different distributions  [12]. Bickel et  al. intro-
duced a new MTL method for weighting groups in tree 
guided group-lasso regression and applied it for the anal-
ysis of genotype and gene expression data [13].

Zhang et  al. reported on a multi-modal multi-task 
(M3T) method for simultaneously predicting multiple 
outcomes for multi-modal data [2]. The method is based 
on selecting common relevant features, applying kernel 
based data fusion and then applying multi-outcome sup-
port vector regression. Experiments were performed to 
jointly predict clinical scores in Alzheimer’s disease.

Deep learning
Deep learning has gained significant attention over the 
last years and there are attempts to employ it for MTL. For 

Table 1 A typical QSAR dataset

MOL_ID FP_1 FP_2 ... FP_n Activity

ID_1 1 0 ... 1 6.351

ID_2 0 1 ... 0 7.534

... ... ... ... ... ...

ID_22 1 1 ... 1 8.001

ID_23 0 1 ... 0 6.239
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example, deep relationship networks (DRN) were proposed 
to estimate the relationships between tasks in the area 
of computer vision  [14]. In natural language processing 
(NLP), MTL was used with deep learning for identifying 
better hierarchies for tasks to improve performance [15].

Task relatedness
A number of approaches have been reported in the litera-
ture for the specification of task similarity, an important 
element of MTL. One common approach is to build mod-
els on the individual tasks, and then to learn a common 
prior over the trained model parameters. For instance, 
this prior can be inferred using Dirichlet processes [16], 
matrix-variate normal distributions [17], or a maximum 
likelihood procedure  [18]. Clustered multi-task learning 
(CMTL) preforms clustering of tasks into groups prior to 
applying MTL. This clustering can be done both on the 
task level  [3, 19, 20] and on the level of shared feature 
representations among tasks [21–24].

Discovering highly important marker genes was the 
main focus of the work reported in  [25] where the aim 
was to identify a shared gene subspace across different 
gene expression datasets using MTL. Zhou et al. modeled 
disease progression by considering predictions at differ-
ent time points as different tasks and transform the prob-
lem into MTL   [26]. The relatedness between tasks was 
obtained by using a temporal group Lasso regularizer.

Taxonomy-based MTL was used to conduct biological 
sequence classification for the purpose of predicting the 
splice sites in various drug targets [27]. In this approach, the 
relatedness of tasks was defined by a phylogenic tree based 
structure and learning was performed at different levels of 
the tree. Furthermore, taxonomy- and graph-based transfer 
learning and MTL were used to predict the binding of the 
major histocompatibility complex (MHC)-I  [28]. Although 
task relatedness can be derived from the hierarchy, the 
authors report an interesting approach to quantify this 
relatedness using multi-kernel SVMs. Also, a two step MTL 
approach was employed for the prediction of small interfer-
ing RNA (siRNA) efficacy [29]. In the first step, shared-task 
representations are learned, and in the second step, these 
representations are fed into a regressor to model each task.

A methodology that employs sequence based distance 
is described in  [30]. In this approach an attempt was 
made to predict the similarity in binding profile between 
any pair of kinases from the human kinome. A binding 
profile was built for each kinase and it was used to com-
pute pairwise similarity between kinases. This similar-
ity was compared with the sequence based distance in 
order to check whether there is any correlation between 
the two. The difference between our approach and this 
approach is that we use the pairwise sequence based 
similarity between drug targets as input features to the 

classifier. Also, unlike our work, this method does not 
allow predicting the activity of individual molecules on 
drug targets.

Multi‑task learning for QSAR learning
MTL employing neural networks is reported in  [31]. 
Multi-target predictions were made for a total of 19 
assays at the same time. Although training is conducted 
by combining data from multiple assays, this method 
does not take advantage of the task relatedness. The 
QSAR problem is considered as a classification problem 
(i.e. whether a compound is active or inactive in a certain 
assay). This is different from our approach where we treat 
QSAR as a regression problem, and we work with a con-
siderably larger number of assays (1091 assays).

Work applying MTL in QSAR learning includes appli-
cations in sequence biology  [28] using a graph-based 
regularization method  [3, 32] based on SVM  [33]. 
Experiments were performed on data from the human 
kinome, and the relatedness between tasks was extracted 
from the taxonomy of kinase targets. A distance matrix 
was derived from the taxonomy by considering the dis-
tance between two taxa as the weight of the shortest path 
between them in the taxonomy  [34]. This matrix was 
then transformed into a similarity matrix and the values 
were used to perform MTL. This measure of similarity is 
different from the homology used in our work, and it is 
less biologically meaningful. Ning et al. used SVM-based 
MTL approach to learn a classification model for a drug 
target together with other related drug targets, where 
compound- and target-specific kernel functions were 
used to capture intrinsic commonalities [35].

One of the key QSAR studies that employed MTL as 
well as transfer learning was reported in  [36]. In addi-
tion to MTL, the approach uses feature nets (FN) to 
construct neural network and partial least squares (PLS) 
models for the modeling of 11 types of tissue-air par-
tition coefficients. A total of 56 and 50 models for H/
tissue and R/tissue respectively were obtained in the 
experiments which demonstrated the usefulness of 
MTL and transfer learning in general. The reported 
approaches showed that these techniques are specially 
useful when data is scarce. Our approache is different 
in multiple ways. We performed experiments on a much 
larger scale. Also, the authors did not evaluate tradi-
tional machine learning methods to select the best per-
forming ones for STL. In particular, random forest (RF) 
was not considered [36]. This could be due to the used 
descriptors: we worked with fingerprints whereas they 
worked with some physicochemical properties as well 
as ISIDA descriptors  [37]. In addition, our results are 
more statistically significant.
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A recent approach, that reports significant improve-
ments over traditional baseline machine learning 
approaches, applied massively multi-task neural net-
works for drug discovery  [38]. In this work, an attempt 
was made to use deep learning to provide a framework 
for sharing information across a large number of data-
sets. The end goal was to classify compounds as either 
active or inactive.

Another approach that employs deep neural net-
works (DNN) is the work presented in  [39] which tried 
to not only demonstrate that multi-task DNNs work 
in QSAR but also to explain why this is the case. The 
authors report that some form of signal transfer takes 
place between structurally similar molecules during the 
training process, and this can lead to better performance 
when molecule activities are correlated. A recent review 
of applications and challenges of MTL and transfer learn-
ing in QSAR can be found in [40].

Advantages of the proposed approach
The proposed approach has the following advantages 
compared with the previous MTL work:

1. The QSAR learning problem is considered as a 
regression problem. This is more natural as finding 
the best threshold value to determine whether a spe-
cific compound is active or inactive is problematic 
and often results in loss of information.

2. We employ RF as the base learner. We showed in a 
previous study that RF outperforms other learners on 
QSAR data in the majority of scenarios [41].

3. We employ the functional-class fingerprints (FCFP) 
method to represent molecular structures. We have 
empirically found them to generally be the most suc-
cessful QSAR prediction representation. We have 
done this by performing tests and comparisons using 
thousands of datasets and several learners [41].

4. One of the contributions of our work is the use of the 
drug target similarities in an MTL setting. The major-
ity of existing MTL approaches focus on learning the 
task similarities, whereas in our case, we exploit the 
sequence based similarities and incorporate them in 
our experiments. There are often commonalities in 
QSAR assays as the target proteins may be evolution-
ary related. We took advantage of this and used pro-
tein sequence similarity values as our task similari-
ties. This enables the inference of a natural metric of 
evolutionary distance between the drug targets.

In this paper we introduce an intuitive, simple and effec-
tive method of learning QSARs jointly. We test whether 
our MTL method can improve on standard QSAR learn-
ing through the use of related targets, and evaluate 

whether QSAR MTL can be improved by incorporating 
the evolutionary distance between targets. Our method 
is based on the classification of drug targets into families 
and the use of sequence similarity values between those 
drug targets [42].

Data
We obtained drug activity data from the publicly available 
database ChEMBL containing curated records about the 
activity of specific compounds (drugs, small molecules) 
on drug targets (proteins)  [43]. Activities in ChEMBL, 
e.g. potency and affinity endpoints, are recorded as real 
values (i.e. IC50, EC50, Ki, Kd and their equivalents).

In this study we used IC50 values, inhibitory drug con-
centrations at 50%. IC50 value states the concentration of 
the drug compound that is required to block or inhibit 
50% of the proteins. This response data has been normal-
ised by taking the negative log of the drug concentrations 
that inhibited 50% of a target (pXC50):

The pXC50 provides a continuous scale of 1–12 where a 
compound of the value 1 is the least potent inhibitor and 
requires a large concentration of the drug to achieve 50% 
inhibition and 12 is the most potent inhibitor requiring 
a very low concentration to achieve 50% inhibition. In a 
small proportion of cases, where multiple activities have 
been reported for a particular compound-target pair, 
a consensus value was selected as the median of those 
activities falling in the modal log unit. Therefore, the unit 
of activity we are referring to is the pseudo-pIC50. This is 
a similar procedure to what was used in the AEROPATH 
target database project [44].

ChEMBL provides two ways of categorizing drug tar-
gets: a 6-level hierarchical classification of protein fami-
lies, and a grouping of drug targets by their preferred 
names. In this paper, we perform MTL on the level of 
both groups and classes.

Drug target classes
In the 6-level hierarchy, the ChEMBL database curators 
have classified protein targets into a manually curated 
family hierarchy according to nomenclature commonly 
used by drug discovery scientists, e.g. a ligand-based clas-
sification of G-protein-coupled receptors, and a division 
of enzymes into proteases/kinases/phosphatases. The 
version of the hierarchy used in this study is ChEMBL20, 
and it comprises of 6 levels, with Level 1 (L1) being the 
broadest class and Level 6 (L6)—the most specific. For 
example, the protein “tyrosine-protein kinase Srms” is 
classified as follows: enzyme (L1), kinase (L2), protein 
kinase (L3), TK protein kinase group (L4), tyrosine pro-
tein kinase Src family (L5), tyrosine protein kinase Srm 

pXC50 = −log10IC50
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(L6). Different classes in L1 are not evolutionary related 
to one another, whereas members of classes in L3 and 
below share common evolutionary origins for the most 
part. The picture is mixed for L2. The hierarchy is not 
fully populated, with the greatest emphasis being placed 
on the target families of highest pharmaceutical interest, 
and the different levels of the hierarchy are not defined by 
rigorous criteria. However, the hierarchical classification 
provides a useful means of grouping related targets at dif-
ferent levels of granularity.

Drug target groupings
The method using preferred names is based on the prac-
tice that individual proteins can be described by a range 
of different identifiers and textual descriptions across 
the various data resources. The ChEMBL curators have 
assigned each protein target a preferred name in a 
robust and consistent manner, independent of the vari-
ous adopted names and synonyms used elsewhere. The 
detailed manual annotation of canonical target names 
means that, for the most part, orthologous proteins 
from related species are described consistently, allowing 
the most related proteins to be grouped together. In the 
preferred name groupings, we obtained 468 drug target 
groups. The minimum number of drug targets in a group 
is two, and the maximum number of drug targets is 21 
for the dihydrofolate reductase group (DHFR).

Drug targets similarity
In our approach we employ evolutionary relatedness 
of drug targets as a similarity metric between drug tar-
gets within each drug target group or class. Drug targets 
similarity is based on the similarity of their amino-acid 
sequences. Sequence alignment is a method to detect 
regions of similarity among sequences  [45]. There are 
two types of alignment: global and local. In global align-
ment the full lengths of sequences are aligned, whereas 
in local alignment, only parts of the sequences are 
aligned. Often, the Needleman–Wunsch algorithm  [46] 
is used for performing global sequence alignment and 
the Smith–Waterman algorithm [47] is used to carry out 
local sequence alignment.

To obtain a metric for the similarity of protein targets 
we pairwise aligned their sequences using the Smith–
Waterman algorithm and measured amino-acid residue 
similarity. We used the full sequence as the active sites 
are not easily labeled. Using active sites might further 
improve the results, but in this study we opted for the 
simplest option.

In more detail, given a pairwise sequence alignment of 
related protein sequences, it is common practice to quote 
the value of percentage sequence identity (PID) as a sim-
ple measure of evolutionary relatedness. This gives us a 

metric of evolutionary distance that ranges between zero 
and one; with numbers closer to one indicating more 
related drug targets. There is no universally accepted 
standard method to calculate PID [48]. In this work PID1 
method (the default setting in BioStrings [49]) was used:

Methods
Based on our previous extensive comparative study of 
conventional learners  [41] showing that RF  [50] out-
performs other learners for the majority of QSAR prob-
lems, we decided to employ RF with 100 trees as our base 
learner, and evaluate its performance with tenfold cross-
validation. We have chosen to use the Root Mean Squared 
Error (RMSE) [51] as the evaluation measure because we 
are predicting a real value number (the pseudo-pIC50).

We used the FCFP 1024-bit molecular fingerprints to 
represent molecules. Molecular fingerprints encode the 
structure of a chemical compound as a series of binary 
digits that indicate the presence or absence of particu-
lar substructures in the molecule  [52]. For example, if a 
molecule contains a benzyl ring, the corresponding bit in 
the fingerprint will be 1, and if not—0. This molecule rep-
resentation was selected because it is highly reliable for 
QSAR problems. More details can be found in our pre-
vious work [41] where we carried out an extensive com-
parison between several representations such as different 
kinds of fingerprints and descriptors.

In this work we performed all experiments using WEKA 
3.7.11 machine learning library  [53]. The implementa-
tion was done in Java utilising WEKA API as the basis for 
building our algorithms and running experiments.

Single task learning
As a baseline, we include a single task learning (STL) 
approach that trains RF to predict drug activity for each drug 
target individually. Table 1 shows an example QSAR dataset, 
consisting of chemical compounds, their fingerprints and 
activity values. We will refer to this setting as STL.

Feature‑based MTL
In the feature-based MTL approach we aim to learn all 
drug targets for a particular protein target group (e.g. 
DHFR) or class (e.g. AMPA receptor) simultaneously. 
This was done by concatenating all the datasets of the 
same group or class, and adding an extra indicator attrib-
ute. As shown in Table 2, the Target ID attribute, TID for 
short, indicates which drug target, or species, the exam-
ple came from (e.g. P. falciparum). As dataset entries 
(i.e. examples) are molecules, we give each molecule a 
unique identifier (MOL_ID). This helps to keep track of 

PID1 = 100 ∗
identical positions

aligned positions + internal gap positions
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molecules even if the same molecule appears in more 
than one dataset.

Algorithm  1 shows the pseudocode of feature-based 
MTL. We ran RF (with 100 trees) on the concatenated 

dataset and performed tenfold cross-validation to obtain 
an estimate of the performance. We used stratified sam-
pling based on the TID attribute for cross-validation [54]. 
Such sampling procedure ensures that, when randomly 
selecting a sample from the population, the proportion of 
each group in the sample is the same as in the original 
population. Although this is usually done in the context 
of classification problems with imbalanced classes, we 
employ it here to ensure that our per-fold performance 
estimates are based on the actual distribution of drug 
targets in the original data. We evaluate the performance 
(RMSE) of our MTL approach for each TID separately by 
filtering out the predictions for that specific TID in each 
test set.

Table 2 An input dataset for feature-based MTL

MOL_ID TID FP_1 FP_2 ... Activity

ID_1 7 1 0 ... 6.351

ID_2 7 0 1 ... 7.534

... ... ... ... ... ...

ID_111 95 1 1 ... 8.001

ID_112 95 0 1 ... 6.239

Input : n datasets which belong to the same drug target group
(each dataset represents one drug target)

Output: Performance evaluation of RF models built for each of these
datasets

1- Concatenate the n datasets into one big dataset;
2- Add an indicator variable TID to each example;
3- Perform the following using the big dataset;
for i ← 1 to 10 do

Observe: the splits are stratified based on TID ;
- train set = 90% of the big dataset;
- test set = 10% of the big dataset;
- build RF using train set;
- predict the test set (here we save MOL ID, TID, actual and
predicted values);

end
4- Evaluate using the saved predictions;
for j ← 1 to n do

- filter predictions using jth TID;
- compute and save RMSE for the jth drug target;

end
Algorithm 1: Feature-based MTL.



Page 7 of 13Sadawi et al. J Cheminform           (2019) 11:68 

By the end of the cross-validation, we obtained a list of 
all molecules and their respective TIDs, and their actual 
and predicted activity values (see Table  3). In order to 
examine the performance of RF on any particular drug 
target, we select instances that are from that particular 
target’s dataset by filtering TIDs. This gives the actual and 
predicted activity values for that particular dataset, and it 
is straightforward to compute RMSEs (see “Results and 
discussion” section). The same procedure is used for the 
evaluation of the performance of instance-based MTL.

Instance‑based MTL
In the instance-based MTL we made use of the quanti-
tative similarity between drug targets described in “Drug 
targets similarity” section. To represent this information, 
we added n extra attributes that consist of the similarity 
values to the other species (n is the number of drug tar-
gets in each drug target group or class). As Table 4 shows, 
the attribute SimToTID_7 gives the similarity value 
between drug target with TID 7 and all other drug targets 
in this concatenated dataset. For examples which belong 
to TID 7, this value will be 1.

Algorithm  2 shows the pseudocode of instance-based 
MTL. We again used RF with 100 trees on the concat-
enated dataset, which now contains the similarity val-
ues. As in feature-based MTL, we used stratified tenfold 
cross-validation training based on the TID to evaluate 
the performance of instance-based MTL approach, and 
compute the RMSE for each TID individually.

Table 3 An output table for feature-based MTL

FOLD MOL_ID TID Activity Prediction

1 ID_1 7 6.351 6.011

1 ID_2 7 7.534 7.681

... ... ... ... ...

10 ID_111 95 8.001 7.764

10 ID_112 95 6.239 6.401

Input : n datasets which belong to the same drug target group
(each dataset represents one drug target)

Output: Performance evaluation of RF models built for each of these
datasets

1- Concatenate the n datasets into one big dataset;
2- Add n extra variables to the big dataset:
SimToTID 1, SimToTID 2, ..., SimToTID n;
3- Fill values of these variables using similarities between drug targets:
sim(TID,SimToTID 1), sim(TID,SimToTID 2) ... and so on;
4- Perform the following using the big dataset;
for i ← 1 to 10 do

Observe: the splits are stratified based on TID ;
- train set = 90% of the big dataset;
- test set = 10% of the big dataset;
- build RF using train set;
- predict the test set (here we save MOL ID, TID, actual and
predicted values);

end
5- Now evaluate using the saved predictions;
for j ← 1 to n do

- filter predictions using jth TID;
- compute and save RMSE for the jth drug target;

end
Algorithm 2: Instance-based MTL.
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Results and discussion
To evaluate the performance of our MTL approach, we 
performed MTL on the level of all groups and classes 
of drug targets, building a model simultaneously for all 
drug targets within that group or class. We only consid-
ered groups or classes that have more than one drug tar-
get, because otherwise there would be no difference with 
STL, and only included drug targets for which the mini-
mum size of their dataset was 10, because we employ ten-
fold cross-validation. In other words, each dataset must 
contain at least 10 compounds with their corresponding 
activity against that drug target.

We compared the three settings discussed in “Meth-
ods” section by running MTL on all drug classes and 
groups, obtaining a list of drug targets with their cor-
responding RMSE values for STL, feature-based and 
instance-based MTLs. Finally, we counted the number of 
cases where each setting had lowest RMSE.

To examine the distribution of RMSE values for each 
setting we drew histograms, ran Shapiro–Wilk tests [55], 
generated Q–Q plots, and concluded that these values 
do not follow a normal distribution. Hence, we applied 
the non-parametric Wilcoxon Signed-ranks test to 
examine whether or not the difference between these 
values is statistically significant. For each experiment, 
we show the results of three different Wilcoxon Signed-
ranks tests to pairwise compare the RMSE performance 
of the three settings. The following subsections show 
the details of our experiments using ChEMBL’s 6-level 
hierarchical classification and its grouping by preferred 
names.

Using ChEMBL’s class levels
We previously described ChEMBL’s 6-level hierarchical 
protein family classification which starts with L1 (most 
generic class) to L6 (most specific class). Table 5 displays 
the number of classes we obtained at each level. Note 
that Table  5 shows the number of classes at each level 
in the hierarchy explained in “Drug target classes” sec-
tion, and this is different from the number of groups in 
the preferred named grouping explained in “Drug target 
groupings” section.

Broad classes such as enzyme and membrane receptors 
can be found at L1, whereas as we traverse down the hier-
archy, we can find more specific classes such as antiporter 
and protein kinase at L3 and amine and motilin receptor 
at L5. It is reasonable to assume that more specific classes 
are more evolutionarily related. L5 has more classes than 
any level, i.e. 180, as shown in Table 5. Over the total of 
1091 drug targets (corresponding to 1091 assays we run 
experiments for), we expect that a grouping at L5 would 
yield sets of targets which are closely related. Therefore, 
we present our experimental results using this level.

Table 6 shows a simple sign test where we count how 
many times the RMSE value for each algorithm is less 
than the other. The +ve column indicates how many 
times the RMSE for the first setting is less than the sec-
ond setting while the −ve column indicates how many 
times the RMSE for the second setting is less than the 
first setting. This shows that, for instance, feature-based 
MTL outperforms STL in 686 of the cases. Counting 
the number of overall wins, shown in Fig.  1, yields that 
instance-based MTL outperforms both feature-based 
MTL and STL on 741 drug targets. Feature-based MTL 
won on 179 occasions and STL performed best on 171 
occasions. The statistical significance of these results is 

Table 4 A dataset for instance-based MTL

MOL_ID TID SimToTID_7 ... SimToTID_95 FP_1 FP_2 ... Activity

ID_1 7 1 ... 0.584 1 0 ... 6.351

ID_2 7 1 ... 0.584 0 1 ... 7.534

... ... ... ... ... ... ... ... ...

ID_111 95 0.584 ... 1 1 1 ... 8.001

ID_112 95 0.584 ... 1 1 1 ... 6.239

Table 5 ChEMBL’s 6-level protein family classification

Level No of classes

L1 13

L2 24

L3 46

L4 111

L5 180

L6 50

Table 6 Pair-wise sign test for the L5 results

Setting # +ve # −ve # ties

Feature-based MTL vs STL 686 405 0

Instance-based MTL vs STL 911 180 0

Instance-based MTL vs feature-
based MTL

891 200 0
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shown in Table  7. Finally, Fig.  2 shows a point ranking 
where we award the best setting three points, the second 
best two points and the third best one point.

ChEMBL datasets are known to be imbalanced toward 
active compounds  [56]; hence we have compared our 
methods using the coefficient of determination (also 
known as R-squared)  [57]. Unlike RMSE where we are 
interested in the minimum value, when using R-squared 
we are interested in the highest value. This is because 
R-squared explains how good a model is. The value of 
R-squared normally ranges between 0 and 1, where 0 

indicates a useless model and 1 indicates a perfect model. 
Our results are illustrated in Fig.  3. The figure shows 
how many drug targets each setting scores the highest 
R-squared on. Instance-based MTL outperforms both 
feature-based MTL and STL on 639 drug targets, feature-
based MTL performs better than instance-based MTL 
and STL on 360 drug targets whereas STL performed 
best on 92 drug targets.

Table 7 shows the results of the pairwise Wilcoxon signed-
rank tests. The null hypothesis is that the median change in 
RMSE values when we use our MTL methods is zero. As 
can be seen, feature-based MTL (median RMSE =  0.701) 
and instance-based MTL (Median RMSE  =  0.633) both 
significantly outperformed STL (Median RMSE =  0.744). 
Moreover, instance-based MTL also significantly outper-
forms feature-based MTL. The difference in medians is fur-
ther evident in the boxplot provided in Fig. 4.

Fig. 1 The number of drug targets each method scores the lowest 
RMSE value

Table 7 Pair-wise Wilcoxon signed-ranks test for L5 results 
(W is the test statistic)

Setting W p‑value

STL vs feature-based MTL medians: 0.744 and 
0.701

374646 1.609e−13

STL vs instance-based MTL medians: 0.744 and 
0.633

535197 2.2e−16

Feature-based MTL vs instance-based MTL medi-
ans: 0.701 and 0.633

535673 2.2e−16

Fig. 2 Feature-based and instance-based MTL compared with STL 
(ranked from 3 to 1) using L5 classes

Fig. 3 The number of drug targets each method scored the highest 
R-squared value

Fig. 4 Boxplot of RMSE values for the three settings when applied to 
all L5 drug target classes
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For validation, we carried out a Y-randomisation pro-
cedure  [58] on the feature-based MTL method. We 
repeated the same feature-based MTL procedure 1000 
times using L5 target classes, and permuted the activity 
values each time. We then performed a sign test similar 
to that reported in Table 6, and the results demonstrate 
that RF (i.e. STL) performed significantly better than fea-
ture-based MTL in all runs. We have made all our source 
code and results available on the Github.

We also performed a randomisation procedure by shuf-
fling the similarity values in the instance-based MTL 
approach. We have randomly selected 24 level 5 classes 
(the total number of selected drug targets is 120) and ran-
domised their similarity values 1000 times. Each time we 
randomised, we run instance-based MTL and compute 
RSME for each drug target. Our results show that in 104 
out of the 120 drug targets, the standard instance-based 
MTL approach performs better than when the similarity 
values are randomised (i.e. the RSME value for most drug 
targets when using the standard instance-based MTL 
approach is less than when randomising the similarity 
values). That is 86.67% of the randomly selected drug tar-
gets. This shows that the evolutionary data indeed signifi-
cantly improves QSAR learners.

We have analysed the results of our work further by 
identifying what drug target classes benefited from the 
proposed MTL QSAR. We define a fully benefited class 
as an L5 class in which all drug targets have better results 
when using feature-based MTL as compared with STL 
or instance-based MTL as compared with feature-based 
MTL. On the other hand, we define a no benefit class as 
an L5 class in which none of the drug targets have bet-
ter results when using feature-based MTL as compared 
with STL or instance-based MTL as compared with fea-
ture-based MTL. Our results show that there are 12 no 
benefit drug target classes, for examples Neurotensin 
receptor class with 4 drug targets and Cholecystokinin 
receptor class with 2 targets. We have also found that 
40 drug target classes fully benefited from feature-based 
MTL. Examples are CMGC protein kinase RCK family 
with 2 drug targets and tyrosine protein kinase Trk family 
with 3 drug targets. On the other hand, only 9 drug tar-
get classes fall under the instance-based MTL no benefit 
class. Example classes are cytochrome P450 51A1 with 2 
drug targets and aspartic protease A2A subfamily with 3 
drug targets. Also, as many as 78 drug target classes fully 
benefited from instance-based MTL. Examples are tyros-
ine protein kinase EGFR family with 6 drug target and 
MCH receptor with 4 drug target. A list of all these drug 
target classes is provided on our Github repository.

Our results indicate that the size of no benefit classes 
are generally small with the highest number of drug tar-
gets in each class as 3. In addition, we have studied the 

similarity values amongst drug targets of fully benefited 
classes, and our analysis shows that instance-based MTL 
works better if there is a range of evolutionary distances 
in the class. In other words, if not all drug targets are very 
close or distant from each other.

Using ChEMBL’s preferred name groups
Finally, we repeated our experiments using 468 drug tar-
get groups based on ChEMBL’s preferred name group-
ing (see “Data” section). For a more detailed analysis, we 
investigated the performance of the three settings on the 
largest drug target group we have, which is DHFR with 
21 drug targets.

Figure  5 shows a barplot of the RMSE values for the 
three settings on each of the 21 drug targets in the DHFR 
group. Instance-based MTL outperformed both feature-
based MTL and STL in 18 drug targets and was never the 
third best. The STL was the best performer for only two 
drug targets whereas feature-based MTL won on only 
one drug target.

Table  8 shows the results of the pairwise Wilcoxon 
signed-rank test. The null hypothesis is that the median 
change in RMSE values when we use our MTL meth-
ods is zero. As can be seen, for the specific DHFR group, 
there was no significant difference in the RMSE values 
for STL (Median RMSE = 0.821) and feature-based MTL 

Fig. 5 Barplot of RMSE values for 21 DHFR drug targets

Table 8 Pair-wise Wilcoxon signed-ranks test for  the  21 
DHFR group results (W is the test statistic)

Setting W p‑value

STL vs feature-based MTL medians: 0.821 and 0.808 108 0.8117

STL vs instance-based MTL medians: 0.821 and 0.668 222 3.147e−05

Feature-based MTL vs instance-based MTL medians: 
0.808 and 0.668

220 5.245e−05
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(Median RMSE = 0.808). However, instance-based MTL 
(Median RMSE = 0.668) is significantly better than both 
STL and feature-based MTL. The difference in medians 
is evident in the boxplot provided in Fig. 6.

Conclusions and future work
We have shown that MTL can significantly improve the 
performance of QSAR learning models, and thus can 
help to better predict the activity of drugs against spe-
cific drug targets. We predicted the activities of poten-
tial drugs against 1091 assays (i.e. 1091 drug targets) by 
grouping similar drug targets and training models on all 
targets within the same group simultaneously. Drug tar-
gets were grouped based on ChEMBL’s 6-level classifica-
tion, as well as based on their preferred names.

The results show that MTL significantly outper-
formed learning QSAR models individually. Moreover, 
when incorporating a novel, natural similarity measure 
between drug targets based on their sequence alignment, 
and hence their evolutionary kinship, we can further sig-
nificantly improve QSAR learning. These results indicate 
that QSAR learning can be performed effectively, even if 
little data is available for specific drug targets, by leverag-
ing what is known about similar drug targets.

The QSAR datasets and experimental results are 
available on OpenML  [59]. OpenML is an open source 
platform that facilitates discovering, sharing and reus-
ing data, machine learning models and experiments. 
OpenML ensures that the submitted experiments are 
compliant with the W3C MLSchema [60], and therefore 
can be reproduced and reused in future work  [61]. The 
Java source code for all reported experiments is freely 
available on Github [62]. The link also provides detailed 

information and a video demonstrating how the code can 
be run and how to analyse the results.

In future work, we plan to evaluate the performance of 
our methods without TID-based stratification. we intend 
to use the distance between drug targets instead of simi-
larity values (distance = 1 − similarity) and use similar-
ity, or distance, between datasets instead of drug targets 
and compare performance.
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