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ABSTRACT The chest X-ray is a simple and economical medical aid for auxiliary diagnosis and therefore
has become a routine item for residents’ physical examinations. Based on 40 167 images of chest radiographs
and corresponding reports, we explore the abnormality classification problem of chest X-rays by taking
advantage of deep learning techniques. First of all, since the radiology reports are generally templatized by
the aberrant physical regions, we propose an annotation method according to the abnormal part in the images.
Second, building on a small number of reports that are manually annotated by professional radiologists,
we employ the long short-term memory (LSTM) model to automatically annotate the remaining unlabeled
data. The result shows that the precision value reaches 0.88 in accurately annotating images, the recall value
reaches 0.85, and the F1-score reaches 0.86. Finally, we classify the abnormality in the chest X-rays by

training convolutional neural networks, and the results show that the average AUC value reaches 0.835.

INDEX TERMS Annotation, deep neural network, DenseNet, long short term memory.

I. INTRODUCTION

Chest X-Ray (CXR) is commonly used for early screening
of diseases such as thorax, chest, lung tissue, mediastinum,
heart, etc. A professional radiologist can diagnose pneumo-
nia, aortic node protrusion, pleural thickening, pneumotho-
rax and other diseases by observing CXR. The data reveals
that the number of physical examinations in China exceeded
300 million in 2013 [1]. A large 3A hospital can perform
a number of 40,000 CXRs for outpatients alone every year,
and the number continues to increase annually. However in
China, the imbalance of medical resources is quite serious.
The number of radiologists is in short supply due to the
long period of cultivation. This situation is not predicted
to significantly improve in the next ten years. At the same
time, working as a radiologist is labor-intensive, there is a
relatively low level of diagnosis in unprivileged areas, and
misdiagnoses are frequent due to excessively heavy work
and inadequate diagnostic capacity. According to [2], a lung
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nodule diagnosis was missed or misdiagnosed 20% to 50%
of the time in CXRs Even the most professional and brilliant
radiologists make serious clinical mistakes in 3% to 6% of
cases [3]. Therefore, it is of strong practical significance to
alleviate radiologists’ work, assist their diagnoses and reduce
missed diagnosis or misdiagnosis as much as possible by the
existing Al technology using CXRs.

At present, the study on CXR-assisted diagnosis with deep
learning techniques mainly focuses on Chest X-Rayl4 [4]
and Open-i [5] two datasets for their high quality of disease
labeling information, which is crucial to deep learning. In the
study of CXR data in China, Candemir et al. [6] released
the shenzhen dataset, which contains only 336 cases with
manifestation of tuberculosis and 326 normal cases, cannot
fully embody the importance of CXRs through the research
in China. In terms of study on unreleased data sets, as far
as we know, Dong et al. [7] used clustering to annotate dis-
eases with over 16,000 CXR reports in China and evaluated
the performance by multiple CNN models. Dong’s work
was designed with g foresight, but the following problems
still exist. First, the unsupervised learning method such as
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clustering is obviously not accurate; Secondly, it is not rig-
orous to rely entirely on computer to understand and classify
the text. Third, diagnostic needs for CXR vary with different
regions, and the information obtained in CXR can also be
different. This situation is also verified when comparing the
reports from Chinese and foreign radiologists. China’s CXR
report focuses more on characterization while the foreign
radiologists are more accustomed to pointing out possible
diseases.

Based on this, with the fact that radiology reports in China
are generally templatized by the aberrant physical regions,
we propose an annotation method according to the abnor-
mal part in the images. Therefore, the annotation is taken
as a text classification task instead of information extrac-
tion problem. First we have a small part of reports manu-
ally annotated by professional radiologists, and then exploit
the semi-supervised learning to automatically annotate the
remaining unlabeled data.
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FIGURE 1. Normal report and abnormal report text statistics.

Fig. 1 statistics show that the abnormalities has a corre-
lation with the length of report text, so we have the reports
grouped by length and evenly distributed through the process
of selecting the manual labeling target and the weak super-
vised learning. Drawing on the excellent experience of pre-
vious CXR image classification [24], we use convolutional
neural networks to classify the labeled data, and the test shows
a good result.

The major contributions of the paper are as follows:

(1) It presents a methodology for annual annotation of
X-ray images.

(2) Building on the manually labeled images, this paper
presents a LSTM based machine learning model for auto-
matic annotation of X-ray images. The average Fl-score
in accurately annotating images reaches 0.86, which is
0.25 higher than the K-Medoids.

(3) It further employs DenseNet for classification of abnor-
mal X-ray images with an average AUC value of 0.835.

The reminder of the paper is organized as follows.
Section 2 reviews some related work, Section 3 presents
manual annotation rules, automatic annotation models,
semi-supervised learning methods and abnormality classi-
fication models. Section 4 analyses the evaluation results.
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Section 5 concludes the paper and points out some future
work.

Il. RELATED WORK

A. TEXT CLASSIFICATION

Text classification has always been a hot topic in deep learn-
ing. Joulin et al. [8] used a model similar with word2vec [9]
to classify text and the n-gram feature was used when con-
sidering the order of words. The TextCNN model proposed
by Kim [10], with CNN as the basic model, achieved good
performance on classification through convolution, pooling
and other operations. Lai et al. [11] proposed to obtain repre-
sentations of each word’s context on the basis of word embed-
ding, and then merge them together as a representation of the
word. The HAN model proposed by Yang et al. [12] used
the Attention mechanism and document-level classification
to improve performance. Henaff er al. [13] proposed a new
dynamic memory network that uses fixed-length memory
cells to store entities. Multiple memory cells are independent
of each other, which can be applied in many fields of text
processing.

B. SEMI-SUPERVISED DEEP LEARNING

Lee [14] used the idea of Pseudo label to modify the loss func-
tion and added unlabeled data incrementally to achieve a reg-
ularization effect. Temporal ensembling [15] is the evolution
of Pseudo, it constructed a better target through data enhance-
ment and regularization integration. Johnson and Zhang [16]
used Local Region Convolution to learn the two-view (TV)
Embedding feature in unmarked text, and then used con-
volutional neural networks for classification. Then Johnson
and Zhang [17] extended the algorithm and used LSTM to
perform variable text feature learning. Rasmus et al. [18]
added a short-circuit connection between the coding layer and
the decoding layer of the auto-encoder, and then used classi-
fiers to classify the features learned from the encoder. Dai
and Le [19] spliced the self-encoders in order, and learned
the hidden features of the sequence data by minimizing the
reconstruction errors of these self-encoders.

C. LEARNING TO READ CHEST X-RAYS

In the automatic labeling of reports,
Demner-Fushman et al. [20] manually labeled 3,955 reports
from Indiana University by creating a small controlled vocab-
ulary. Subsequently, Demner-Fushman er al. [21] automati-
cally generated annotations using different annotation tools
such as MTI and SGindexer, which achieved good results.
Hassanzadeh ef al. [22] compared the effects of different
automatic annotation tools on electronic medical records.
Mostafiz and Ashraf [23] first entity-marked the report and
obtained better results than traditional medical annotation
tools through supervised learning. However, these studies
are based on the only publicly reported Open-i dataset.
Wang et al. [4] released the Chest X-Rayl4 dataset by
means of text mining, but only included images and labels,
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and the corresponding report was not released, which is a
pity.In the diagnostic imaging of CXRs, Rajpurkar et al. [24]
diagnosed pneumonia on the Chest X-Rayl4 dataset with
an accuracy rate of 88.87%, exceeding the human average.
Wang et al. [25] attempted to generate an inspection report
directly on the basis of CXR; Shin et al. [26] conducted
research on labeling and classification in Open-i datasets.
The latest research is not just staying on the choice of
models, Kumar et al. [27] studied the most suitable loss
function for the classification of chest disease and pro-
posed an enhanced cascade network. Guan et al. [28] pro-
posed a new AG-CNN network based on the distribution
of case regions. The network consists of global branches
and local branches. Experiments showed that it got better
scores in the disease classification at the edge of “Hernia”.
Baltruschat et al. [29] fully considered the effects of
non-image features on disease classification, and added fea-
tures such as angle and gender to the model. The latest
research have shown good results, but it is undeniable that
due to the lack of information in the dataset itself and the
differences in labeling, there is still a long way to go in the
research of chest disease classification.

1Il. DENSENET BASED CLASSIFICATION

A. MANUAL ANNOTATION

The first step in this task is to select the data for manual
labeling. We found that the normal part of the description
in the report is similar in text. Meanwhile the longer the
sentence is, the more likely it is to describe the abnormality.
Through the analysis of the template, we found that the
main descriptions in the report were centered on six parts
known as thoracic, lung, aorta, heart, diaphragmatic surface
and partition angle. Therefore, we selected these six parts
as the main research objects, except for the abnormalities in
the six major parts, including the stomach and the clavicle,
we marked them as other parts. In the process of selecting
manual labeling data, we divided all the data into 5 groups
according to the length of the finding sentence, and selected
the manual target in different groups. We have manually
labeled 2,500 reports, accounting for 2.3%, 5.5%, 7.7%, 9.7%
and 10.7%, respectively. Table 1 shows the details of the

grouping.

TABLE 1. Manually annotated grouping information.

1 2 3 4 5

word 11-30  31-44  45-60 60-80 >80

total 17356 9024 7816 6216 3755
selected 400 500 600 600 400

ratio 23%  55%  719%  97%  10.7%

In the process of manual labeling, we only considered
whether there is an abnormality, the severity of the abnor-
mality and the characterization of different anomalies were
not considered. Specifically, for description ““a little blurry
shadow in the bottom left of lung” and “dense shadow in
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the bottom right of lung”, both of them were annotated as
“Abnormalities in both lungs”. In the same way, when there
are two pathologically different symptoms as “‘right phrenic
surface blur” and ‘“‘right phrenic surface uplift”, we anno-
tated ““Abnormalities in phrenic surface” on both. Table 2
shows the number of abnormal parts after manual statistics we
have counted. Among them, the number of abnormal lungs
was the highest, reaching 1,489, accounting for 59.6% of all
manual markers (not only pulmonary abnormalities). These
hand-labeled reports will be the seeds of semi-supervised
learning.

TABLE 2. Manually annotated numbers of abnormal objects.

normal thoracic lung aorta

387 29 1489 751

heart diaphragmatic

487 621 508 67

partition  others

B. ANNOTATION MODEL BASED ON LSTM

We designed a text classification model based on Long Short
Term Memory (LSTM) for annotation. The model consists of
the Embedding layer, LSTM layer, the Pooling layer and the
full linear layer. The model structure is shown in Fig 2.

‘ Full Linear l

I

‘ Rank-base Average Pooling ‘

LSTM

Embedding

thoracic symmetry on both sides Increased lung

FIGURE 2. Annotate model architecture.

The first layer of the model is the Embedding layer, which
is used to construct a thesaurus of high-frequency terms with
N words. The model combines the word vector of each word
in the thesaurus, then maps each text into an N-dimensional
vector. Each dimension of the vector is represented by the
maximum value of the similarity between each word cor-
responding to the dimension and the text in the thesaurus.
We use R to represent the thesaurus of the text vector, R =
[r1,72,...19, ..., )1 represents the word vector of the jth
word in the thesaurus. Q represents the text vector after the
word segmentation, Q = [q1, g2, ... ¢j, - . ., gm].qj, Where qj
represents the jth text vector after word segmentation
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FIGURE 3. DenseNet network architecture diagram.

The second layer of the model is the LSTM layer. LSTM
is a time recurrent neural network suitable for processing and
predicting important events with relatively long intervals and
delays in time series. The core of LSTM lies in the cell design.
There are three gates in one cell, known as the input gate,
the forgetting gate and the output gate. A message in the
LSTM network can be judged if available according to the
rules. Only information that complies with the algorithm’s
certification can be retained, otherwise it will be discarded
by the forgotting gate. In our model, the LSTM layer input
is the output of the Embedding layer. The calculations of the
LSTM layer are shown in Equations 1,2, and 3.

it o

St—1 b;
f = | 7wy |+ |t D
¢ 7 b b
U tanh 0
Cr =frcr—1 s @)
St = Oy -+ tanh(c;) (3)

where i, f;,0; are input gates, forgetting gates and output gates
respectively. ¢; is LSTM’s internal cell. W is the weight
matrix. - refers to element multiplication.

The third layer of the model is the Pooling. Considering the
serialization characteristics of LSTM, we use the Rank-based
Average Pooling (RAP) method. RAP can be averaged by
taking the activation values of the top t values. In the pooling
domain, the weight coefficients of the first # activation values
are set to 1/¢, and the others are set to 0. Therefore, the results
of the pooling can be obtained by Equation 4:

1
rapi=— ) e “)

iERj,r,'St

where t represents the priority threshold for selecting the
activation value to start pooling. R; represents the pooling
domain of the j”’ feature, while i represents the index value
of the activation value within this pooling domain. 7; and «;
respectively represents the priority and activation values of
the activation value i. The last two layers of the model are the
fully connected layer and the output layer. We use softmax
as the activation function for the model output to predict the
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category of text, then output the result. Softmax maps the
output of the fully connected layer to the interval (0,1), and
generates the probability of each category. Equation 5 shows
the calculation of the softmax activation function. We use
the 7-dimensional vector L = [/, [2, ..., [.] to represent the
label, where [, € 0, 1, ¢ = 7. I, indicates whether there is an
exception, 1 indicates existence, and 0 indicates no existence.

T
e Wi

Siopet
where P(y = j|x) indicates that when the input is x, the prob-

ability of being predicted as category j is P. Obviously the
sum of each category’s probability is 1.

Py =jlx) = ®)

C. ABNORAML CLASSIFICATION MODEL

DenseNet [32] is used as the base model, which was proposed
by Huang et al. in 2017. The core idea of DenseNet is feature
reuse. Compared to traditional networks, DenseNet has a
novel Dense Block module. In the Dense Block module, each
layer can be directly connected. This connection enhances the
reuse of features, so that the final classifier makes decisions
based on all the features of the entire network. Fig 3 shows
the structure of the Dense Block.

The input picture of the model is xg, the model is composed
of L layers, the nonlinear conversion function of each layer is
H;(), and I™ is the serial number of the layer. The output of the
1" ayer is recorded as x;. Equation 6 shows the x; calculation
method.

S x—1]) (6)

DenseNet confirmed in a previous study by
Rajpurkar et al. [24] that it has a good effect on the classifica-
tion of X-ray chest disease. So we made three changes to the
basic DenseNet model with reference to Rajpurkar’s method.
First, the output of the model is modified to the vector c
of the binary label, indicating whether the following seven
exceptions exist. Second, we replace DenseNet’s original
fully connected layer with a fully connected layer which has a
7-dimensional vector output, and classify it with the sigmoid
function. Third, the model’s loss function is modified to be a

x; = Hy([xo, x1, ..

VOLUME 7, 2019



F.Yan et al.: Combining LSTM and DenseNet for Automatic Annotation and Classification of Chest X-Ray Images

IEEE Access

unweighted binary cross entropy. The modified loss function
is shown in the formula 2:

7
LX,y) =) [—yclogp(Ye = 11X)

c=1

— (I =yo)logp(Ye = 01X)] (7)

where p(Y, = 1|X)is the predicted probability that abnormal-
ity c is contained, and p(Y, = 0|X) is the predicted probability
that abnormality c is not included.

IV. EXPERIMENTAL

A. DATA COLLECTION AND PREPROCESSING

1) DATA COLLECTION

We obtained 46,711 CXRs and 42,316 copies of reports
from the Picture Archiving Communication System of Tongji
Affiliated Hospital, where each report has at least one CXR.
CXRs are in DICOM format [31], and the reports are written
in Chinese and all of them are confirmed by a peer reviewer.
In the reports, the Finding section records the description of
the CXR, and we select this part to generate the CXR label.
At the same time, we preprocess the obtained data.

2) PREPROCESSING

First, we removed the CXRs on the lateral and selected the
positive CXRs as the research object. For a report containing
multiple positive CXRs, we chose the one with the highest
image quality. Then, we strip out the report with less than
10 words in the Finding section. Third, we segmented the
text with a word segmentation tool called jieba.' Finally,
we obtained 40,167 copies of CXRs and reports which was
one-to-one correspondence. Fig 5 is an example of CXR
and report. Secondly, we convert the original X-ray chest
of Dicom format to the PNG image format, and adjust
the converted image size to 256%256. Then all the data is
divided into training/validation/test according to the ratio
of 80%/10%/10%, with the distribution of abnormal data of
different parts of the validation set and the test set is guar-
anteed. Finally we get a training set with 32167 X-ray films,
a validation set with 4000 and a test set also with 4000 films.

B. BASELINE AND DETAILS

1) UNSUPERVISED BASELINE

For the Unsupervised annotation baseline, we refer to the
method of [7]. First, define the similarity of clauses based
on the edit distance [35]. The edit distance is defined by
the minimum operations (insert, delete, and replace) that
convert one clause to another.At the same time, the k-
medoids algorithm [36] is used to perform clustering on
clauses. K-medoids is related to the k-means [37] algorithm
and selects points in the dataset as cluster centers.

1 https://github.com/fxsjy/jieba
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2) TRAINING OF SEMI-SUPERVISED

The entire process is divided into six steps. Step 1, The
manually labeld data is divided into two parts: train set and
validation set; Step 2, Use the annotate model to train the
optimal parameters; Step 3, Predict the unlabeled data using
the model trained in step 2, The label predicted is called
pseudo-labeled; Step 4, Extract a part of the training set to
make a new validation set, make sure validation comes for
original train; Step 5, Merge the rest of the original train set
with the pseudo-labeled part into a new train set, and use the
annotate model again to train the optimal parameters; Step 6,
Use the training model in step 5 to predict the unlabeled data
to get the final result label. Fig 4 shows the flow chart of the
proposed annotation model.

labeled unlabeled
Step 1
train validation Test set
Step 2 AUC Step 3
Train set Pseudo-labeled
] Step 4
validation Train Train(Pseudo-labeled)
Step 5 Step 6
‘ Final label |

FIGURE 4. Training process of annotation model base on semi-supervised.

Finding:

Thoracic symmetry on both sides. Increased
lung texture, Flocculent blur in the lungs.
Aortic node protrusion and calcification.
Heart shape and size as usual. Smooth
diphrenic surface, Double rib angle blur.

abnormal:
Lungs, aorta, partition angle
label: 0110010

FIGURE 5. A sample of CXR.

3) TRAINING OF DENSENET

We trained DenseNet end-to-end utilizing Adam [33] with
standard parameters (81 = 0.9 and f1 = 0.999) by using
mini batches of size 32. We adopted an initial learning rate
of 0.001 which is delayed by a factor of 10 every time the
validation loss plateaued after an epoch and chose the model
with the least validation loss. Also, the GPU we adopted for
training were two Tesla K40 launched by NVIDIA.
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TABLE 3. Evaluation of image labeling results on dataset. Performance is reported using P, R, F1-score.

Semi-Supervised K-Medoids
precision  recall ~Fl-score  precision recall  Fl-score
normal 0.91 0.86 0.89 0.83 0.80 0.81
thoracic 0.80 0.84 0.81 0.66 0.58 0.61
lungs 0.94 0.82 0.90 0.56 0.48 0.54
aorta 0.96 0.79 0.87 0.74 0.71 0.72
heart 0.93 0.90 0.91 0.78 0.73 0.75
diaphragmatic 0.86 0.88 0.87 0.58 0.56 0.56
partition 0.84 0.89 0.85 0.66 0.57 0.59
others 0.63 0.81 0.77 0.37 0.26 0.33
average 0.88 0.85 0.86 0.65 0.52 0.61

08 47 osg -~
0.6 - 06 -
0.4 - 0.4 -

02 G 02 P

0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 10
Thoracic lungs aorta

0.0 0.2 04 0.6 08 1c
diaphragmatic

08 e

0.6 e

0.4 -

02 o

0.0

0.0 0.2 04 0.6 0.8 1.0
others

FIGURE 6. The ROC curve of abnoraml classification.

C. RESULTS long sentences. This has been verified in our experiments,
1) ANNOTATION RESULTS and the better-performing normal clause has fewer descrip-
We present results of our annotation experiments in Table 3, tion words. Using the semi-supervised learning annotation

which evaluated by precision, recall and Fl-score. The method, guided by a professional radiologist’s manual label-
results of using annotation model base on semi-supervised ing, the average F1-score can reach 0.86, which is 0.25 higher
are all better than the unsupervised method. This can be than K-Medoids.

understood, and the K-Medoids method using unsuper-

vised learning can only be clustered by the edit distance 2) MULTIPLE DISEASE DETECTION RESULTS

of the clause. The limitation of this method is that the  The evaluation results show that the seven abnormalities
effect on short sentences is significantly better than that on of our models have achieved a high level of accuracy.
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Symmetrical symmetry on both
sides. The texture of both lungs
increased, and patchy blurs
were seen in the right lung
field. The shape and size of the
heart shadow are as usual. The

Symmetrical symmetry on both
sides. Both lungs have increased
texture. The aortic node is
prominent. The shape and size
of the heart shadow are as usual.
The two sides are smooth and

Symmetrical symmetry on both
sides. The texture of the two
lungs increased slightly, and the
left middle lung field saw a
strip of shadow, and the right
lower lung field saw a small

two sides are smooth and the the two ribs are sharp. patchy shadow, and the border
two ribs are sharp. was unclear. The shape of the
heart is full. The two sides are
smooth and the two ribs are
sharp.
0100000 0010000 0101000

FIGURE 7. Comparison of heat map and inspection report.

Among them, the aorta, heart and lungs provided the best
result, with precisions of 0.96, 0.93 and 0.94, respectively.
For all samples, average precision, recall and Fl-score are
0.88, 0.85, and 0.86 respectively.

Tabel 4 shows the AUC value of classification on CXR
abnormalities by DenseNet, and the horizontal direction of
the table is the comparison between different pre-trainings
of the same part. By comparison, we discover that the
selection of pre-trained data sets has significant differences
for the final classification results. The pre-training of the
large image dataset ImageNet did not result in a signifi-
cant improvement in the classification performance, while
with the pre-training on Chest X-14, the average AUC value

VOLUME 7, 2019

increased by about 4%. The column of the table shows the
classification effect of different parts in the same pre-training
scene. Overall, the “other parts” gave the worst result with
the lowest AUC. This is because we marked all the other
factors such as ribs, clavicles, stomach and even surgical
externalities as ‘“‘other parts”, and these features are not
similar. Compared with the other three parts, the ““thoracic”
and “lungs” have significantly lower AUC values. The aver-
age AUC values of the three different pre-training for the
“thorax’ are 0.752, 0.74 and 0.804, respectively. The average
AUC values for the three different pre-training exercises for
“lungs” were 0.749, 0.765 and 0.826, respectively. The num-
ber of samples with abnormalities only in *“‘thoracic’ was the
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TABLE 4. The AUC of abnoraml classification.

None ImageNet Chest X-14  average
thoracic 0.752 0.745 0.804 0.767
lungs 0.749 0.765 0.826 0.780
aorta 0.831 0.842 0.898 0.857
heart 0.815 0.859 0.867 0.847
diaphragmatic ~ 0.809 0.826 0.827 0.821
partition 0.791 0.808 0.844 0.814
others 0.724 0.711 0.782 0.739
average 0.782 0.794 0.835 0.804

least in dataset, so it was difficult to train the model in the
case of a small range of samples. Figure 6 shows the ROC
curve on the testing set.

D. DISCUSSION

The “lungs” with the largest sample size also gave a low
AUC value. The reason is that although there are more
abnormalities in the “lungs”, the abnormal parts are very
complicated since the “lungs’” make up the largest percentage
of the entire X-ray. However, we did not distinguish the
location of abnormalities when annotating X-ray films. For
“a little patchy blur in the bottom left lung”, “small nodule
dense shadow in the right upper lung” we annotated both
of them as an abnormality in the “lungs”, which also made
the classification difficult. The “aortic’ has the highest AUC
since it has as many abnormalities as the lungs. In addition,
the “aortic” is a rather small area and the abnormality is
relatively simple, thus achieved the best result.

We use heatmap to further understand and evaluate the
performance of models on different diseases’ classification.
Fig. 7 shows the results. The first row in the figure is the
original image of the chest X-ray, the second row is the
generated heatmap, and the third row is the original report
description corresponding to the X-ray chest. We found that
the abnormality of the “lung” part is indeed wider, which
confirms the reason for the low AUC value in Table 2. We also
found that when a single abnormality occurs, the effect of the
model is very obvious, while it performs worse when multiple
abnormalities are accompanied by overlapping parts.

V. CONCLUSIONS

This paper is based on the real situations of radiologists’
diagnosis with X-ray films in China. Through the analysis
of chesX-rays and the corresponding report, we proposed
an annotation method according to the abnormal part in the
images, and automatically generated the training label by
semi-supervised learning. According to the increasing char-
acteristics of the training set in semi-supervised learning base
on professional radiologist’s manual labeling, the average F1-
score can reach 0.86, which is 0.25 higher than K-Medoids.
At the same time, we compare the AUC values of the three
different pre-training methods for the abnormality classifi-
cation between ImageNet and ChestX-14. By comparison,
we discover that the model using the pre-training result of

74188

the large dataset ChestX-14 is significantly better than other
datasets. We found that the AUC values of “thoracic” and
“lung” were significantly lower than the other three parts.
The reason was that the number of ‘““thoracic” samples was
small, which made the model training difficult. The abnormal
parts of the “lungs” are also complicated, the distribution
area is wide, and it is easy to overlap with other parts. This
also points out the direction for future research. One direction
is to achieve a finer granularity in annotation in different
areas of the lungs and complement the analysis of overlap
area cutting. Another direction is to use the target detection
methods [34] in other fields to apply migration learning to
chest disease detection.
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