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EFFECT OF DISCONTINUOUS BOUNDARY CONDITIONS ON 

   FINITE-DIFFERENCE SOLUTIONS 

   J.Barkley Rosser 

 

      0. Preamble.  If  one  is  solving a  Laplace differential equation  

by  the  standard  5-point  or 9-point difference approximation, a discontinuity 

of  the  boundary  values will cause the approximate  solution to have a distinctive 

error  in  the  interior. The  amount and nature of these errors is discussed. 

A  short,  but  excellent, treatment of  one case is to be found on pp. 222-224 

of Milne [1], 

 

Since  the  justification  of  the  9-point difference approximation 

involves  existence  of  eight  derivatives  for  the  solution,  whereas the 

justification  of  the  5-point  difference  approximation  involves  only  four, it 

is  generally  assumed  that  the  errors  for  the  9-point difference approximation 

will  be  much  worse  than  for  the 5-point difference  approximation if there 

are  irregularities  on  the  boundary.  In  fact,  on pp.  222-224 of Milne [1] 

only  the  5-point  difference  approximation  is  considered. 

 

The fact is that the 9-point difference approximation gives better overall 

results than the 5-point. As a possible explanation for this, note that 

the 9-point difference approximation involves an average over the eight 

points  nearest  the center, and thus uses more information than the 5-point 

difference  approximation. 
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1 . Removable discontinuities. It can happen through a mischance 

that a boundary value at some point is incorrectly assigned. If the 

mistake were noticed, and corrected, there would be no discontinuity. 

However, in fact, one boundary value is assigned too large by an amount ε. 

Let u(x, y) be a solution of the difference approximation with 

zero  boundary  values except at the one point, and a  value of ε there. 

Whatever errors might have arisen from the solution with no discontinuity, 

there  will be added to them the value of u(x, y). Let us see what this 

amounts  to  in a few cases. 

By the maximum principle, 0 < u(x, y) < ε at all interior points. 

Consider  first a square, with a value of e at the midpoint  of the upper 

Edge  and  the  value zero elsewhere on the boundary. Let us set up a 

Grid  on the square, composed of squares of side unity. Let 

 

(1.1) φ (r,s)=  e±sße±irα. 

  

If φ (r, s) is to satisfy the 5-point difference equation Δ5 φ (r, s) = 0, 

then we must have 

(1. 2) 0 = (2 - cos α - cosh β) φ (r, s) . 

If φ(r, s) is to satisfy the 9-point difference equation Δ9 φ (r, s) = 0, 

then we must have 

(1. 3)   0 = (5 - 2 cos α - 2 cosh β - cos α cosh β) φ (r, s) = 0 . 

Evidently the same conditions hold if we take any linear combination 

of the right sides of (1.1), such as 

      sinh(N - s) β sin rα . 
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So with this choice of ß we have Δ9Φ(r, s) = 0. 
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satisfies  the  9-point difference  approximation  for the Laplace equation. 

Theorem 1.3.  Let  k  and   Ω be  positive integers,  with  k 

not  an  integer  multiple  of 2Ω . Then for even k 
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From this, our result follows. 

Corollary 1. For 0 < k ≤ Ω and 0 ≤ j < Ω, we have 
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Proof. Write (1.10) as 
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Corollary 2. For 0 < k < 2Ω 
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Proof. Replace Ω by 2Ω in Corollary 1, and take j = Ω. 

Theorem 1. 4.In the square of side 2Ω  in the r-s-plane with 

the left lower vertex at the origin 
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with βm  defined by (1.4) using α = (2m + 1)Π/2Ω , satisfies the 

5-point difference approximation, is zero for r = 0 and r = 2Ω 

and s = 0, while for s = 2ft it is zero except at r = Ω, where it 

takes on the value .ε 

Proof. By Theorem 1.1,the given expression satisfiesthe5-point 

difference approximation. Obviously it is zero for r =0 and r = 2Ω 

and s = 0. For s = 2Ω ,it reduces to(1.11), so that the theorem holds 

there also. 

Theorem 1.5. In the square of side 2Ω ft in the r-s-plane with 

the left lower vertex at the origin 
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 with βm defined by (1. 6) using α = (2m + 1)Π/2Ω, satisfies the 

 9-point difference approximation, is zero for r = 0 and r = 2Ω 

 and s = 0, while for s = 2Ω it is zero except at r = Ω, where it 

 takes on the value ε. 

        The  expressions  appearing  in Theorems 1. 4 and 1. 5 are  easily 

evaluated on a computer. Taking Ω = 32 gave  the results in Tables 1 

and  2,  where the  values  tabulated are to be multiplied by εX10-6 

There is symmetry about the  vertical line r = 32, which is why only 

values for r ≥ 32 are shown. 

There  is not much choice between the 5-point and 9-point values. 

However, in a given  horizontal line, the 9-point values have a smaller 

maximum  and are more smoothly graduated, hence preferable. 

There is the question how these values would behave if we change 

the  square to a rectangle or move the point of discontinuity to different 

points on the top. For the 5-point approximation, the value at the grid 

point just below the ε cannot be less than e/4, since it is one quarter 

the sum of four non-negative quantities, one of which is ε For the 

9-point approximation, the corresponding value cannot be less than ε /5. 

To  determine the largest possible values for the grid points, we 

let Ω → ∞. 
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 r   32 33 34 35 36 37 38 39 40 

s 
64 

1000000 0 0 0 0 0 0 0 0

63 363247 136486 60899 31791 18833 12265 8558 6282 4791

6Z 180014 121799 75319 47431 31278 21667 15685 11781 9119

61 113214 9 537 5 71148 51335 37181 27442 20734 160 37 12671

60 82089 75342 62563 49579 38670 30184 23774 18961 15327

59 64458 61340 54183 45747 377 36 30851 25215 20706 17124

58 53064 51377 47081 41490 35677 30267 25532 21522 18186

57 45043 44023 41276 37457 33213 29011 25122 21666 18667

56 39062 38395 36542 3 3849 30706 27441 24279 21351 18716

TABLE 1. Values from Theorem 1-4 multiplied by 106/ε. 
5-point approximation. 

 

   R 
S 

  32 33 34 35 36 37 38 39 40 

  
64 

 
1000000 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 0 

63 309268 161804 63350 31677 18587 12107 8466 6228 4757 

62 159379 126701 79420 48702 31558 21680 15641 11735 9082

61 105808 95034 73054 52657 37793 27679 20810 16049 12662 

60 79063 74358 63123 50395 39251 30513 23939 19036 15357 

59 63002 60549 54214 46142 38147 31155 2 5409 20819 17186 

58 52258 50823 46949 41641 35924 30 500 25710 21645 18266

57 44550 43639 41114 37487 33345 29170 25265 21779 18750

56 38737 38124 36 393 33825 30767 27541 24385 21445 18793

TABLE 2. Values from Theorem 1. 5 multiplied by 106/ε. 
9-point approximation. 
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satisfies the 5-point difference approximation, approaches zero as 

r → ∞ or  r → - ∞ or s → -∞,    while for s = 0 it is zero except at 

r = 0, where it takes on the value ε. 

Proof. By Theorem 1.1 the integrand satisfies the 5-point difference 

approximation. So it still will do so after being integrated. The rest 

follows easily. 

Theorem 1. 7. In the lower half plane 
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satisfies the 9-point difference approximation, approaches zero as 

r → ∞  or  r → -∞ or s → -∞,  while for  s = 0 it  is zero except 

at r = 0, where it takes the value ε. 

The integrals given can easily be evaluated on a computer by 

standard quadrature formulas. We used (25.4.18) of Abramowitz and 

Stegun [2] with h = π/210 . Subsequent checking verified that a much 

larger value of h would have sufficed. The values, except for a factor, 

are given in Tables 3 and 4. 

The values given in these tables for any grid point are the largest 

possible for a convex figure with a horizontal tangent at the origin. For 

consider a figure with part of its top boundary coinciding with the r-axis, 

including the origin. Around the boundary off the r-axis, positive 

values will be given by Theorems 1. 6 or 1.7. By the principle of the 

maximum, if we approximate a harmonic function which has these values 

-8- #1383 



   r  
s 

  0 1 2 3 4 5 6 7 8 

  
0 

 
1000000 

 
0 

 
0 

 
0 0 0

 
0 0

 
0 

-1 363380 136620 61033 31925 18969 12401 8695 6421 4931 

-2 180281 122066 75587 47699 31548 21939 15959 12058 9399 

-3 113613 95776 71549 51737 37586 27849 21145 16451 13090 

-4 82621 75874 63097 50114 39209 30726 24320 19513 15885 

-5 65122 62004 54849 46415 38408 31527 25897 21394 17820 

-6 53858 52172 47878 42290 36480 31077 26348 22346 19019 

-7 45966 44947 42202 38387 34147 29952 26070 22623 19636 

-8 40114 39448 37 597 34907 31770 28512 25359 22441 19818 

TABLE 3. Values from Theorem 1.6 multiplied by 106/ε 
5-point approximation. 

 

  r   
s 

   0 1 2 3 4 5 6 7  
8 

 
0 

 
1000000 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

-1 309401 161937 63484 31811 18723 12243 8603 6366 4897 

-2 159646 126968 79688 48970 31828 21952 15915 12012 9362 

-3 106208 95434 73455 53059 38198 28086 21220 16464 13081 

-4 79595 74890 63657 509 31 39790 31055 24485 19 588 15915 

-5 63666 61213 54879 46810 38819 31831 26091 21507 17883 

-6 53053 51618 47746 42441 36728 31309 26526 22469 19099 

-7 45473 44564 42041 38417 34279 30110 26214 22736 19718 

-8 39789 39177 37 448 34883 31831 28612 25465 22535 19894 

TABLE 4. Values from Theorem 1.7 multiplied by 106/ε. 
9-point approximation. 
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off the r-axis and is zero on the r-axis, all interior points will have 

positive values. We subtract this function from that given by 

Theorems 1. 6 or 1.7 to get a function which is zero all around the 

boundary except at the origin, where it is ε. 

So the value at the grid point just below ε will always lie somewhere 

between ε/5 and 2ε/5, whether one uses the 5-point or the 9-point 

formula. There is one exception to this, namely if ε is at a corner. In 

that case, the value ε would not enter at all into the calculation by 

means of the 5-point difference approximation; it would give values all 

identically zero, which is the correct value. However, with the 9-point 

difference approximation a value of e at a comer will have an effect. 

We will give especial attention to this later. 

Suppose we put e at 2N + 1 consecutive points on the r-axis, 

from r = -N to r = +N inclusive. The 5-point approximation in the 

lower half plane can be obtained by shifting the solution of Theorem 1. 6 

right a nd left and adding. If we go to a low enough value of s, the 

values of the sums will be less than ε. Also, if we go far enough to 

either  side, the same will be  true. So, by the principle of the maximum, 

all values in the large rectangle will be less than  ε. However, the 

values  at (0, -S) will be the sum  of 2N + 1 values from  Theorem 1.6 

at s = -S from r = -N to r = N inclusive. So the sum of these 

values is less than ε for each N. It follows that the sum of the values 

in each row is finite, and less than or equal to ε. 

-10- #1383 
 



Let Ss be the sum of the elements in the s-th row.Because our 

values satisfy the 5-point approximation, we readily conclude 

(1.12) gs -gS+1 +
g
s+2 = 0. 

We have of course 
(1.13) g0 = ε • 

The general solution of (1.12) is  

gs = A + Bs  
 

We have no trouble concluding that 

(1.14) gs = ε 

In a similar way, we conclude that for the values given in Theorem 1.7 

the sum of the values in a given row is ε. 

 

2. Genuine discontinuities of the boundary values. For the 5-point 

difference approximation, the discussion in Milne [1] was based on the 

following idea. Let the discontinuity be a jump of amount ε , located 

at the origin along the r-axis. If we add 

 
 

 

with s in the lower half plane) to the given function, it will become 

continuous. So we can account for the errors caused by the discontinuity 

by seeing how much (2.1) differs from its 5-point approximation. Except 

for a factor of ε
2
1

− this will be given by solving for the 5-point 
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difference approximation  in the  lower  half  plane for the function which is 

+1  along the  positive  part of the  real   axis and  -1 along  the negative 

part of the real axis, and comparing it with
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By anti-symmetry, we can take the approximation to the function 
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One can do the same for the 9-point difference approximation. 

We have expanded on Milne by looking at the 9 - point case, as 

well as  at other  cases than the one of infinite extent. In order not to 

confuse  the  issue with two different discontinuities at  once we consider 

a  square  with  zero  values on  three sides, while on top the values proceed 

linearly  from  1  down  to  zero  as  one proceeds from left to right. 
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Proof. As k is odd, it cannot be an integer multiple of 2Ω, so 
that we may appeal to (1.9). 
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Proof. We have 

            ∑
−

=
∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧ +=

1Ω

0n

1Ω

0n
1

Ω
2nπ

cos
2
1

Ω
nπ2cos  

 

As Ω ≥ 2, we may appeal to (1.8). 
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Now use Theorem 1.3. 

Corollary. If 1 < k < 2Ω - 1 and k is even, then 
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Theorem 2. 1. Let 0 < r < 2Ω. Then 
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Our  theorem  now follows by Lemmas 2. 2 and 2.3. 

       Case  2.  Let  r be  odd. As  before, we get 
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By Lemma 2.1 and the Corollary to Lemma 2. 3, we get 
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Our theorem now follows by Theorem 1.3. 

Theorem 2.2. In the square of side Ω in the r-s-plane with the 

left lower corner at the origin 
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is zero for r = 0 and r = Ω and for s = 0, while for s = Ω it 

decreases linearly from 1 to 0 as r goes from O to Ω (except at r = 0). 

If ßn  is defined by (1.4) using α = πn/Ω, it satisfies the 5-point 

difference approximation. If ßn is defined by (1.6) using α = πn/Ω 

it satisfies the 9-point difference approximation. 

It is of course a trivial exercise in Fourier analysis (see Rosser [ 3]) 

to find the harmonic function on the square which assumes the same boundary 

                          7 
conditions. We have listed 10 times the difference (the harmonic 

function value minus the value given in Theorem 2. 2) for both the 5-point 

case and the 9-point case, for a square of side 8, in Tables 5 and 6. 
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 r   1 2 3 4 5 6 7  

s 
 
7 

 
 
0 

 
 
71749 

 
 
45364 24887 13661 7320

 
 

3224 

 

6 -71749 0 23556 22249 15857 9753 4598  

5 -45364 -23556 0 9510 10390 7773 4028  

4 -24887 -22249 -9 510 0 4045 4297 2552  

3 -13661 -15857 -10390 -4045 0 1471 1161  

2 -7320 -9753 -7773 -4297 -1471 0 310  

1 -3224 -4598 -4028 -2552 -1161 -310 0  

TABLE 5. 107 times harmonic minus 5-point. 
                5-point values from Theorem 2.2. 
 

 r  1 2 3 4 5 6 7  

s     
7 286462 80419 30653 13893 6969 3550 1519  

6 85219 66680 36454 19816 10946 5870 2578  

5 31451 37120 28193 1852 5 11445 6548 297 3  

4 14095 20108 18651 14260 9746 5937 2789  

3 7043 11067 11534 9779 7223 4634 2241  

2 3581 5923 6596 5965 4643 3091 1528  

1 1532 2598 2994 2803 2248 1529 766  

TABLE 6. 107 times harmonic minus 9-point. 
                9-point values from Theorem 2.2. 
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We have not listed the values for r = 0, r = 8, s = 0, and s = 8, 

since these are naturally zero. 

      Various things strike us about these two tables. One is the 

antisymmetry displayed in Table 5. However, that is easily explained. 

Suppose we reflect the square across the diagonal connecting its upper 

left corner and lower right corner, and add to the original square. As 

far as the harmonic function is concerned, we will obviously get 

,
64
r)s-(8

(2.9)

since this is harmonic and satisfies the boundary conditions. As far 

as the 5-point approximation is concerned, we will get the same, and for 

the same reasons. This explains the antisymmetry. 

Actually, the 5-point approximation does not satisfy (2.9) in the 

upper left hand corner. However, what happens in the upper left hand 

corner does not enter into the 5-point approximation in any way. 

Not so for the 9-point. The 9-point approximation has a 0 in the 

upper left hand corner. After reflection, the same holds. However, (2.9) 

equals unity in the upper left hand corner. If we add together the 9-point 

approximation and its reflection, and then add in the 9-point approximation 

for the square with unity in the upper left corner and zero at all other 

boundary points, we will get (2.9) How do we calculate this third 

approximation? Obviously by subtracting from (2.9) the original 9-point 

 
approximation and its reflection. The result, multiplied by 107 , is 

shown in Table 7. 
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r   1 2 3 4 5 6 7  
S 
 
 
7 

572923 165638 62104 27988 14012 7131 3051 

6 165638 133361 73574 39925 22014 11793 5176 

5 62104 73574 56387 37177 22979 13144 5967 

4 27988 39925 37177 28520 19525 11902 5593 

3 14012 22014 22979 19525 14446 9276 4489 

2 7131 11793 13144 11902 9276 6181 3057 

1 3051 5176 5967 5593 4489 3057 1532 

 TABLE 7. 9-point approximation for an 8X8 square with 
a 1 in the upper left corner and zero on the rest 
of the boundary, multiplied by 107 . 

 

   r 
 s   

1 2 3 4 5 6 7 

7 

7

0 -2400 -399 -101 -37 -16 -6 

6 2400 0 -333 -146 -61 -26 -10 

5 399 333 0 -63 -44 -24 -10 

4 101 146 63 0 -16 -14 -7 

3 37 61 44 16 0 -5 -3 

2 16 26 24 14 5 0 -1 

1 6 10 10 7 3 1 0 

TABLE 8. 107 times harmonic minus 
modified 9-point. 
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The difficulty is that the formula in Theorem 2. 2 is zero in the 

upper left hand corner, rather than the limit of the values along the top 

edge. What we should put in the upper left hand corner is the average 

of the limits along the left edge and along the top, namely 2
1
.That 

would amount to adding half the values in Table 7 to the original 9-point 

approximation. For the difference of this and the harmonic function, we 

subtract half the values of Table 7 from those of Table 6. The results 

 
are shown, multiplied by 107, in Table 8. 

So Table 8 shows the errors if one uses the appropriately chosen 

9-point approximation. The improvement  over  the 5-point approximation, 

whose errors are shown in Table 5, is fantastic 

There is some merit in comparing our results so far with those of 

Milne [ l ]. In T able 5, the errors for s = 0 and r = 8 are zero, of 

course, since we have gotten to the other boundary. Milne is comparing 

the 5-point approximation for the infinite quarter plane with values of 

(2. 3), but reflected about the line x = -y, and with the harmonic 

function subtracted from the 5-point approximation (instead of vice versa), 

and with y for -y. So (see his p. 223) when he gets to eight units 

 
from the boundary, his values are several units times 10-4 , rather than 

zero. Nevertheless, his values out to four grid points from the point of 

discontinuity agree with Table 5 to a very few percent. 

So in a region of larger size one would expect agreement with 

Milne's values for quite a distance out. To check this, we computed the 
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equivalents of Tables 5 through 8 for a square of side 64, except that 

we took only the 8x8 blocks in the four corners. In the upper left 

hand corner, next to the discontinuity, the agreement with Milne's 

values (rather, with more accurate ones which we will present) was 

such than only a very accurate calculation can detect the difference. In 

the other three corners the 5-point approximation and the true solution 

agreed to better than three significant figures, and often up to four or 

five significant figures. This supports the customary doctrine that away 

from a discontinuity one may expect accuracy of the order of h-2. 

Suppose that, to the square of order 8 on which Tables 5-6 

are based, one adjoins to the left another square of order 8 which is 

gotten by reflecting about the left side and changing the signs. Inside 

the 8X16 rectangle one would still have the 5-point and 9-point 

approximations satisfied. If we multiply by ½ε, we would approximate 

to the case of a discontinuity of amount ε along the top edge. So 

Tables 5 and 6 to the right, and their reflections with signs changed to 

the left, would indicate the sorts of errors that would be induced. Notice 

that at the point of discontinuity we have assigned as a value the average 

of the right and left limits. If some other value were assigned, we would 

introduce additional errors, as in Section 1. 

As shown in Tables 7 and 8, one can greatly reduce the error for 

the 9-point approximation by doing a little fiddling with the value at the 

discontinuity. For the 9-point block in which the discontinuity occurs 
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at the upper left hand corner, one should assign 

 

4
3
(limit from right) +   

4
1
 (limit from left) . 

If the discontinuity occurs at the upper right hand corner, one should assign 

4
1
( limit from right) +  

4
3
 (limit from left) . 

Then one will get errors like  710
2
1 −×ε    times the values shown in 

Table 8. 

Tables 5-8 inclusive are based on a square of side 8. For larger 

squares, the results of a discontinuity are more pervasive. As we noted, 

by the time one gets to a square of side 64, the errors out as far as 8 

grid points are practically indistinguishable from those for the infinite 

case. So we might see what the latter are. 

Milne [1] has given these for the 5-point approximation (see p. 223 

of Milne [1]). We define 

xsin
dxrxx)sincos(1

xcos2

2x)cos(22x)2cos(5x2cos(5
π
1

s)U(r,(2.11)

xsin
dxrx x)sincos(1

2s
2)

2
x(sin)1

2
xsin

0
π
1s)u(r,(2.10)

+
+

+−−−
∫

=

+++∫=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

π

π

0

 

Theorem 2.3. Both u(r, s) and U(r, s) are zero for r - 0. For 

s = 0, both are +1 for positive integral values of r and -1 for 

negative integral values of r. In the lower half plane u(r, s) satisfies
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the 5-point approximation, and U(r, s) satisfies the 9-point approxima- 

tion. 

Proof. By Theorems 1.1 and 1. 2, we verify that u(r, s) and U(r, s) 

satisfy the 5-point and 9-point approximations. As u(r, s) and U(r, s) 

are odd functions of r, it remains to evaluate them for s = 0 and 

r a positive integer. As 

                 ixix eex −++=+
2
11

2
11 cos  

 

and 
 

         ,1)ix(re3)ix(re....3)ix(re1)ix(re
xsin
rxsin −−+−−++−+−=  

we get the value 1 by direct integration. 

The formulas for u(r, s) and U(r, s) were derived by interpreting 

the formula of Theorem 2. 2 as a Riemann sum for an integral and taking 

the limit as Ω → ∞ . I wish to thank Prof. Herbert S. Wilf for this 

suggestion. The values of u(r, s) and U(r, s) were calculated by 

using (25.4.18) of Abramowitz and Stegun [ 2] with h = π/210 . A check 

with h = π/29 showed that we could have used a larger value of h. 

In Table 9 we have tabulated 

                    s)).u(r,
s
r

arctan
π
2
(710 +−  

Thus this is an extension of the table on p. 223 of Milne [1]. It would 

be interesting to compare these with the errors obtained in the upper left 

hand 8 × 8 block that we computed earlier for the square of side 64. 
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However, to the accuracy shown, there is no difference! For example, 

at the eighth grid point down, next to the left edge, the errors were 

-0.00039 46571 

for the square of side 64 and 

-0.00039 46587 

for the infinite case. 

One can fill out other parts of Table 9 by appealing to the anti- 

symmetry. 

In Table 10 we have given an abridged table of 

                  .s))U(r,
s
r

arctan
π
2
(710 +−  

 

As with Tables 7 and 8, we wish to use a more appropriate 9-point solution. 

If we form 

1- U(r,s)- U(s,r) , 

we will get the 9-point solution for the case in which we have unity at 

the origin and zero along both the positive r-axis and the positive s-axis. 

7 
10 times this is tabulated in Table 11 If we add half this to U(r, s) 

(representing having  
2
1
 at the origin instead of 0) we get the appropriate 

9-point approximation. In Table 12 we have tabulated 10 times the 

difference between this and
π
2

−  arctan 
s
r
. If desired, one could fill out 

the rest of Table 10 by adding half the values of Table 11 to the values 

of Table 12. One can fill out other parts of Tables 11 and 12 by appealing 

to symmetry and antisymmetry respectively. 
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r   1 2 3 4 5 6 7 8  
 
 S 
 -1 

0 71800 45563 25370 14600 8929 5790 3947

-2 -71800 0 23797 22989 17406 12469 8915 6474
-3 -45563 -23797 0 10116 12005 10808 8893 7092
-4 -25370 -22989 -10116 0 5118 6846 6869 6203

-5 -14600 -17406 -12005 -5118 0 2917 4214 4549

-6 -8929 -12469 -10808 -6846 -2917 0 1810 2759
-7 -5790 -8915 -8893 -6869 -4214 -1810 0 1197
-8 -3947 -6474 -7092 -6203 -4549 -27 59 -1197 0

                   s)}u(r,
2
r

arctan
π
2
{7109.TABLE +−  

 

r  9 10 11 12 13 14 15  16   
 
 S 
  -1 

 
2803 

 
2059 

 
1555 

 
1203 

 
949 

 
762 

 
621 

  
512 

 

- 2 4800 3635 2808 2209 1765 1431 1176  977  

- 3 5613 4456 3565 2880 2350 1937 1613  1354  

- 4 5349 4518 3786 3169 2660 2242 1900  1620  

- 5 4388 4008 3558 3113 2705 2344 2032  1764  

- 6 3137 3176 3030 2797 2533 2269 2020  1794  

- 7 1897 2242 2354 2324 2213 2061 1894  1725  

- 8 831 1356 1651 1785 1810 1768 1685  1581  

- 9 0 600 1002 1249 1381 1431 1427  1387  

-10 -600 0 447 760 965 1088 1148  1165  

-11 -1002 -447 0 341 590 761 871  933  

-12 -1249 -760 -341 0 267 467 610  707  

-13 -1381 -965 -590 -267 0 212 375  496  

-14 -1431 -1088 -761 -467 -212 0 172  306  

-15 -1427 -1148 -871 -610 -37 5 -172 0  141  

-16 -1387 -1165 -933 -707 -496 -306 -141  0  

         .s)}u(r,
s
r

arctan
π
2
{710(cont)9TABLE +−  
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r  17 18 19 20 21 22 23 24  
 
 s 
- 1 

 
428 

 
361 

 
307 

 
263 

 
228 

 
198 

 
173 

 
153 

- 2 820 695 594 511 443 386 339 299 
- 3 1147 979 842 729 635 556 490 433 
- 4 1389 1198 1039 906 795 700 619 550 

- 5 1536 1343 1178 1037 916 813 724 647 

- 6 1591 1412 1255 1117 997 892 800 720 
- 7 1563 1413 1275 1150 1038 938 849 7 69 
- 8 1469 1355 1244 1139 1041 952 870 795 

- 9 1325 1251 1172 1012 937 865 799 

-10 1150 1116 1069 1014 956 897 839 783 
-11 960 962 945 917 880 839 795 751 
-12 7 67 800 811 806 790 766 7 37 705 

-13 581 638 67 2 688 691 684 669 650 

-14 409 484 536 569 588 596 595 587 
-15 253 341 406 454 486 507 517 520 
-16 117 212 287 344 388 418 439 451 

-17 0 98 179 244 295 334 362 382 

-18 -98 0 83 152 209 254 289 316 
-19 -179 -83 0 71 131 180 220 252 
-20 -244 -152 -71 0 61 113 156 192 

-21 -295 -209 -131 -61 0 53 98 137 

-22 -334 -254 -180 -113 -53 0 46 86 
-23 -362 -220 -156 -98 -46 0 41 
-24 -382 

-289 
-316 -252 -192 -137 -86 -41 0 

 

.s)u(r,
s
r

arctan
π
2710(cont).9TABLE

⎭
⎬
⎫

⎩
⎨
⎧ +−  
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r  1 2 3 4 5 6 7  
 
 S 
  
-1 

 
286615 

 
80726 

 
31116

 
14523 

 
7794

 
4628

 
2960 

-2 85525 67291 37369 21050 12542 7923 5271 

-3 31914 38035 29549 20324 13722 9402 6606 

-4 14725 23343 20450 16591 12611 9402 7020 

-5 7370 12666 13813 12645 10613 8550 6775 

-6 4663 7982 9457 9435 8562 7369 6166 

-7 2978 5301 6638 7044 6789 6171 5414 

       ,s)}U(r,
s
r

arctan
π
2
{710.TABLE +

The errors  for the 5-point  approximation (indicated in Table 9)  

are far greater than those for the modified 9-point approximation (indicated 

in Table 12). The difference is rendered even more striking by the fact 

that Table 9 shows 107 times the error, while Table 12 shows 109 

times the error! 

We have looked at squares of side 8 and 64, and at the 

infinite case, and have found the errors near the discontinuity to be 

strikingly similar, and only slightly dependent on size. It seems reason- 

able to assume that the same holds for all sorts of configurations. 

As pointed out in Milne [1], if one has a fine mesh and modest 

requirements for accuracy, it may not be necessary to remove the 
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discontinuity. Tables 8 and 12 show the great advantage of using a 

9-point approximation. 

 

3. Discontinuous derivatives Though the boundary values may 

be continuous, they may have discontinuous derivatives, which causes 

some trouble. We will look at the case of a square of side 2Ω which 

is zero on three sides; on the top it rises linearly from zero to 
2
1
 at the 

midpoint and then decreases linearly back to zero. By scaling, this is 

equivalent to a finer grid on a unit square which is zero on three sides, 

and on the top rises linearly from zero to 
2
1
 at the midpoint and then 

decreases linearly back to zero. 

∑
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  r 
S    

1 2 3 4     5 6 7 8 

  
-1 

 
573229 

 
166251 

 
63029 

 
29248 15664 

 
9290 

 
5938 

 
 4017 

-2 166251 134582 75405 42393 25208 15905 10572  7341 
-3 63029 75405 59099 4077 4 27535 18859 13245  9555 
-4 29248 42393 40774 33182 25256 18837 14063 10610 

-5 15664 25208 27535 25256 21227 17112 13564 10716 

-6 9290 15905 18859 18837 17112 14739 12337 10186 
-7    5938 10572 13245 14063 13564 12337 10828  9307 

-8 
4017 7341 9555 10610 10716 10186 9307  8290 

TABLE 11. 107 times 9-point with unity in upper left. 

 
9 10 11 12   13 14 15 10    r  

 
 
  s 

2840 2080 1563 1211 955 765 623 514 

- 2 5286 3923 2988 2325 1843 1485 1214 1005 
- 3 707 3 5358 4143 326 3 2612 2121 1744 1450 
- 4 8119 6308 4974 3979 3224 2644 2192 1836 

- 5 8499 6790 547 5 4458 3665 3041 2546 2150 

- 6 8371 6884 5682 4716 3939 3312 2804 2389 
- 7 7911 6691 5654 4785 4063 3465 2968 2555 
- 8 7267 6312 5456 4709 4065 3516 3049 2653 

- 9 6550 5830 5149 4527 3973 3485 3059 2691 

-10 5830 5305 4779 4277 3812 3391 3014 2679 
-11 5149 4779 4384 3989 3608 3252 2925 2628 
-12 4527 4277 3989 3684 3379 3084 2805 2546 

-13 397 3 3812 3608 3379 3139 2899 2666 2444 

-14 3485 3391 3252 3084 2899 2707 2514 2327 
-l5 3059 3014 2925 2805 2666 2514 2358 2201 
-16 2691 2679 2628 2546 2444 2327 2201 2072 

TABLE 1l (cont.). 107 times 9-Point with unity in upper left. 
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  17  18  19  20  21  22  23  24   r 
 
 s 
 
 - 1

 
429 

 
360 

 
308 

 
264 

 
228 

 
198 

 
174 

 
153 

- 2 840 710 60 5 520 450 392 344 30 3 
- 3 1219 1033 884 76l 660 576 506 446 
_ 4 1551 1322 1135 981 853 747 657 581 

- 5 1829 1568 1353 1175 1026 901 795 705 

- 6 2049 1768 1535 1340 1175 1036 917 816 
- 7 2210 1922 1679 1474 1299 1150 1023 913 
- 8 2316 2030 1786 1577 1398 1244 1110 995 

- 9 2372 2096 1857 1651 1472 1316 1181 1062 

-10 2384 2125 1897 1698 1523 1369 1234 1114 
-11 2 361 2122 1909 1720 1552 1403 1271 1153 
-12 2309 209 3 1897 1721 1563 1421 1293 1179 

-13 2236 2043 1866 1704 1557 1423 1302 1193 

-14 2147 1978 1819 1673 1538 1413 1300 1196 
-15 2048 1901 1761 1630 1507 1393 1288 1191 
-16 1943 1817 1695 1578 1468 1364 1267 1177 

-17 1836 1728 1622 1520 1422 1328 1240 1157 

-18 1728 1637 1547 1457 1371 1287 1207 1132 
-19 1622 1547 1470 1392 1316 1242 1171 1102 
-20 1520 1457 1392 1326 1260 1195 1131 1069 

-21 1422 1371 1316 1260 1203 1146 1089 1034 

-22 1328 1287 1242 1195 1146 1096 1046 997 
-23 1240 1207 1171 1131 1089 1046 1003 959 
-24 1157 1132 1102 1069 1034 997  959 921 

          TABLE 1l  (cont.)-  107  times 9-point  with  unity  in  upper left. 
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  R 
 s 

  1 2 3 4 5 6 7 8 

 
 

 
0 

 
-239987 

 
-39905 -10128 -3795 -1739

 
-890 

 
-49.1 

-2 239987 0 -33308 -14669 -6190 -2907 -1511 -849 
-3 3990 5 33308 0 -6335 -4574 -2716 -1593 -962 
-4 10128 14669 6335 0 -1726 -1637 -1207 -833 

-5 379 5 6190 4574 1726 0 -608 -679 -577 

-6 1739 2907 2716 1637 60 8 0 -255 -318 
-7 890 1511 1593 1207 679 255 0 -122 
-8 491 849 962 833 577 318 122 0 

TABLE 12. 109 times harmonic minus modified 9-point. 

 
 

  r 
s 

 
9 

 
10 

 
11 12 13 14

 
15 

 
16 

- 1 -288 -177 -113 -7 5 -51 -36 -26 -19 

- 2 -506 -316 -205 -138 -95 -67 -48 -36 

- 3 -602 -390 -261 -179 -126 -90 -66 -49 
- 4 -569 -392 -27 3 -194 -140 -103 -77 -58 

- 5 -448 -336 -250 -186 -139 -105 -80 -62 

- 6 -298 -252 -203 -161 -126 -99 -78 -6l 
- 7 -164 -165 -148 -127 -105 -86 -70 -57 
- 8 -64 -91 -96 -91 -81 -70 -60 -50 

- 9 0 -36 -54 -59 -58 -54 -48 -42 
-10 36 0 -22 -33 -38 -39 -37 -34 
-11 54 22 0 -14 -22 -25 -26 -26 
-12 59 33 14 0 -9 -14 -17 -18 

-13 58 38 11 9 0 -6 -10 -12 

-14 54 39 25 14 6 0 -4 -7 
-15 48 37 26 17 10 4 0 -3 
-16 42 34 26 18 12 7 3 0 

    TABLE 12 (cont.). 10 times harmonic minus modified 9-point. 
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   r  
s 

 17 18 19 20 21 22 23 24 

 
 - 1 

 
-14 

 
-11 

 
-8 

 
-6 

 
-5 

 
-4 

 
-3 

 
-3 

- 2 -27 -20 -16 -12 -10 -8 -6 -5 
- 3 -37 -28 -22 -17 -14 -11 -9 -7 
- 4 -44 -34 -27 -21 -17 -14 -11 -9 

- 5 -48 -38 -30 -24 -19 -16 -13  -11 

- 6 -49 -39 -31 -25 -21 -17 -14 -12 
- 7 -46 -38 -31 -25 -21 -17 -15   -12  
- 8 -42 -35 -29 -25 -21 -17 -15 -12 

- 9 -37 -31 -27 -23 -19 -17 -14 -12 

-10 -30 -27 -24 -21 -18 -15 -13 -12 
-11 -24 -22 -20 -18 -16 -14 -12 -11 
-12 -18 -18 -16 -15 -14 -12 -11 -10 

-13 -13 -13 -13 -12 -12 -11 -10 -9 

-14 -9 -10 -10 -10 -9 -9 -8 -8 
-15 -5 -6 -7 -7 -7 -7 -7 -7 
-16 -2 -4 -5 -5 -6 -6 -6 -6 

-17 0 -2 -3 -4 -4 -4 -5 -4 

-18 2 0 -1 -2 -3 -3 -3 -4 
-19 3 1 0 -1 -2 -2 -3 -3 
-20 4 2 1 0 -1 -1 -2 -2 

-21 4 3 2 1 0 -1 -1 -1 

-22 4 3 2 1 1 0 0 -1 
-23 5 3 3 2 1 0 0 0 
-24 4 4 3 2 1 1 0 0 

TABLE 12 (cont.). 109 times harmonic minus modified 9-point. 
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      Lemma 3. 2. if 0 < k ≤ Ω and 0 ≤ j < Ω, then 
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     Theorem 3.1. If  0  < |k | < Ω, then 
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Combining (3.4), (3.5), and (3.6) gives 
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From  this, our  theorem  follows  by  Lemma 3.2. 

Corollary.  If  0  ≤  r ≤ 2Ω,  then 
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Theorem 3.2 . In the square of side 2Ω in the r-s-plane with the 

left lower corner at the origin 
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is zero for r = 0 and r = 2Ω and for s - 0, while for s = 2Ω it 

increases linearly from 0 to ½ as r goes from 0 to Ω and then 

decreases linearly back to 0 as r goes from Ω to 2Ω. If 3  is 

defined by (1.4) using a = (2m + l)π/2Ω, it satisfies the 5-point difference 

approximation. If ßm  is defined by (1. 6) using α = (2m + l)π/2Ω, it 

satisfies the 9-point approximation. 
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r   8 9 10 11 12 13 14 15  
 
 s 
 
 15 

 
-669665 

 
-144578 

 
-28244 -6515 -1740

 
-484 

 
-115 -16

14 -365566 -195760 -78350 -30475 -12466 -5394 -2374 -912 

13 -232806 -174120 -99990 -52018 -26469 -13473 -6679 -2771 

12 -167881 -143815 -100596 -63013 -37349 -21368 -11513 -5026

11 -130010 -118273 -92531 -65360 -43150 -26939 -15472 -7023 

10 -104626 -98053 -81938 -625956 -44568 -29673 -17396 -8369 

9 -85870 -81798 -71163 -57242 -42960 -29970 -18735 -8966 

8 -71027 -68318 -60966 -50752 -39506 -28498 -18294 -8905

   TABLE 13. 108  times  harmonic  minus 5-point  approximation  for a 
              discontinuous derivative with a 16 X 16 grid.  

  r 
s 

   8 9 10 11 12 13 14 15 

 
15 

 
-344365 

 
-157109 

 
-61560 

 
-29890 

 
-16506 

 
-9602 

 
-5419 

 
-2465 

14 -168165 -127260 -77328 -45521 -27531 -16787 -9718 -4476 

13 -105864 -93375 -69538 -47 844 -31858 -20 569 -12307 -5767 

12 -75173 -69920 -57625 -43774 -31459 -21402 -13236 -6316 

11 -56501 -53773 -46748 -37748 -28640 -20 312 -12923 -6268 

10 -43744 -42124 -37737 -31650 -24917 -18224 -11857 -5829 

9 -34403 -33351 -30414 -26126 -21086 -15764 -10429 -5180 

8 -27245 -26518 -24451 -21329 -17504 -13287 -8896 -4452 

   TABLE 14. 108  times harmonic  minus 9-point  approximation for a 
 discontinuous derivative with a 16 x 16 grid. 
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   32 33 34 35 36 37 38 39    r 
  
 s 
 
 63 

 
-167 563 

 
-36288 

 
-7196 

 
-1751 -540

 
-205 

 
-90 

 
-44 

62 -91716 -49260 -19894 -790 5 -3379 -1586 -814 -450 

61 -58763 -44087 --25543 -13533 -7130 -3878 -2206 -1315 

60 -42849 -368 30 -26019 -16620 -10214 -6260 -3899 -2488 

59 -33788 -30854 -24423 -17647 -12139 -8184 -5509 -3741 

58 -27940 -26300 -22287 -17490 -13063 -9492 -6316 -4888 

57 -23835 -22824 -20190 -16765 -13301 -10245 -77 58 -5830 

56 -20784 -20115 -18306 -15815 -13123 -10577 -8364 -6539 

   TABLE 15. 108  times harmonic minus 5-point  approximation  for a 
  discontinuous derivative with a 64 X 64 grid.  

   32 33 34 35 36 37 38 39   r 
s 
  
 63 

 
-86735 

 
-39803 

 
-15936 

 
-8055 

 
-4764 

 
-3118 

 
-2187 

 
-1612 

62 -43066 -328 52 -20409 -12526 -8133 -5599 -4047 -3040 

61 -27972 -24867 -18962 -13634 -9783 -7168 -5393 -4162 

60 -20745 -19453 -16444 -13095 -10189 -7918 -6213 -4942 

59 -16481 -15822 -14137 -12011 -9919 -8097 -6602 -5409 

58 -13650 -13269 -12244 -10848 -9 350 -7934 -6686 -5628 

57 -11627 -11387 -10721 -9768 -8683 -7592 -6574 -5666 

56 -10105 -9943 -9489 -8815 -8014 -7171 -6347 -5581 

  TABLE 16. 108  times harmonic minus 9-point approximation for a 
discontinuous derivative with a 64 x 64 grid. 
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We easily define the harmonic function which assumes the same 

boundary values. We have listed 10 times the difference (the 

harmonic function value minus the value given in Theorem 3.2) for both 

the 5-point case and the 9-point case for Ω =8 in Tables 13 and 14, 

and for Ω = 32 in Tables 15 and 16. Because of symmetry, values are 

listed only from the midpoint onward. 

For the 16 x 16 grid, the 9-point approximation is markedly superior 

for most points, as one can see by comparing Tables 13 and 14. From 

Tables 15 and l6, we see that for the 64 X 64 grid the 9-point approxima- 

tion is still superior for most points, but less strikingly so. 

Comparing the 16 X 16 grid tables with the 64 X 64 grid tables 

certainly leads one to conjecture that for a given discontinuity of the 

derivative the error decreases like the first power of the mesh size. We 

have no idea if this is really so, much less how to prove it. Such evidence 

as we have is based on too few cases to be more than suggestive. 

4. The order of the error. The usual type of estimate of the order 

of the error goes something like this (see Theorem 3 on p. 218 of 

Milne [1]). If the region can be enclosed in a circle of radius ρ, and 

all fourth derivatives of u(x, y) are bounded in absolute value by M, 

then if one uses a 5-point approximation with a mesh of side h, the 

error at each nodal point will be less than 

(4.1)      
24

2p2Mh
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As this applies to each nodal point, the result certainly fails 

if the boundary values or their derivatives are discontinuous. 

However, one can approach the matter differently. Fix a point 

inside the region. For meshes for which this is a mesh point, how 

does the error vary with the mesh size? Suppose one has a discontinuity 

of the boundary. If the mesh is chosen so that this point is two mesh 

points interior from the point of discontinuity, the error will inevitably be 

about 0.0035 times the amount of the discontinuity for the 5-point 

approximation. Now hold the point fixed, and halve the mesh size. The 

error will now not exceed 0.0013 times the amount of the discontinuity. 

This  is  not  a  drop  of  the  order  of  h2, but is better than h. If we 

halve again, we have dropped to less than 0.0004 times the amount of the 

 
discontinuity. This is still not the order of h2, but is improving. With 

yet another halving, the error drops by the order of about a factor of four. 

If one has a very fast way to solve the 5-point approximation with 

a fine mesh, then one can take the mesh fine enough so that for most 

points of the region, one will get adequate accuracy. For discontinuities 

of the derivative of a boundary condition, this result is even more so. 

Only  the  points  near the  discontinuity  will be  badly  affected. If one  

can afford to take the mesh fine enough so that all points of interest are 

as much as sixteen mesh points from the discontinuity, one will not do 

too badly. 
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One could try refining the mesh locally, near the discontinuity. 

However, it would probably be less trouble to remove the discontinuity, 

as suggested on pp.221-222 of Milne [l]. 

As the 9-point approximation is more accurate than the 5-point, 

the same applies still more strongly to it. Of course, one  cannot hope 

to get accuracy to order six, as is guaranteed for the Laplace equation 

when   everything is very smooth and one uses the 9-point approximation. 
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