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In this letter, the channel capacity under different transmission policies
is analysed using a mixture gamma (MG) distribution. Specifically, the
capacity of the channel with inversion and fixed rate (CIFR), optimum
power and rate adaptation (OPRA), and truncated inversion and fixed
rate (TIFR) are derived in unified exact simple closed-form expressions.
The composite α − λ − η − µ/gamma fading channel which includes
most of the well-known fading distributions as special cases, has been
employed in this work. Moreover, a comparison between numerical and
simulation results has been carried out to verify the validation of the
derived expressions.

Introduction: The analysis of the channel capacity under different
transmission policies has been given a special attention in the technical
literature. For instance, the capacity of the channel with inversion and
fixed rate (CIFR), optimum power rate and adaptation (OPRA), and
truncated inversion and fixed rate (TIFR) over Rayleigh and Nakagami-m
fading channels are analysed in [1] and [2], respectively.

Recently, several works have been dedicated to analyse the capacity
with adaptive transmission protocols over generalised fading channels.
For example, the analysis in [3] and [4] are carried out over η − µ
and α− µ fading channels, respectively. The former model is employed
to represent the non-line-of-sight (NLoS) communication scenarios
whereas the latter is utilised for the non-linear environment. In [5],
the capacity of composite η − µ/gamma fading channel is investigated.
The Fox’s H-function is used in [6] to derive unified expressions of
the channel capacity for a variety of fading channels under different
transmission strategies. However, there are some distributions that can
not be modelled by this function such as α− µ/gamma. Moreover, the
Fox’s H-function is defined in the form of Barnes-type contour integral
(please see [6, eq. (2)]). Therefore, it does not provide clear insight into
the impact of the fading parameters on the system performance.

Motivated by there is no general unified framework for the channel
capacity under different transmission policies, this letter is devoted to
fill this gap by using a mixture gamma (MG) distribution [7]. This
distribution has been widely utilised in the open literature for various
applications of communication systems [8, 9]. This is because it gives
simple closed-form expression of the performance metrics with good
matching to the practical measurements. To this end, the channel capacity
over composite α− λ− η − µ fading condition which is proposed by
[10] as a generalised model of α− µ, λ− µ, and η − µ, fading channel
and gamma distribution is analysed.

MG channel model: The probability density function (PDF) of the
instantaneous signal-to-noise (SNR) using a MG distribution is expressed
as [7, eq. (1)]

fγ(γ) =

M∑
j=1

Ξjγ
ϕj−1e−ρjγ (1)

where M is the efficient number of Gamma distributions that provides
the minimum mean square error (MSE) between the approximate and
exact PDFs and Ξj , ϕj , and ρj represent the parameters of jth Gamma
component.

Channel capacity with OPRA: The normalised channel capacity with
OPRA is given as [1, eq. (7)]

COPRA =

∫∞
γ0

log2

(
γ

γ0

)
fγ(γ)dγ (2)

where γ0 is a threshold value that should satisfy the following identity∫∞
γ0

(
1

γ0
−

1

γ

)
fγ(γ)dγ = 1 (3)

Inserting (1) in (2), this yields

COPRA =

M∑
j=1

Ξj

∫∞
γ0

γϕj−1e−ρjγ log2

(
γ

γ0

)
dγ (4)

Using the substitution γ = γ0t, (4) becomes

COPRA =
1

ln2

M∑
j=1

Ξjγ
ϕj
0

∫∞
1

tϕj−1e−ρjγ0tln(t)dt (5)

With the aid of [11, eq. (4.358.1)], the integration of (5) can be
computed in exact closed-form expression as

COPRA =
1

ln2

M∑
j=1

Ξjγ
ϕj
0

∂{(ρjγ0)−ϕjΓ(ϕj , ρjγ0)}
∂{ϕj}

(6)

where ∂{y(x)}
∂x

is the partial derivative and Γ(a, b) =
∫∞
b
xa−1e−xdx is

the upper incomplete gamma function [11, eq. (8.350.2)].
Invoking the identity [12, eq. (06.06.20.0011.01)] to evaluate the

partial derivative of (6) with respect to ϕj . Consequently, we have

COPRA =
1

ln2

M∑
j=1

Ξj

ρ
ϕj
j

G3,0
2,3

[
1, 1

0, 0, ϕj

∣∣∣∣ρjγ0] (7)

where Ga,bc,d[.] is the Meijer’s G-function defined in [11, eq. (9.301)].
When ϕj is an integer number for each jth, (5) can be calculated by

using [1, Appendix A] as follows

COPRA =
1

ln2

M∑
j=1

Ξj

ρ
ϕj
j

Γ(ϕj)

ϕj−1∑
l=0

Γ(l, ρjγ0)

l!
(8)

where Γ(a) = Γ(a, 0) is the incomplete gamma function.

Capacity with CIFR: The normalised capacity with CIFR can be
evaluated by [1, eq. (46)]

CCIFR = log2

(
1 +

( ∫∞
0

fγ(γ)

γ
dγ

)−1)
(9)

Plugging (1) in (9) and employing [11, eq. (3.381.4)] to calculate the
integral. Thus, this yields

CCIFR = log2

(
1 +

(
M∑
j=1

Ξj

ρ
ϕj−1

j

Γ(ϕj − 1)

)−1)
(10)

One can see that (9) is valid for ϕj > 1.

Capacity with TIFR: The normalised capacity with TIFR is evaluated by
[1, eq. (47)]

CTIFR = log2

(
1 +

( ∫∞
γ0

fγ(γ)

γ
dγ

)−1)
(1− Fγ(γ0)) (11)

where γ0 is the predefined threshold value and Fγ(γ0) stands for the
cumulative distribution function (CDF) of the instantaneous SNR at γ0
that is given in [7, eq. (2)].

Substituting (1) into (11) and recalling [11, eq. (3.381.3)] to compute
the integral, the result is

CTIFR = log2

(
1 +

(
M∑
j=1

Ξj

ρ
ϕj−1

j

Γ(ϕj − 1, ρjγ0)

)−1)
(1− Fγ(γ0))

(12)

Modelling of composite α− λ− η − µ/gamma fading channel using a
MG distribution: The PDF of the instantaneous SNR over composite
α− λ− η − µ/gamma fading can be obtained by averaging the PDF
of α− λ− η − µ [10, eq. (10)] over gamma distribution [5, eq. (5)].
Accordingly, this yields

fγ(γ) =

√
πα(µ(1 + η−1))µ+

1
2

Γ(µ)Γ(k)Ωkbµ−
1
2

(
η

1− λ2

)µ
γα(µ+

1
2
)−1

×
∫∞
0

yk−α(µ+
1
2
)−1e

−c γ
α

yα
− y

Ω Iµ− 1
2

(
µ(1 + η)bγα

2ηyα

)
dy (13)

where α, µ, k, and Ω are the non-linearity severe index, the real extension
of the number of multipath clusters, shadowing severity parameter,
and mean power, respectively. Moreover, Ia(.) is the modified Bessel
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function of the first kind and ath order [11, eq. (8.440)]. The parameter η
denotes the power ratio between the quadrature and in-phase scattered
components whereas λ stands for the correlation coefficient between
them. The parameters b and c are given as

b=

√
(η − 1)2 + 4ηλ2

1− λ2
c=

µ(1 + η)2

2η(1− λ2)
(14)

Using the substitution x= c γ
α

yα
into (13), we have

fγ(γ) =

√
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1
2 c

k
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It can be noticed that (15) can be expressed as

fγ(γ) =

√
π(µ(1 + η−1))µ+

1
2 c

k
α
−µ− 1

2 ηµγk−1
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1
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where z(x) = xµ−
k
α
− 1

2 e−
(
c
x

) 1
α γ
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2

(µ(1+η)b
2ηc

x
)
.

The integration in (16), P =
∫∞
0
e−xz(x)dx can be highly

approximated using a Gaussian-Laguerre quadrature sum, P =∑M
j=1 wjz(xj) where wj and xj are the abscissas and weight factors

provided in [13]. Hence, (16) can be rewritten using a MG distribution
with the equivalent parameters

Ξj =
θj∑M

i=1θiΓ(ϕi)ρi−ϕi
, ϕj = k, ρj =

c
1
α

Ωx
1
α
j

,
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1
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)
(17)
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Fig. 1 Normalised capacity with OPRA against average SNR, γ̄, over α−
λ− η − µ/gamma fading for different values of α, η, µ, k and λ= 0.1

Numerical results: Fig. 1 and Fig. 2 demonstrate the normalised capacity
with OPRA and CIFR and TIFR over composite α− λ− η − µ/gamma
fading channel against the average SNR, γ̄, respectively, for different
values of the fading parameters. The number of components, namely, M ,
is chosen to achieve MSE≤ 10−8. From both figures, it can be observed
that the channel capacity improves when α, η, µ or/and k increase. This is
because higher α, η, µ and k mean the non-linearity effect of the channel
is low, the number of multipath clusters is large, the received power is
high and the shadowing impact is reduced, respectively. In addition, by
inserting α= 2, λ→ 0, η= 1, k→∞ and µ= 1 for Rayleigh and µ= 3
for Nakagami-3 in eq. (17), the COPRA for the aforementioned fading
channels can be deduced from eq. (7) as shown in Fig. 1.
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Fig. 2 Normalised capacity with CIFR and TIFR against average SNR, γ̄, over
α− λ− η − µ/gamma fading for different values of α, η, µ, k and λ= 0.1

Conclusion: In this letter, a MG distribution was used to derive a unified
framework of the channel capacity under different transmission policies.
The PDF of a MG distribution is expressed in terms of the power and
exponential functions. To this effect, simple closed-form mathematically
tractable expressions of the capacity with OPRA, CIFR, and TIFR were
obtained. The derived results were applied for the composite α− λ−
η − µ/gamma fading channels that have not been yet investigated in the
technical literature. Furthermore, the results of this work can be employed
for all the special cases of α− λ− η − µ/gamma fading which are most
of the conventional, generalised and composite distributions such as
Nakagami-m, and α− η − µ/gamma.
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