
Received July 24, 2019, accepted August 15, 2019, date of publication August 26, 2019, date of current version September 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937631

Performance Analysis of Physical-Layer Security
Over Fluctuating Beckmann Fading Channels
HUSSIEN AL-HMOOD 1, (Member, IEEE), AND
HAMED AL-RAWESHIDY 2, (Senior Member, IEEE)
1Electrical and Electronic Engineering (EEE) Department, University of Thi-Qar, Thi-Qar 0096442, Iraq
2Electrical and Computer Engineering (ECE) Department, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH,
U.K.

Corresponding author: Hussien Al-Hmood (hussien.al-hmood@brunel.ac.uk)

ABSTRACT In this paper, we analyse the performance of physical layer security over Fluctuating Beck-
mann (FB) fading channel, which is an extended model of both the κ − µ shadowed and the classical
Beckmann distributions. Specifically, the average secrecy capacity (ASC), secure outage probability (SOP),
the lower bound of SOP (SOPL), and the probability of strictly positive secrecy capacity (SPSC) are
derived using two different values of the fading parameters, namely, m and µ which represent the multipath
and shadowing severity impacts, respectively. Firstly, when the fading parameters are arbitrary values,
the performance metrics are derived in exact expressions in terms of the extended generalised bivariate
Fox’s H -function (EGBFHF) that has been widely implemented in the open literature. In the second case,
to obtain simple mathematically tractable expressions in terms of analytic functions as well as to gain more
insight on the behaviour of the physical layer security over Fluctuating Beckmann fading channel models,
m and µ are assumed to be integer and even numbers, respectively. In addition, the asymptotic behaviour for
all the studied performance metrics has been provided. The numerical results of this analysis are verified via
Monte Carlo simulations.

INDEX TERMS Fluctuating Beckmann fading channel, average secrecy capacity, secure outage probability,
probability of strictly positive secrecy capacity.

I. INTRODUCTION
Shannon’s information-theoretic notion of perfect secrecy has
been developed by Wyner using the wiretap channel [1].
In the notion of this channel, an eavesdropper is presented
when a legitimate user, namely, Alice, communicates in
secrecy with the intended receiver, which is called Bob.
The performance of the physical layer security over dif-
ferent fading channel models has been widely analysed in
the open literature. For instance, the probability of strictly
positive secrecy capacity (SPSC), the secure outage proba-
bility (SOP), and the average secrecy capacity (ASC) when
the wireless channels subject to the additive white Gaussian
noise (AWGN) and Rayleigh fading channel are given in [2]
and [3], respectively. In [4], the SPSC when both the main
and eavesdropper channels undergo Rician fading channel is
derived. The SOP and the SPSC of the physical layer using
Rician andNakagami-m fading conditions for the Bob and the
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eavesdropper wireless channels are given in [5]. The Weibull
fading channel model is used in [6] and [7] to study the SPSC
and ASC, respectively.

Recently, many works have been implemented using var-
ious generalized fading distributions that unify most of the
well-known channel models. In addition, they provide results
closer to the practical data than the conventional distributions,
namely, Rayleigh, Nakagami-m, and Nakagami-n. In [8],
the ASC over κ − µ fading channel that is used to model the
line-of-sight (LoS) communication environment is derived.
The performance of the physical layer security in non-linear
communication scenario is analysed in 9] and [10] via utilis-
ing the α−µ fading condition. Moreover, the ASC, the SOP,
the SOPL , and the SPSC of the physical layer over α − µ
fading using the Fox’s H -function channel model, which is a
unified framework for a variety of distributions, are presented
in [11]. The ASC using the κ − µ/α − µ and α − µ/κ − µ
fading scenarios for the main/eavesdropper channels is given
in [12]. The more generalised fading channels α − κ − µ
and α − η − µ are used in [13] to derive the SOPL and its

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 119541

https://orcid.org/0000-0001-7637-5624
https://orcid.org/0000-0002-3702-8192


H. Al-Hmood, H. Al-Raweshidy: Performance Analysis of Physical Layer Security Over FB Fading Channels

asymptotic value. These fading distributions are provided in
a single model which is α − η − κ − µ that is also used
to represent both the main channel and the eavesdropper’s
channel of the classic Wyner’s wiretap model in [14].

The wireless communication channels may also affected
by the multipath and shadowing simultaneously. Hence,
the performance metrics of the physical layer security over
composite fading channels have been also derived by sev-
eral efforts in the open literature. For example, the analysis
in [15]-[17] are investigated over generalised-K (KG) fading
channel, which is a composite of Nakagami-m/gamma distri-
butions using different methods. In [11] and [18], the Fisher-
Snedecor F distribution that is proposed as an alternative
approach for the KG fading condition via employing the
inverse Nakagami-m distribution instead of gamma model is
used to derive the expression of the ASC, the SOP, the SOPL ,
and the SPSC of the physical layer. The ASC and the SOP
over κ − µ shadowed fading are given in [19] for integer
fading parameters as well as in terms of the derivative of the
incomplete moment generating function IMGF) framework
that is included a bivariate confluent hypergeometric function
82(.). This channel model is also utilised in [20] to anal-
yse the SOPL and SPSC using the exact probability density
function (PDF) and the Gamma distribution as an approxi-
mate approach. However, the results in both efforts are either
included double infinite series or approximated. Therefore,
the authors in [21] have extensively analysed the performance
of the physical layer security over κ − µ shadowed fading
channel using exact closed-form analytic expressions for both
scenarios of the values of the fading parameters.

More recent, the so-called Fluctuating Beckmann (FB)
fading channel has been proposed as an extended model
of the κ − µ shadowed and the classical Beckmann distri-
butions [22]. The FB fading model includes the one-sided
Gaussian, Rayleigh, Nakagami-m, Rician, κ − µ, η − µ,
η− κ , Beckmann, Rician shadowed and the κ −µ shadowed
distributions as special cases. Hence, the FB fading channel is
more generalised than the κ−µ shadowed fading. In addition
to [22], the FB fading channel model has been utilised by very
few works in the open technical literature [23 and references
therein]. This is because its statistical properties are expressed
in terms of the multivariate confluent hypergeometric func-
tion 82(.) which is mathematically complicated.
Motivated by the above, this paper is dedicated to anal-

yse the secrecy performance of the physical layer over FB
fading channels. Our main contributions are summarised as
follows:
• Analysing the performance of the physical layer security
when both the main and wiretap channels are subjected
to FB fading channel models. In particular, novel exact
closed-form mathematically tractable expressions of the
ASC, SOP, SOPL , and SPSC are derived.

• When the fading parameters, namely, µ and m, which
represent the real extension of multipath clusters and
shadowing severity index, respectively, are arbitrary
numbers, the secrecy performance metrics are obtained

in terms of the extended generalised bivariate Fox’s
H -function (EGBFHF). Although, this function is not
yet available in the popular mathematical software pack-
ages such as MATLAB, MATHEMATICA, and Python,
it has been efficiently implemented by various program-
ming codes such as 10], [24] and [25].

• To earn more insights into the behaviour of the physical
layer security as well as the impact of the parameters of
the FB fading model via using simple exact closed-from
analytic expressions of the aforementioned performance
metrics,µ andm are assumed to even and integer values.
Consequently, the derived results are obtained in simple
mathematical functions that are presented in all software
packages.

• The asymptotic behaviour for the ASC, SOP, SOPL and
SPSC at high SNR regime is investigated.

• From the provided literature in this work, the ASC,
the SOP, the SOPL , and the SPSC for some special cases
of the FB fading model such as Beckmann have not been
yet introduced due to the complexity of their PDF and
cumulative distribution function (CDF). However, these
expressions can be deduced from our derived expres-
sions because the FB fading model is a versatile repre-
sentation of many distributions such as κ −µ shadowed
and Beckmann.

Organization: Section II is divided into two subsections.
In the first subsection, the system model that is used in
this work is described whereas the general and limited for-
mats of the PDF and the CDF of the instantaneous signal-
to-noise ratio (SNR) over FB fading channel are given in
the second subsection. The ASC, the SOP, the SOPL , and
the SPSC for two cases of the values of µ and shadowing
parameters are derived in Sections III, IV, V, and VI, respec-
tively. Section VII derives the asymptotic expressions of the
ASC, the SOP, and the SOPL at high SNR scenario. The
performance of the physical layer security over some special
cases of FB fading channels is demonstrated in Section VIII.
In Section IX, the Monte Carlo simulations and numerical
results are presented. Finally, some conclusions are high-
lighted in Section IX.

II. SYSTEM AND CHANNEL MODELS
A. SYSTEM MODEL
The Wyner’s wiretap channel is comprised of three dif-
ferent nodes with two wireless communication links [1].
The first link is between the transmitter and the legiti-
mate receiver, which are called Alice and Bob, respectively,
via main channel. Thus, Bob’s channel state informa-
tion (CSI) can be known by Alice. On the other side,
the second wireless communication link describes the wire-
tap channel between Alice and an external receiver, which
is named the eavesdropper, which is named Eve. Accord-
ingly, perfect knowledge of Eve’s CSI cannot be assumed
at Alice and hence information-theoretic security cannot be
guaranteed.
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In this paper, the main and wiretap channels are assumed
to be independent and subject to quasi-static FB fading.
In addition, Alice, Bob, and Eve are equipped with a single
antenna and we assume that perfect CSI of the main channel
is available at both Bob and Eve. When Alice transmits the
signal s(n), the received signals rl(n) at both Bob and Eve is
given as [20]

rl(n) = hl(n)s(n)+ wl(n). (1)

where l ∈ {D,E}, D, and E stand for Bob, and eavesdropper,
respectively. Moreover, hl(n) and wl(n) are the FB fading
channel gain and the additive white Gaussian noise (AWGN)
assumed to have zero-mean and fixed variance, respectively.

B. THE PDF AND CDF OF FLUCTUATING BECKMANN
FADING CHANNEL MODEL
Case_1: The PDF of the instantaneous SNR γl , fγl (γl), for
the destination (Bob), D, and the eavesdropper, E , channels
using FB fading channel model is given by [22, eq. (5)]

fγl (γl)=
�l

0(µl)
γ
µl−1
l 8

(4)
2

(
µl

2
− ml,

µl

2
−ml,ml,ml;µl;

−
γl

γ̄l
√
ηlα2l

,−
γl
√
ηl

γ̄l
√
α2l
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γlc1l
γ̄l

,−
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)
. (2)
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∞

0 xa−1e−xdx is the Gamma function and 8(4)
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multivariate confluent hypergeometric function defined in
[26, eq. (1.7.10)]. Furthermore, c1l,2l are the roots of α1ls2+
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]
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2
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)
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σ 2
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il ], pil and qil are real numbers for ith clus-
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il and Y
2
il mutually independent Gaussian random

processes.
The CDF of the FB fading channel condition is expressed

as [22, eq. (6)]
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(4)

Case_2: When m is integer value and µ is even number,
the PDF and the CDF are, respectively, given by [22, eqs.

(10) and (14)]

fγl (γl) = �l

Nl (ml ,µl )∑
il=1

e−
ϑl
γ̄l
γl

|ωil |∑
jl=1

Ail jl
(jl − 1)!

γ
jl−1
l . (5)

and

Fγl (γl) = 1+�l

Nl (ml ,µl )∑
il=1

e−
ϑl
γ̄l
γl

|ωil |∑
jl=1

Bil jl
(jl − 1)!

γ
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l . (6)

where ωl = [ml,ml,
µl
2 − ml,

µl
2 − ml], ϑl =

[c1l, c2l,
µl (1+ηl )(1+κl )

2ηl
,
µl (1+ηl )(1+κl )

2 ], Nl(ml, µl) = 2[1 +
u(µl2 ,ml)], u(.) is the unit step function, and Ail jl and Bil jl are
calculated by [22, eq.(51)] and [22, eq. (52)], respectively.

III. AVERAGE SECRECY CAPACITY
The normalised ASC that is defined as the difference between
the capacity of the main and wiretap channels over instanta-
neous SNR, γ , can be calculated by C̄s = I1 + I2 − I3 [18,
eq. (14)] where I1, I2, and I3 are respectively expressed as

I1 =
∫
∞

0
ln(1+ γD)fD(γD)FE (γD)dγD. (7)

I2 =
∫
∞

0
ln(1+ γE )fE (γE )FD(γE )dγE . (8)

I3 =
∫
∞

0
ln(1+ γE )fE (γE )dγE . (9)

Theorem 1: The exact mathematically tractable expres-
sions for I1, I2, and I3 using the PDF and the CDF of
Case_1 are given in (10), (11), and (12), as shown at the
top of the next page, respectively, where H s,r :a,b;...;an,bn

p,q:c,d;...,dn,cn
[.]

denotes the EGBFHF that is defined in [27, A.1]. In this
paper, the efficient MATLAB code that is presented in [25]
has been employed to compute the EGBFHF. To the best of
the authors knowledge, (10), (11), and (12) are novel.

Proof: See Appendix A.
Corollary 1: For Case_2, I1, I2, and I3 are respectively

derived in simple analytic exact closed-form expressions as
follows

I1 = �D
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|ωiD |∑
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AiDjD
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0(jD)e
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0
(
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)
(ϑiD
γ̄D

)k
+�E
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|ωiE |∑
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BiE jE0(jD + jE − 1)
(jE − 1)!

e
( ϑiD
γ̄D
+
ϑiE
γ̄E

)

×

jD+jE−1∑
r=1

0
(
r − jD − jE + 1,

ϑiD
γ̄D
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ϑiE
γ̄E

)
(ϑiD
γ̄D
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)r−jD−jE+1
]
. (13)
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Proof: See Appendix B.
Substituting (13), (14), and (15) into C̄s = I1+ I2− I3 and

performing some straightforward algebraic manipulations,

novel result is obtained as shown in (16), as shown at the top
of this page.

IV. SECURE OUTAGE PROBABILITY
The SOP is defined as the probability of the instanta-
neous secrecy capacity, Cs, falling below the target secrecy
threshold, Rs, i.e., P(Cs < Rs), where P(.) stands for
the probability. Mathematically, the SOP can be evaluated
by [15, eq. (24)]

SOP =
∫
∞

0
FD(θγE + θ − 1)fE (γE )dγE . (17)

where θ = exp(Rs) ≥ 1 with Rs ≥ 0 denotes the target
secrecy threshold.
Theorem 2: The SOP for Case_1 and Case_2 are

expressed in exact format as given in (18) and (19), as shown
at the top of the next page, respectively, at the top of this
page. In (19),

(b
a

)
, b!

(b−a)! stands for the binomial coefficient
[26, eq. (1.1.16)] and (a)r is the Pochhammer symbol [26,
eq. (1.1.15)]. Additionally, (19) is closed-form and simple
in comparison with (18) and hence better insights can be
obtained for the SOP. To the best authors’ knowledge, (18)
and (19) are novel and mathematically tractable.

Proof: See Appendix C.
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SOP
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∣∣∣∣(1+ mD − µD
2 , 1)

(0, 1)

∣∣∣∣(1− mD, 1)(0, 1)

∣∣∣∣(1− mD, 1)(0, 1)

]
. (18)

SOP

= 1+�D�E

NE (mE ,µE )∑
iE=1

|ωiE |∑
jE=1

AiE jE

ND(mD,µD)∑
iD=1

|ωiD |∑
jD=1

BiDjD
0(jD)

e
ϑiD
γ̄D

(1−θ )

×

jD−1∑
r=0

(
jD − 1
r

)
θ r (jE )r

(θ − 1)r−jD+1
( θϑiD
γ̄D
+

ϑiE
γ̄E

)r+jE . (19)

SOPL

=
�E�Dθ

µD

φµE+µD0(µE2 − mE )0(
µD
2 − mD)[0(mE )0(mD)]

2

×H0,1:1,1;1,1;1,1;1,1;1,1;1,1
1,2:1,1;1,1;1,1;1,1;1,1;1,1

[
ηE−1

φγ̄E
√
ηEα2E

,
√
ηEα2E c1E−1
φγ̄E
√
ηEα2E

,
√
ηEα2E c2E−1
φγ̄E
√
ηEα2E

,
(ηD−1)θ

φγ̄D
√
ηDα2D

,
(√ηDα2Dc1D−1)θ
φγ̄D
√
ηDα2D

,

(√ηDα2Dc2D−1)θ
φγ̄D
√
ηDα2D

∣∣∣∣ (1− µD − µE ; 1, 1, 1, 1, 1, 1)
(1− µE ; 1, 1, 1, 0, 0, 0), (−µD; 0, 0, 0, 1, 1, 1)

∣∣∣∣(1+ mE − µE
2 , 1)

(0, 1)

∣∣∣∣(1− mE , 1)(0, 1)

∣∣∣∣
×
(1− mE , 1)

(0, 1)

∣∣∣∣(1+ mD − µD
2 , 1)

(0, 1)

∣∣∣∣(1− mD, 1)(0, 1)

∣∣∣∣(1− mD, 1)(0, 1)

]
. (21)

V. LOWER BOUND OF SOP
According to [15], the SOPL can be obtained from (17) when
γE tends to∞. Consequently, the SOPL can be computed by
[15, eq. (27)]

SOPL =
∫
∞

0
FD(θγE )fE (γE )dγE .

≤ SOP (20)

Theorem 3: The SOPL when µl and ml are arbitrary num-
bers, namely, Case_1, is presented in (21), as shown at the
top of this page, with φ = θ

γ̄D
√
ηDα2D

+
1

γ̄E
√
ηEα2E

whereas for

Case_2, the SOPL is given as

SOPL = 1+�E�D

NE (mE ,µE )∑
iE=1

|ωiE |∑
jE=1

AiE jE
0(jE )

×

ND(mD,µD)∑
iD=1

|ωiD |∑
jD=1

θ jD−1
0(jD + jE − 1)BiDjD

0(jD)
( θϑiD
γ̄D
+

ϑiE
γ̄E

)jD+jE−1 .
(22)

Proof: See Appendix D.
To the best of our knowledge, (21) and (22) are new. It is

evident that (22) is obtained in simple exact closed-form
expression.

VI. PROBABILITY OF STRICTLY POSITIVE
SECRECY CAPACITY
The SPSC refers to the probability of positive Cs, namely,
P(Cs > 0). Therefore, it can be calculated by [8, eq. (19)]

SPSC = 1− SOPL . for θ = 1 (23)

It can be observed that the SPSC for Case_1 and Case_2
can be obtained from (21) and (22), respectively, via substi-
tuting θ = 1 and plugging the results in (23).

VII. ASYMPTOTIC ANALYSIS AT HIGH SNR VALUE
To gain more insight into the behaviour of the physical layer
security over FB fading channels when the µ and m are arbi-
trary numbers, the asymptotic analysis at high SNR regime,
i.e., γ̄D→∞ has been studied in this section.

A. ASYMPTOTIC ANALYSIS OF ASC
Theorem 4: The asymptotic expression of ASC, C̄Asy

s ,
over FB fading condition when γ̄D→∞ is expressed as

C̄Asy
s ≈ IAsy1 + IAsy2 − IAsy3 (24)

where IAsy1 and IAsy2 for FB fading channels are given in
(25) and (26), respectively, as shown at the top of the next
page. Although IAsy3 can be computed by (12) because it
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IAsy1 =
�D�E

0(µD)0(µE + 1)

∞∑
n=0

(1)n(1)n
(2)nn!

(−1)n0(µD + µE + n+ 1)(γ̄E
√
ηEα2E )

µD+µE+n+1

×F (3)
D (µD + µE + n+ 1;

µE

2
− mE ,mE ,mE ;µE + 1; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (25)

IAsy2 =
�D�E

0(µD + 1)0(µE )

∞∑
n=0

(1)n(1)n
(2)nn!

(−1)n0(µD + µE + n+ 1)(γ̄E
√
ηEα2E )

µD+µE+n+1

×F (3)
D (µD + µE + n+ 1;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (26)

IAsy3 =
�E

0(µE )

∞∑
n=0

(1)n(1)n
(2)nn!

(−1)n0(µE + n+ 1)(γ̄E
√
ηEα2E )

µE+n+1

×F (3)
D (µE + n+ 1;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (27)

C̄Asy
s ≈

�E

0(µE )

∞∑
n=0

(1)n(1)n
(2)nn!

(−1)n(γ̄E
√
ηEα2E )

µE+n+1
{
�D

0(µD + µE + n+ 1)
0(µD)

(γ̄E
√
ηEα2E )

µD

×

[
F (3)
D (µD + µE + n+ 1; µE2 − mE ,mE ,mE ;µE + 1; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

µE

+
F (3)
D (µD + µE + n+ 1; µE2 − mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

µD

]
−0(µE + n+ 1)F (3)

D (µE + n+ 1;
µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

}
(28)

TC̄Asys
6

(−γ̄E
√
ηEα2E )

N

0(N + 1)

{
0(µD + µE + N + 1)5F2(µD + µE + N + 1,N + 1,N + 1, 1, 1, 1;N + 2, 2;−γ̄E

√
ηEα2E )

×

[
F (3)
D (µD + µE + N + 1;

µE

2
− mE ,mE ,mE ;µE + 1; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

+F (3)
D (µE + µD + N + 1;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

]
−0(µE + N + 1)5F2(µE + N + 1,N + 1,N + 1, 1, 1, 1;N + 2, 2;−γ̄E

√
ηEα2E )

×F (3)
D (µE + N + 1;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E )

}
(29)

SOPAsy ≈
�D�E

0(µD + 1)0(µE )

∞∑
n=0

(
µD

n

)
θn

(θ − 1)n−µD
0(µE + n)(γ̄E

√
ηEα2E )

µE+n

×F (3)
D (µE + n;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (30)

TSOPAsy 6
0(µE )(µE )N

N !

(
θγ̄E
√
ηEα2E

1− θ

)N
3F1

(
− µD, µE + N ,N + 1, 1;N + 1;

θγ̄E
√
ηEα2E

1− θ

)
×F (3)

D (µE + N ;
µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (31)

SOPLAsy ≈
�D�Eθ

µ
D

0(µD + 1)0(µE )
0(µD + µE )(γ̄E

√
ηEα2E )

µD+µE

×F (3)
D (µD + µE ;

µE

2
− mE ,mE ,mE ;µE ; 1− ηE , 1−

√
ηEα2E c1E , 1−

√
ηEα2E c2E ) (32)

depends only on γE , another expression to evaluate IAsy3 is
also provided in (27), as shown at the top of this page. Next,
inserting (25), (26), and (27) in (24) to yield C̄Asy

s as shown
in (28), as shown at the top of this page.

One can see that (28) is expressed in terms of F (3)
D (.)

which denotes the Lauricella hypergeometric function of

three variables as defined in [26, eq. (1.7.4)]. This function is
not yet available as a built-in function in the popular software
package such as MATLAB and MATHEMATICA. Thus,
several works have used the Euler integral representation
of F (3)

D (.) and a numerical method to calculate this function
[28, Appendix V]. However, this methodology can be used
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under a specific condition which is not satisfied in (28).
Therefore, the efficient MATLAB code that is implemented
in [29] to compute F (3)

D (.) even if Euler integral is not valid
has been used in this paper.

Proof: See Appendix E.
Corollary 2: It can be noted that (28) included an infinite

series. Therefore, a series convergence acceleration for a
number of terms, N , that satisfies a certain figure of accuracy
should be applied. This can be achieved by employing (29)
that is provided on the top of the previous page. In (29),
5F2(.) stands for the hypergeometric function defined in
[26, eq. (1.4.1), p. 42].

Proof: See Appendix F.

B. ASYMPTOTIC ANALYSIS OF SOP
Theorem 5: The asymptotic behaviour of SOP, SOPAsy,

over FB fading channel can be analysed by using (30) that is
shown at the top of the previous page. It is worth mentioning
that SOPAsy ≈ Gcγ̄−Gd where Gc and Gd are the secrecy
array gain and the secrecy diversity gain, respectively [30].
Hence, the secrecy diversity gain can be deduced from (30)
to be Gd = µD (please refer to �D that is described
after (2)).

Proof: See Appendix G.
Corollary 3: The infinite series of (30) can be truncated

by N terms via using (31), as shown at the top of the previous
page.

Proof: Utilizing the identity
(a
b

)
=

0(a+1)
b!0(a−b+1)

[26, eq. (1.1.17)] and following the same steps in Corollary 2,
(31) is deduced and the proof is accomplished.

C. ASYMPTOTIC ANALYSIS OF SOPL

The asymptotic expression of SOPL , SOPLAsy, when γ̄D→∞
over FB fading scenario is derived in exact closed-form as
given in (32), as shown at the top of the previous page. This
expression is obtained via inserting θγE instead of θγE+θ−1
in (74) and employing (59) and [26, eq. (1.i), p. 259].

VIII. PHYSICAL LAYER SECURITY OVER SPECIAL CASES
OF FB FADING CHANNEL MODEL
It has been mentioned in [22], the FB fading channel is a ver-
satile model for nearly most of the well known distributions.
Accordingly, our derived secrecy performance metrics can be
utilised for different scenarios of wireless communications
channels that have not been yet done in the literature due
to the complexity of their statistical characterization. For
example, when κ = K , µ = 1, m → ∞, η = q, and
% = r the Beckmann distribution is the result. Furthermore,
the PDF and the CDF of κ−µ shadowed fading obtained from
(2) or (5) and (4) or (6), respectively, after plugging κ = K ,
µ = µ,m = m, η = 1, and ∀%. The ASC, the SOP, the SOPL ,
and the SPSC for η − µ fading condition can be deduced by
substituting κ = 0, µ = µ, η = η and vanishing of both m
and % in our derived expressions.

FIGURE 1. ASC versus λ for γ̄E = 5 dB, µE = 1.5, mE = 1.5, κE = 1,
ηE = 0.1, %2

E = 0.1.

FIGURE 2. SOP and SOPL versus λ for γ̄E = 5 dB, µE = 1.5, mE = 1.5,
κE = 1, ηE = 0.1, %2

E = 0.1, Rs = 1.

IX. NUMERICAL AND SIMULATION RESULTS
In this section, the numerical results of this work are veri-
fied via Monte Carlo simulations with 107 realizations. The
parameters of main and wiretap channels are assumed to
be independent and non-identically distributed random vari-
ables. In all figures, the markers represent the numerical
results, whereas the solid and dashed lines explain their simu-
lation and asymptotic counterparts. For the asymptotic results
of (28) and (31), the number of terms, N , has been chosen to
satisfy seven figure of accuracy.

Figs. 1, 2 and 3 illustrate the ASC, the SOP & SOPL and
the SPSC versus λ = γ̄D/γ̄E , respectively, for γ̄E = 5 dB,
µE = 1.5, mE = 1.5, κE = 1, ηE = 0.1, %2E = 0.1 and
different values of the fading parameters of Bob. From these
figures, one can see that the secrecy performance improves
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FIGURE 3. SPSC versus λ for γ̄E = 5 dB, µE = 1.5, mE = 1.5, κE = 1,
ηE = 0.1, %2

E = 0.1, Rs = 1.

FIGURE 4. ASC versus γ̄D for µD = µE = 2.5, mD = mE = 1.5, κD = κE = 3,
ηD = ηE = 0.5, %2

D = %2
E = 0.2 and different values of γ̄E .

when µD, mD, ηD, or/and %2D increase. This is because the
increasing in µD or/and mD correspond to a large number of
the multipath clusters and the less shadowing impact at the
Bob, respectively. Moreover, the improving in the values of
ηD, or/and %2D mean a high power rate at the Bob, i.e., the
total power of the in-phase components. on the contrary,
the decreasing of κD increases the values of all the studied
performance metrics. The main reason is the parameter κD
represents the ratio between the total power of the dominant
components and the total power of the scattered waves. For
example, in Fig. 1, at mD = 0.5, κD = 5, ηD = 0.1,
%2 = 0.1 and λ = 15 dB (fixed), the ASC for µD = 3.5
is nearly 10% higher than µD = 1.5. In the same context,
when µD = 3.5 and mD changes from 0.5 to 2.5, the ASC
is increased by roughly 25%. Furthermore, the ASC for the
scenario µD = 3.5, mD = 2.5, κD = 1, ηD = 0.1, and
%2D = 0.1 at λ = 15 dB is approximately 2.139 whereas

FIGURE 5. SOP & SOPL versus γ̄D for µD = µE = 2.5, mD = mE = 1.5,
κD = κE = 3, ηD = ηE = 0.5, %2

D = %2
E = 0.2, Rs = 1 and different values of

γ̄E .

FIGURE 6. SPSC versus γ̄D for µD = µE = 2.5, mD = mE = 1.5,
κD = κE = 3, ηD = ηE = 0.5, %2

D = %2
E = 0.2, Rs = 1 and different values

of γ̄E .

for ηD = 0.5 is 3.293 which is less than for %2D = 10
by nearly 5%. On the other side, the ASC for the previous
scenario is decreased by roughly 16% when κD becomes 5.
The impacts of the fading parameters on the provided results
in Fig. 1 are confirmed by Figs. 2 and 3. In addition, from
these figures, it is clear that the secrecy performance enhances
when λ increases. This refers to the high γ̄D in comparison
with the γ̄E which would lead to make the Alice-Bob channel
better than theAlice-Eve channel. It is evident that the derived
secrecy diversity gain, Gd = µD, is affirmed by Fig. 2 where
the overall system performance improves with the increasing
in µD and vice versa.

Figs. 4, 5, and 6 demonstrate the ASC, the SOP & SOPL

and the SPSC versus γ̄D, respectively, for µD = µE = 2.5,
mD = mE = 1.5, κD = κE = 3, ηD = ηE = 0.5,
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%2D = %2E = 0.2 and different values of γ̄E . As expected,
a clear improvement can be noticed in the secrecy perfor-
mance of the considered systemwhen γ̄E reduces. The reason
is the large deterioration in the Alice-Eve wireless channel.
For instance, in Fig. 4, at γ̄D = 15 dB (fixed), the ASC for
γ̄E = 7 dB and γ̄E = 3 dB are approximately 1.598 and
2.189, respectively.

In all figures, the numerical results and the Monte Carlo
simulations are in perfect match for any given scenario.
Moreover, the asymptotic of the studied performance metrics
becomes in a perfect match with the exact results when γ̄D
or λ increase which verify the correctness of our derived
expressions. Another confirmation on the validation of the
derived expressions is presented in Figs. 2 and 5 in which the
SOPL is less than or equal to the SOP.

X. CONCLUSION
This paper was dedicated to study the secrecy behaviour of
the physical layer over Fluctuating Beckmann fading channel
model. To be specific, the ASC, the SOP, the SOPL , and
the SPSC, were derived in novel exact expressions by using
two cases for the values of the fading parameters. In the first
case, the derived results were expressed in terms of EGBFHF.
On the other side, the second case provided simple analytic
exact mathematically tractable closed-form expressions via
assuming µ and m for both Bob and Eve are even number
and integer number, respectively. From the given results,
a reduction in the values of the ASC, the SOP, the SOPL , and
the SPSC can be observed when the value of µ, m, η, or/and
%2 of the Bob decrease. However, the secrecy performances
of the system improves when κ of the Bob or/and γE reduce.
To gain more insights on the overall system performance
behaviour at high SNRof the Bob, the asymptotic expressions
were derived. The results of this work can be employed to
analyse the secrecy performance of the physical layer over
a variety of fading channels with simple exact closed-form
expressions.

APPENDIX A
PROOF OF THEOREM 1
Substituting (2) and (4) into (7), this yields

I1 =
�D�E

0(µD)0(µE + 1)

∫
∞

0
ln(1+ γD)γ

µD+µE−1
D

×8
(4)
2

(
µD

2
− mD,

µD

2
− mD,mD,mD;µD;

−
γD

γ̄D
√
ηDα2D

,−
γD
√
ηD

γ̄D
√
α2D

,−
γDc1D
γ̄D

,−
γDc2D
γ̄D

)
×8

(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE + 1;

−
γD

γ̄E
√
ηEα2E

,−
γD
√
ηE

γ̄E
√
α2E

,−
γDc1E
γ̄E

,−
γDc2E
γ̄E

)
dγD.

(33)

The exact closed-form solution of the integral in (33) is
not available in the open literature. Therefore, to evaluate

the above integral, we firstly express ln(.) in terms of the
single variable Fox’sH -function (FHF) by using the property
[11, eq. (36)]

ln(1+ x) = H1,2
2,2

[
x

∣∣∣∣(1, 1), (1, 1)(1, 1), (0, 1)

]
(34)

For the confluent Lauricella hypergeometric function
8

(4)
2 (.), the following identity can be utilised [26, eq. (1.ii),

pp. 259]

8
(4)
2 (a1, a2, a3, a4; b;−x1 t,−x2 t,−x3 t,−x4 t)

=
1

tb−1
L−1

{
0(b)
sb

(
1+

x1
s

)−a1(
1+

x2
s

)−a2
×

(
1+

x3
s

)−a3(
1+

x4
s

)−a4
; s, t

}
. (35)

where <(b) > 0, <(s) > 0, {a1, a2, a3, a4} ∈ R and L−1(.)
is the inverse Laplace transform.

To compute the above inverse Laplace transform, the fol-
lowing identity is recalled [27, eq. (1.43)]

(1+ x)−a =
1
0(a)

H1,1
1,1

[
x

∣∣∣∣(1− a, 1)(0, 1)

]
. (36)

With the aid of (36) and using the form of Barnes-type
contour integral of FHF [27, eq. (1.2) and [27, eq.(1.3)],
the inverse Laplace transform of (35) can be rewritten as

L−1
{
0(b)
sb

(
1+

x1
s

)−a1(
1+

x2
s

)−a2(
1+

x3
s

)−a3
×

(
1+

x4
s

)−a4
; s, t

}
=

0(b)
tb−10(a1)0(a2)0(a3)0(a4)

×
1

(2π j)4

∫
R1

∫
R2

∫
R3

∫
R4

0(r1)0(a1−r1)0(r2)0(a2−r2)

×0(r3)0(a3 − r3)0(r4)0(a4 − r4)x
−r1
1 x−r22 x−r33 x−r44

×L−1
{
sr1+r2+r3+r4−b; s, t

}
dr1dr2dr3dr4. (37)

where j =
√
−1 and Ri for i ∈ {1, 2, 3, 4} represent the

suitable closed contours from σi − j∞ to σi + j∞ and σi is a
constant in the complex ri-plane.

The inverse Laplace transform of (37) can be calculated as
follows

L−1
{
sr1+r2+r3+r4−b; s, t

}
=

tb−r1−r2−r3−r4−1

0(b− r1 − r2 − r3 − r4)
.

(38)

Substituting (38) into (37), yielding (39), as shown at the
top of the next page.

Plugging (34) in (33) and employing (35) and (39) for both
the confluent Lauricella hypergeometric functions 8(4)

2 (.),
one obtains (40), as shown at the top of the next page.

With the help of [31, eq. (4.293.10)], the inner integral,K1,
of (43) can be be computed in exact closed-form as

K1 =
π

(µD + µE −
∑8

j=1 rj)sin((µD + µE −
∑8

j=1 rj)π )
.

(41)
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L−1
{
0(b)
sb

(
1+

x1
s

)−a1(
1+

x2
s

)−a2(
1+

x3
s

)−a3(
1+

x4
s

)−a4
; s, t

}
=

0(b)
0(a1)0(a2)0(a3)0(a4)

tb−1

×
1

(2π j)4

∫
R1

∫
R2

∫
R3

∫
R4

0(r1)0(a1 − r1)0(r2)0(a2 − r2)0(r3)0(a3 − r3)0(r4)0(a4 − r4)
0(b− r1 − r2 − r3 − r4)

×(xt)−r11 (xt)−r22 (xt)−r33 (xt)−r44 dr1 dr2 dr3 dr4. (39)

I1 =
�D�E

[0(µD2 − mD)0(
µE
2 − mE )0(mD)0(mE )]

2

×
1

(2π j)8

∫
R1

· · ·

∫
R8

[
∏8

j=1 0(rj)][
∏2

j=1 0(
µD
2 − mD − rj)0(mD − rj+2)0(

µE
2 − mE − rj+4)0(mE − rj+6)]

0(µD − r1 − · · · − r4)0(1+ µE − r5 − · · · − r8)

×
1

(γ̄D
√
ηDα2D )−r1

( √
ηD

γ̄D
√
α2D

)−r2(c1D
γ̄D

)−r3(c2D
γ̄D

)−r4 1
(γ̄E
√
ηEα2E )−r5

( √
ηE

γ̄E
√
α2E

)−r6(c1E
γ̄E

)−r7(c2E
γ̄E

)−r8
×

∫
∞

0
γ
µD+µE−

∑8
j=1 rj−1

D ln(1+ γD)dγD︸ ︷︷ ︸
K1

dr1 · · · dr8. (40)

Recalling the identities a = 0(1+a)
0(a) [31, eq. (8.331.1)] and

sin(πa) = π
a0(1−a) [31, eq. (8.334.3)], (41) becomes

K1 =
[0(µD + µE −

∑8
j=1 rj)]

2

0(1+ µD + µE −
∑8

j=1 rj)

×0(1− µD − µE +
8∑
j=1

rj). (42)

Inserting (42) in (40) with some algebraic manipula-
tions, (43) is obtained as shown on the top of the next
page.

It is worth noting that (43) can be written in exact expres-
sion in terms of the EGBFHF via using [27, eq. (A.1)] and
this completes the proof of (10).

Following the same mathematical methodology of I1,
the proof for I2 in (11) is accomplished. It can be observed
(10) can be utilised to evaluate (11) by replacing each D and
E by E and D, respectively.

For I3, we substitute (2) into (9) to yield (44), as shown at
the top of the next page. After that, by following the same
steps of computing K1, K2 is expressed as

K2 =
[0(µE −

∑4
j=1 rj)]

20(1− µE +
∑4

j=1 rj)

0(1+ µE −
∑4

j=1 rj)
(45)

Plugging (45) in (44), we have (46), as shown at the top of
the next page.

Making use of [27, eq. (A.1)], I3 in (46) can be rewritten
in exact expression as provided in (12) which completes the
proof.

APPENDIX B
PROOF OF COROLLARY 1
For Case_2, I1 can be calculated via inserting (5) and (6)
in (7). Accordingly, this yields

I1 = �D

ND(mD,µD)∑
iD=1

|ωiD |∑
jD=1

AiDjD
(jD − 1)!

×

[ ∫
∞

0
γ
jD−1
D ln(1+ γD)e

−
ϑiD
γ̄D
γDdγD

+�E

NE (mE ,µE )∑
iE=1

|ωiE |∑
jE=1

BiE jE
(jE − 1)!∫

∞

0
γ
jD+jE−2
D ln(1+ γD)e

−

( ϑiD
γ̄D
+
ϑiE
γ̄E

)
γDdγD

]
. (47)

With the aid of [32, eq. (47)], both integrals of (47) can be
written in simple exact closed-form expressions as

∫
∞

0
xa−1ln(1+ x)e−bxdx = 0(a)eb

a∑
k=1

0(k − a, b)
bk

. (48)

Using (48) and doing some algebraic simplifications, I1
that is given in (13) is deduced and this completes the
proof.

Replacing D and E by E and D, respectively, in (13),
the result is I2 for integer values of ml and even numbers of
µl as shown in (14).

Similarly, after plugging (5) in (9) and using (48), I3 is
expressed in exact closed-form as provided in (15) and the
proof is accomplished.
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I1 =
�D�E

[0(µD2 − mD)0(
µE
2 − mE )0(mD)0(mE )]

2

×
1

(2π j)8

∫
R1

· · ·

∫
R8

[0(µD + µE −
∑8

j=1 rj)]
20(1− µD − µE +

∑8
j=1 rj)[

∏8
j=1 0(rj)]

0(1+ µD + µE −
∑8

j=1 rj)

×
[
∏2

j=1 0(
µD
2 − mD − rj)0(mD − rj+2)0(

µE
2 − mE − rj+4)0(mE − rj+6)]

0(µD − r1 − · · · − r4)0(1+ µE − r5 − · · · − r8)
1

(γ̄D
√
ηDα2D )−r1

×

( √
ηD

γ̄D
√
α2D

)−r2(c1D
γ̄D

)−r3(c2D
γ̄D

)−r4 1
(γ̄E
√
ηEα2E )−r5

( √
ηE

γ̄E
√
α2E

)−r6(c1E
γ̄E

)−r7(c2E
γ̄E

)−r8
dr1 · · · dr8. (43)

I3 =
�E

[0(µE2 − mE )0(mE )]
2

1
(2π j)4

∫
R1

· · ·

∫
R4

[
∏4

j=1 0(rj)][
∏2

j=1 0(
µE
2 − mE − rj)0(mE − rj+2)]

0(µE − r1 − · · · − r4)

×
1

(γ̄E
√
ηEα2E )−r1

( √
ηE

γ̄E
√
α2E

)−r2(c1E
γ̄E

)−r3(c2E
γ̄E

)−r4 ∫ ∞
0

γ
µE−

∑4
j=1 rj−1

E ln(1+ γE )dγE︸ ︷︷ ︸
K2

dr1 · · · dr4. (44)

I3 =
�E

[0(µE2 − mE )0(mE )]
2

1
(2π j)4

∫
R1

· · ·

∫
R4

0(1− µE +
∑4

j=1 rj)[0(µE −
∑4

j=1 rj)]
2

0(1+ µE −
∑4

j=1 rj)[
∏4

j=1 0(rj)]

×
[
∏2

j=1 0(
µE
2 − mE − rj)0(mE − rj+2)]

0(µE −
∑4

j=1 rj)

1
(γ̄E
√
ηEα2E )−r1

( √
ηE

γ̄E
√
α2E

)−r2(c1E
γ̄E

)−r3(c2E
γ̄E

)−r4
dr1 · · · dr4. (46)

SOP =
�D�E

[0(µD2 − mD)0(
µE
2 − mE )0(mD)0(mE )]

2

×
1

(2π j)8

∫
R1

· · ·

∫
R8

[
∏8

j=1 0(rj)][
∏2

j=1 0(
µE
2 − mE − rj)0(mE − rj+2)0(

µD
2 − mD − rj+4)0(mD − rj+6)]

0(1+ µE − r1 − · · · − r4)0(µD − r5 − · · · − r8)

×
1

(γ̄E
√
ηEα2E )−r1

( √
ηE

γ̄E
√
α2E

)−r2(c1E
γ̄E

)−r3(c2E
γ̄E

)−r4 1
(γ̄D
√
ηDα2D )−r5

( √
ηD

γ̄D
√
α2D

)−r6(c1D
γ̄D

)−r7(c2D
γ̄D

)−r8
×

∫
∞

0
γ
µE−

∑4
j=1 rj−1

E (θγE + θ − 1)µD−
∑8

j=5 rjdγE︸ ︷︷ ︸
K3

dr1 · · · dr8. (50)

APPENDIX C
PROOF OF THEOREM 2
Inserting (2) and (4) in (17), the result is

SOP =
�D�E

0(µE )0(µD + 1)

∫
∞

0
(θγE + θ − 1)µDγ µE−1E

×8
(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE ;

−
γE

γ̄E
√
ηEα2E

,−
γE
√
ηE

γ̄E
√
α2E

,−
γEc1E
γ̄E

,−
γEc2E
γ̄E

)
×8

(4)
2

(
µD

2
− mD,

µD

2
− mD,mD,mD;µD + 1;

−
(θγE + θ − 1)
γ̄D
√
ηDα2D

,−
(θγE + θ − 1)

√
ηD

γ̄D
√
α2D

,

−
(θγE + θ − 1)c1D

γ̄D
,−

(θγE + θ − 1)c2D
γ̄D

)
dγE .

(49)

To solve the integral in (49), we recall (35) and (39) for both
the confluent Lauricella hypergeometric functions 8(4)

2 (.).
Hence, we have (50), as shown at the top of this page.

Performing some mathematical manipulations and utilis-
ing [31, eq. (3.194.3)], K3 of (50) can be evaluated in exact
closed-form as follows

K3 = θ
−µE+

∑4
j=1 rj (θ − 1)µD+µE−

∑8
j=1 rj

×B(µE −
∑4

j=1rj,−µD − µE +
∑8

j=1rj). (51)

where B(., .) is the Beta function defined in [26, eq. (1.1.43)].
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SOP =
�D�E

[0(µD2 − mD)0(
µE
2 − mE )0(mD)0(mE )]

2

(θ − 1)µD+µE

θµE

×
1

(2π j)8

∫
R1

· · ·

∫
R8

[
∏8

j=1 0(rj)][
∏2

j=1 0(
µE
2 − mE − rj)0(mE − rj+2)0(

µD
2 − mD − rj+4)0(mD − rj+6)]

0(1+ µE − r1 − · · · − r4)0(µD − r5 − · · · − r8)

×
0(µE −

∑4
j=1rj)0(−µD − µE +

∑8
j=1rj)

0(−µD +
∑8

j=5rj)

(
(θ − 1)

θγ̄E
√
ηEα2E

)−r1( (θ − 1)
√
ηE

θγ̄E
√
α2E

)−r2( (θ − 1)c1E
θγ̄E

)−r3
×

(
(θ − 1)c2E
θγ̄E

)−r4( (θ − 1)
γ̄D
√
ηDα2D

)−r5( (θ − 1)
√
ηD

γ̄D
√
α2D

)−r6( (θ − 1)c1D
γ̄D

)−r7( (θ − 1)c2D
γ̄D

)−r8
dr1 · · · dr8. (53)

Invoking the identity B(x, y) = 0(x)0(y)
0(x+y) [26, eq. (1.1.47)],

(51) can be rewritten as

K3 =
0(µE −

∑4
j=1rj)0(−µD − µE +

∑8
j=1rj)

0(−µD +
∑8

j=5rj)

×θ
−µE+

∑4
j=1 rj (θ − 1)µD+µE−

∑8
j=1 rj . (52)

Plugging (52) in (50) to yield (53) that is shown at the top
of this page.

Next, recognising the definition of the EGBFHF
[27, eq. (A.1)] for (53), the proof of SOP in (18) is achieved.

The SOP for Case_2 can be calculated by substituting (5)
and (6) in (17) and using the fact

∫
∞

0 fγ (γ )dγ , 1. Hence,
we have

SOP

= 1+�D�E

NE (mE ,µE )∑
iE=1

|ωiE |∑
jE=1

AiE jE
(jE − 1)!

×

ND(mD,µD)∑
iD=1

|ωiD |∑
jD=1

BiDjD
(jD − 1)!

×

∫
∞

0
γ
jE−1
E (θγE + θ − 1)jD−1e−

ϑiE
γ̄E
γE−

(θγE+θ−1)ϑiD
γ̄D dγE︸ ︷︷ ︸

K4

(54)

Carrying out some mathematical manipulations on K4 of
(54) to yield

K4 = (θ − 1)jD−1e−(θ−1)
ϑiD
γ̄D

×

∫
∞

0
γ
jE−1
E

(
1+

θ

θ − 1
γE

)jD−1
e−
( ϑiE
γ̄E
+
θϑiD
γ̄D

)
γE dγE .

(55)

Applying the identity (1 + a)b =
∑b

k=0
(b
k

)
ak [31,

eq. (1.111)] for (55), we obtain

K4 = (θ − 1)jD−1e−(θ−1)
ϑiD
γ̄D

jD−1∑
r=0

(
jD − 1
r

)(
θ

θ − 1

)r
×

∫
∞

0
γ
jE+r−1
E e−

( ϑiE
γ̄E
+
θϑiD
γ̄D

)
γE dγE . (56)

With the aid of [31, eq. (3.381.4)], the integral in (56) can
be evaluated as

K4 = (θ − 1)jD−1e−(θ−1)
ϑiD
γ̄D

jD−1∑
r=0

(
jD − 1
r

)
×

(
θ

θ − 1

)r
0(jE + r)(ϑiE

γ̄E
+

θϑiD
γ̄D

)jE+r . (57)

Plugging (57) in (54) and performing some mathematical
operations, the result is (19) and the proof is completed.

APPENDIX D
PROOF OF THEOREM 3
Substituting (2) and (4) in (20), this yields

SOPL =
�D�E

0(µE )0(µD + 1)
θµD

∫
∞

0
γ
µE+µD−1
E

×8
(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE ;

−
γE

γ̄E
√
ηEα2E

,−

√
ηE

γ̄E
√
α2E

γE ,−
c1E
γ̄E
γE ,−

c2E
γ̄E
γE

)
×8

(4)
2

(
µD

2
− mD,

µD

2
− mD,mD,mD;µD + 1;

−
θ

γ̄D
√
ηDα2D

γE ,−
θ
√
ηD

γ̄D
√
α2D

γE ,

−
θc1D
γ̄D

γE ,−
θc2D
γ̄D

γE

)
dγE . (58)

To calculate the integral in (58), the following property is
used [33, p. 177]

e−ci8(n)
2

(
a1, · · · , an; b; c1, · · · , cn

)
= 8

(n)
2

(
a1, ., ai−1, b− a1 − .− an, ai+1, ., an; b;

c1 − ci, · · · , ci−1 − ci,−ci, ci+1 − ci, · · · , cn − ci
)
.

(59)

Accordingly, both the confluent Lauricella hypergeometric
functions 8(4)

2 (.) of (59) become

8
(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE ;

−
γE

γ̄E
√
ηEα2E

,−

√
ηE

γ̄E
√
α2E

γE ,−
c1E
γ̄E
γE ,−

c2E
γ̄E
γE

)
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SOPL =
�D�E

0(µD2 − mD)0(
µE
2 − mE )[0(mD)0(mE )]

2 θ
µ

×
1

(2π j)6

∫
R1

· · ·

∫
R6

[
∏6

j=1 0(rj)]0(
µE
2 − mE − r1)0(

µD
2 − mD − r4)[

∏3
j=2 0(mE − rj)0(mD − rj+3)]

0(µE − r1 − · · · − r3)0(1+ µD − r4 − · · · − r6)

×

(
ηE − 1

γ̄E
√
ηEα2E

)−r1(√ηEα2E c1E − 1

γ̄E
√
ηEα2E

)−r2(√ηEα2E c2E − 1

γ̄E
√
ηEα2E

)−r3( (ηD − 1)θ
γ̄D
√
ηDα2D

)−r4( (√ηDα2Dc1D − 1)θ

γ̄D
√
ηDα2D

)−r5
×

(
(
√
ηDα2Dc2D − 1)θ

γ̄D
√
ηDα2D

)−r6 ∫ ∞
0

γ
µD+µE−

∑6
j=1 rj−1

E e
−

(
1

γ̄E
√
ηEα2E

+
θ

γ̄D
√
ηDα2D

)
γE
dγE︸ ︷︷ ︸

K5

dr1 · · · dr6. (63)

= e
−

γE
γ̄E
√
ηEα2E 8

(4)
2

(
0,
µE

2
− mE ,mE ,mE ;µE ;

γE

γ̄E
√
ηEα2E

,
1− ηE

γ̄E
√
ηEα2E

γE ,
1−
√
ηEα2E c1E

γ̄E
√
ηEα2E

γE ,

1−
√
ηEα2E c2E

γ̄E
√
ηEα2E

γE

)
. (60)

and

8
(4)
2

(
µD

2
− mD,

µD

2
− mD,mD,mD;µD + 1;

−
θ

γ̄D
√
ηDα2D

γE ,−
θ
√
ηD

γ̄D
√
α2D

γE ,−
θc1D
γ̄D

γE ,−
θc2D
γ̄D

γE

)
= e
−

θ
γ̄D
√
ηDα2D

γE
8

(4)
2

(
0,
µD

2
− mD,mD,mD;µD + 1;

θ

γ̄D
√
ηDα2D

γE ,
(1− ηD)θ
γ̄D
√
ηDα2D

γE ,
(1−
√
ηDα2Dc1D )θ

γ̄D
√
ηDα2D

γE ,

(1−
√
ηDα2Dc2D )θ

γ̄D
√
ηDα2D

γE

)
. (61)

Inserting (60) and (61) in (58), we have

SOPL =
�D�E

0(µE )0(µD + 1)
θµD

∫
∞

0
γ
µE+µD−1
E

×e
−

(
1

γ̄E
√
ηEα2E

+
θ

γ̄D
√
ηDα2D

)
γE

×8
(4)
2

(
0,
µE

2
− mE ,mE ,mE ;µE ;

γE

γ̄E
√
ηEα2E

,
1− ηE

γ̄E
√
ηEα2E

γE ,
1−
√
ηEα2E c1E

γ̄E
√
ηEα2E

γE ,

1−
√
ηEα2E c2E

γ̄E
√
ηEα2E

γE

)
×8

(4)
2

(
0,
µD

2
− mD,mD,mD;µD + 1;

θ

γ̄D
√
ηDα2D

γE ,
(1− ηD)θ
γ̄D
√
ηDα2D

γE ,

(1−
√
ηDα2Dc1D )θ

γ̄D
√
ηDα2D

γE ,

(1−
√
ηDα2Dc2D )θ

γ̄D
√
ηDα2D

γE

)
dγE . (62)

Recalling (35) and (39) for both 8(4)
2 (.) of (62) to yield

(63), as shown at the top of this page.
With the aid of [31, eq. (3.381.4)], K5 of (63) becomes

K5 =
0
(
µD + µE −

∑6
j=1 rj

)
φ
µD+µE−

∑6
j=1 rj

. (64)

where φ = 1
γ̄E
√
ηEα2E

+
θ

γ̄D
√
ηDα2D

.
Plugging (64) in (63) and doing some algebraic operations,

(65) is yielded as shown at the top of the next page.
With the help of [27, eq. (A.1)], the SOPL of (65) is

expressed in exact mathematically tractable format as given
in (21) and this completes the proof.

For Case_2, SOPL can be evaluated by plugging (5) and
(6) in (20) and utilising

∫
∞

0 fγ (γ )dγ , 1. Thus, this yields

SOPL = 1+�D�E

NE (mE ,µE )∑
iE=1

|ωiE |∑
jE=1

AiE jE
(jE − 1)!

×

ND(mD,µD)∑
iD=1

|ωiD |∑
jD=1

BiDjD
(jD − 1)!

θ jD−1

×

∫
∞

0
γ
jD+jE−2
E e−

( ϑiE
γ̄E
+
θϑiD
γ̄D

)
γE dγE︸ ︷︷ ︸

K6

. (66)

The above integral, K6, can be computed by using [31,
eq. (3.381.4)] as follows

K6 =
0(jD+jE−1)( ϑiE

γ̄E
+
θϑiD
γ̄D

)jD+jE−1 (67)

Next, substituting (67) into (66) to obtain (22) and this
completes the proof.

APPENDIX E
PROOF OF THEOREM 4
When γ̄D → ∞, the fact that 8(4)

2 (µD2 − mD,
µD
2 −

mD,mD,mD;µD; 0, 0, 0, 0) = 1 [28] can be used in (33).
Accordingly, we have

IAsy1 =
�D�E

0(µD)0(µE + 1)

∫
∞

0
ln(1+ γD)γ

µD+µE−1
D
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SOPL =
�D�Eθ

µ

φµD+µE0(µD2 − mD)0(
µE
2 − mE )[0(mD)0(mE )]

2

×
1

(2π j)6

∫
R1

· · ·

∫
R6

0
(
µD + µE −

∑6
j=1 rj

)
[
∏6

j=1 0(rj)]0(
µE
2 − mE − r1)0(

µD
2 − mD − r4)

0(µE − r1 − · · · − r3)

×
[
∏3

j=2 0(mE − rj)0(mD − rj+3)]

0(1+ µD − r4 − · · · − r6)

(
ηE − 1

φγ̄E
√
ηEα2E

)−r1(√ηEα2E c1E − 1

φγ̄E
√
ηEα2E

)−r2(√ηEα2E c2E − 1

φγ̄E
√
ηEα2E

)−r3
×

(
(ηD − 1)θ
φγ̄D
√
ηDα2D

)−r4( (√ηDα2Dc1D − 1)θ

φγ̄D
√
ηDα2D

)−r5( (√ηDα2Dc2D − 1)θ

φγ̄D
√
ηDα2D

)−r6
dr1 · · · dr6. (65)

×8
(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE + 1;

−
γD

γ̄E
√
ηEα2E

,−

√
ηEγD

γ̄E
√
α2E

,−
c1E γD
γ̄E

,−
c2E γD
γ̄E

)
dγD.

(68)

To solve the integral of (68), the following identity can be
employed [26, eq. (1.2.23), p. 34]

ln(1+ x) = x2F1(1, 1; 2; ,−x) (69)

where 2F1(.) is another format of the hypergeometric function
defined in [26, eq. (1.2.2), p. 29].

Using [26, eq. (1.2.2), p. 29] for (69) and inserting the
result along with (59) in (68) to yield

IAsy1 =
�D�E

0(µD)0(µE + 1)

∞∑
n=0

(1)n(1)n
(2)nn!

(−1)n

×

∫
∞

0
γ
µD+µE+n
D e

−
γD

γ̄E
√
ηEα2E

×8
(3)
2

(
µE

2
− mE ,mE ,mE ;µE + 1;

(1− ηE )γD
γ̄E
√
ηEα2E

,

(1−
√
ηEα2E c1E )γD

γ̄E
√
ηEα2E

,
(1−
√
ηEα2E c2E )γD

γ̄E
√
ηEα2E

)
dγD.

(70)

With the aid of [26, eq. (1.i), 259], the integral of (70) can
be expressed in exact closed-form and this completes the poof
of (25).

Following the same steps of (25), the proof of IAsy2 and IAsy3
in (26) and (27), respectively, can be accomplished.

APPENDIX F
PROOF OF COROLLARY 2
For the purpose of brevity in proofing (29), the truncation
of the infinite series of IAsy1 is provided. Intuitively, one can
observe that F (3)

D (.) of (25) is monotonically decreasing with
n. Thus, this yields

TIAsy1
6 F (3)

D

(
µD + µE + N + 1;

µE

2
− mE ,mE ,mE ;

µE + 1; 1− ηE , 1−
√
ηEα2E c1E , 1−

√
ηEα2E c2E

)

×

∞∑
n=N

(1)n(1)n
(2)nn!

(−γ̄E
√
ηEα2E )

n0(µD + µE + n+ 1).

(71)

Following the similar procedure in [34], we have

TIAsy1
6F (3)

D

(
µD + µE + N + 1;

µE

2
− mE ,mE ,mE ;

µE + 1; 1− ηE , 1−
√
ηEα2E c1E , 1−

√
ηEα2E c2E

)

×

∞∑
n=0

(1)n+N (1)n+N
(2)n+N (n+ N )!

(−γ̄E
√
ηEα2E )

n+N

×0(µD + µE + n+ N + 1). (72)

Invoking the properties (x)a+b = (x)a(x + a)b [26,
eq. (1.1.20), p. 22], 0(a + b) = (a)b0(a) [26, eq. (1.1.15),
p. 22], x! = 0(x + 1) [26, eq. (1.1.13), p. 21], and (1)x = x!
[26, eq. (1.1.14), p. 21], (72) becomes

TIAsy1
6 F (3)

D

(
µD + µE + N + 1;

µE

2
− mE ,mE ,mE ;

µE + 1; 1− ηE , 1−
√
ηEα2E c1E , 1−

√
ηEα2E c2E

)
(−γ̄E
√
ηEα2E )

N 0(µD + µE + N + 1)
0(N + 1)

×

∞∑
n=0

(µD + µE + N + 1)n(N + 1)n(1)n(1)n(1)n
(2)n(2+ N )nn!

×(−γ̄E
√
ηEα2E )

n. (73)

With the help of [26, eq. (1.4.1), p. 42], (73) can be written
in exact closed-form expression as shown in the first term of
(29). Similarly, the number of terms of IAsy2 and IAsy3 which
represent the second and third terms, respectively, can be
deduced. Substituting the results into (24) to obtain (29) and
this completes the proof.

APPENDIX G
PROOF OF THEOREM 5
Similar to Theorem 4, plugging 8

(4)
2 (µD2 − mD,

µD
2 −

mD,mD,mD;µD + 1; 0, 0, 0, 0) = 1 in (49),
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we have

SOPAsy

≈
�D�E

0(µD + 1)0(µE )

∫
∞

0
γ
µE−1
E (θγE + θ − 1)µD

×8
(4)
2

(
µE

2
− mE ,

µE

2
− mE ,mE ,mE ;µE ;

−
γE

γ̄E
√
ηEα2E

,−

√
ηEγE

γ̄E
√
α2E

,−
c1E γE
γ̄E

,−
c2E γE
γ̄E

)
dγE .

(74)

The following identity [31, eq. (1.110), p. 25] can be used
in (74)

(1+ a)b =
∞∑
n=0

(
b
n

)
an (75)

Consequently, with the aid of (59) and (75) and performing
some simple mathematical manipulations, (74) can be rewrit-
ten as

SOPAsy ≈
�D�E

0(µD + 1)0(µE )

∞∑
n=0

(
µD

n

)
θn

(θ − 1)n−µD

×

∫
∞

0
γ
µE+n−1
E e

−
γD

γ̄E
√
ηEα2E 8

(3)
2

(
µE

2
− mE ,

mE ,mE ;µE ;
(1− ηE )γE
γ̄E
√
ηEα2E

,
(1−
√
ηEα2E c1E )γE

γ̄E
√
ηEα2E

,

(1−
√
ηEα2E c2E )γE

γ̄E
√
ηEα2E

)
dγE . (76)

Recalling [26, eq. (1.i), p. 259] to express the integral of
(76) in exact-closed form and the proof is accomplished.
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