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A New Riemannian Setting for Surface
Registration
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Abstract. We present a new approach for matching regular surfaces
in a Riemannian setting. We use a Sobolev type metric on deformation
vector fields which form the tangent bundle to the space of surfaces. In
this article we compare our approach with the diffeomorphic matching
framework. In the latter approach a deformation is prescribed on the
ambient space, which then drags along an embedded surface. In contrast
our metric is defined directly on the deformation vector field and can
therefore be called an inner metric. We also show how to discretize the
corresponding geodesic equation and compute the gradient of the cost
functional using finite elements.

Keywords: Registration, Surface Matching, LDDMM, Computational
Anatomy, Geodesic Shooting, Adjoint Equations

1 Introduction

The field of computational anatomy concerns itself with the study and classifi-
cation of the variability of biological shapes, including their statistical variance.
Since the space of all shapes is inherently nonlinear, the usual methods of linear
statistics cannot be applied. In particular, the addition of two surfaces cannot
be meaningfully defined. One way to overcome this difficulty is to introduce a
Riemannian structure on the space of shapes, which locally linearizes the space
and allows the development of statistical methods that are analogous to the lin-
ear case. This approach was taken, e.g., in [7]. In the Riemannian setting, the
average of two shapes may be defined as the middle point of a geodesic joining
these two shapes. In a similar way one may define the corresponding geodesic
mean of a collection of n shapes.

One class of shapes which are of interest in computational anatomy consists
the surfaces embedded in R3. The cortical surface, the surfaces of hippocampi,
thalami, and nasal cavities are all examples of shapes which are represented as
two dimensional surfaces in R3. This is also an example, where the Riemannian
setting may be applied to study collections of shapes.

Throughout the last decade various (Riemannian) metrics have been pro-
posed. They include a metric that preservers local rigidity [11], a generalization
of the elastic metric for curves to higher dimensions [18, 13], a metric inspired
by a continuum mechanics which is defined in the interior of a two dimensional
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shape [23, 8] and a metric based on the square-root representation of surfaces
[12]. Other approaches include the representation of surfaces via densities [20]
and metrics defined on surfaces via level sets [15, 19].

Another method for comparing anatomical shapes in the Riemannian setting
is the method of large deformation diffeomorphic metric matching (LDDMM),
based on the deformable template paradigm of Grenander [10]. In this setting,
a template shape is matched to a target shape by finding a transformation in a
suitable group of deformations of the ambient space that transforms the template
into the target. This approach has been systematically developed in [3, 4, 9, 21,
22] and applied to various problems in computational anatomy. Registering two
surfaces in this framework involves finding a diffeomorphism of the whole space,
which transforms one surface to the other. Because of its widespread use in the
field of computational anatomy for registering volumetric images we will use
LDDMM as a reference to highlight the features of our proposed framework.

In this paper we propose a different way of defining a Riemannian structure
on the space of surfaces, which also provides the full range of tools for nonlinear
statistics. We use a Sobolev type norm to enforce regularity of the deformation
vector field and measure the cost of the deformation. Our approach to charac-
terizing a deformation is intrinsic to the surface, rather than resulting from a
transformation of the surface induced by a deformation of the ambient space
in which the image is embedded. For this reason, the Riemannian metrics used
here are called inner metrics as opposed to the outer metrics used in LDDMM,
where deformations are imposed via the ambient space. Other examples for inner
metrics can be found in [18, 12, 23, 8, 1].

Inner metrics of Sobolev type on planar curves were introduced and stud-
ied previously in [17, 24]. Recently they were generalized to surfaces and higher
dimensional hypersurfaces in Euclidean space in [2]. The numerical implemen-
tation of matching with these metrics differs from LDDMM, because the metric
on the tangent space at each surface depends nonlinearly on the surface. This
means the metric will change adaptively as one moves around in shape space.
This adaptive property is in marked contrast to LDDMM, where the metric is
defined on the diffeomorphisms and projected down to the shapes, so it doesn’t
depend on the particular shape.

The outline of the paper is as follows. In Sec. 2 we review the registration
problem for surfaces and recall how it is solved using outer metrics in LDDMM.
Then we present the approach via inner metrics of Sobolev type and point out
the differences between the two methods. For definiteness, we will concentrate
our attention on the Sobolev metric of order one. In Sec. 3 we discuss how to
discretize and implement the geodesic equations for this metric and how to solve
the registration problem via geodesic shooting. Finally, in Sec. 4 we show how
this metric performs in some examples using synthetic data.
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2 The Mathematical Formulation

We are dealing with the registration of parametrized regular surfaces. Such a
surface is given by a smooth function q : M → R3 from a model surface M into
the Euclidean space R3. We will consider different choices of the model surface
M in this paper: the plane sheet M = [0, 1]× [0, 1], the cylinder M = S1× [0, 1]
and the torus M = S1 × S1. Another interesting choice would be the sphere
M = S2, which however is not considered in this paper. The metric can be
defined in the same way as for the other topologies, however the numerical
treatment is more challenging, because the sphere cannot be covered by a single
global coordinate chart. We require the parametrization of the surface q to be
regular in the following sense: at each point x ∈ M the partial derivatives ∂q

∂x1 ,
∂q
∂x2 are required to be linearly independent. We will denote the space of all such
surfaces by S .

2.1 Registration with LDDMM

In the LDDMM framework, the registration of a template surface q0 to a tar-
get surface qtarg involves finding a curve ϕt of diffeomorphisms of the ambient

space R3, whose deformation carries the template surface to the target surface.
Mathematically, one constructs these deformations using time dependent vector
fields vt(y), which generate ϕt as their flow, i.e.

∂tϕt = vt(ϕt) . (1)

The registration problem consists of finding a vector field, which minimizes the
following sum of a kinetic energy and a matching term

E(vt) =
1

2

∫ 1

0

‖vt‖2V dt+
1

2σ2
d(ϕ1(q0), qtarg) . (2)

The kinetic energy is usually measured using a norm ‖.‖V defined on a repro-
ducing kernel Hilbert space V of vector fields on R3 with kernel K. The norm
is then given by ‖u‖2V =

∫
u ·K−1 ? u dx. We will discuss possible choices of the

matching term in Section 2.5.
It is possible to reduce the complexity of the problem, since one can show

that minimizing vector fields vt have to obey an evolution equation. This enables
us to describe the whole vector field vt by knowing only its value v0 at time t = 0.
The equations

∂tqt(x) = vt(qt(x)) (3a)

∂tpt(x) = (Dvt(qt(x)))T pt(x) (3b)

vt(y) =

∫
M

pt(x)K(y − qt(x)) dx (3c)

are given in terms of a momentum pt, which lives on the surface. The momentum
is convolved with the kernel in (3c) to reconstruct the minimizing vector field,
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which defines the deformation of the ambient and drags the surface along in
(3a). Details about LDDMM and the reformulation as evolution equations can
be found in [3, 25].

2.2 Registration with Inner Metrics

We propose to use a different approach, described from a mathematical point
of view in [1, 2]. In this approach we describe the deformation of the surface
directly, without assuming an underlying deformation of the whole space. In our
approach we will replace (3a) by

∂tqt(x) = ut(x) , (4)

where ut(x) ∈ C∞(M,R3) is a time dependent vector field, defined only on the
surface. Note the difference between the vector field vt(y) which is defined on
R3 and ut(x), which is defined on the model space M , c.f. Fig. 1.

Fig. 1. For inner metrics the vector field governing the deformation is defined directly
on the surface (left picture). In contrast the LDDMM approach defines a deformation
vector field on all of R3 (right picture). The latter vector field deforms the ambient
space and in the process induces a deformation of the surface.

In the new framework the registration problem still consists of minimizing
the following sum of a kinetic energy term and a matching functional

E(ut) =
1

2

∫ 1

0

〈ut, ut〉qt dt+
1

2σ2
d(q1, qtarg) . (5)

The kinetic energy is measured via an inner product 〈., .〉qt on the space of
vector fields along the surface. This inner product can and usually will depend
nonlinearly on the surface qt itself. This is another difference with the LDDMM
framework, where the kinetic energy of the vector fields didn’t depend on the
surfaces that were matched. There is a whole variety of inner metrics, one can
choose from. We will concentrate in this paper on an H1-type metric, which will
be discussed in Sec.2.4. Again we postpone the discussion of the matching term
to Sec. 2.5.
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2.3 Geometry

Both the LDDMM approach and the inner metrics can be seen as a special case
of a constructions in the general framework of Riemannian geometry. In the
case of inner metrics the collection of inner products 〈., .〉q defines a Riemannian
metric on the space S of all surfaces. In Riemannian geometry, curves, which

minimize the energy
∫ 1

0
〈ut, ut〉qt dt for fixed endpoints q0, q1 are called geodesics.

We can see that minimizers of (5) have to be geodesics in the space S .

In LDDMM the inner product on the space of vector fields V also defines a
Riemannian metric, this time on the group of diffeomorphisms. Therefore the
minima of the registration problem (2) generates geodesics in the diffeomorphism
group.

Why is it advantageous to work in a Riemannian setting? In this setting, the
minima of the matching energy are geodesics, so one may describe the nonlinear
space of shapes S in terms of the initial velocity or momentum of a geodesic,
which is an element in a linear vector space. This is possible, because geodesics
obey an evolution equation like (3). Using the initial velocity, which encodes
the whole solution of the registration problem, we are able to view the space of
surfaces from the template surface q0 as a linear space. This enables us to use
statistics, compute average surfaces and measure distances.

2.4 H1-type Metric on Surfaces

We will consider a metric on the space of surfaces, which is the analogue of the
H1-norm ‖f‖2H1 =

∫
R2 |f(x)|2 + |∇f(x)|2 dx for functions on R2. We will replace

functions on R2 by vector fields living on the curved surface q and adjust the
definition of the H1-norm to take into account the curved nature of the surface q.
Since q is a surface in R3, we can measure angles and distances of vectors tangent
to the surface, using the Euclidean inner product on R3. At each point q(x) of
the surface we also have a canonical basis for the plane tangent to q, given by
the vectors ∂q

∂x1 , ∂q
∂x2 . We denote the inner product induced on the tangent plane

to the surface by g. This inner product has the following coordinate matrix with
respect to the basis ∂q

∂x1 , ∂q
∂x2 :

(gij) =

(
3∑
k=1

∂qk

∂xi
∂qk

∂xj

)2

i,j=1

, (gij) = (gij)
−1, vol(g) =

√
det(gij) . (6)

We denote by (gij) the inverse matrix of (gij) and by vol(g) the volume density
of the surface q with respect to the metric g.
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In this paper we will use the H1-type inner metric on surfaces defined by the
expression

〈u, v〉q : =

3∑
k=1

∫
M

ukvk + α2g
(
gradg(uk), gradg(vk)

)
vol(g) dx (7)

=

3∑
k=1

∫
M

ukvk + α2gij
∂uk

∂xi
∂vk

∂xj
vol(g) dx . (8)

One reason to use this generalization of the H1-metric is, that this metric is
invariant under reparametrizations of the surface and only depends on the image
q(M) as a subset of R3, in a similar way as the length of a curve in two dimensions
only depends on the image of the curve, and not on a particular parametrization.
This is necessary, if one wants to match unparametrized surfaces. For this task it
is possible to use the same framework with this metric, only the matching term
has to be chosen to beinvariant under reparametrizations.

The constant α, which appears in the metric, is a parameter, which has to be
chosen for each problem. It represents the characteristic length scale, at which
deformations take place. Another interpretation of α is the scale across which
the momentum is smoothed, when passing from momenta to velocities. It can
be compared with the kernel size in LDDMM.

Other choices for the metric are possible. One could use Sobolev type metrics
of higher order as in [2] or multiply the components of the metric with a function
depending on geometric quantities of the surface, like area, mean or Gaussian
curvature as was done in [1].

2.5 The Matching Functional

There are different possible choices for the matching term. In this paper we will
use the squared L2-distance

d(q0, q1) =

∫
M

|q0(x)− q1(x)|2 dx. (9)

Since we are dealing with parametrized surfaces this is a natural choice for the
matching functional.

When matching unparametrized surfaces, natural choices of the matching
functional would include currents, see [9], or one could use the reparametrization
framework of [5].

3 Discretization

In this section we will describe how to discretize the variational problem (5) and
compute the optimal path between two surfaces. Starting with an initial guess
for the velocity u10, we will use a gradient descent scheme

ui+1
0 = ui0 − ε∇u0

E(ui0)
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to converge towards the initial velocity of the optimal geodesic. The discretiza-
tion thus consists of two parts:

– compute the geodesic, given the initial velocity to evaluate E(ui0)
– compute the gradient ∇u0

E(ui0) to update the initial velocity.

We show how to discretize the geodesic equation in Sec. 3.1 and how to
compute the gradient in Sec. 3.2.

3.1 The Geodesic Equation

We discretize the time-evolution of the surface q(t) using the explicit Euler
method

qi+1 = qi +∆tui , (10)

where qi = q(i∆t) is the discretized version of the curve and ∆t = 1/N is the
time step, if we divide the interval [0, 1] into N parts. To compute ui we note

that a geodesic is a critical point of the energy E(ui) = ∆t
2

∑N−1
i=0 〈ui, ui〉qi , i.e.

∇ui
E(ui) = 0. Following [6] we introduce the Lagrangian multiplier pi in the

discrete variational principle

E(u0, . . . , uN−1) =

N−1∑
i=0

∆t

2
〈ui, ui〉qi + 〈pi, qi+1 − qi −∆tui〉L2 . (11)

and take variations. From variations in ui we see that pi is the momentum dual
to the velocity ui in the sense that 〈ui, δui〉qi = 〈pi, δui〉L2 and we obtain the
evolution equation for ui in the form

〈ui+1, δqi+1〉qi+1
= 〈ui, δqi+1〉qi +∆t

〈
δ`

δq
(ui+1, ui+1; qi+1), δqi+1

〉
L2

, (12)

with δqi+1 an arbitrary variation. Here we use the notation

`(u, v; q) =
1

2
〈u, v〉q . (13)

We denote by δ`
δq the variational derivative of `(u, v; q) with respect to the vari-

able q, defined via〈
δ`

δq
(u, v; q), δq

〉
L2

= lim
h→0

`(u, v; q + hδq)− `(u, v; q))

h
. (14)

Equation (12) is an implicit time step for ui+1, since ui+1 appears on the right
hand side in a quadratic term. To make computations easier and avoid having to
solve a nonlinear equation, we changed the right hand side to an explicit Euler
time step

〈ui+1, δq〉qi+1
= 〈ui, δq〉qi +∆t

〈
δ`

δq
(ui, ui; qi), δq

〉
L2

. (15)



A New Riemannian Setting for Surface Registration 189

3.2 Computing the Gradient

Given (10), (15) for the evolution of a geodesic we again use method of adjoint
equations from [6] to compute the gradient of the energy with respect to the ini-
tial velocity. The resulting equations for the variables ûi, v̂i have to be integrated
backwards in time

〈ûi, δui〉qi = 〈ûi+1, δui〉qi +∆t〈v̂i+1, δui〉qi+1 + 2∆t〈 δ`
δq

(ui, δui; qi), ûi+1〉

〈v̂i, δqi〉qi = 〈v̂i+1, δqi〉qi+1 + 2

〈
δ`

δq
(ûi+1 − ûi, ui; qi), δqi

〉
+∆t

〈
δ2`

δq2
(ui, ui; qi), (ûi+1, δqi)

〉 (16)

with the initial conditions

ûN = 0 〈v̂N , δqN 〉qN = − 1

σ2
〈qN − qtarg, δqN 〉 (17)

at time t = 1. The gradient is then given by

∇u0E(u0) = u0 − û0 . (18)

4 Numerical Experiments

We implemented the geodesic and adjoint equations (10), (15) and (16) in Python
using the finite element library FEniCS [14]. All model manifolds ([0, 1]× [0, 1],
S1 × [0, 1], S1 × S1) were modelled on the rectangle [0, 1] × [0, 1] with periodic
boundary conditions prescribed where neccessary. The domain was subdivided
into a regular triangular mesh, on which Lagrangian finite elements of order 1
were defined.

In the first example we apply our method to compute the geodesic path
between two shapes, which includes both large and small deformations. The
template shape is a straight cylinder of height 1 and radius 0.25, which is dis-
cretized using a regular triangular mesh of 2 × 30 × 30 elements. The target
shape is a cylinder, which is bent by 90◦ and has 5 small ripples added to it
along the vertical axis. Compared to the bending the ripples constitute a small
and local deformation of the shape. The target shape is discretized in the same
way as the template. We use α = 0.6 as the length scale parameter and 10 time
steps for the time integration. The gradient descent takes 80 steps to converge
to an L2-error of 0.008. We can see in Fig. 2 that both the large and the small
deformations are captured by the geodesic.

In the second example we want to illustrate the curved nature of shape space.
To do so we pick three asymmetric tori, lying in different positions in space. Each
two tori differ by a composition of two rigid rotations. We compute the geodesics
between each pair of tori to measure the angles and side lengths of the triangle
with the tori as vertices and the geodesics as edges. By comparing the sum of the
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Fig. 2. Samples are shown from a geodesic in the space of surfaces between a straight
cylinder and a bent cylinder with ripples, at time points t = 0, 0.3, 0.5, 0.8, 1. The
color encodes the Euclidean length of the deformation vector field at each point of the
surface.

angles with π one can estimate, whether the curvature of shape space along the
plane containing the triangle is positive or negative. We measured α = 33.766◦ ,
β = 34.802◦ and γ = 34.675◦ . The sum α + β + γ = 103.243◦ is smaller than
180◦ , which indicates that the space is negatively curved in this area (c.f. [16,
Sec. 5.4]). In negatively curved spaces geodesics tend to be attracted towards a
common point. In this example the geodesics are attracted towards the surface,
which is degenerated to a point. We can see in Fig. 3 that the midpoints of the
geodesics between the vertices are slightly shrunk. This is another indication for
the negatively curved nature of the space.

In the third example we show, that our framework is indeed capable to do
nonlinear statistics on shape space. We generate five sample shapes and compute
the mean shape between them. The five shapes are cylindrical vases with an open
top and bottom, discretized again using a triangular mesh of 2×30×30 elements.
As the initial guess for the mean we use a straight cylinder. First we register
this initial shape to the five target shapes, compute the average of the initial
velocities and then shoot with this average velocity to obtain a next guess for the
mean shape. We iterate this procedure until the average velocity is close to zero.
This method of computing the Karcher mean was proposed in [7]. After four
iterations we obtained an average velocity with norm 0.006. As can be seen in
Fig. 4 the average shape indeed combines the characteristics of the five shapes.

5 Conclusions

In this paper we propose a metric to match regular surfaces in a Riemannian
setting. Although this metric has been studied from a mathematical point of view
in several papers, including [2, 17], so far it hasn’t been applied to problems in
computational anatomy. The aim of this work is to argue, that this is a promising
approach, which is worthwhile to be studied further.
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Fig. 3. This figure shows a geodesic triangle in the space of surfaces with asymmetric
tori as vertices. The tori along the edges are the middle points of the geodesics con-
necting the vertices. One can see that the shapes tend to shrink along the geodesics
before expanding again towards the ends. This effect implies negative curvature in this
region of shape space.

Fig. 4. In this figure we show the Karcher mean of five vase-shaped objects. The mean
shape, which is displayed in the center of the figure is computed using an iterated
shooting method. The colored regions on the averaged shapes encode the Euclidean
length of the initial velocity of the geodesic, which connects each shape to the mean.
The color of the mean was chosen for artistic purposes only.



192 Bauer, Bruveris

In contrast to LDDMM, where surfaces are deformed via a deformation of
the ambient space, in this approach the deformation is prescribed directly on
the surface, while the ambient space stays constant. Because of this we call this
approach matching with inner metrics as opposed to LDDMM, which can be
described as matching with outer metrics. Other inner metrics, which have been
proposed in the literature include [18, 12, 23, 8, 1] We show how to discretize the
geodesic equation and how to compute the gradient of the matching functional
with respect to the initial velocity. In the last part of the paper we present
numerical results on synthetic data of different topologies, which demonstrate
the versatility and applicability of our method.

At the present we applied this metric to match parametrized surfaces, which
is an unwelcome restriction in applications. This is not a restriction of the frame-
work itself, but only of the matching functional. By choosing a matching func-
tional, which is independent of the parametrization of the surface, one can apply
the same framework to unparametrized surfaces. In future work we plan to im-
plement this capability and test the method on real anatomical data.
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