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Abstract—In this paper, a new class of circulant matrices many researchers have investigated structured CS operator
built from deterministic sequences is proposed for convoltion- [3]-[10]. Among them, one class of fast CS sampling opegator
based compressed sensing (CS). In contrast to random con-js reglized by convolving the signal of interest with a ramdo

volution, the coefficients of the underlying filter are givenby . . :
the discrete Fourier transform of a deterministic sequencewith filtler and then subsampling [4]L1[5],][8], [9],_[11]. They

good autocorrelation. Both uniform recovery and non-unifom hold great potential in applications such as sparse channel
recovery of sparse signals are investigated, based on thenewence estimation[[4], Fourier optics [8], Radar imagirg [&], [1did
parameter of the proposed sensing matrices. Many exampled 0 coded aperture imaging [12].

the sequences are investigated, particularly the Frank-Zdoff- Note that for convolution-based CS, most existing works

Chu (FZC) sequence, them-sequence and the Golay sequence. . L . . .
A salient feature of the proposed sensing matrices is that #y focus on filters with independent and identically distrémlit

can not only handle sparse signals in the time domain, but ats (i-1.d.) random coefficients. In this paper, we propose a new
those in the frequency and/or or discrete-cosine transforn{DCT) framework by convolution with @eterministicfilter followed

domain. by random sampling of the outputs. The filter is constructed
Index Terms—Compressed sensing, Frank-Zadoff-Chu se- from a sequence with good autocorrelation property, suah th
quence, Golay sequence, nearly perfect sequences, randoone its energy is spread out in the time domain and uniformly
volution. distributed across the (discrete) spectrum. A determirfiter
is more convenient to implement than a random one. Besides,
I. INTRODUCTION deterministic sequences with good correlation propehaes
. . ) .. _found wide applications in Radar, communications and imag-
OMPRE.SSED sensing (C.:S.) IS a growing theory n &gnﬁg By demonstrating that these sequences can be used under
processing aiming a_t efficient sampling of signal [:!' e convolutional CS framework, it may lead to more efficient
[2]. Consider a lengthV signalx and suppose that the baSI§1ardware/so1‘tware design in above mentioned applications

\IlhpI’O\;ldeS abK-sparse _reprezentgtlon of That]{]s,x = ¥, particular, we show that the proposed scheme can efficiently
wheref can be approximated using only < [V non-zero sample a sparse signal in the time/spat® & Iy) or
entries andW¥ is referred to as the sparsifying transform

. : spectral ¥ = —LIFFT) domain. Specifically, forall K-
, VN ) . .
Throug.hout th_|s paper, we assume thbtis an N x N sparse signals of lengttv in the time or spectral domain,
normalized unitary matrix satisfying*¥ = Iy. The data

A in CS be d bed robust reconstruction can be achieved when the number of
acquisition process in can be described as measurements satisfiedl > O (K log* N), while for any
y=®x+e=>dUf +e, (1) given K-sparse signal, it can be regqvered from OM( >
_ O(Klog N) measurements. In addition, when the filter is
wherey represents a/ x 1 sampled vector is anM x N constructed from the Frank-Zadoff-Chu (FZC) sequenceethe
measurement/sensing matrix aads a noise vector. It was results also hold for sparse signals in the discrete cosine
shown in [1], [2] that if® is a Gaussian or Bernoulli randomransform (DCT) domain. In many applications, it is highly
operatorx can be faithfully recovered fromy using nonlinear desirable that a data acquisition system can work effigient!
optimization provided thad/ > O(K log(N/K)). ~ for both time/spatially sparse signals and spectrally smar
Although Gaussian or Bernoulli operators offer optimanes. For example, in military communications, both time-
theoretical bounds, they require huge memory for storage afopping (time-domain sparse) and frequency-hopping &gna
high computational cost for signal reconstruction. Beside(spectrally sparse) are used to achieve the capability tf an
fully random matrices are often difficult or expensive ifamming or low probability of intercept. As another example
hardware implementation. Taking these issues into accouyftRadar imaging([13], a set ok point targets are spatially
o . _ sparse, while a smooth target is sparse in the Fourier domain
The material in this paper was partially presented at IEEfrination M . t ical i . Mma . Id b
Theory Workshop (ITW’09), Oct. 2009, Taormina, ltaly, artdigternational orgover, In as ron-omlca Imaging_{ - ], an !mage. cou €
Conference on Acoustics, Speech and Signal ProcessingS@BALL), May ~ spatially sparse (with only a few bright objects in a dark
2011, Prague, Czech. This work was supported in part by theMBO  hackground) or spectrally sparse as most natural images. La
University Defence Research Centre (UDRC) in Signal Psingsand by but not the | ti . ideo i . hf
the UK EPSRC under Grant EP/I038853/1. utnotthe least, in compressive video Imaging, each Ireane ¢
K. Li and C. Ling are with the Department of Electrical and &enic be sparsified by the DCT transform. Due to strong temporal

Engineering, Imperial College London, London, SW7 2AZ, U&-nail: correlations, the residue images (after motion compam;)ati
k.lio8@imperial.ac.uk, cling@ieee.org). iall
L. Gan is with the School of Engineering and Design, Brunelversity, &€ spatially sparse.

London UB8 3PH, UK (e-mail: lu.gan@brunel.ac.uk). The rest of this paper is organized as follows. Secfion I
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gives a brief review of CS theory and in particular, randomhese algorithms require lower computational complexignt

convolution-based CS. Sectibnllll introduces the framévadr [;-based optimization with somewhat weaker theoretical-guar

the proposed system, its potential applications and suimesar antees.

the main results of this paper. Sectidng IV is devoted to theln CS reconstructioryniform recovery2] means that once

coherence analysis of complex and real-coefficient filteiit b the sampling operataP is constructed, all sparse signals in a

from three classes of deterministic sequences, namely, tiegtain basisP can be recovered as long a$ is sufficiently

polyphase sequences, maximum-length sequences and Gdaye. To achieve uniform recovery, many recovery algargh

complementary sequences. Simulation results are given inréquire the restricted isometry property (RIP).

followed by conclusions in Sectidn VI. Definition 1 (RIP): An M x N matrix ©@ = ®W is said to
Notation: In this paper, bold letters are used to denote satisfy the RIP with paramete(s(,d) (¢ € (0,1)) if

vector or a matrix. For a/ x N matrix A, A(p,q) (0 < ) ) )

p<M-—1,0<q< N-—1) represents the element on jtgsh (1= )If" < lef]" < (1 + H[If]|", forall f T, (5)

row andg-th column.A™ and A* denote the transpose andyperer represents the set of alt-sparse vectors of length

Hermitian transpose oA, respectively. For aiV x N given N.

matrix A, we denote byu(A) its coherence parameter, i.e.,

: - For RIP constan® required in different sparse recovery
the maximum magnitude,

algorithms, please refer tbl[7] for details. Note that th® i

w(A)=  max |A(p,q). a very strong restriction. Among existing sampling opamto
0<p,qsN—1 it is known that the i.i.d. Gaussian and Bernoulli matrices
For two N x N matricesA and B, their mutual coherence satisfy the RIP when/ > O(§~2K log N). However, as we
(A, B) is defined as have mentioned before, these full random operators are im-
practical for large-scale CS data acquisition. Anotherckads

#(A,B) = u(AB) = 0<paoN_1 [A(p,)B(:a)l; of operators satisfying the RIP is randomly sampled unitary

matrix, as summarized in the following theoreim [7],][20].
Theorem 1 (RIP for randomly subsampled unitary matrix):
Suppose that thé/ x N matrix ® is a randomly subsampled
unitary matrix, i.e., it can be written a® = ﬁRQU,
where ﬁ is a normalizing coefficientR is a random
sampling operator which selecfd samples out ofV ones
uniformly at random, andU is an N x N unitary matrix

) ) . ) ) _ satisfyingU*U = NIy. Then® satisfies the RIP with high
In this section, we first review uniform and non-uniformy opapility provided that[7],[20]

recovery in compressed sensing, and in particular theateti

whereA (p,:) andB(:, q) correspond to the-th row of A and
g-th column of B, respectivelyF is the N x N fast Fourier
transform (FFT) matrix wher&(p, q) = i o 0<p,qg<
N —1). We use the standard asymptotic notatiffir) =

O (g (z)) whenlimsup,_, . | f(z)/g(x)| < oo.

Il. REVIEW OF COMPRESSEDSENSING

performance bounds for randomly subsampled unitary matri- M >0 (672p*(U)K log* N) . (6)
Ezz.e\é\/%tshen highlight existing works of random convolution The above theorem implies that the RIP bound of a ran-
domly subsampled unitary matrix depends p(U). Note
] . that for a unitary matrixU with U*U = NIy, we have
A. Uniform vs. Non-Uniform Recovery 1 < u(U) < V/N. In case whenU is chosen as the FFT
Let ® = ®W. Then [1) can be re-written as or the Walsh-Hadamard transform (WHT)(U) = 1 and by

Eqg. (8), we have

—2 4
Hence, reconstruction ot = ¥f is equivalent to recovery Mz20 (5 Klog N)' )

of a K-sparse vectof. Note that asM < N, eq. [2) isin One can also observe that compared with the optimal
general under-determined. To recove(or equivalently,x) phound provided by fully random matrices, there is an extra
from y, nonlinear optimization is required. In the noiselesg,,3 v factor in [7). To address this issue, several researchers
case (i.ee = 0), exact recovery can be achieved by a standafdye relaxed the conditions and investigated the case of non
[y minimization program/[15] uniform recovery, where one just needs to reconstruct angive
min ||f];, st y = Of. (3) Sparse signal. Theorelmh 2 presents the r_esults for_nonrcmifo
recovery of a randomly subsmapled unitary matrix using
In the noisy casef can be reconstructed using the uncorbased optimization.
strained LASSO([16] that solves the regularized square Theorem 2 (Non-uniform recoveryfissume that® is a
problem randomly subsampled unitary matrix that follows the same
min A||f];, + lHy - of|?, (4) definition as in Theorern 1. Let in (@) be a fixed arbitrary
2 K-sparse signal. Thefi can be faithfully recovered frong
where)\ is the Lagrangian constant. In addition/{ebased al- ysing!,-based optimization (i.e[}(3) in the noiseless case and
gorithms, many greedy algorithms, such as orthogonal matq#) in the noisy case) ifi/ satisfies[[21]
ing pursuit [17], subspace pursuit [18], CoSaMP| [19] andrthe
variants have been proposed for sparse signal reconstnucti M > O(u*(U)K log N). (8)

y = 0Of +e. (2)



Theorem[2 implies that using randomly subsampled FHAM other words g is the normalized FFT o4. It is clear that
or WHT, the number of samples required for non-uniforrmwhen o is a unimodular sequence, i.éo,| =1 (0 < k <
reconstruction is nearly optimal. This is because that noi — 1), A is a unitary matrix satisfyingA*A = N1y.
uniform recovery is much weaker than uniform recovery. It In existing works, the coefficient vectar is constructed
should also be noted that the above non-uniform recovery omandomly. In [4], [9],a is a binary random sequence, where
holds forl; optimization. It is still unknown whether we caneacha; takes the values of 1 and —1 with equal probability.
get similar bounds for fast greedy recovery algorithms suén alternative way is to obtaia from o, which is a binary
as subspace pursuit [18] and CoSaMP] [19]. random sequencel[9] or a unimodular sequence with random

At this point, it is worth pointing out that although partialphases[8], i.e.g; = ¢/%¢, wheref),, is a random variable that
FFT (or WHT) has near-optimal theoretical guarantee, easyuniformly distributed in[0, 27).
hardware implementation and fast-computable recovesy, it The sampling operatoR can be either deterministic or
major shortcoming is the lack ofiniversality A universal random, as summarized below.
sensing matrix means that it can handle signals that arsespar 1) Deterministic subsamplingln deterministic sampling,
on anyV. If ® is a Gaussian random matrix, the mat@#®¥ Q is chosen as any arbitrary subset {of,2,--- , N} with
will remain Gaussian for any unitary transfodn However, if cardinality 2] = M. It was shown in [[9] that® given
® is randomly sampled from a FFT, it will not be universal, aby (9) satisfies RIP with parametefd,§) provided that

p(F®) can not beO(1) for all bases¥. As a remedy, in this 7 > © ((K log N)%). More recently, this bound has been

paper, we will propose a new class of randomly SUbsamplﬁrqproved oM > O ((K log* N)) [23]. Non-uniform recov-

ery results have been investigated [inl[24], where the author
considered the recovery of a giveki-sparse signal whose

nonzero components have random signs. Under this model, it
B. Random Convolution for CS was established ir_[23] that exact recovery can be achieved

Tropp et al. [5], [22] first proposed the idea of CS using!SiNg /1 optimization when}M > O(K log V). However,
convolution with an i.i.d. sequence followed by fixed regulfiml'ke TheoreniP, this bound only holds for noiseless mea-
sampling. The effectiveness of such an approach has pSkrement and hence .the guarantee fo.r stable recovery unFier
demonstrated through numerical simulations. Later, mawy p noisy measurements is unclear. More importantly, as we will

ple have investigated cyclic convolution with atap random ShoW later, wheR, is a deterministic operato® given in (9)
filter [@], [8], 9], in which the sampling operatop can be works poorly for a spectrally sparse signal, which impliestt

represented as a partial circulant matrix with the follogvin!t cannot be used directly to sample a natural image (which is
form often sparse in the DCT or the wavelet domain).

2) Random subsampling: To achieve a universal
convolution-based CS, Romberg] [8] proposed to use a
random sampling operatdR,. Note that if o is a random
unimodular sequence, the coherence parameteA dfiven
ag  aN—1 - a1 by (11) satisfies

A= . . C. (10) wAY) = O(y/log N). (13)

By Theorem[]l, such a universal operator satisfies the RIP

when M > O(62Klog’ N) and by Theorenil2M >

For @ given in [9), the measurement process can l®(§—2K log® N) measurements are required for non-uniform

realized by circularljy convolvingx with a filter a = recovery. Note that compared with the optimal bounds offere

[ao a; - aN,l} and then downsample the output aby a randomly subsampled unitary matrix, there is an extra

locations indexed by). It is also well known that a circulantlog N factor in random convolution. It is thus natural to

matrix A can be diagonalized using FFT as follows ponder: Can we get better bounds for convolution-based CS
1 systems with random sampling?

\/NF YF, (11)

where 3 = diagloc) = diag(og,01, - ,on-1). Eq. [11)
suggests that a circulant operator is fast computable dasy
to see that the filter vectaa (i.e., the first column ofA)
can be obtained by taking the IFF®f the diagonal sequence

circulant matrices that can be used to efficiently samplesgpa
signals in either the time or frequency domain.

1
VM

where A is a circulant matrix that can be expressed as

d RoA 9

aGN-1 an-2 -+ Qo

A =
IIl. DETERMINISTIC FILTER FOR CONVOLUTIONALCS

In this Section, we propose a new framework which answers
the afore-posed question in the affirmative.

o= [00 or - aN,l]T, ie., A. Problem Formulation
1 Unlike previous work, we propose the use aeterministic
a= \/—NF*U- (12) filter followed by random sampling for convolution-based CS.

Specifically, for® given in [9), Rq is a random sampling
LFor convenience, the definition here differs from the steshdme IFFT= operator .andk is a deterministic circulant matrix. Just asl"? a
+F* by a factor of1/v/N. random filter, there are two ways to construct a determiisti



A. In the frequency-domaimpproacho is constructed first defined by

and a is obtained from[(12). It is clear thaA is a unitary N—1

matrix if and only if o is a unimodular sequence. In tlime- Rs(l) = Z Sk 8 od (L) (15)
domain approach, the filter vectas is constructed directly. =0 ’

Since it is not easy to get a unitankx using the time- N—I-1

domain approach, we will mainly focus on the frequency- rs(l) = Z Sk * Spyl (16)
domain approach, in which is a unimodular sequence. An k=0

example of the time-domain construction will be given igherel =0,1,2,--- is an integer.

Section[1V-B. Note that whew is a unimodular sequence, Let us first consider sequences with small off-peak periodic
A in general is complex valued. Yet real-valued filters argutocorrelations (or small peak sidelobe level).

desired in many applications, such as Fourier optics andatod Definition 3 (Perfect and nearly perfect sequences)se-
aperture imaging [12]. To generate real sensing matriees,quences is called a perfect sequence if its periodic autocor-
needs to satisfy the following conjugate symmetry conditiorelation R4(1) satisfies

[Bl: N [=iN

ok=oh g 1<h<N-L (14) Rs(”‘{ 0 14N )

where the superscript represents the complex conjugaté* hearly perfect sequence is a sequence with the off-peak
operation. The following theorem presents the requireme@utocorrelation magnitude bounded by a small valuiee.,
of a deterministico under the CS framework: |Rs(I)| <€, 1#iN. (18)

Theorem 3:Consider a CS sampling operatd given . L .
in (@), whereRy, is a random sampling operator and the Due to their wide applications, the construction of (nearly

unitary circulant matrixA. is generated from[T11), with perfect sequences has been extensively studied [25], I[26].
o = (00,01, on]T, low] = 1, k = 0 1---N,— 1 well known that perfect polyphase sequences exist forranyit
being aol;nilrhodtlla]:;:aqdence.A(A), - (’)(1)’ then for ail Y [27]- But the only known bipolar perfect sequence (i.e.,

K-sparse signals in the timeP(= Iy) or spectral domain sk € {1, —1}) is [L, 1, -1, 1]. For nearly-perfect sequences, a

(T — —LF*), M > O(K log* N') measurements are requireéurvey on bipolar and quadriphase sequences is given in [28]
YN T = 8 . . : A widely used bipolar sequence with= 1 is the maximum-
for uniform recovery; for any giveri(-sparse signal in the

time or spectral domainy/ > O(K log N) measurements areIength sequence (also caIIed.as blmgsequence), which can
i : be easily implemented by shift registers. Other examples of
needed using;-based reconstruction.

Proof: If u(A) — O(1), it can be easily derived from bipolar sequences with= 1 are the Legendre sequences and

twin-prime sequences. An example of quadriphase sequences
Theorenfll and Theorel 2 that the above statement holds /i ,
. . : . . h e = 1 is the complementary-based sequence. Sequences
time-domaink -sparse signals (i.e¥y = Iy). To see this is the ¢ ! P y qau au

i f q in (el — —LF" let .~ with other values of such as 2, 3, and 4, can be found in
case in frequency domain (i.el; = VN ). let us examine [28]. The following Lemma shows that for a nearly perfect

the coherence parametefA¥). Note that sequencey(A) is bounded by/T + e.
1, 1, . Lemma 1 (Bound on the coherence parametégt the
AV = \/—NF EF\/—NF =F"X. complex-valued matrixA be defined by[(11) where = s. If

s is a unimodular perfect sequence, theA) = 1. If s is a
Obviously the square matrik*X is unitary, and all the entries unimodular nearly perfect sequence satisfying (18), then

are unimodular, which implies an ideal coherence parameter
A)<V1l+e 19
u(\/—lﬁAF* = 1. Therefore, Theorem] 3 also holds for HA) < te (19)
spectrally sparse signals. - Proof: First, we examine the FF§ = F's of sequencs.
It is clear thatu(A) = max (|ao|,|a1],-- ,|an]|). By By the Wiener-Khinchin theorem, the power spectriéif is

given by the FFT of the periodic autocorrelation functiBn
Thus, we have (fob < kK < N —1)

Nl j2mkl

T

52 = > Re(e™ %
=0

(I2), the problem now boils down to the construction of
unimodular sequenceso that its normalized IFFT coefficients
are bounded by)(1).

B. Main Results
< N+

N-1
jomkl

In this paper, we study the construction @ffrom a se- ; Re(lem v
quence with good aqtocorrela‘uon propeiltyl[25],][26]. Sale < N4+ (N-1e (20)
metrics can be defined to measure the goodness of such
sequences, such as the peak sidelobe level, integratéotsdeNow consider the sequenee= —-F"s. It is easy to show
level and the merit factor etc. All these metrics can be us#tat F*s is a reversed version of (with respect to index
for both periodic and aperiodic autocorrelations. k), hence the same magnitudes. Frdm] (20), the coherence

Definition 2 (Periodic and aperiodic autocorrelations): ~ parameter, i.e., the peak magnitudeaofis bounded by

For a sequence of period N, its periodic autocorrelation 1
Rs(l) and aperiodic autocorrelations(!) are respectively H(A) < \/—N‘/NJr (N-De<vl+e




When e = 0, it reduces to the ideal bound(A) = 1 for the channel. In an OFDM system, the pilot sequences
perfect sequences. B transmitted onN subcarriers, which is implemented by an
Lemmall forms the motivation of the method to be develN-point IFFT (time domain sequenceis the output of the
oped in this paper. It shows that A) will be bounded by IFFT). At the receiver, the signal is randomly subsampled
O(1) if o is a (nearly) perfect sequence. Note that Leniinavtith A/ samples and the channel is estimated using sparse
is based on periodic autocorrelation. One may wonder whethiecovery algorithms. In fact, convolutional-based CS spar
we have similar results for sequences with good aperiodibannel estimation have been studied_in [4]] [209]) [30],cé4ll
autocorrelation? It can be shown thag(l) = rs(1)+rs(IN—1). which are based on random sequences. As we will show later
Thus, if a sequence has bounded), Rs(!) is also bounded. on, by using a deterministic sequence, not only can we get
However, the design of with boundedrs(l) is much more better theoretical guarantee, it also leads to simplifietiora
difficult. Actually, it is impossible to construct sequesagith transmitter design in an OFDM system.
exact impulsive aperiodic autocorrelation (i.es(1) = 0 for Fig. d(b) shows another example of the proposed system
1 <1 < N —1). Barker sequence hass(!)] < 1, but in Fourier Optics or phase coded aperture. The FFT (using
it only exists for N < 13. Several variations have beerthe first lens) of the signal is modulated with a determin-
considered in literature to construct sequences with gped aistic diagonal sequence (implemented via a spatial light
riodic autocorrelation, such as zero-correlation zoneiseges modulator), fed to IFFT (up to a scaling factdé —'/2) by
and complementary sequences|[28]. In SedtionIV-C, we wthe second lens, then randomly subsampled. It is similar to
show thato can also be constructed from a complementathie imaging architecture iri_[8] but with fixed coefficients of
sequence. o. Simulation results show that our proposed scheme can
There are some other limitations of Lemida 1. Firstly, it isffectively reconstruct natural images. On the other hand,
difficult, if not impossible to extend to real sensing magdgg we use a random sequengeand sampled deterministically,
secondly, the bound in{119) is pessimistic; thirdly, an agten one can only recover a spatially sparse signal.
to other domains (e.g., DCT) seems difficult. All these issue Other potential applications of the proposed system ireclud
will be addressed in the next section. In a nutshell, Tdhiktd | Radar imaging, compressive spectrum measurement and mag-
the unimodular sequencesused in this paper, along with thenetic resonant imaging etc.
correspondingV andp(A). Among them, the FZC is a perfect
polyphase sequence, the-sequence is a bipolar sequenc
with ¢ = 1 and the Golay sequence is a complemental
sequence with good aperiodic autocorrelations. As candig se The comparison between the proposed scheme and existing
for the m-sequence, the bound in Talile | is better thdd random convolution-based operators is shown in Table II. It
given by Lemmdl. Tablg | also suggests that real-coefficie@n be seen that the proposed scheme offers near optimal
A with u(A) = O(1) can be constructed from the extendetheoretical performance guarantee for both uniform and non
polyphase or the extended Golay sequences. In additionurform CS recovery, thanks to its deterministic constarct
these results, we will show in Theordm 4 thawifis chosen of o. Recall that for a random filter, the coherence parameter is
as the FZC sequence, similar bounds hold for sparse sigrizgsinded byO(/log N) [8], [9]. The O(1) coherence param-
in the DCT domain. Moreover, Theorel 5 shows that #ter associated with deterministicenables us to remove the
A is constructed from then-sequence using time-domainextra (og V) factor in existing random convolution. Although
approach, it can be used to sample a zero-mean sparse sighalproposed scheme can not offer universality, it works for
both time and frequency domains (and the DCT domain for
FZC sequences). Thus, the proposed scheme can be used
as a hardware-friendly, memory-efficient and fast comgatab
Note that sequences with good autocorrelations have gireadlution for large scale CS applications, e.g., hyperspect
found wide applications that naturally involve convolutid-or imaging. During the revision of this paper, we learnt of the
example, perfect polyphase sequences have been used in Radak [23] which presented the same bounds for the partial
pulse compression. The maximum-length and complementaisculant operator; however, the bounds Inl[23] hold in the
sequences have been used for channel estimation in comtimae domain only.
nications and impulse response (e.g., acoustic or ultrasou It should be mentioned that deterministic sequences have
system) measurement. The fact that these deterministic been investigated in CS before. For example, chirp seqsence
guences can be efficiently used in compressive acquisitionveere applied to radio interferometry in [31], where the segs
sparse signals allows for new design considerations. & alsatrix was constructed in a different way, namely, it was the
provides the potential of practical implementation of th® Cproduct of a rectangular binary matrix@, Fourier matrix
technology with minimum change in hardware or softwar&, diagonal matrixC implementing chirp modulation and
Here, we discuss two examples of potential applications: diagonal matrix D implementing the primary beam. The
Fig. (a) illustrates the implementation diagram of theoherence was analyzed whénis formed by Gaussian wave-
proposed scheme in channel estimation. Here, we assuimrens. Chirp sequences were also used to construct determin
that the channel response is a time-domain sparse sigrtal vidtic sensing matrices in_[32], which cannot be implemented
K propagation paths. In single-channel estimation, a lengtihrough convolution. Besides, the sizes of the sampling-ope
N deterministic pilot sequence is sent directly to probe ators in [32] are restricted to b& x M?2. Upon completion

Connections With Existing Work

C. Potential Applications



TABLE |
COHERENCE PARAMETERu(A.) FOR DIFFERENT DIAGONAL SEQUENCE®

| | o | N [ w@A) ]
FzC Arbitrary 1
Complex matrices m-sequence 2k _1,keN \/1 + %
Golay sequence 2511072263, k1, ko, k3 € N V2
Extended bolvoh Even N 4+ L
_ xiendea polypnas Odd N 2.60 + &1
Real matrices N
Extended Gol Even N, N = 25110%226"3 | k1, k2, k3 € N 2+—N
xtended Gola
y Odd N, N = 2K110%226%3 + 1, k1, ka,k3 € N 2+\lﬁ
N
% % Single channel estimation
9 21 N
- D
M
IFFT PIS —a>_y> Sparse |__,.
Random recovery
Opy ay, channel Sampling
Opa Ay
N -
N
OFDM channel estimation
(a)
A p A
d
P
Pesey
S
B
@1»1@»
i
image lens fixed phase lens random sampling  sensor array
X F z F* Ro

(b)
Fig. 1.  Applications of convolutional compressed sens{ay.Channel estimation; (b) Coded aperture imaging or Eowptics. The lenses transform the
signal to Fourier domain and back.

TABLE Il
COMPARISON OFDIFFERENTCIRCULANT OPERATORS FORCOMPRESSEDSENSING
[ Measurement Operatép | Random Convolution [8]] Partial Circulant Operatol [9]_[23] This Work |
Filter Coefficients Random Random Deterministic
Sub-sampling Operator Random Deterministic Random
Sparsifying Transforml Arbitrary I IorIFFT

Restricted Isometry Propert

M > O(K log® N)

M > O(K log? N)

M > O(K log? N)

Non-Uniform Recovery

M > O(Klog N)

M > O(Klog N)

M > O(Klog N)

of this work, we learned that perfect sequences (including IV. COHERENCEANALYSIS
the FZC sequence and real-valued perfect tenary sequencéghe previous section derives the restrictionoofinder the

were used as the entries of Toeplitz sensing matrices iR rais framework. From a practical perspective, there are other
spectrum estimatiori [33]. Yet the analysis of the coherenggsyrictions. For example, in Raday, needs to have a constant
parameter or RIP was limited to the cas®s = Iy and magnitude. In coded aperture imaging,is real-valued. Also,

¥ = - F in [33]. Taking a step forward, our results hold fof, oFpM channel estimation, it is desirable that the seqaenc
both nearly perfect sequences and complementary sequenggs minimize the peak power required for signal transmissio
For the particular case of the FZC sequence, we have alg; also preferable that the sequence lengtNis: 2* for fast

generalized the result for the DCT basis. Besides, we hayeT implementation. Some other desirable properties delu
also presented the design of real-valued sensing matmcesl3i4]

Section V with arbitrary lengthV. « o or a exists for flexible lengthV;

e 0} Or a; takes a minimum number of values;
e 0} Or aj takes values on a pre-determined signalling set
(e.g., BPSK or QPSK);



« o Or a can be easily generated. ~ and different¥ is an interesting problem that is worth further

However, none of the existing sequences can satisfy all@b&fudy.

mentioned requirements. For instance, the widely useddripo Next, we will investigate how to generate real-coefficient
m-sequence has low implementation complexity and good aufrom a polyphase sequenee Here,o needs to satisfy the
tocorrelation property. However, it only exists fof = 2k —1  conjugate symmetry property in (14). We define an polyphase
(k € N). Perfect polyphase (chirp) sequences exist for arbitraggguence that resembles the FZC sequence. Specifically, whe
length N, but they are difficult to generate. Besides, the)V is an even numbet; is given by

are not on the popular constellation sets such as BPSK or 1 E=0
QPSK. Taking these facts into account, we carry out a case-by —iFE J<p< N _ 1
case coherence analysis of circulant matrices constrficied k=94 N 2 (23)
three classes of sequence3:tbe polyphase sequencé) (m g2 N 2
G P eIN S+1<k<N-1;
sequence andii) complementary sequence. Our analysis will 2
be conducted for both complex and real-valued matrikes when N is an odd numbely can be expressed as
1 k=0
2 —
A. Ponphase_ Sequences _ _ op =4 eIFF 1<k< N2 1 (24)
As shown in Lemmadll, whem is a unimodular perfect _edwmk N+l o N .

sequence, we have;| = 1, i.e., A has the ideal coherence

parametep:(A) = 1. Such a perfect sequence is said to satis nlike the FZC sequence, it is not strf_;ligh_tforw_ard to derive
the constant amplitude and zero autocorrelation (CAZACYE close-form expression af, wheno is given in [28) or
property. This property is very crucial to applications tsuc{é4) - Fortunately, by exploiting partial Gauss sum, we déh s

as Radar. Here, we study a well known CAZAC sequence, tRBOW thatai is bounded byO(1), as stated in the following

FZC sequence, that has been used in phase coded Radar ma. _ i
3GPP Long Term Evolution (LTE). The-th sequencey(is ~ L-emma 2:Let o be defined as_(23) of (24), for even and

an integer that is coprime wittV) within the FZC family is odd N, respectively. Then the coherence parameter satisfies

given by [35f 44+ L N even;
Jryk? H(A) = 2 69\_/'_N8’15 N odd (25)
s = { e~ TN, for evenN; 21) ‘ VN’
=  jmyk(k+1)
e~ % —, foroddN, The proof can be found in Appendix C. Note that the main

for k = 0,1,---, N — 1. In fact, we can set either the filter@dvantage of using (23) arid {24) is that they exist for aabjtr
vectora or its FFT coefficient as the FZC sequence. This is’V- Besides, quadratic phase modulation has been proved as
because the Fourier transform of an FZC sequence is anofigeffective method to improve spatial resolution in magnet

FZC sequence [35], implying both the time and frequenc{/‘?son"’mce imaging_[37]. The above lemma implies that in
domain approach apply. Under these constructioAs,is (eS€ systems, we can further speed up imaging process by

an unitary circulant matrix with ideal coherence paramet§xpPloiting the CS theory.
u(A) = 1. The next Theorem further shows that matAx
generated from the FZC sequence can also be used to sargplélaximum-Length Sequences
a sparse signals in the DCT domain.

Theorem 4:Let IDCT represent the inverse Type-Il DCTN
matrix, and letA be a unitary circulant matrix generated fro
(I1), in whicho is an FZC sequence with

Although perfect polyphase sequences exist for arbitrary
, in some applications, it is more desirable to use bipolar
: msequences far;, due to their easy implementation. A popular
= 1. The matrix bipolar sequence is the-sequence whose autocorrelation is

U=A.IDCT = N"Y/2F*SF - IDCT (22) given by [38]
has coherence parametefU) < 6/2. Ry(l) = { N, 1=0 modN; (26)
The proof of this Theorem relies on the results of partial —1, otherwise.

Gauss sum (summarized in Appendix A) and details will b&ccordingly, from the Wiener-Khinchin relation we have
given in Appendix B. It suggests that an FZC-based operator L — o

can be applied in compressive imaging as the Type-ll DCT is |lag| = { L, )
widely used in image/video compression standards to dparsi N+1, otherwise.
the Signals. It should also be pOinted out that although Werefore, ifo is chosen as thm_sequenceA is Comp'ex
could only derive the bound fo = 1 in Theoreml 4, our ya|yed with coherence parameter

simulations indicate that the result may hold for arbitrary

~. Moreover, A constructed from the FZC appears to be pm(A) = /(N +1)/N. (28)
incoherent with other bases, such as the wavelet and th

modified DCT. How to generalize the above result for différen Unlike the FZzC sequence, using frequency-domain ap-
proach, we cannot easily get a real-coefficient mafixvith

2This definition gives a sequence which is the complex comgugé the N(A) < O(l) by extending then-sequence. Nonetheless, the
standard on€ [36]. They obviously have the same autoctioelenagnitudes. time-domain approach can be used here. If weasdirectly

(27)



as anm-sequence, the following theorem implies that it cadesired to haveV = 2*. In this subsection, we consider binary
be used to sample zero-mearsparse signal: complementary sequences (also known as Golay sequences)
Theorem 5:Consider an\/ x N (N = 2¥ —1) CS sampling introduced by Golay in 1961[42]. These sequences have good
operator given in[{Q)E(10), in which is anm-sequence. Then, aperiodic autocorrelation and they have found numerouk-app
for all zero-meanK -sparse signals in the tima(= Iy) or cations in spectroscopy, ultrasound and acoustic measutem
spectral domainy = ﬁF?V), M > O(K log* N) measure- Radar pulse compression, WI-FI networks, OFDM and non-
ments are required for uniform recovery; for any givBR destructive test etcl [43], [44].
sparse signal in the time or spectral domdih> O(K log N) Definition 4 (Golay sequences)et a =
measurements are needed usingpased reconstruction. (ag,a1,---,any—1) and b = (bp,b1,---,by_1) be a
Proof: It is known that a real-coefficient binary perfecpair of binary sequences with valugsor —1. Thena andb
sequencé can be obtained from am-sequence as follows form a Golay complementary pair if

= [N 1 W +m@) =4 2 =0 (30)
a= N——|—1a+<1_\/N:_|_1)1N7 (29) Ta ™ o O, :1,,N—1

in which 1y represents aiv x 1 all-ones vector. Agi is a A Sequence in any complementary pair is called>alay

perfect sequence, using a similar argument to Lernma 1, weduence Ne1 N1
~ . p— wn J— wn
know thats = —=F4 is a unimodular sequence. Hence, the Let Sa(w) = >, axe’" and Sy(w) = 3_, -, bre’

) ‘/N - N L represent the discrete time Fourier transformaofand b,
corresponding circulant matri = |/ 75 A+ (1 - N—Jrl) respectively. Then, the following relation holds
onegN, N) is orthogonal withy(A) < 2. Thus, according ) )
to TheoremB,A can be used fords-sparse signals in the |Sa(w)|” + [Sp(w)[” = 2N. (31)

time or spectral domain, in which/ > O(K log* N) and
M > O(K log N) measurements are required for uniform an
non-uniform sparse recovery, respectively. Note that foer@

) _ ~ N easily arrive at the following corollary:
mean signak (i.e., 3 =i = 0) Ax = |/x77Ax. Hence,  copiary 1: Let the diagonal sequence be a Golay se-

measurement using. is equivalent to that oA except for a guences of length N. Then, A is a unitary circulant matrix
scaling factor, /<2 . As a result, Theorefil 5 holds. m  With (A) < v/2.

Blote that for any lengthv Golay sequencs, it simply follows
rom (31) that|Ss(w)|? < 2N. Based on this property, we can

N+1" . . .. . .
Note that zero mean is a very mild restriction. Also, the DC As mentioned previously, one promising application of

component of a signal can be easily measured, implying tpanvolutional CS is in OFDM channel estimation. One of the

proposed scheme is applicable to nonzero-mean signals. main practical issues of the OFDM is the Peak-to-Average
The m-sequence has found applications in measuremdi@wer Ratio (PAPR) of the transmitted signal, which can

of impulse response, channel estimation, spread spectréignificantly impact the efficiency of the power amplifier.

communications and fMRI. In the classical method of impulsaPecifically, for a lengthV sequencer, its PAPR is given

response measurement, the measured data need to be sanﬁbﬂé@ﬂ

at a full rate and reconstructed using the correlation ntetho

If the impulse response (or its tr_ansfer function) is sparse PAPR0) = max

the above theorem suggests that it can be reconstructed from te[0,T)

a small random subset of measurements. In other words,

in case when there is impulsive noise or erasure erroyéhereT is the OFDM symbol period. For a Golay sequence,

sparse reconstruction can provide robust recovery. Itlshzer it is obvious that its PAPR is bounded by 2. In contrast, if

pointed out that due to the close connection betweemthe ¢ iS @ random sequence, its PAPR is asymptotically N

sequence and Walsh-Hadamard operafof [39], multiplinati$/ith probability 1 [45]. From this point of view, Golay

of A can be easily implemented usidy N log N) additions. Séquences are more advantageous for compressive OFDM
Remark 1:Other (nearly) perfect sequences, for exampl€hannel estimation than random sequences.

the tenary perfect sequences |[33],1[40] and the Legendre/Ve then move on to consider real sensing matrices con-

sequence [28] (witht = 1), could also be used to construcstructed from an extended Golay sequence.

an orthogonalA using time domain approach. Yet, they are Theorem 6 g(A) for extended Golay sequencd)et s be

not as widely used as the:-sequence. Besides, the lengthd Golay sequence with length &f,. When N = 2N, o is

of these sequences are not quite flexible. For a tenary perfdefine by
psk71

2
j2mnt

1 N-1
LY e
\/ano

sequence]N = Fo—, in which p is an odd primek and s s 0<k<N_1

are integers. The Legendre sequence only exists for oddeprim o S’; =N 2 ’ (32)
= =4

N [41]. sNek Y +1<k<N-1;

C. Golay Sequences

b
Note that them-sequence only exists fa¥ = 2* — 1. As ” { Sk 0<k<i=l_ g
k =

— 2 )
mentioned before, in many applications, such as OFDM, it is SN_k % <k<N-1; (33)



TABLE IV

Thenu(A) is bounded by CIRCULANT MATRICES USED IN EXPERIMENT 2
24+ 2, N even; Schemes Ia R
N’ ’ £2
N(A) < { 24 £ N odd. (34) RP+DS Random phase Deterministic
VN’ RP+RS Random phase Random

. . E-Poly+RS | Extended polyphase sequente Random
Proof: We show the proof for eveV, while the case of E-Golay*RS | Extended Golay sequence| —Random

odd N is omitted since it is very similar. Note that

N-—-1
1 27 g . .
H(A) =7 ol > e vk performance. Yet, with the Golay sequence, the PAPR is much
- i=0 lower than that of random sequence.
:L max |, (@) 1S, (_@) T s0el™ 5o Experiment 2 Here, we study the application of compres-
VN 0<k<N N N sive imaging of 2D signals using coded aperture imaging or
< 2 g 2k ] Fourier optics. In these applications, (k =0,--- ,N — 1)
—\/—N osiew [P\ + need to be real-coefficient. Hence, the extended polyplease s

(35) quence and the extended Golay sequence are considered. They
are compared with that of unimodular random phase sequences
with random and deterministic sampling, as listed Tdble IV.
The fast reconstruction algorithm for Toeplitz matrice§lid]

in which Ss(w) is the discrete-time Fourier transformsfi.e.,
Ss(w) = Zk:"gl spe?“k . By definition of the Golay comple-
mentary squenc¢$s(w)| < v2No = V/N. Consequently, i applied. Threes-bit, 256 x 256 test images have been
p(A) <2+ 7= for N = 2Nj. used, as shown in Fid] 2. In particular, Fig. 2(a) “Star-sky”
The above result indicates that the extended Golay sequepcg spatially sparse astronomical image, Fig. 2(f) “Tempel
is quite attractive in phase coded aperture imaging.oRS comet” is a smooth astronomical image, and Fig. 2(k) “Brain”
is bipolar, it can be easily implemented using a spatialtlighs 5 medical image. The recovered imagesRat 0.25 bits
modulator. Besides, Golay sequences are known to existlforﬁer pixel (bpp) are shown in Figl 2 and the reconstructed
lengths2"1107226"¢, r1, k2, 3, hich offers great flexibility g\Rs at different bit rates are presented in Elg. 3. As can be

In Image sizes. . seen, when deterministic sampling is used, the reconstiuct
Remark 2 (Golay-OSTM)The authors introduced orthog-gNRs are much lower than those using random sampling. For
onal symmetric Toeplitz matrices (OSTM) as sensing ma- gpatially sparse image “Star Sky”, the visual differerse i
trices in [46], and proposed to use the Golay sequence $8a|l. But for the other two spectrally sparse images, the
the diagonal sequence 1o [47]. In gen_eral, OSTM may k@heme using random sequence with deterministic sampling
viewed as a special case of convolutional CS, where thgieq to recover the original image. These results suggest

sequence € {—1, 1}N/2\{(_—17 —1,--+,=1),(L1,--- ., 1)} that partial random circulant matrices with deterministien-
The symmetry of OSTM, i.e.A(i,j) = A(j,i) = aji—j, pling are not efficient in acquisition of natural images. In
could can be exploited for fast reconstruction. contrast, the proposed schemes with deterministic segsenc
can offer similar performance as those of random sequences
V. SIMULATION RESULTS with random sampling, both in terms of the SNRs and the

In this section, we present the simulation results for thvésuaI quality of reconstructed images.

following two experiments:
Experiment 1 In this experiment, we aim to study the
potential of the proposed system in OFDM channel estimation

Here, the number of carrier i& = 1024 and M = 64 | this paper, we have proposed a new class of circulant
samples are obtained at the receiveis set to be the Golay gonging matrices, which were constructed from deterninist
sequence due to its excellent PAPR. The channel modelsig, ences with good autocorrelation property, such astie F
the ATTC (Advanced Television Technology Center) and thg,qence and Golay sequence. We showed that these convolu-

Grande Alliance DTV laboratorys ensemble E moqel, Who$@nal sensing matrices have a small coherence parameter wi
static case impulse responsé) can be expressed s [48] e time and spectral domain, so that the original sparseaig

x(n) =6(n) + 0.31625(n — 2) + 0.19956(n — 17) could be faithfully recovered. The proved theoretic gutean
+0.12965(n — 36) + 0.16(n — 75) + 0.15(n — 137); is the ;trongest among existing convolutlon—based _CS sebem
(36) Experlment_al resglt_s show that these sensing matnces_a:mnp
favorably with existing structured random matrices. Sittee
We consider the cases when the signal to noise ratios (SNRBeyerlying deterministic sequences are widely used intigec
are 0 dB, 10 dB, 20 dB and 30 dB, respectively. For each SN& major advantage of the proposed scheme is that it may be
500 trials have run using the subspace puréuit [18] algorithintegrated into existing systems. Namely, when part of tite d
The recovery performance is compared with that proposedigncorrupted such that traditional techniques fail to rexov
[30], in which ¢ is a unimodular sequence with random phadée original signal, our analysis shows that the CS recovery
andRg, is a deterministic sampling operator. From Tablé Illalgorithms will be helpful. It is hoped that this work will ep
it can be seen that both schemes offer similar reconstructithe door to more applications of sequences in CS.

VI. CONCLUSIONS
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TABLE IlI
AVERAGE OUTPUT SNRS IN OFDM CHANNEL ESTIMATION
Partial Circulant Operatoff Proposed System
o Random Phase Golay
Rq Deterministic Random Sampling
PAPR [6.4, 15.6] 2
0 dB 5.32 dB 5.44 dB
10 dB 13.98 dB 14.34 dB
Input SNR +—>5-a8 3753 dB 37.45 dB
30 dB 45.22 dB 45.61 dB

(k) 0
Fig. 2. Original256 x 256 images and reconstructed results at 0.25bpp using diffeeat-coefficient images. First row, “Star-sky” images) @riginal
image; (b) RP+DS: 17.85 dB; (c) RP+RS: 24.02 dB; (d) E-Pol$+R4.10 dB; (e) E-Golay+RS: 24.11 dB. Second row, “Tempeh€&® images. (f) Original
image; (g) RP+DS: 0.37 dB; (h) RP+RS: 30.16 dB; (i) E-Poly+R$.88 dB; (j) E-Golay+RS: 30.26 dB. Third row, “Brain” imeg. (k) Original image; (I)
RP+DS: 1.00 dB; (m) RP+RS: 20.93 dB; (n) E-Poly+RS: 20.94 @;E-Poly+RS: 20.98 dB. Please refer to Tdblé IV for acrosyoh different schemes.

APPENDIXA Moreover, whenm < (N + 1)/2,

PARTIAL GAUSS SUMS
Gn(m)+GN(N —m+1) =1+ Gn(N). (39)

Definition 5: Let N be a positive integer. The exponential
Define a normalized versiogy (m) as

sum [49]
Z sk /N (37) gn(m) =2N"3 Z 2k N (40)
k=0 k=0
is anincomplete Gauss sumhenm < N. then we have[[49]
Whenm = N, the complete Gauss sufiiy(N) is well )
known [49] V2, if N=4k,m<N/2
. o ()] < 107+ O(N~3%), if N=4k+1,m<N/2
(L+)VN, if N=0 (mod4) INUL= 095+ WIN—3, if N=dk+2,m<N
Gu(v) =4 VN it N=1 (modd) g VIFNT, if N =4k +3,m< N/2
0, if N=2 (mod4) (41)
VN, if N=3 (mod4). wherek is a positive integer.
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Reconstruction Results for “Star Sky" Reconstruction Results for “Comet Tempel" Reconstruction Results for “Brain”
30 40 30
] ~ |
- - 25 e
) — g pons S ) o
Z Z = S 2 r._—"
x x e > -
= Z o0 Z 15 e
7] 0 7] _
a o o
el o 10 el
2 2 2
o 15} o s
2 =4 2
7] @ o @ o
c = c
g ——RP+DS 8 —e—RP+DS g S ——RP+DS
& w ‘=+= RP+RS S, ‘=+= RP+RS 3 ‘=#= RP+RS
- B -E-Poly+RS - B -E-Poly+RS -10 - 8 -E-Poly+RS
-*= E-Golay+RS -x= E-Golay+RS -x= E-Golay+RS
5 i i i i 20 i i i i 15

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4

Bit Rate (bpp) Bit Rate (bpp) Bit Rate (bpp)
(a) (b) (©)

Fig. 3. SNR reconstruction results for thr2g6 x 256 images using different real-coefficient circulant matsic) “Star sky” image; (b) “Comet Tempel”
image; (c) “Brain” image.

Based on the above results, we can easily arrive at thke last step is due td_(42). When< ¢ < N — 1 and
following Lemma: 0<p<N -1,

Lemma 3:Define Gon(m) as

N-—1
1 V2
_— — U(p7q)=ZA(pJ€)COS ~vEt3)e) =
21) N
J i =k k=0
Gan(m elank Z Nk No1
k=0 k=0 _ V2 e T (p—k)2—If (e—g%(/w%)q+€j%<k+%>q).
2VN =

Then,Gyx(m) can be bounded (46)

if N =2No,m $Hdough some mathematical manipulations, it can be shown
if N = 2Ny, N thatUr(p,4)2¢an-de bounded by

|Gan(m)] < +
(095+101N“) if N =2N,+1,m<2N,

ha%

42) NG) N-1 . N-1 L
vrals o R ( Y eF 10| | (Y eiF ket io )
2\/N k=0 k=0
5 |N=2  ep—ta)?
APPENDIXB <4/= ZGJN P—34
PROOF OFTHEOREM 4 N k=0

(47)

Proof: For clarity we only give the proof for eveiv
here. The case of od is similar and is omitted. We appIyWhenq = 2q0 is a(r;c even )number ,CIQ%)JF G = 1,0 <
a result from [[35] that the Fourier dual of a unimodularz. — 1 We haveed & (-r 30" = 75 ( IfO<i<N-
perfect sequence yields another unimodular perfect seguen

[ <
1,

N-1
Specifically, wherr is an FZC sequence if_(21) with= 1, Z IFEDT — |Gon (4 1) + Gan (N = 1) — 1] <2/ N+1
the elements ofA are given by[[35] P B
(48)
o2 ) ) )
Alp,q) = LT i 43) \ZNZe;JeV the1 last step is due to partial Gaussian SunV I£
= o T

its magnitude. Note that the IDCT coefficients are can b Z eI R (k=1)?

Obviously, we may ignore the phasejf" when calculating |nv-1
expressed as h_o

(49)

1 — o Wwhere again the propertjGan ()] < VN for I < N is

IDCT(p,q) = { VA - applied. So for even, we haveU(p, q)| < 22+ 2 \When
’ o 2 us 1 _ ' » 4 \/*

Vroos(Flp+3)a), 1<g<N-1L q = 2¢o + 1 is an odd number, let = p + go. After some

(44) tedious calculations, we may break {ip](47) into
Thus, whery =0 and0 <p < N —1,
LN U(p,q)| < \Q (IQn(mod(l, N) +1)|
U(p,0)| = = |3 eF0H5 ‘ ?
VNS (45) +1Qu (N = 1 = mod(l, N))|
_ ! +1Qn(lp — a0l + QN (N = Ip — q0l)]),
- = |Gan (N)| < 1. N 0 N 0 (50)

< |Gan 2N — 1) + Gan(l— N +1) — 1] < 2v/N+1



where@ n(m) is given by

It can be shown thaf) y(m) =

,_.

m—

eI (k+3)* _ Z I TN 2k+1)270 <m<N

(51)
Gan(m), which

k=0

GgN(Qm) —

leads to

for 0 < m < N. As a result,|U(p, q)|
Combined with the result for even we arrive at Theoreif 4.

|Qn(m)| < |Gsn(2m)| + |Gan (m)| = 3VN (52)
< 6+/2 for odd q.

APPENDIXC
PROOF OFLEMMA

(4

(5]

(6]

(7]

(8]

El

[10]

Proof: The proof is also based on the incomplete Gauss
sum in Appendix A. Again, for simplicity, we only present11]
the proof for evenV.

Ason_j = o}, 1 <k <& —1, it can be shown that,
takes the following form

N/2—1
Z oW (FRPr2k—1?) | AR
N/2—1
+ 1 Z (R aki?) | g _ L n (—1)l_
VN & VN T UN
Thus, we have
9 N/2—1 9
al < —— NGB0 L 2 0<I<N-1. (53
| l| = \/N Z \/N >0 > ( )

k=0

When0 <1< & -1,

N 2
<= Gon(l+1)+ G — =) -1+—=
] < \/—‘ an ( 2N<2 ) ' i
2 2 4
<—=|2VN+1)+ —= <4+ —.
\/N( ) VN VN

(54)

In a similar way, it can be shown thaity ;| for 0 <1 < %—1
can be bounded by

2 N 2

) < —=|Gen | = +1)|+|Gon (D] ) + —=

i = ([ (5 +1)] <)« 75
2 2 2
<—= 2N+ —==4+—,
~ VN VN VN

(55)

which completes the proof. [ ]
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