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OrdovicianQ7 sequences at Huanghuachang, northern Yichang City of Hubei Province, Central

China, are representative of an outer-shelf setting of the Yangtze epicontinental sea, South

China Block. Continuous drill cores of the Well Yihuang 1 penetrated the Upper Ordovician

units of the Miaopo, Pagoda, Linhsiang, Wufeng, and Kuanyinchiao Formations in ascending

order. Such a continuous succession gives valuable insights into environmental changes and an

extinction event through Late Ordovician time. Results suggest that sluggish circulation and oli-

gotrophic conditions were characteristic of the region from Sandbian to early Hirnantian Epochs

of the Late Ordovician. Thin-bedded limestones within the Miaopo Formation shales and nodu-

lar limestones of the Pagoda and Linhsiang Formations are mainly wackestones and mudstones

with sparse and fine-grained trilobite, cephalopod, gastropod, ostracod, and crinoid bioclasts

with rare brachiopod and bivalve bioclasts, further showing gradual decreasing in abundance

and grain size upwards through the succession. Such biological and lithological changes are

interpreted as a trend towards a deeper and calmer seafloor below storm wave-base. The

Kwangsian Orogeny of the late Katian Epoch altered the geography of the region, creating a

large embayment in the area of the Well Yihuang 1 core. Thus the sequence developed upwards

to the Wufeng Formation graptolitic black shales consistent with formation in a dysoxic and

stagnant embayment that excluded carbonate production and benthic biota, but ideal for preser-

vation of planktic graptolite fossils. Bioclastic packstone and quartz grain lenses interlayered

with the black shales are occasionally sourced from southeastward shallow submarine highs

closed to the Cathaysian Land. Change from this interpreted sluggish ocean circulation affecting

the ocean floor was delayed to the early Hirnantian Epoch, when active circulation is related to

the onset of the latest Ordovician glaciation which resulted in an oxygenated ocean floor during

regression, favorable for the thriving shelly Hirnantia Fauna.

KEYWORDS

environmental parameters, microfacies, outer-shelf of the Yangtze epicontinental sea, South

China block, Upper Ordovician

1 | INTRODUCTION

The Yangtze epicontinental sea covered most of the isolated South

China Block, which was located in the subtropical to tropical belt,

within 30� south latitude to 30� north latitude of peri-Gondwana

during the Late Ordovician to Early Silurian periods (e.g. Boucot,

Chen, & Scotese, 1995; X. Chen & Rong, 1992; X. Chen, Zhou, & Fan,

2010; Copper, 2002; Melchin, Mitchell, Holmden, & Štorch, 2013;

Scotese & McKerrow, 1990, 1995 Q8; Torsvik & Cocks, 2013). Tectonic

uplift beginning in the Sandbian Epoch and developing through the
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Katian Epoch of the Late Ordovician Period reduced the size of the

sedimentary basin (Figure 1). The Kwangsian Orogeny, northwestward

expansion of Cathaysian Land from the southeast together with uplift

from Chengdu Land in the west and Dian-Qian-Gui Land in the south-

west of the Yangtze epicontinental sea exposed some marine areas

above sea level (X. Chen et al., 2014; X. Chen & Mitchell, 1996;

X. Chen, Zhang, Fan, Tang, & Sun, 2012; Rong et al., 2003). Global

cooling and extinction events took place in the Hirnantian Stage of

the latest Ordovician Period (Harper, Hammarlund, & Rasmussen,

2013) and eliminated many taxa of marine invertebrate animals

(Jablonski, 1991; Sheehan, 2001). Biotic and geochemical evidence

based on high-resolution stratigraphic schemes from the South China

Block shows that sea-level fluctuation, climatic shifts and tectonic

movement were key factors in controlling litho- and biofacies (e.g. X.

Chen et al., 2000; X. Chen, Rong, Li, & Boucot, 2004; Cheng & Wang,

1991; Feng, Yu, Fang, & Bian, 1993; Y. Li & Kershaw, 2003; Y. Liu, Li,

Algeo, Fan, & Peng, 2016; Munnecke, Zhang, Liu, & Cheng, 2011;

Rong, 1984; Rong & Chen, 1987; Rong, Chen, & Harper, 2002; Yan,

Chen, Wang, & Wang, 2010; Yang et al., 2016; T. S. Zhang, Kershaw,

Wan, & Lan, 2000; L. Zhou et al., 2011).

Ordovician sequences dominated by carbonates widely distrib-

uted in the northern Yichang District of western Hubei Province are

representatives of nearly continuous deposition in outer-shelf envi-

ronments on the Yangtze epicontinental sea favorable for classic pale-

ontological, stratigraphic and palaeoenvironmental investigations

(e.g. X. Chen & Qiu, 1986; Lee & Chao, 1924; Mu, Zhu, Lin, & Wu,

1984; W. T. Zhang, 1962; Zeng et al., 1987). The Huanghuachang and

Wangjiawan North sections in this region are well-known as Global

Stratotype Section and Points (GSSPs) for the Dapingian of the lower

Middle Ordovician and Hirnantian of the uppermost Ordovician

respectively (X. Chen et al., 2006; X. F. Wang et al., 2005). Both litho-

logical and paleontological data suggest an outer-shelf setting less in

terrigenous supplement and idealized for insight evolutionary pattern

of Ordovician biota in aspects of biodiversity and abundance. Earlier

literature focused mainly on paleontological, biostratigraphic and geo-

chemical analyses (e.g. X. Chen et al., 1999; Fan et al., 2011; Fan,

Peng, & Melchin, 2009; J. Li, Thomas, & Yan, 2014; Yan, Chen, Wang,

Wang, & Wang, 2009). Nevertheless, lithological microfacies and their

environmental parameters have been given less attention.

Organic-matter rich black shales that occur throughout the

Ordovician–Silurian transition from the outer-shelf area and are con-

sidered hot spots for economic geology in China because of their

shale gas significance (S. B. Chen et al., 2011; C. Liang et al., 2016;

S. G. Liu, 2013). The drilling project of the Well Yihuang 1 at Huan-

ghuachang Town was carried out in 2014. Yi means Yichang District;

huang means Huanghuachang, a small town situated in the northern

suburb of Yichang City (30�52050.0500N, 111�2400.9400E, Figure 1).

This new drill core material aids assessment both for petrologic data

and palaeoenvironmental parameters of shale gas. The aim of this

study is to characterize the bio- and lithofacies changes throughout

the Upper Ordovician in a single, almost continuous section of a well

core located in the centre of the Yangtze epicontinental sea, allowing

more complete understanding of the synergetic evolution between

biota and oceanographic background than has been previously

achieved. The extent to which these tectonic and biotic events

affected the regional environments in outer-shelf settings of the
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Palaeogeographic pattern of the South China Block in Late Ordovician time, with outer-shelf locations of the Well Yihuang 1 and

Wangjiawan riverside section. Migrations of shorelines surrounding Yangtze epicontinental sea (marked by arrows) are after X. Chen, Fan, Chen,
Tang, and Hou (2014), their biostratigraphic dating by graptolitic zonations respectively marked:Sa2, Climacograptus bicornis Biozone, middle
Sandbian; Ka2, Diplacanthograptus spiniferus Biozone, early Katian; Ka6, Dicellograptus complexus Biozone, late Katian
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Yangtze epicontinental sea during the Late Ordovician is the topic of

this paper. Our results suggest that a low latitude but transgressional

marine floor below storm wave-base was essentially unfavorable for

concentrations of benthic fauna in advance of latest Ordovician glaci-

ation; and further recognize truncation of oceanographic parameters

from vertical gradients, sluggish circulation and oligotrophic conditions

of pre-Hirnantian to ocean circulation of the Hirnantian in the study

region.

2 | MATERIALS

Upper Ordovician deposits at Huanghuachang Town contain neither

sedimentary lacunae nor shallow intertidal indicators (Zeng et al.,

1987). Their bio- and lithofacies of the sequences are implications for

evolutionary pattern in aspects of paleontology and palaeogeography

in a deep outer-shelf setting. The Well Yihuang 1 at this town pene-

trates 72 m of drilling depth from the upper Kuniutan Formation

(upper Darriwilian of Middle Ordovician, the deepest drilling level) to

the lower Lungmachi Formation (Llandovery, Silurian). Strata at Well

Yihuang 1 dip gently, thus, the depth of the drilling cores is approxi-

mately equal to their measured thicknesses. Upper Ordovician

Miaopo, Pagoda, Linhsiang, Wufeng and Kuanyinchiao Formations in

ascending order of the well are condensed with total thicknesses less

than 40 m (Figure 2). Drill cores can be biostratigraphically and lithos-

tratigraphically correlated with the nearby outcrops described by Zeng

et al., (1987, shown on the left side of the Figure 2). Age-dating of the

lithological units through the Upper Ordovician formations described

below correspond to the current international standard of the Upper

Ordovician (Cohen, Finney, Gibbard, & Fan, 2013). Zeng et al. (1987)

listed macrofossils, which were easily collected from outcrop but diffi-

cult from cores. Therefore, bioclastic components of the Upper Ordo-

vician from the well in the Figure 2 are based on our microfacies

identification. Altogether 53 samples, mainly of bioclastic limestones,

were collected from the core for thin section study; their sampling

horizons and summarized bioclastic components are marked in

Figure 2. Terminology for limestone classification follows Dunham

(1962) and Flügel (2004); lithologic features concerning palaeoenvir-

onmental parameters are described as follows.

3 | LITHOLOGICAL SUCCESSIONS OF THE
UPPER ORDOVICIAN IN WELL YIHUANG 1

3.1 | Miaopo Formation

The Miaopo Formation dominated by dark shelly-rich shales interlami-

nated by limestone lenses could be assigned to the Pycodus serra,

Pycodus anserinus and Baltoniodus alobatus conodont biozones or

upper ‘Hestedograptus teretiusculus’ and Nemagraptus gracilis graptoli-

tic biozones in ascending order, nevertheless, its main parts are of

early Sandbian age (An, 1987; X. Chen, Bergstrom, Zhang, Goldman, &

Chen, 2011; Ding, Chen, Zhang, Cao, & Bao, 1993; Z. H. Wang, Berg-

strom, & Lane, 1996; Z. H. Wang, Bergstrom, Ma, Song, & Zhang,

2015; X. F. Wang, Ni, & Zhou, 1980; Zeng et al., 1983). This formation

is 1.98 m thick (depth: 74.00–75.98 m) in Well Yihuang 1. Well-

preserved trilobites, brachiopods, and cephalopods are generally

abundant in shales, but graptolites are sparse. Limestone lenses within

the shales are bioclastic wackestones with fragments of trilobites, gas-

tropods, crinoids, ostracods, and brachiopods (Figure 3). Shelly frag-

ments of the lower formation is poorly-sorted, some trilobite and

brachiopod shells are more than 0.8 mm in length (Figure 3a,b). Bio-

clastic material from the middle and upper part of the formation are

moderately-sorted and finer in grain-sizes (Figure 3c–e); some gastro-

pod shells are very thin and therefore easily broken (Figure 3a,c),

probably indicating some transportation. Organic burrows (Figure 3d)

indicate an oxygenated floor. X. Chen and Qiu (1986) suggested that

shales of the Miaopo Formation have limited spatial distributions

within intra-platform depressions of the Yangtze Platform surrounded

by equivalent limestone of the Datianba Formation; Song et al. (2017)

further outline a short-term and gentle transitional slope between the

formations. Foliomena Fauna (brachiopod) from the Miaopo Formation

in Yichang was considered as the indicator of marine-floor depth to

be Benthic Assemblage 4, below storm wave-base (Rong, Zhan, &

Harper, 1999).

3.2 | Pagoda Formation

The Pagoda Formation limestones with its characteristic shrinkage

cracks of uncertain origin occupied almost the whole Yangtze epicon-

tinental sea in a calm subtidal environment. Benthic macrofossils are

not abundant, but nektonic nautiloids (some very large up to 1 m) are

distinctive (Zeng et al., 1987). The formation could be subdivided stra-

tigraphically using conodont biozones of the Hamarodus europaeus

and Protopanderodus insculptus zones in ascending order correlated to

middle Sandbian to early Katian age (An, 1982, 1987; X. Chen et al.,

1995; X. Chen, Bergstrom, et al., 2011; Zeng et al., 1983; Zhan et al.,

2016). The Pagoda Formation is 10.47 m thick (63.53 m to 74.00 m)

at Well Yihuang 1, dominated by grey to greyish brown medium-

thick-bedded limestones intercalated with thin-bedded nodular lime-

stones, which are partly shown in the Figure 4.

Bioclastic content is variable, and most of the unit is composed of

bioclastic wackestone (Figure 5a–d) interbedded with mudstones con-

taining less bioclastic material (Figure 5e–f) yielding poorly-sorted and

fine-medium sized fragments of trilobites, cephalopods, gastropod,

brachiopods, ostracod, and crinoids; some shelly taxa in the micritic

limestones are mostly broken and not identifiable. Burrows are sparse

(Figure 5f).

Biotic evidence of nautiloids (J. Y. Chen, 1988), Foliomena fauna

(Rong et al., 1999; Zhan & Jin, 2005) and trilobites (Z. Q. Zhou, Zhou, &

Xiang, 2016; Z. Zhou et al., 2016) together with lithological features

of micritic-dominated facies without sedimentary structures formed in

a turbulent shallow belt (Zhan et al., 2016), suggests the depth of the

sedimentary basin was likely more than 100 m.

3.3 | Linhsiang Formation

The Protopanderodus insculptus conodont Biozone and presence of

Nankinolithus (trilobite) indicates Linhsiang Formation to be the late

Katian (X. Chen et al., 1995; Chen, Bergstrom, et al., 2011; Zeng et al.,
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Litho- and biofacies logs of the Well Yihuang 1 and nearby Huanghuachang section. Bioclast data are presence/absence records of

these fossils. Types of limestones are shown in Figures 3 and 5–8, respectively. The small hyphens mean horizontal occurrences of the lithological
contains; and the vertical lines mean contine occurrences of same lithological, biotical, and taphonomic features. Fm., formation
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1983; Z. Q. Zhou et al., 2016; Z. Q. Zhou, Zhou, & Yuan, 2005). The

Linhsiang Formation is 17.75 m thick in the well (depth:

39.42–63.53 m). Its lower part is mainly of greyish brown nodular

limestones intercalated with thin-bedded limestones, and the middle

and upper part are grey in color and rich in nodular limestones

(Figure 4). Trilobites, cephalopods, and crinoid bioclasts are in the drill

cores. Bioclastic wackestones occur from the lower formation, mud-

stones become dominant upward (Figure 2). Taphonomically, fine and

moderately-sorted fragments of trilobites, gastropods, ostracods, cri-

noids, cephalopods, brachiopods, Halysis (calcareous algae), and small

burrows are quite rare (Figure 6). Compared to the Pagoda Formation

below, more frequent occurrence of mudstones with little bioclastic

debris are typical in the Linhsiang Formation; gastropods essentially

decline from the upper Linhsiang Formation indicating an initial epi-

sode excluding inhabitation of benthic fauna.

3.4 | Wufeng Formation

Condensed, stagnant and dysoxic sedimentation of the graptolitic

black shales of the Wufeng Formation was common in the outer-shelf

belt of the Yangtze epicontinental sea unfavorable for carbonate

deposition (X. Chen et al., 1999, 2004; X. Chen, Xiao, & Chen, 1987).

Wilde and Berry (1984)Q9 suggested that a stagnant ocean implies

strong density stratification and dysoxic marine floor; such a

hypothesis was further available for the oceanographic pattern of the

Yangtze epicontinental sea where dysoxic and increasing salinity of

the deeper water largely excluded inhabitations of benthic fauna dur-

ing this time-interval (Cheng & Wang, 1991). The formation is subdi-

vided into the Dicellograptus complanatus, Dicellograptus complexus,

Tangyagraptus typicus-Paraorthograptus pacificus, Diceratograptus

mirus, and Normalograptus extraordinarius graptolitic biozones in

ascending order with time-interval from late Katian to early Hirnantian

in age (X. Chen et al., 1995, 2000, 2006; X. Chen, Rong, & Zhou,

2003; Mu, 1954; Mu et al., 1993; X. F. Wang et al., 1983). The

Wufeng Formation is 6.36 m thick (depth: 39.42–45.78 m) in the Well

Yihuang 1 core and almost completely dominated by graptolitic black

shales intercalated with two limestone lenses and several sandy grains

and K-bentonite beds. Sparse trilobites and brachiopods are found in

the upper part. Sandy-grained quartz lenses are recognized in graptoli-

tic black shales of the Wufeng Formation (Figure 7a). Ran et al. (2015)

suggested that ball-like grains in the Wufeng Formation are radiolar-

ians. However, no basic radiolarian morphology is recognized from

these grains, instead they are poorly-sorted but well-rounded quartz

grains. A packstone lens comprising fine-grained and highly broken

bioclastic debris of crinoids, sponge spicules and brachiopods, with

fine sand-size quartz, occurs interbedded with the graptolitic black

shales from the middle of the formation (Figure 7b). The black shale of
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Bioclastic wackestones of the

Miaopo Formation at Well Yihuang
1 (sampling horizons shown in the
Figure 2). (a,b) Sample No. S1. (c,d) Sample
No. S2. (e,f) Sample No. S3. Letters inside
photos: B, burrow; Br, brachiopod; Cr,
crinoid; G, gastropod; O; ostracod; T,
trilobite
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the Wufeng Formation was deposited in a dysoxic, stagnant and semi-

closed environment (X. Chen, 1984; X. Chen et al., 1987; X. Chen &

Qiu, 1986; Y. Liu et al., 2016; Mu et al., 1981; Rong & Chen, 1987;

Yan, Chen, Wang, & Wang, 2012), and occurs in most parts of the

Yangtze epicontinental sea (X. Chen et al., 2004). Coarse quartz and

bioclastic debris within the lenses shown in the Figure 7 are likely of

distal origin, derived by gravity flows and finally deposited in deep

stagnant and dysoxic marine floor occasionally.

3.5 | Kuanyinchiao Formation

The Kuanyinchiao Formation, Hirnantian of the uppermost Ordovician

in age, yields typical Hirnantia Fauna consisting of brachiopods and tri-

lobites, matching the glacial peak of the Gondwana Continent

(X. Chen, 1984; Rong, 1984; Rong & Harper, 1988; T. G. Zhang, Shen,

Zhan, Shen, & Chen, 2009). Some outcrops of this unit in the Yichang

District were described as yellow claystones since the carbonate rocks

are intensively weathered (X. Chen et al., 2000; Mu & Rong, 1983;

Zeng et al., 1987). The Kuanyinchiao Formation sections in Yichang

area are generally rich in shelly Hirnantia Fauna fossils accumulated

under a shallow but cool water environment (X. Chen et al., 2004,

2006; Fan et al., 2013; Gorjan, Kaiho, Fike, & Chen, 2012; J. B. Liu,

Rong, & Chen, 2001; Rong, 1984; Rong & Chen, 1987; Rong et al.,

2002; L. N. Zhang, Fan, & Chen, 2016)). The Kuanyinchiao Formation

is 0.16 m thick (depth: 39.26–39.42 m) in the Well Yihuang 1 core

dominantly composed of secondary recrystallized dolomites inserted

by three calcareous marlstones with thin lamina but few in coarse bio-

clastics and not ideal for investigation of biotic structure (Figure 8).

The outcrop of the Kuanyinchiao Formation near the well is cov-

ered by modern construction nowadays. Wangjiawan, about 24 km

north of the Well Yihuang 1, is a small village and well-known for the

GSSP of the Hirnantian. We sampled fresh limestone of the Kua-

nyinchiao Formation from the Wangjiawan riverside section nearby

the GSSP (location marked in Figure 1) for additional lithological

description in the present paper. Development of the Hirnantia Fauna

of the Kuanyinchiao Formation from the section does not exactly

coincide with the biostratigraphic boundary of the Hirnantian, where

the latter is defined by the FAD Q10of the N. extraordinarius Biozone from

the black shales of the Wufeng Formation.
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Nodular limestones of the Pagoda and Linhsiang Formations partly shown from cores of the Well Yihuang 1. Fm., formation

6 of 12 YU ET AL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110



FIGURE 5 Microfacies of the Pagoda

Formation at Well Yihuang 1 (sampling
horizons shown in the Figure 2).
(a) Bioclastic wackestone, Sample No. S5.
(b) Bioclastic wackestone, Sample No. S7.
(c) bioclastic wackestone, Sample No. S10.
(d) Bioclastic wackestone, Sample No. S14.
(e) Bioclastic mudstone, Sample No. S15. (f)
Bioclastic mudstone, Sample No. S17.
Letters inside photos: B, burrow; Ce,
cephalopod; Cr, crinoid; G, gastropod; O;

ostracod; T, trilobite
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Microfacies of the Linhsiang

Formation at Well Yihuang 1 (sampling
horizons shown in the Figure 2).
(a) Bioclastic wackestone, Sample No. S18.
(b) Mudstone with sparse bioclasts and
burrow, Sample No. S23. (c) Bioclastic
mudstone, Sample No. S28. (d) Mudstone
with sparse bioclasts, S31. Letters inside
photos: B, burrow; Cr, crinoid; H, Halysis; G,
gastropod; O; ostracod; T, trilobite
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The Kuanyinchiao Formation at the Wangjiawan riverside

section is 0.27 m thick. Biotic elements in packstones are rich in bra-

chiopod fragments, typical benthic Hirnantia Fauna. Some burrows are

indicators of benthic fauna actives (Figure 9a). Shelly components also

include rich crinoid fragments, which are not reported in the literature

(Figure 9b). Microfacies herein show that the oxygenated marine floor

was suitable for a well-developed metazoan fauna.

4 | DISCUSSION

Microfacies profiles of the bioclastic components in the present paper

show higher biodiversity of fossils in the units. Some small-sized ben-

thic biota of crinoids, gastropods, burrowing organisms, and rare Haly-

sis (calcareous algae) of the Late Ordovician were present on the

marine floor, though their taxonomic details are poorly known. Biodi-

versity change in the Upper Ordovician, concerning biotic events

especially Hirnantian mass extinction episodes in the study area, was

mostly documented from macro- and microfossils which are important

for systematic paleontology. Nautiloid depth zonation (J. Chen, 1988),

trilobite assemblages (Z. Q. Zhou et al., 2005; Z. Q. Zhou et al., 2016;

Z. Y. Zhou, Zhou, Yuan, & Zhou, 2000) and brachiopod fauna (Folio-

mena) (Y. Liang, Zhan, & Jin, 2014; Rong et al., 1999; Rong & Zhan,

1995, 1996; Zhan & Jin, 2005; Zhan, Wang, & Wu, 2010) recognized

from limestones of the Miaopo, Pagoda, and Linhsiang Formations are

paleoecological evidence of marine depth below storm wave-base.

Ordovician seas were mainly of gentle latitudinal and vertical gra-

dients, sluggish oligotrophic conditions thus weak in ocean circulation

(Martin, 1995, 1996). The gentle vertical gradients and sluggish

marine-floor circulation in Martin's oceanographic model are consis-

tent with the present lithofacies from the Sandbian to lower Hirnan-

tian (from the Miaopo Formation to the top of the Wufeng

Formation) from a calm and less biotic production of the marine floor

in the outer-shelf of the Yangtze epicontinental sea. Small-sized and
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Microfacies of the Wufeng

Formation at Well Yihuang 1. (a) Quartz
grain lens in black shale, Wufeng
Formation, S42. (b) Bioclastic packstone,
Wufeng Formation, S49. Letters inside
photos: Br, brachiopod; Cr, crinoid; Ss,
sponge spicule

FIGURE 8

C
ol
or

F
ig
ur
e
-
P
ri
nt

an
d
O
nl
in
e

Microfacies of the

Kuanyinchiao Formation at Well Yihuang
1. (a) Polished slab of the core with
sampling horizon of the photo (b) and (c).
(b) dolomite. (c) Calcareous marlstone
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strongly broken fragments of benthic elements of trilobites, cephalo-

pods, gastropods, ostracods, crinoids, and rare brachiopods and

bivalve indicate the oxygenation of sea bottom; nevertheless they are

altogether low in abundance in wackestones and mudstones. Lack of

intraclasts indicates that there was no early lithification or no subma-

rine erosion. Thus, both matrix-supported lithoficies and grain compo-

nent represent a low rate of carbonate production. In the Late

Ordovician time, typical warm-water taxa with potential for reef-

building such as calcareous algae, bryozoa, corals and stromatoporoids

occurred only in the near shoal belt of the South China Block (Y. Li,

Kershaw, & Mu, 2004), matching the green house episode of the Boda

Event (Boucot, Rong, Chen, & Scotese, 2003) but few recognized from

the Yihuang 1 well further indicating a deeper outer-shelf belt unfa-

vorable for reef-building. Oligotrophic conditions (Martin, 1995, 1996)

possibly existed in the outer-shelf setting where there was less input

of terrigenous debris. A dysoxic marine floor can be the reason for

well-preserved graptolites in black shales of the Wufeng Formation.

Thus poor ocean circulation was likely maintained until the early Hir-

nantian on the Yangzte epicontinental sea. Berry and Wilde (1978)

and Wilde (1991) suggested that a cooling event promoting ocean cir-

culation of the Late Ordovician had already happened before the lat-

est Ordovician glaciation. However, no dramatic change is shown in

lithological sequences of Well Yihuang 1, so if there was active ocean

circulation elsewhere, this did not interrupt poor deep water circula-

tion during the depositional interval of the Wufeng Formation.

The total thickness of the Upper Ordovician in the Well Yihuang

1 is less than 40 m suggesting that the depositional rate of both shales

and limestones was quite low and thus did not cause shallowing of

the sea floor during this time. The global sea-level change pattern

(Haq & Schutter, 2008) shows an overall transgression and then

regression during the Late Ordovician from Sandbian to Katian. How-

ever, subsidence of the basement in the outer-shelf belt of the Yang-

tze epicontinental sea played a more significant role in creating

deeper and low energy marine sediments dominated by lime mud. The

oxygenated character of limestones of the upper Kuniutan Formation

(uppermost Middle Ordovician) of Well Yihuang 1 implies an oxygen-

ated and cool marine-floor depth below major wave-base (Yu, Li, &

Mao, 2016). Compared to the Kuniutan Formation, Upper Ordovician

limestones show a tendency of increasing lime mud and decreasing of

bioclastic content. Less bioclastic components from the upper Linh-

siang Formation possibly suggest a gradual transition towards a

weaker hydrodynamic even stagnated and anoxic marine basin

towards the dysoxic Wufeng Formation.

Shelly bioclastics wackestones and sandy grain beds interbedded

with the black graptolitic shales of the Wufeng Formation suggest the

existence of narrow shallow submarine highs for inhabitation of shelly

fauna and intermittent water flow while most parts of the sea floor

are dominated by a dysoxic environment (X. Chen et al., 1987, 1999,

2004). The Kwangsian Orogeny and expansion of the other land-

masses played key roles in controlling distribution of land and sea.

Former deep marine regions of the Jiangnan Slope and Zhujiang Basin

from the Cambrian to early Late Ordovician were gradually shallowing

upwards, with rapid deposition of coarser terrigenous clasts due to

the active tectonic setting (X. Chen et al., 2012, 2014; Rong et al.,

2003). However, coarser terrigenous clastics weathered from expand-

ing lands did not immediately notably effect the condensed nature of

sediment deposition in outer-shelf settings; marine-water maintained

high clarity in the Late Ordovician, the evidence for which is in the

abundant faunas. Lands surrounding the Yangtze epicontinental sea

were important information of a semi-enclosed anoxic basin low in

carbonate deposition, which excluded benthic biota during the grapto-

litic black shale episode of the Wufeng Formation in advance the peak

of the Hirnantian glaciation. Regional narrow shallow submarine highs

for inhabitation of shelly fauna existed closed to the Cathaysian Land

(L. N. Zhang, Fan, Chen, & Wu, 2014), leading to input of bioclastics

and quartz grains into the area where black shales had previously

formed. Depositional rates increased later, in the late Aeronian

(Llandovery of Silurian) Yangtze Uplift (X. Chen et al., 1996 Q11; Rong

et al., 2003).

5 | CONCLUSIONS

1. Lithological data through the Late Ordovician, from the Well

Yihuang 1 and additional information from the Kuanyinchiao For-

mation at the Wangjiawan riverside section, are used to recon-

struct the Late Ordovician seafloor scenario in the outer-shelf

belt of the Yangtze epicontinental sea, and prominent close rela-

tionship between biotic profiles and environments.

2. A low-latitude, deep basin is consistent with sparse benthic biota

and calcareous mud-dominated sediments, where low energy,

cool conditions did not favor reef community development. Con-

densed sequences of the Miaopo, Pagoda, and Linhsiang Forma-

tions in core from Well Yihuang 1 are dominated by wackestones

and mudstones, and bioclastic material became less common from

the upper Linhsiang Formation upwards.

FIGURE 9
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Microfacies of the

Kuanyinchiao Formation at Wangjiawan
riverside section. (a) Branch-shaped burrow
filled by quartz grains within bioclastic
mudstone. (b) Wackestone with coarse
crinoid (Cr) and brachiopod (Br) fragments
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3. Formation of the dysoxic and stagnant environment of the

Wufeng Formation was related to the gradual expansion of the

Kwangsian Orogeny in aspects of the land-sea configuration.

Ocean circulation was not as active during this time.

4. Subsidence of the basement herein is interpreted as a component

in the upward deepening and development of the dysoxic sea-

floor. Ocean circulation increased into the middle Hirnantian epi-

sode when glaciation peaked. Sea-level fall promoted

development of the Hirnantia Fauna of the Kuanyinchiao Forma-

tion even in the Hirnantian cool episode.
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Graphical abstract

Upper Ordovician continuous lithological succession in outer-shelf facies, Yangtze Platform,
South China: Facies changes and oceanographic reconstruction up to the Late Ordovician
Hirnantian glaciation

Shenyang Yu, Qing Chen, Stephen Kershaw, Yue Li, and Chao Li

Late Ordovician sequences from the outer-shelf setting are available for reconstruction of the seafloor scenario in the Yangtze epicontinental sea

of the South China Block. Microfacies of the limestones from Sandbian to middle Katian are dominated by wackestones and mudstones illustrat-

ing a deeper and calmer seafloor depth below major wave-base. Late Katian graptolitic black shales in the dysoxic basin excluded benthic biota.

Such a bio- and lithofacies is related to the embayment pattern configured by tectonic uplifting, ocean circulation was not as active in advance of

the Hirnantian glacial event
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