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A B S T R A C T  

Several  results  for  continued  fractions  are  first 

derived  and  are  then  shown  to  be  applicable  to  numerical 

solution  of  differential-difference  equations  arising 

from linear  birth-death  processes.     These  numerical 

solutions  have  a  high  degree  of  accuracy  and  the  method 

gives  rise  to  convergence  when  the  birth-death  process 

does  not  tend  to  a  steady  state. 
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1. Some  Properties  of  Continued  Fractions

      We  denote  a  continued  fraction fo   by 
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where  an   and bn    are  numbers,  real  or  complex.     The  nth 

convergent of fis, 
nB

nA   where both An   and Bn    satisfy the 
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with  initial  values  Ao    =  0,  A1    =  a1  and B0    =  1 ,  B1  = b1
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formula 
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may be  used to  obtain  the  continued fraction  (1.1).  Dividing 
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the  first  relation by  fo    and  rearranging,  we  have 
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From  the  general  relation,  dividing by  fr  ,  we  have 
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for  r  =  1,2,3,  ...    .      Results  (1.5)  and  (1.6)  lead  to  the 
continued  fraction (1.1),for which we now establish an 
elementary  convergence  result.    From  the  first  n  relations  of 
(1.4)  we  obtain,  using  (1.2), 
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If  Bn  is  non-zero  we  also  have 
(1.7) 
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If we now choose the sequences   {an  }   and   {bn   }   in such a way 

that    ∃  a suffix    N such that Bn    is non-zero for all 

n  > N  then,  from  result  (1.8),  a  sufficient  condition 

for  the  continued  fraction  (1.1)  to  converge  to  a  solution 

of  the  recurrence    relations    (1.4)  is  that 
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More  particularly,  a  sufficient  condition  for  convergence 

is  that 
              

                                              (1.9) 0nflimn =∞→

 

In  this  case, if we  let  an    and bn   be  functions  of  a complex 

variable  z and if F is the region of the z-plane for which 

condition  (1.9)  holds  then we  can easily  prove  the  following 

theorem: 

Theorem:    The  continued  fraction  (1.1)  is  convergent  in 

that  part  of  the  region F which  excludes  the  zeros  of 

BBn  (z)  for  n  >  N,  where  N is  arbitrarily  large. 

In  the  remainder  of  this  section we  assume  that 

condition    (1.9)  holds  so  that  the  continued fraction  (1.1) 

converges,  and  we  shall  call  {fr}  the corresponding 

sequence  of  (1.1). 

We  now  introduce  the  basic  similarity  transformation 

of  continued  fractions.  The  values  of  the  continued  fraction 

(1.1)  and  all  its  convergents  remain unchanged  under  the 

transformation       
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This  is  equivalent  to  multiplying  the  rth  equation of 

 the  set  (l.4)  by  γr  ,  where  γr     =   ∏
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 New corresponding sequence  { }rf' ,  where                                                                

                                                                                                                 (1.11) 
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Now, from (1.6) we have the continued fraction 
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for n=  1,2,3,   ••••  for    which we have the following 
expression,  using (1.2), 
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for n = 1,2,3, •••••••• • Subtracting the nth convergent of 

fo . and using (1.3) and (1.6) we obtain 
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Hence  we       have  obtained  a  continued  fraction for  the 

truncation error  of  fo  , 
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which we  shall  call  the  truncation fraction.   Also, by 

comparison with (1.8) we have 
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The  nth  denominator  of  this  fraction  is  Br+n          We  denote 
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for r =  2,3,4, ......................     The truncation fraction for fr    is 
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If  we  now  set  fr+n        =  0  then 
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Thus  we  can  generalise  the  determinant  formula  (1.3) 

to 

 .(r) 
n A r 1) ( n r B r A r B n r A − = + − + (1.19) 

Still  assuming  that  condition  (1.9)  is  satisfied  we 

examine  a  new  set  of recurrence  relations 
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in which  the  constant  term  occurs  in  the  (m+l)th  relation 

instead  of  the  first.    Apart  from  the  constant  term  the 

coefficients  are  the  coefficients  of  (1.4)  and  we  have,  in 

particular,    k1   =  a1    and   ·fr(o)
rf ≡  

It  is  easily  proved by  induction  that 
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7. 
for  r  =  1,2,3,  ...m.     In  particular,  when  r  =  m  we 
substitute  for   in  the  (m+1.)th  equation  of  (1.20) (m)

1mf −

and  obtain 
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Equation  (1.22)  together  with  the  (m+2)th,   (m+3)th,   (m+4)th,.... 

equations  of  the  set  (1.20)  form a  set  analogous  to  (1.4)   so 

that we  obtain  the  continued  fraction 
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using (l.10).     In fact we have 

·mfmB
1mα
1mk(m)

mf
+

+= (1.25). 

By repeated application of  (1.21) to  (1.25) we have 
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for  r  ≤  m.    Although  the  continued  fraction  (1.24)  is  of 

a  more  convenient  form,  we  must use  (1.23)  when considering 
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the  Corresponding  sequence  of  .  Applying  result (m)
mf

(1.16)  we  get 
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For  results  (1.26)  and  (1.27)  we  have  the  truncation 
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for  r  ≥  m. 

Finally,  we  state  some    results  whose  usefulness 

will  become    apparent  in  the  next  section.     Analogous  to 

(1.10),  we  can  transform  the    set  (1.20)  to  a  more 

convenient form,  constructing  a  new  corresponding 
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and  a  new  constant  term  1mk +  where 

                                        K' m+1   = Υm+1     km+1                             (1.31) 

Also  useful  are   the  determinantal forms  for the 

numerators   and denominators   of  the  continued  fraction  (1.1 ) 

There  are   : 
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2     Application to General Linear Birth-Death Processes 

          The following set of differential-difference equations 

    represent a general linear birth-death process: 

                                       (2.1)
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            for   r = 1,2,3,  .-..  and where 0 ≤ pr (t) ≤ 1  and 
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Pr(0)= δ r,m (2.2) 

for some m ε   {  0,1,2,   ...... ] .     Also    λr  >  0   for r = 0,1,2,   .... 

and µr   >   0 for r = 1,2,3,  .......  and we define 
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and L-1   =Mo = 1. 

 

The  set  of  equations  (2.1)  has  been  solved  analytically, 

in  a  few  particular  cases,  by  a  generating  function method 

but  the  set  may be  solved  numerically  in  the  general  case 

using  the  results    of  section  1.     However,  a  limiting 

factor for  the  numerical  solution is  the  working 

accuracy  of  the  computer used. 

We  denote  the  Laplace  transform  of  pr (t)  by 

Dr  (s)  where 
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Laplace  transforming  (2.1 )   and  rearranging  we  have 
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The  set  (2.4)  is  now  of  the form  (1.20).  However, to convert 

the  resultant  continued  fraction  to  a  convenient  form  we  apply 

the  transformations  (1.30)  and  (1.31)  using   rMr1)(yr −=       The 

set  (2.4)  then becomes 
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for  r  =  1,2,3, .......................    .we  now have    the  continued  fraction 
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Since  the  population  cannot  grow  to  infinite   size   in  finite 

time  we  have,  for  finite  t, 
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Hence  the region F is  the whole  s-plane and we 

may apply  the   convergence theorem of  section 1 .   if we  can 

find the  positions of  the zeros  of  the denominators  of  the 

continued fraction (2.7). From  (1.33) we have 
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 which is clearly  zero  when -s    is an eigenvalue of  the  matrix 
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This matrix  is  quasi-symmetric  and may be  transformed into  a 
real  symmetric matrix by  a similarity 
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The matrix  so formed  is 
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The matrix En  is   a real symmetric  positive definite  tridiagonal 

matrix with non-zero  subdiagonal  elements.   Because  of these 

properties  the   eigenvalues  are real,  positive  and 

distinct,   [See Wilkinson  (1965).]    Hence Bn     (s)  has  only 

simple   zeros which all lie   on the negative  real axis in 

the s-plane and,  from the  theorem of section 1.,   we can 

state that  the continued fraction (2.7)   converges  in the 

s-plane  cut from 0 to ∞   along  the   negative real axis. 

We  are now   justified in using  the results   (l.26)  and  (1.27) 

to  give the following expressions for Pr (s) : 
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for  r  ≥  m.     Writing  Pr,n for  the  nth  convergent  of  Pr   (s)   and 
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using  (1.16)  we  have 
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for  r   ≥   m.     wee  are  also  justified  in  inverting  the 

ℒ-transform  expressions  (2.10)   and  (2.11)  since  all  the 

singularities  of  Pr,n  lie  to  the  left  of  the  imaginary 

axis  in  the  s-plane. In  general  we  consider  a  convergent 

K(s)  such that 
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where Bn   (s)  is  a denominator polynomial of  order n in s 

and N(S)  is  the numerator polynomial which is of lower 

order.     If we choose    -z1 ,     -z2,   ....     -zn    to be   the real, 

negative and distinct roots of Bn  (s)   then we can write 

                                                                                  (2.13) ∏
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Since  the  roots  are  distinct  we  may  write  K(s)  in  the 
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partial fraction form 
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where    ω1, ω2   ,  .• • •ω n     are constants given by 
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and where Bn  '(—zi) is computed from 
 

                                                                                                      (2.16) 
Ji

n

ij
).izj(z)iz(nB

≠

∏
=

−=−

Inverting, we have the solution 
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which is the form in which the probabilities, 

 Dr(t), are computed. 

To greatly reduce the required computation,  since 

we  only  require  the  values  of'  An
(r)     at  the  roots  of 

BBr+n      ,  we  appeal  to  the    generalised  determinant 
formula  (1.19).    From  this we  get  that,  at  a  root  of 

Br+n  , 

 
An

(r)   =(-1)r  Ar+n  Br 
                                                                                                                       (2.18) 
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Hence  we  need  only  compute  the  roots  of  the  numerators 

and  denominators  of  the  continued  fraction  (2.7)  in  order 

to  compute  the  probabilities,  pr  ( t ) ,   for  apy  value  of  m. 

The  roots  of  the  numerators  are  also  computed  as  eigenvalues 

using  (1.32). 

From  (1.28)  and  (1.29) we  have  the  truncation  results 
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for  r  ≥  m. 

We  will  now  derive  estimates  of  the  truncation  errors 

in  the  probabilities  obtained  from  results  (2.10)  and  (2.11). 

We  observe  from  (2.7)  that  for  |s| large, 

BBn(s) = (λo + s)(λ1+ µ1+ s)(λ2+ µ2+s)....(λn-1+µ n-1+s)+0(s - )                                       (2.21) n 2

for n =   2,3,4,  ...    and also,  from  (1.16), 
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we  define 
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for r ≤  m.      Inverting, we  obtain,  for  t small 
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(2.23) 

 

for r ≤ m.    In (2.23) the dominant term provides an upper bound 

which is only a useful error estimate if n is large.    We find,   

however, that for moderate n a satisfactory estimate is obtained 

 choosing an unbounded function which agrees with the first two 

terms of (2.23).    We choose 
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for  r  <  m     where 
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From (2.20) We also have   
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For  r > m                                                                                                                 (2.25) 

 

     Given a value or n and a sufficiently small error ∈   the 

results (2.24) and (2.25) may be used to estimate a range of 

t for which this error is not exceeded.    A larger value of ∈ 

could give a very pessimis tic estimate for the range of t. 

Examples of Birth-Death Processes 

We conclude with numerical results   for four examples of 

linear birth-death processes.    The models we use are 

(i)      An immigration-death process with λn = 0.2 and 

µn    = 0.4n for n = 0,1,2,3,.....................For this model the 

probabilities tend to steady state values.    The results 

are evaluated in the two cases when the initial 

population size m is 0 and 1. 

(ii)    Erlang's model with λn   =   0.4 for n =0,1,2,3,  ...., 

µo   =   0 and µn   =   0.2 for n = 1,2,3,.................... In this case 

there are no steady state values. These results are 

evaluated when m = 0  and when m = 5. 

(iii) A three-server queuing   model with λn  = 0.6 for 

n = 0,1,2,3, . . • ,  µo=   0,µ1 =µ2= 0.2, µ3=µ4=  0.4 

and µn    = 0 .6  for n = 5,6,7, ...............•    This represents a 
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           queuing system in which the number of  servers 

            is dependent on queue size.    We choose m = 0. 

(iv)      A process with  λn   =   0.3 and µ N    =    0.1 √n  for 

            n = 0,1,2,3,  ....   .    Again, we choose m = 0 . 

Analytic  solutions for models  (i) and (ii) may be obtained 

by the generating function method. 

The table below contains estimates of ranges of t for 

selected values of  n   using the formulae (2.24) and (2.25). 

In each case 10-4      is the chosen maximum error in the computed 

value of pr (t). 

Model   m      r        n Estimated Range  (to 2 sig.figs,) 

380
5120

1000
500

540
260

1000
500

400
390

890

1055
1000
500

720
600

960

1011
1000
500
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≤≤
≤≤

≤≤
≤≤
≤≤

≤≤
≤≤
≤≤
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tiii

t

t
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t
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ti

.)(

.)(

.)(

.)(

 

In FIGS 1.- 6.all results were computed with n = 10   using 

the range 0 ≤ t ≤ 40,      As a check the results were recomputed 
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 FIG.  1.    Model (i) with m=0. 
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                          FIG.  2.    Model (i) with m=1. 
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FIG.  3.    Model (ii) with m=0. 
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                        FIG. 4. Model (11) with m=5 
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                            FIG.   5.     Model  (iii)  with  m=0. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

FIG. 6.    Model (iv) with m=0. 
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with n = 15 and the range estimates in the above table 

were all found to be smaller than the actual range for 

the chosen accuracy. 

 

The eigenvalues of the matrix En    were computed using 

an algorithm based on that given by Bowdler, et.al.(1968). 

It was,  however, found necessary to compute    these 

eigenvalues using an accuracy of about 20 significant 

figures because some of the calculations are ill-conditioned 

Finally,  the only serious drawback of the method is that it 

is limited by the size and working accuracy of the computer 

used so that efficient programming is essential. 
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