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Abstract 

Second, fourth and sixth order methods are developed and analysed 

for the numerical solution of non-linear second order boundary value 

problems. 

The methods arise from a  two-step recurrence relation involving 

exponential terms, these being replaced by Padé approximants . 

The methods are tested on two problems from the literature. 
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1.        INTRODUCTION  AND   DEVELOPMENT 

Consider   the   general   second  order  boundary  value   problem  given  by 

y "(x)   =   f(x,y)  ,   aD < x  <  a 1    (1)                          

y(a0) =  A 0  ,  y(a1) = A1     (2) 

where   a0 ,a1 ,A0 ,A1  are  finite  constants . It  will  be  assumed  that  a 

unique  solution,  y(x) , to (1)  and  (2)  exists    for   a 0   <  x  <  a1 ;     for 

a   general  discussion  of  existence  and  uniqueness  to  (1) and  (2)  the 

reader  is  referred  to  the  text  by   Henrici   [1],for  instance.   It   will 

further  be  assumed  that  y(x) and  f(x,y)  are  sufficiently  often  diff- 

erentiable   with   respect   to  x   in  the   interval   a0 < x <  a1 . 

         Numerous  numerical  methods  for solving (1) with (2) have appeared 

in  the literature. Commonly  used finite difference  methods  are  dis- 

cussed  by  the authors of  many  texts (see, for  instance  [1,2,3]);  the 

problem  is  treated  using  variational  techniques  in [3]; and  shooting 

methods  have  received coverage in [4], for example. The  possibility 

of  using    spline   functions  to obtain a  smooth solution of  (1) with   (2) 

was  first discussed  in  [5], and  in [6]  cubic,  quartic,  quintic   and 

sextic  splines  are  used  to  solve  the  boundary  value  problem.   Attention 

was drawn in [7]  to  the  connection  between  a  cubic  spline  solution  and 

the  solution  obtained  using  the  well  known  Numerov  method . The  replace- 

ment  of  (2) by  mixed  boundary conditions  was considered  in [8]   where 

the classical second  order  finite difference  method  was used to compute 

the   solution. 

           Suppose  the  independent variable x is incremented  using a constant 

step  size  h  = (a1 - a0) / (N+1)  where  N   is   a  positive   integer.  The   solution 

will  be  computed  at  the  points  x m  =  a 0 +  mh   (m =  1 ,2,...,N)   and   the 

notation  ym  will  be used  to  denote  the  solution of  a  numerical  method  at 

xm  ;   clearly  y0 = A 0   and  yN+1  =  A 1 . 
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        The  multiderivative  methods  to  be  discussed   in   the  paper  are  based 

on  the  recurrence   relation 

                    -  y(x-h)   +   {exp (hD)  + exp (-hD)} y(x)   -  y(x+h)   =   0   ,           (3) 

where  D= d/dx.    Using   this   relation, each  numerical  method  will   deter- 

mine  the   solution  vector  Y  =   (y1,y2,...,yN)T  , T   denoting   transpose, 

implicitly. 

       The   methods  are   obtained   by   approximating   the  exponential   terms 

in   (3)   by   (M,K)    Padé   replacements   of   the  form 

                                     exp (hD)   =   [QM(hD)] -1 PK(hD)   +  0(hM+K+1)                          (4) 

where  PK (hD)  and  QM(hD)   are   polynomials   in  hD  of   degrees   K  and  M, 

respectively.      Using   such   an   approximation   in   (3),   and   clearing   all 

inverses,   leaves   only   even   powers   of  D.   It   then   follows   that   f(x,y) 

and   its   second,   fourth,   etc.,   derivatives   with  respect   to  x  may   occur 

in   the  resulting  multiderivative  method.     Clearly,   the   need   to   use 

such   derivatives   of   f   implies   that   y ' (x)   becomes   involved.    This   de- 

rivative   is   estimated   to   the  required  accuracy  by  using   enough   terms 

of   the   forward,   central   or  backward  differentiation  formulas,   as 

appropriate,  given,   for   example,    in   the   text  by  Gerald   and  Wheatley    [9]. 

       The   local   truncation   error   associated   with   the   numerical   method 

based   on   the   (M,K)   Pade  approximant,   at   the  point  x=xm ,   takes   the 

form 

t  m    =  t  (xm )    =  cp + 2    hp + 2    y ( p + 2 )   (xm) +Cp + 4  hp + 4  y ( p + 4 ) (xm). . . ...                (5) 

  where   p = 2[ 2
1

 (M+K) ] .  Here  p  is  the  order  of   the  method  and  the   Cp+q 

      (q-2,4,...)   are  constants;    Cp+2   is   the  error  constant   of   the  method. 

For  consistency,  p  > 1  and   so   the   methods   based  on  the  use  of   the   (0,1) 

or (1,0)   Padé  approximants   in   (3)   are   inconsistent.    The   error   constants 
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for    eleven   of    the   multiderivative   methods   arising   from   a   sample  of 

values   of   M  and   K  are   given   in   Table 1. 

 

Table   1     here 

 

2.        SECOND   ORDER   METHODS 

All   numerical   methods   to   be   discussed    in   the   paper   have   the   form 
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is   the  central   difference   operator  defined  by 
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and   the  **
ra,*

ra,ra    (r =  -1,0,1)   are  parameters  which  depend  on   the   chosen 

Padé  approximant. 

           Visual   examination   of    the   error   constants   of   each   of   the   five   second 

order  methods  of   the  family   (see  Table   1)   shows   that   the  numerical  methods 

based  on   the   (1,2)   and   (2,1)   Pade  approximants   are  the  most  accurate. 

The   parameters   **
ra,*

ra,ra   for   the   method  based  on   the   (1,2)   Padé.   approx- 

imant   are   given  by 

and  those for the method  based on the (2,1)  Pade  approximant are given 

in  the  Appendix. It  is   obvious  from (8) that  no derivatives of  f(x,y) 

are  involved  in the method based on the (1,2)  Pade approximant .  It  is 

equally  obvious from the Appendix  that  d2f /dx2 is required  for  the 

(2,1)  method  and  it  may  be  concluded, therefore, that  the (1,2)  method 

is,   overall,   the  best   second  order  method   of   the  family  arising  from  (3). 
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          The  method  based  on the  (0,2)  Pade  approximant is, of  course, 

the  well  known  second  order  linear  multistep  method;      its  parameters, 

and   those  of   the   other  second  order  methods  of   the  family, are  given 

in   the  Appendix. 

The  solution  vector  Y   for   each  method   is   obtained  by  solving  a 

non-linear  algebraic   system  of  order  N  of  the  form 

                                               F(Y)    = 0                                                                         (9)                                        

using   the  Newton-Raphson  method.   In   the   case  of   the  method {(6) ,(8)} 

based   on  the   (1,2)   Padé   approximant,   the  Jacobian  of   F(Y)   in   (9)    is 

tridiagonal. 

3. FOURTH   ORDER   METHODS 

Nine  entries   of   the  Padé  Table  lead  to  fourth   order  multiderivative 

methods   when  used   in   (3).   The error   constants   of   three  of   these  methods 

are   given   in   Table   1,   the   error  constants   of   the  other   six  methods  being 

no   smaller   in  modulus   than   these   three.  From  Table   1,   it  is   evident   that 

the  use   of   the   (2,3)   Padé  approximant   in   (3)   leads   to   the  fourth   order 

multiderivative  method  with   smallest   modulus   error  constant. 

The   parameters  **
ra,*

ra,ra   for   this   method   are   given   by 

( ) 101,0,1r

0**
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while   parameters   for  the  other  fourth  order  methods   appearing   in  Table   1 

are  given  in   the  Appendix.    After   making   approximations   for   y',   as 

noted in § 1,the solution vector Y is obtained by solving a non-linear 

system  of   the   form   (9). 
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4.   SIXTH ORDER METHODS 

It  was  observed  in  §§2,3  that  the  (1,2)  and (.2,3)  Pade  approximants 

give  the  smallest  moduli  error  constants  for  the  second  and  fourth 

order  numerical  methods  arising  from (3).   A check  of  the  local  trunc- 

ation  errors of  the sixth  order  multiderivative  methods  of  the  family 

reveals  that  the  (3,4) and (4,3)  padé  approximants  give  the  smallest 

moduli  error  constants.    The  (4,3)  method,  however , requires  the  sixth 

order  derivative  of  f(x,y)  with  respect  to  x  while  the  (3 ,4)  method 

requires  only  the  sixth  derivative  of y(x)  and  is  therefore  more 

economical  to  implement.    It  is  reasonable  to  assume  that,  for  any 

(even) order p, the  method  based  on  the (
2
1

 p ,
2
1

 p+1) Padé approximant 

yields  the  multiderivative  method  with  smallest  modulus  error  constant; 

furthermore,  this  multiderivative  method  is  more  economical  to  imple- 

ment  than  any  other  such  method  with  the  same  modulus  error  constant. 

         The   parameters  for  the  (3 ,4)  method  are  given  by 
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and  after  making  approximations  for  y',  as  required,  the  solution  vector 

Y  is  obtained  by  solving  a  non-linear  system  of  the  form (9). 

          Parameters for   the  method  based  on the (3,.3.) Pade approximant are 

given  in  the  Appendix. 

5.   CONVERGENCE 
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so  that  G(y)  =  (g1,g2 , . . . ,gN)T ,and  let  t  =  (t1,t2,…….,tN)T. Then 

every   member of  the  family  of  multiderivative  methods  mentioned  in 

§§2,3,4   can  be   expressed   in   system  from as 

                                                     Ay  + G(y) =t        (                                (13) 

where  A   is   the   tridiagonal   matrix 
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It   is   easy   to   see   that   the   nonlinear   system   (9)   takes   the   form 

                                          AY  +  G(Y)  =  0                                             (15) 

for   each  multiderivative method,   where  O  is   the  zero  vector  of  order 

N. 

        Now  let  E =   (e1 ,e2,. . . ,eN)T  = y - Y and  define ,**
mq,*

mq,mq   

m = 1 ,2,. . . ,N,   by 

( )) )( (( ) ( )

              Subtracting   (15)   from   (14)   gives 

                                                        (A + M)E   =   t                                                                              (17) 

where  M=[Mi,j]    (i,j  = 1 ,2 ,. . . ,N)   is   the   tridiagonal  matrix  with 

Mi j = 0   for   | i - j |  >  1   and 
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Defining,   next,   U  by 
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it  is   seen  that   all   of ( )N1,2,...,m**mqand*mq,mq =   are  bounded   in 

modulus  by  U.      It   then   follows   that 
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in   (20)   and   (21)   the  norm  referred   to   is   the  maximum  norm. 

It   is  well   known   that 

                                                   || A-1  ||   <  (a1-a0)2/(8h2)                                                               (22) 

and   from   (5)    it   is   seen  that 

                                                      || t ||    =  0 (hP+2)  .                                                                           (23) 

Then,   provided   U<8/(a1 - a o   )2  , it   can  be   shown   that 

                                                           ||  A-1 || .|| M ||  <    1                                                                   (24) 

for  all  methods   of   the  family. 

        It  follows  from  (17) that 

                           || E ||   <   || A-1||.  ||  t  || / (1-  ||  A-1   ||.||M||)                                 (25) 

and  thus  from  (22), (23)  and  (24)   that 

                                                        ||  E||    =   0(hP) . 

The  methods  based   on   the  use   of   the   (1,2),    (2,3)   and   (3,4)    Padé 

approximants,   the  most   accurate   and   economical   of   their   respective 

orders,   are  thus   second,   fourth  and   sixth  order  convergent,,   respectively. 
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6.   NUMERICAL RESULTS 

To test the effectiveness of the second, fourth and sixth order methods 

developed in the paper, each was tested on the following problems which 

were also used by Lal and Moffatt [10], Usmani [6,8,11] and Jain [12]. 

Problem  1 
 

( ) 1x0,2y
2
3

xy" <<=

with  boundary conditions 

                                    y(0) = 4 , y(1) = 1 . 

The  exact   solution  of   Problem   1   is 

                                              y(x)   =  4/(1+x)2 . 

Following  Jain [12], the  interval [0,1]  was  divided  in  equal  sub- 

intervals of width h = 2-m(m = 3, . . ,6); the corresponding values of N 

are then given by N = 2m -1 .The numerical results for the three novel 

methods are  recorded in Table 2, together with  the equivalent results 

of the sixth order method of Jain [12] which was based on Lobatto 

quadrature.  It was found that no more than four iterations were required 

to obtain || E || to three significant figures. 
 

Table 2 here 

It   is   noted   from  Table   2   that,   for   each of   the   three  methods,  ||  E  || 

is   reduced  by  the  factor  2 p  (approximately), where  p  is  the  order  of 

the  method,   as  h   is   successively  halved. It is   also  noted   that   the 

novel   sixth  order  method  gives   smaller   error  moduli  than  the   correspond- 

ing  methods   outlined   in  Jain   [12]   and  Usmani [6]   where,   for  h =0.1, 

|| E  ||  =0.3E-04. 
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Problem  2 

                             y"(x)   = 2
1

 (1  ±. x + y)3   ,        0  <  x  <   1    , 

with  boundary  conditions 

                                             y(0) = y(1) =  0  , 

for which   the   exact   solution   is 

                                      y(x)  =  2/(2-x) - x -  1 . 

         For   this   problem,   too,   the   interval   [0,1]   was   divided   into   sub- 

intervals   of   width  h = 2 -m (m = 3, . . . ,6)   so  that,  again, N = 2 m-1.   The 

values  of  || E ||   for  each  of   the  three  methods  are  reported  in  Tables   3,4 5. 
 

Tables  3,4,5   here 

        It  is  noted  from  these  tables that, as for Problem 1, || E || is 

diminished by the approximate factor 2 p , where p is the order of the 

method, as h is successively halved. 

          Table 5 also includes values of ||E || relating to the sixth order 

method based on Lobatto quadrature reported in [12] and, for m=3 and 4, 

on the sixth order method of Usmani [6] which was based on a sextic spline 

formulaiton.  It is noted for comparison purposes that, for m = 3, an 

earlier sixth order method of Usmani [131 gives ||E || = 0.8E-05.  Table 3 

also contains, for m = 3 and 4, the values of ||E|| obtained by Usmani [6] 

using his second order cubic spline method, while Table 4 contains the 

values of ||E|| obtained using the fourth order methods of Usmani [6] 

based on quartic and quintic splines. 

         Overall, the results obtained using the novel methods to solve 

Problem 2 are superior to those obtained using competitive methods.  It 

was found that, as for Problem †, no more than four iterations were needed 

to obtain || E || to three significant figures. 
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7.        CONCLUSION 

Second,  fourth  and  sixth  order  multiderivative  methods  have  been  developed 

and  analysed  for  the  numerical  solution  of  nonlinear  second  order  boundary 

value  problems. 

       The  methods  were  seen  to  arise  from  the  replacements of  the exponential 

terms  by  Padé  approximants  in  a  three-point  recurrence  relation. 

       The  principal  parts  of  the  local   truncation  errors  of  the  methods  were 

seen  to  be  small   in  modulus;     this  was  reflected  in  the  numerical  results 

obtained  for  two  problems  from  the  literature. 
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Table   1:      Error  constants.  

  
        Order 
 

             
                   Padé 
             approximant 

                  
                        error 
                     constant 

              2      (1,1) 
(0,2) 
(1,2) 
(2,1) 
(2,0) 

C4    =  
6
1

   

 C4        =   
12
1

−

 C4        = 
36
1

 

 C4         =   
36
1

−  

 C4          = 
12
7

−  

              4   (2,2) 
(2,3) 
(3,2) 

                C6         = 
360

1
−  

     C6        = 
3600

1
−  

    C6        = 
3600

1
 

               6                 (3,3) 
(3,4) 
(4,3) 

                  C8         =  
50400

1                   

                  C8        =  
705600

1

                  C8       = 
705600

1
−  

Table   2.      Values   of    || E ||    for   Problem   1   with  h=2-m   (m = 3,4,5,6) 

   Method  

 
  M 

 
                    N (1,2)   Pade 

   order   2 
(2,3)   Pade 
   order  4 

(3,4)   Pade 
   order  6 

Jain   [12] 
  order  6 

3 7 0.26E-2 0.13E-4 0.45E-6 0.49E-5 

4  15 0.63E-3 0.71E-6 0.61E-8 0.80E-7 

5  31 0.16E-3 0.43E-7 0.89E-10 0.13E-8 

6  63 0.39E-3 0.26E-8 0.13E-11 0.20E-10 
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Table  3.  Values of || E || for Problem 2 with h=2-m (m = 3,4,5,6) using 
second order methods 

    Method 

        
         m 

   
    N 

       Usmani  [6] 
     cubic  spline 

        (1,2)  Padé 

   3 
      4 

5 
6 

 7 
 15 
 31 
 63 

0.12E-2 
0.00 
   - 
   - 

0.40E-3 
0.98E-4 
0.24E-4 
0.61E-5 

Table   4.    Values  of  || E ||  for  Problem  2  with  h=2-m   (m = 3,4,5,6)  using 
                 four  order  methods 

       Method 

       M 

   

     N 

Usmani [6] 
quartic  
spline 

      Usman i [6] 
qu in t i c 
spline 

         

          (2,3) Padé 

3 
4 
5 
6 

      7 
15 
31 
63 

0.16E-4 
0.11E-5 

               - 
               - 

0.65E-5 
0.22E-6 

          - 
          - 

0.13E-5 
0.73E-7 
0.45E-8 
0.28E-9 

Table  5.     Values   of  || E ||  for  Problem  2  with  h = 2-m (m = 3,4,5,6)  using 
                 sixth order methods 

     
         Method 

   
      m 

   
    N 

         Usmani [6] 
         sextic 
          spline 

    
       Jain [12] 

   
             (3,4) Padé 

3 
4 
5 
6 

7 
15 
31 
63 

0.78E-5 
0.20E-6 
    - 
     - 

0.27E-6 
0.44E-8 
0.7 2E-10 
0.4 3E-11 

0.43E-8 
0.57E-10 
0.84E-12 
0.13E-13 
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APPENDIX.        The  parameters  ( 1,0,1r** )ra,*
ra,ra −=   for   the  methods 

                            not detailed  in  §§ 2,3,4. 

( )

( )

( )

( )

( )

( )

( )

.
7200

1**
0,a

14400
1**

1a**
1a

,
300
11*

0,a
600

1*
1a*

1,a
10
9

0,a
20
1

1a1aPade:3,3

.0**
0,a

3600
1**

1a**
1a

,
600
17*

0,a
400

1*
1a*

1,a
25
22

0,a
50
3

1a1aPade:2,3

0**
1a**

0a**
1,a

72
1*

0a
144

1*
1a*

1a;
6
5

0,a
12
1

1a1aPade:2,2

.0**
1a**

0a**
1a*

0a1a1a,
2
1*

1a*
1a10aPade:0,2

.0**
1a**

0a**
1a*

0,a
16
1*

1a*
1a;

9
7

0,a
9
1

1a1aPade:1,2

.0**
1a**

0a**
1a*

1a*
0a*

1a;
2
1

0,a
4
1

1a1aPade:1,1

.10a;0**
1a**

0a**
1a*

1a*
0a*

1a1a1aPade:2,0

===−

=−==−===−

===−

=−==−===−

===−==
−

==−===−

===−===−−==−=

===−=−==−===−

===−===−===−

====−===−==−

 


