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Introduction 

Partial differential equations (p.d.e's) are frequently solved 

numerically by methods that replace the partial derivatives in the 

p.d.e and its boundary conditions by their finite differences and 

then solve the resulting (often linear) equations.  The original 

'finite difference' method was simple in principle and as a result 

was applicable to a variety of p.d.e's, see SMITH[3].  Boundary 

conditions were readily incorporated and the stability of the method 

was studied and understood.  An early refinement was the well known 

Crank-Nicolson method which is often very effective.  More recently 

variations based on rational approximations to the matrix exponential 

function have been investigated by Lawson & Morris[2],Gourlay & Morris[1], 
Twizell &   Khaliq[4].  However,the more refinements that are introduced 
the less simple becomes the method, and as a result the ease with which 

the method can be applied and the flexibility for incorporating the 

boundary conditions suffer.  Finite difference methods consume con- 

siderable computer time, although this is often not considered a draw 

back, but more seriously they do not indicate the analytic basis of 

the solution.  This frequently inhibits further analytic development. 

An analytic solution, on the other hand, can often be obtained by 

separating the variables and solving the resulting Sturm-Liouville 

problem.  The convergence of such solutions should be established, then 

this analytic solution is readily computed for any particular values 

of the variables.  However, the eigenvalues may be difficult to locate 

accurately and often the fitting of the boundary conditions requires 

treatment particular to the problem under consideration.  In order to 

fit the boundary conditions it may be necessary to calculate the 

coefficients in the Fourier series numerically. 

In this paper we will show that the 'finite difference' method is 

related to the 'separating the variables' method and that there is a 

way of combining the advantages of both.  Finite difference techniques 

will be used to incorporate the boundary conditions, and yet the final 

solution of the p.d.e  will have an analytic character.  The method we 

develop treats one variable analytically while applying the finite 

difference techniques to the other variables.  In our problems the time 

variable is treated analytically, while the space derivatives are 

replaced by finite differences.  The solutions obtained, in the limit, 

tend to the solutions that would be obtained by separating the variables. 

Further they throw light on the nature of solutions obtained by the 

finite difference method. 
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One Dimensional Parabolic Equation. 

The parabolic equation for conduction in one space variable is 
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Dividing the interval 0 ≤  x ≤ 1 into N + 1 steps of length  h  , we 

replace the space derivative in (1)by the finite difference approximation 
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and apply the resulting equation to all interior mesh points at time t 

With appropriate boundary conditions,the problem then reduces to solving 

the set of linear differential equations 
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where  A  is a N x N square matrix and u(t) gives the values of the 

temperature uih at time  t  at the discretised value ih of  x 

This equation (3) has solution 
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Set  u(t) - Lv(t), where  L  is composed of the eigenvectors of  A 
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where all the eigenvalues λr  will in fact be negative, and 

|λ1|< |λ2| . . . < |λN|. 
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In particular with boundary values u = 0 at x = 0 and x = 1, A is the 

symmetric matrix   
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certainly for t > 0.25. ℓ1   is the eigenvector corresponding to  λ1, 
and consequently the first column of L is the normalised vector .
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This clearly demonstrates the asymptotic behaviour of the solution, 

not only does it decay exponentially with time t in a manner determined by 

the eigenvalue λ1 , but also along a time row it is proportional to the 

eigenvector ℓ1 . corresponding to λ1. 

When applied to the problem of computing the solution of the p.d.e. 
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given u = 0 on x = 0 and x - 1 , and the initial condition 

 
2Cx-1)2x

This solution (9) gave similar values to those obtained using the Crank- 

Nicolson Method (see example 2.2, p.21 Smith [3]) even at t = 0.1.  The 

solution is considerably improved by halving h. 

The advantages of the solution (6) given by this 'half-breed' method 

when it is compared to: 

a) the original 'finite difference' method, is that it retains the 

analytic character of the solution and it can be readily computed at 

any time t. 

b) the 'separation of variables' method, is that the eigenvalues of A 

can be computed by standard computer packages. 

 0.5 x 0 1 
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It however remains to be seen how easy It Is to incorporate the 

boundary conditions .  Many methods of solving p.d.e's that have 

been proposed in the literature do not explain how to extend chem 

to deal with awkward boundary conditions.  Yet the ease with which 

the boundary conditions are incorporated is a major test of the 

flexibility of a method. 

Here the boundary conditions will be replaced, where appropriate, 

by finite difference approximations.  We indicate the method by 

extending the above analysis to incorporate boundary conditions of 

the form bu
x

u
=

∂

∂
 
  
at both x = 0 and x = 1. 
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Boundary Conditions of the form  bu
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The boundary condition at x = 0, using a central difference approximation, 

Is 
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The heat equation written as a set of simultaneous differential 
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The matrix A can be made symmetric by a similarity transformation 

 with a diagonal matrix D 
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where  n=N+2 . 

All the eigenvalues λr are still nagative and ordered, λ1 being the 

Smallest in magnitude . Thus 
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for sufficiently large values of t. 

The eigenvalues of A and D-1 AD are the same, while the eigenvectors 

are different but closely related.  In fact if  rl  is an eigenvector 
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For some numerical problems this solution will be adequate.  Its analytic 

nature for large t is a bonus.  To calculate this solution we require 

the eigenvalue  λ1    and the corresponding eigenvector ℓ1  of A, or altern- 

atively ℓ1
*  of D-1  AD.  λ1  can be found either (a)  from the boundary con- 

ditions, as in the following example, and  ℓ1    can be deduced analytically, 

or (b) λ1 and ℓ1
* can be calculated numerically from D-1  AD. 

In general to obtain a solution with sufficient accuracy a number of 

eigenvalues and their corresponding eigenvectors must be calculated, and 

this will usually be most simply performed using matrix routines on the 

symmetric matrix D-1  AD. 

The following problem is used to illustrate finite difference methods in 

Example 2.3, p.30 Smith [3].  We have calculated the approximate solution 

(19) for this problem and find that it gives comparable accuracy to the 

Crank—Nicolson method for 
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The eigenvectors of A are the solutions of the system of equations 

vi-1  -  (2 +λ)vi + vi+1  = 0     i= 0(1)N+1 

with the boundary conditions 

         v-1 = v1 - 2hv0        (21)
          vN+2 = vN  -  2hvN+1        (22)      
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There is symmetry about x = 
2

1
, so we put 2 + λ = 2cosαh and 
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This analysis establishes the character of the solution (19).  When 

more than one eigenvalue is required it is usually best to calculate 

the eigenvalues and eigenvectors of A numerically. 

We find in (19) 
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These solutions are now compared to the analytic solution of (20) for 

i = 0(1)5 :  

ui(
2

1 ) 0.5547 0.6054 0.6457 0.6751 0.6929 0.6989

Analytic Soln. 0.5546 0.6052 0.6454 0.6747 0.6924 0.6984 

ui(l) 0.1540 0.1680 0.1792 0.1874 0.1924 0.1940 

Analytic Soln. 0.1542 0.1682 0.1794 0. 1875 0.1925 0.1941 
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The first approximation (19) to the solution seems to be useful for 

t ≥ ¼ in this particular problem.  Normally (19) is useful only at rather 

larger values of t.  To deal with small values of t higher approximations 

to (16) must be calculated. 

Conclusion 

The half-breed method of solving p.d.e's developed in this paper 

a) produces a sequence of approximations to the solution which is 

essentially analytic but readily suited to the use of standard numerical 

procedures for calculating the eigenvalues and eigenvectors. 

b) expresses the asymptotic behaviour for large t in terms of the largest 

eigenvalue λ1 and its eigenvector 
1
l . 

Many extensions of the method are possible, some of which are under 

investigation.  This paper simply establishes the basis. 
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