TR/17/85 May 1985

Properties of statistical inference

procedures for a gamma regression model.

by
A. M. Al-Abood and D. H. Young



W9259308



Properties of Statistical Inference Procedures

For A Gamma Regression Model

by

D.H. Young and A.. Al-Abood

SUMMARY

A gamma regression model with an exponential link function for
the means is considered. Approximations to the percentiles of the
distributions of the maximum likelihood and weighted least squares
estimators of the regression coefficients are presented and evaluated
for the case of a single explanatory variable. These are used to
develop approximate confidence interval and hypothesis testing pr-
cedures for the regression coefficients which are assessed by simu-
lation. Finally, the null distribution properties of goodness of fit

tests for the exponential link function are investigated.
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1. Introduction

Let Yi , Yo,..., Y, represent g independent gamma random variables

where Y; has density

r- (r . exp(—1.v./u.
f.(y) = i¥ | ri-1 p( i%i “1) Ly >0 (1.1)
i e (- 1!

i\ i

where the shape parameter r; is a known positive integer. The mean ;.
is assumed to depend on the values xj;. , Xi2. ,..., Xik for k explanatory

variables through the model

ui =exp (x iB) , 1=1,... g (1.2)
where X, = (1, X ] s X Jand B'= (BO,BI,..., Bk is a vector of

regression coefficients with unknown values.

This model has a number of important applications. For example,
consider accelerated life testing (Lawless (1976)) in which there are
g groups of items, the ith group containing n; items and having values
X11. »...,Xjk for k test variables. Suppose that there is type II censor-
ing within groups and let Yiu) . < Yip) , < ... <Yig) represent the

observed order statistics in the ith group, the remaining n;-r; observ-

ations being right censored at the value Yigi., ... If the underlying dis-
tributions are exponential and the means are given by (1.2), then the
statistics
. -1 1 )
Yi = 1 {jélYiG) + (ni — ri)Yi(ri)}’ 1 =1, g (1.3)

are distributed independently with p.d.f's given by (1.1). The {Yi}
are sufficient unbiased and minimum variance estimators of {p;.} and

provide the basic observations for a likelihood analysis.

The model also arises in connection with the analysis of intervals
between events in g Poisson processes, where the rates A;- depend on
explanatory variables. If the observation Y;. for the ith process
denotes the time from the origin to the rith following event , then

Y; has p.d.f. given by (1.1) with p, =rA, -1

The model with a single
explanatory variable is considered by Cox and Lewis (1966) in the analysis

of trend in a single Poisson process.
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Two well-known methods of estimation of the regression coefficients
are maximum likelihood and weighted least squares. The ML estimates are
given by the solution of the k+ 1 equations

Zirixiryiexp( —xiB=ZiriXir, r= 0,1,..., k (1.4)

and an iterative solution is required. The WLS method (Kahn (1979))
yields the non-iterative solution

Bw =(x'Dwx) !X DWz (1.5)
where I~)W=diag v (),..., v (r2)},zi = log yi tlog ri — y(ri), X is

the design matrix and where y(-), y'(-) are the digamma and trigamma

functions, respectively.

Asymptotically, the ML and WLS have the same efficiency as r. —oo,
i ~ 1,...g, but for small values of the {r;}, some loss of efficiency
does occur in using WLS. Abood and Young (1985) contrast the moment
properties of the estimators for small to moderate values of the {ri}
and propose modifications to the ML estimators leading to bias reduction

and improved mean square error efficiency.

In this report, we consider statistical inference procedures based

on the ML and WLS estimates of. B The main objective is to assess the

~

performance of the procedures by means of a large scale simulation in-
vestigation for the case of a single explanatory variable. In Sections
2 and 3, approximations to the percentiles of the distributions of the ML

and WLS estimators of B for the case when =0 are presented. Monte Carlo

results assessing the percentile approximations are given in section 4.
Confidence interval estimation procedures are discussed in section 5 and
test procedures for hypotheses concerning the regression coefficients

are evaluated in section 6. Finally, null distribution properties of
goodness of fit statistics for testing the assumption of the link function

given by (1.2) are presented in section 7.
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2. Approximations To The Distribution Of The MLEstimator

Under the gamma regression model, we have

E 02L  |_ =1 2.1
_W_Zi:rixirxis— rs  say, (2.1)

where L denotes the log-likelihood. This leads to the well-known first
order expression for the covariance matrix of B

cova =()N('12)N()_1=~I_1 (2.2)

(™= >

where D =diag (r1, r2,....,1z) and where in the usual notation, I = ((Irs))
denotes the information matrix. For 'large' values of the {r;}, we have

the ordinary normal approximation
A

Br approx N(By, I'"), r=0,1,..... k (2.3)

where I"® denotes the element in the(r+1)st row and (s+1)st column
of l_l. The ML estimators are asymptotically unbiased but will show some

bias for small values of {r;}. Abood and Young (1985) show that the
N

biases by = E(B;) — Pr are to order R™', where R =2 1, given by
1

1k k k )
br=->3> > X i, r= 01, Kk (2.4)
s=0t=0u=0
where Kie =3 X X X - Using a normal approximation with bias
1
correction we take
A
Brapprox N(PBy+ by, 1), r=01,... k (2.5)
~/

A
Statistical inferences for the 08, based on the ML estimatorsf;

are made using the distribution properties of the random wvariables

AN
By— Brr = O,1,...k. These random variables are distributed independ-
ently of " and we have the exact distribution result

A 4 ~ (0)
B—PBr 2, By ,r=01,..., k (2.6)
~ (0)

where By denotes the ML estimator of fr when =0

A
Approximations to the percentiles of the distribution of Br(o) are
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needed for both hypotheses testing and confidence interval estimation.

N
(0)
If we let b, (a)denote the 100a percentile of the distribution of Pr

the ordinary normal approximation is

br(a) = ug (M2, Fo= 0Lk (2.7)
where u, denotes the 100a percentile of the N(O,1) distribution. The
normal approximation with bias correction is

- 1/2 -
b, (@) = b, +u, (1), ro= 01,..k (2.8)
3. Approximations To The Distribution Of The WLS Estimator

The WLS estimators are linear functions of log-gamma random vari-
ables and hence have the advantage over the ML estimators that their
moments are known exactly for all wvalues of the {r;}. In particular,

the covariance matrix is given by

VAN
COV(B J - & DL Z(fl vy 3.1)
NW ~

where
Vrs = zilxirxis/\y'(ri) 3.2)

Using an ordinary normal approximation, we take

A

Bwr d N(B;, V') (3.3)

N

Writing Bwr =ZairZi, then from akhn (1979) the skewness and
i

AN
kurtosis coefficients of By, are

@y v ) z i)
Yir = 32 ° Yor =

2
{g airzw(%)} {; azir\u(l)(ri)}

where W¥(s) (1) denotes the sth derivative of the digamma function and (%)

(3.4)

is the sign of ai. These coefficients may be used in an Edgeworth series

representation to provide skewness and kurtosis corrections to the normal
N

approximation to the c.d.f. of ..
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A
For the random variables By;— Pr'r = 0,1,...k we have the exact

distribution result
A

N
Bur= By d By (3.5)
A\
Where Bwr(o) denotes the WLS estimator of B;when B=0.Denoting the 100a

AN
Percentile of the distribution of Bwr(o) by by (@),the ordinary normal
approximation is

bwr (@)xug (Vg )V2 r= 0., k (3.6)

The normal approximation with skewness correction is

bywr () ~ (V“)l/z{ua + %(ug - 1)y1,r}, P =01, K (3.7)
and the normal approximation with skewness and kurtosis correction is
bywr(e) ~ (Vrr)l/z{ua + é(u& ~ Dy, + % (u3 - 3uu)yzr} r =01,k (3.8)

4. Monte Carlo Results
In order to assess the various approximations to the percentiles

N N
of the distributions of, Br(o) and Bwr(o) we consider the particular case
when there is a single explanatory variable x, the means being given by

w= = expBo + B1x; , 1= l..g . 4.1

Without loss of generality we suppose that the x values are centred

such that > LX; = 0 In this case the results for the estimators
1

take on particularly simple forms. For the ML estimators we have

-1
Varg (BOJR_I , varg (Blj:[%rixizj (4.2)
2
2
bo=-R', b.=—Lsrix3)|yrx. (4.3)
215 1 ii
i

The WLS estimators are



> e hvutr)) ~ ) .z () |

:1 =
1

with

var (Buwo) = D_l% I s) var@ ;) = D_l% il ) 4.5)

where

2
D= % {1/ y (ri)}{zi xlz/\y\p(ri)} _ {; xi/ i (ri)} (4.6)

The skewness and kurtosis coefficients of the WLS estimators are then

3

v @ v it} sv® @y

Y10 =~ M) . 132 Y20 =7 2 (4.7)
1/ .
SV {zl/w/wa)i)}
1
3 4

22y Doty Vo) sty Oy Vo)

11~ L Y91= 1 (4.8)

5 . 3/2 5 0 2
{le/w( )(r,.>} {le/w (r,-)}
1

In order to assess the accuracy of the percentile approximations
forB; and Bwr' @ large scale simulation investigation was made for
the case when the explanatory variable x has equally spaced values with

X; =1 - % (g+1),1=1,...,g. Equal alues for the shape parameter

were taken with r; = r = 1(1)10(2)20(5)50 for i = 1,...,g with g = 5,10
and ; = r = 6(1)10 for g = 6(1)9. A simulation run-size of 4000 was
used.

For the given values of x, we have } x 3 = 0 and hence the approx-
1

imating bias b; and the skewness coefficienty;; are both zero. Hence
the bias correction and skewness correction approximations will only
apply to bo(a) and byo(a) , respectively.

The broad conclusions from the investigation are

1) For the ML estimatorﬁo(o), the use of the bias correction gives a

marked improvement in the approximation to the percentiles.



11) The ordinary normal approximation tends to underestimate the upper
percentiles and to overestimate the lower percentiles of the distribution

of 61(0) for r = 1,2 but gives satisfactory results for larger values of r.

—~

111) For the WLS estimator[}wo(o) the use of the skewness correction to

the normal approximation appears to be worthwhile for small values of r
and small values of the tail probabilities.

1v) The ordinary normal approximation to the percentiles of the distribution

ofﬁwl(o) work satisfactorily for all values of r.

These findings are illustrated in tables 1 and 2 which gives the

upper and lower percentiles respectively forﬁo(o) andﬁl(o) and in tables
3 and 4 which give the upper and lower percentiles respectively forﬁwo(o)

andp (0, for the cases r = 1(1)6(2)10, g = 5 and a = 0.10,0.05,0.01.



Table 1

~ ~ 1
Upper percentiles of th ML estimatorsBO(O) andBl(O) when g= 5 and x. =1—2 (g+1),

i -

shown

1,...g.

Actual tail probabilities associated with
in parentheses.

the percentiles are

r 1 2 3 4 5 6 8 10
b0(0.90) 0.374 0.304 0.267 0.234 0.208 0.195 0.179 0.160
App(2.7) 0.573 0.405 0.331 0.287 0.256 0.234 0.203 0.181

(0.040)  (0.049) (0.060) (0.065) (0.064) (0.068) (0.076) (0.076)
App(2.8) 0.373 0.305 0.264 0.237 0.216 0.201 0.178 0.161
(0.101)  (0.100) (0.103) (0.098) (0.093) (0.095) (0.102) (0.098)
b0(0.95) 0.524 0.402 0.344 0.315 0.277 0.263 0.241 0.212
App(2.7) 0.736 0.520 0.425 0.368 0.329 0.300 0.260 0.233
(0.014)  (0.020) (0.023) (0.027) (0.026) (0.029) (0.037) (0.036)
App(2.8) 0.536 0.420 0.358 0.318 0.289 0.267 0.235 0.213
(0.047)  (0.043) (0.046) (0.048) (0.044) (0.047) (0.054) (0.049)
b00(0.99) 0.792 0.619 0.505 0.449 0.402 0.373 0.343 0.311
App(2.7) 1.040 0.736 0.601 0.520 0.465 0,425 0.368 0.329
(0.0013) (0.0040) (0.0025) (0.0043) (0.0043) (0.0048) (0.0060) (0.0070)
App(2.8) 0.840 0.636 0.534 0.470 0.425 0.391 0.343 0.309
(0.0075) (0.0085) (0.0063) (0.0075) (0.0083) (0.0083) (0.0125) (0.0108)
b; (0.90) 0.457 0.308 0.234 0.209 0.178 0.161 0.148 0.131
0.405 0.287 0.234 0.203 0.181 0.166 0.143 0.128
App(2.7)
(0.124) (0.114) (0.100) (0.107) (0.097) (0.094) (0.109) (0.105)
b1(0.95) 0.591 0.393 0.303 0.265 0.235 0.216 0.191 0.162
App(2.7) 0.520 0.368 0.300 0.260 0.233 0.212 0.184 0.165
(0.074) (0.060) (0.051) (0.053) (0.052) (0.052) (0.056) (0.048)
b1(0.99) 0919 0.572 0.454 0.379 0.326 0.297 0.272 0.235
App(2.7) 0.736 0.520 0.425 0.368 0.329 0.300 0.260 0.233
(0.0253) (0.0178) (0.0148) (0.0125) (0.0095)  (0.0095) 0.0128 (0.0113)
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Table 2

Lower percentiles for the ML estimatorsﬁo(o) andBl(O) when g=5 and

. 1 .
X; =1 — E (gtl), 1 = 1,..8.

r 1 2 3 4 5 6 8 10

bo(0.10) -0.859 -0.536 -0.413 -0.345 -0.305 -0.271 -0.234 -0.207

App(2.7) -0.573 -0,405  -0.331  -0.287  -0.256  -0.234  -0.203  -0.181
(0.229) (0.178) (0.159) (0.152) (0.148) (0.142) (0.139) (0.134)
App(2.8) -0.773 -0.505  -0.398  -0.337  -0.296  -0.267 -0.288  -0.201

(0.131) (0.166) (0.112) (0.106) (0.107)  (0.106) (0.107)  (0.106)

bo(0.05) -1.061 -0.676 -0.510 -0.439 -0.384 -0.347 -0.292 -0.261

App(2.7) -0.736 -0.520  -0.425  -0.368  -0.329  -0.300  -0.260  -0.233
(0.145)  (0.106)  (0.093) (0.087) (0.085) (0.079) (0.078) (0.075)
App(2.8) -0.936 -0.620 -0.491  -0.418  -0.369  -0.334  -0.285  -0.253

(0.078)  (0.066)  (0.059)  (0.060)  (0.058) (0.058) (0.053)  (0.057)

bo(0.01) -1.466 -0.956 -0.727 -0.633 -0.545 -0.491 -0.422 -0.367

App(2.7) -1.040 -0.736  -0.601 -0.520  -0.465  -0.425  -0.368  -0.329
(0.0540) (0.0340) (0.0258) (0.0260) (0.0230) (0.0218) (0.0205) (0.0185)
App(2.8) -1.240 -0.836  -0.667 -0.570  -0.505  -0.458  -0.393  -0.349

(0.025) (0.019) (0.016) (0.017) (0.016) (0.016) (0.014) (0.014)

b;(0.10) -0.456 -0.308 -0.245 -0.208 -0.188 -0.171 -0.141 -0.129
App(2.7) -0.405 -0.287 -0.234 -0.203 -0.181 -0.166 -0.143 -0.128

(0.125) (0.117)  (0.116)  (0.107) (0.107)  (0.109)  (0.098)  (0.100)
b:(0.05) -0.601 -0.399  -0.320 -0260 -0.242  -0.222  -0.187  -0.169

App(2.7) -0.520 -0.368 -0.300 -0.260 -0.233 -0.212 -0.184 -0.165

(0.075)  (0.065) (0.063) (0.050) (0.059) (0.057) (0.053) (0.053)

b; (0.01) -0.890 -0.610 -0.471 -0.397 -0.366 -0.317 -0.270 -0.239
App(2.7) -0.736  -0.520 -0.425 -0.368 -0.329 -0.300 -0.260 -0.233

(0.023)  (0.019) (0.016) (0.014) (0.015) (0.015) (0.012) (0.013)
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Table 3

Upper percentiles of the WLS estimators EWO(O) andﬁwl(o) when g=35 and

Xi =1 — %(g +1),1=1,..g.

r 1 2 3 4 5 6 8 10
bwo(0.90)  0.676  0.441 0.355 0.294 0.256 0.237 0.207 0.184
App(3.6)  0.735  0.460 0.360 0.305 0.270 0.244 0.209 0,186
(0.082) (0.089)  (0.094)  (0.093)  (0.087)  (0.094)  (0.095)  (0.098)
App(3.7)  0.704  0.447 0.352 0.299 0.265 0.240 0.206 0.184
(0.092) (0.097)  (0.104)  (0.096)  (0.091)  (0.096)  (0.104)  (0.100)
byo(0.95)  0.854  0.559 0.439 0380  0.331 0.303 0.264 0.235
0.944  0.591 0.462 0392 0346 0.313 0.268 0.239
App(3.6)  (0.033) (0.039)  (0.042)  (0.046)  (0.043)  (0.042)  (0.045)  (0.047)
App(3.7)  0.860  0.555 0.440 0376 0334 0.303 0.261 0.233
(0.049) (0.051)  (0.049)  (0.054)  (0.048)  (0.050)  (0.053)  (0.051)
bwo(0.99)  1.160  0.774 0.590 0.520 0,457 0.417 0.369 0.330
App(3.6) 1334  0.835 0.654 0.554 0.489 0.443 0.380 0.337
(0.0018) (0.0055)  (0.0043)  (0.0065) (0.0065) (0.0060) (0.0080) (0.0083)
App(3.7) 1291  0.743 0.596 0.513 0.457 0.416 0.360 0.322
(0.0075) (0.0120)  (0.0095) (0.0115) (0.0100) (0.0108) (0.0115) (0.0123)
bw1(0.90) 0505 0319 0.239 0.213 0.183 0.166 0.151 0.131
App(3.6)  0.520 0362 0.255 0.216 0.191 0.173 0.148 0.132
(0.094) (0.093)  (0.086)  (0.098)  (0.092)  (0.090)  (0.103)  (0.100)
by1(0.95)  10.684  0.410 0.314 0.271 0.238 0.214 0.193 0.165
App(3.6)  0.667  0.418 0.327 0.277 0,245 0.222 0.190 0.169
(0.053) (0.047)  (0.044)  (0.047)  (0.046)  (0.045)  (0.053)  (0.047)
byi (0.99)  1.014  0.606 0.455 0.388 0.338 0.302 0.277 0.239
App(3.6) 0943  0.591 0.462 0.392 0,346 0.313 0.268 0.239
(0.0160) (0.0115)  (0.0098)  (0.0095) (0.0093) (0.0078) (0.0125) (0.0100)
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Table 4

Lower percentiles of the WLS estimatorsﬁwo(o) andﬁwl(o) when g = 5

. 1 .
and x; =1 — E (g+t1), 1 = 1,....g,

r 1 2 3 4 5 6 8 10

bwo(0.10)  -0.744 -0.478 -0.362 -0.307 -0.275 -0.246 -0.215 -0.190

App(3.6) -0.735  -0460  -0.360  -0305  -0270  -0.244  -0209  -0.186
(0.109)  (0.107)  (0.106)  (0.101)  (0.106)  (0.104)  (0.109)  (0.105)
App(3.7) -0.767  -0474  -0369  -0312  -0275  -0248  -0212  -0.188

(0.096)  (0.101)  (0.097)  (0.099)  (0.100)  (0.097)  (0.104)  (0.103)

bwo (0.05) -1.008 -0.609 -0,476 -0.401 -0.361 -0.326 -0.274 -0.257

App(3.6) -0.944  -0591  -0462  -0392  -0346  -0313  -0268  -0.239
(0.062)  (0.058)  (0.054)  (0.055)  (0.058)  (0.057)  (0.053)  (0.055)
App(3,7) -1.027  -0.626  -0485  -0408  -0359  -0.324  -0276  -0.245

(0.046)  (0.046)  (0.047)  (0.047)  (0.051)  (0.052)  (0.048)  (0.051)

bwo(0.01) -1.477  -0.929 -0.675 -0.599 -0.505 -0.477 -0.400 -0.368

App(3.6) -1334 -0.835  -0.654  -0.554  -0489  -0443  -0380  -0.337
(0.0168) (0.0173)  (0.0138) (0.0135) (0.0128)  (0.0143) (0.0130) (0.0138)
App(3.7) -1.549  -0928  -0.711  -0.596  -0.522  -0470  -0399  -0.353

(0.0073) (0.0100)  (0.0088) (0.0100) (0.0088)  (0.0105) (0.0100) (0.0115)

bw1(0.10) 0486  -0.318 -0.242 -0.214 -0.192 -0.180 -0.144 -0.131

App(3.6) -0.520 -0.326  -0255 0216  -0.191  -0.173  -0.148  -0.132
(0.087) (0.093)  (0.097)  (0.097)  (0.101)  (0.111)  (0.093)  (0,099)

by (0.05) -0.648  -0.419 -0.339 -0.272 -0.244 -0.232 -0.191 -0.171

App(3.6) -0.667 -0418  -0327  -0277  -0245 0222  -0.190  -0.169
(0.046)  (0.051)  (0.056)  (0.047)  (0.049)  (0.058)  (0.051)  (0.052)

by (0.01) 0937  -0.630 -0.476 -0.412 -0.360 -0.327 -0.269 -0.240

App(3.6) -0.943  -0.591  -0462  -0.392  -0346  -0313  -0268  -0.239
(0.0090) (0.0128) (0.0110) (0.0110) (0.0118) (0.0125) (0.0103) (0.0103)
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5. Confidence Interval Estimation

In this section, we consider confidence interval estimation for
the regression coefficients {[3;}, based on the use of the ML and WLS
estimates.

If the exact percentiles of the distributions of[§ i andwere ﬁijere

known, confidence intervals with confidence coefficients equal to the
nominal confidence coefficients 1 -a could be found. The two-sided
central 100(1-a)% confidence intervals for ;. based on the ML and WLS
estimators would be given by

~ 1 = 1 A 1 = 1
. —b.(1 - —= . —b.(= —b_.(1 - — . —b_.(= 5.1
By - 00 - by - vy 0f {BWJ W= By~ by a)} G-D
respectively. For  one-sided 100(J-a)%  intervals, the lower confidence
bounds for ;- would be
Bj - bj(“) ) Bwj - bj(a) (5.2)

respectively. Upper confidence bounds could be found similarly.

Since the exact distributions off jandBWjare unknown, approximate

confidence intervals may be found wusing the percentile approximations
developed in sections 2 and 3. Based on the ML estimate, the ordinary
normal approximating confidence interval for Bj is given by

—~

_ 12 g 12
By —u g D25 vy al) } (5.3)

—50 —50

With bias correction, the approximate interval is

B: —b. — A28 _p. Jiy172
Bj —b; ul_%a(lﬂ) . B; —b; +u1—;a 8 (5.4)

Similarly, using the WLS estimate the ordinary normal approximating

confidence interval for B;. is

—u o (vihl2 Byj t U (viH172 (5.5)
I—EG 1—50,

With skewness correction, the interval becomes

Bywi
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3 1/2 3 1/2 1 2 1
Bwj —(ij) (ul—l(x +6yj(u2_i_1) ’ﬁwj +(ij) ul—la +g“{1j(u 1_50“1)
2 I 24 2
(5.6)
where v;; . is given by (3.4). Kurtosis correction could also be applied

but will not be considered here as the correction led to little improve-

ment in the percentile approximations.

For one-sided 100(1-a)% confidence intervals, the ordinary normal

approximations to the upper confidence bounds are

fsj+u1_a(lﬂ)1/2, Bwj+ul_a(vﬂ)1/2 (5.7)

for ML and WLS estimation, respectively. With bias correction for
the ML estimators and skewness correction for the WLS estimators,

the approximate upper confidence bounds are

. y . y |
Bi-b, +up_,(1H2 By +(VJJ)1/2{u1_a +gylj(u‘12_a —1)} (5.8)

respectively.

When assessing properties of approximating confidence intervals
two properties are particularly important, namely their average width
and the deviation of the actual confidence coefficients from their
nominal values 1-a. In the present case, the widths of the confidence

intervals are non-random and for estimation of ;. are

.. .. ) 5
W.. =2 1IWV2 w  —» ). Wa. = 2(v 12 LI 1
ij ul—;a( ) Zj ul—la(VJJ)’ 3] v+) {ul—la 6Y1J(u1_la )}

for ML estimation, for WLS estimation without skewness correction and
for WLS estimation with skewness correction, respectively. The ratios

of the widths of the confidence intervals are therefore

(5.9)
for j = 0,1 respectively.

We now consider the special case of a single explanatory variable
g
with i =1, 1 - 1,....,gand in=0. We have
i=1



15

\%% \%Y w
20 _ W21 _ W31 (ryr (r)}l/Z (5.10)
W10 W11 W11

and

wag g = frv @ 2 e Ly @ Oy T e G

-—a
2

Table 5 shows values of{r\y'(r)}l/2 and W3o/Wio for r = 1(1)4(2)8(4)20,

g = 5,10 and a = 0.10, 0.05, 0.01. The results show that for r < 5,
the widths of the confidence intervals based on WLS without skewness
correction are considerably larger than those based on ML estimation.
This property is much less marked when skewness correction is

applied

and when a is very small WLS leads to a small reduction in the widths
of the confidence intervals.

Table 5

Ratio of widths of approximate confidence intervals for By and B,
based on ML and WLS estimation

1
riry')}2  «=010 005 00l a=0.10 0.05 0.01
1 1.28 1.17 1.12 1.04 1.20 1.17 1.11
2 1.14 1.07 1.04 0.99 1.09 1.07 1.03
3 1.09 1.04 1.02 0.98 1.05 1.04 1.01
4 1.07 1.02 1.00 0.97 1.03 1.02 1.00
6 1.04 1.01 1.00 0.97 1.02 1.01 0.99
8 1.03 1.00 0.99 0.97 1.01 1.00 0.99
12 1.02 1.00 0.99 0.97 1.00 1.00 0.99
16 1.02 1.00 0.99 0.97 1.00 1.00 0.99
20 1.01 0.99 0.99 0.98 1.00 1.00 0.99

Values of the actual confidence coefficients as estimated by the
simulation investigation described in section 4 are shown in tables 6 and
7 for estimation of Bp and B; , respectively, for the two-sided case with
nominal confidence coefficients 1-a = 0.90, 0.95, 0.99. Tables 8 and 9
show the corresponding coefficients for the one-sided case. For By , bias
and skewness corrections are examined but for 3; these corrections are
zero under the given configuration of wvalues for the single explanatory

variable.
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The broad conclusions reached from the results in tables 6-9 are

as follows.

(i) For two-sided confidence interval estimation of B¢ , the ordinary
normal approximation based on ML leads to confidence coefficients system-
atically smaller than the nominal values, and the bias correction leads
to a worthwhile improvement in the control of the confidence coefficient.
Using WLS estimation skewness correction does not lead to any improve-

ment, and the overall control of the confidence coefficient is better for
WLS than for ML.

(i1)) For two-sided confidence interval estimation of B; , the procedure
based on WLS estimation gives a slightly better performance than that
based on ML estimation, for very small values of r. In general, both

methods provide, very satisfactory results.

(ii1) For one-sided confidence interval estimation of By, the procedure
based on the ordinary ML estimator leads to confidence coefficients which
are much larger than the nominal values, particularly for small values of
r. With bias correction, excellent control over the confidence coefficients
is obtained. For the WLS procedures, skewness correction leads only to
a marginal improvement, but the control of the confidence coefficient is

very good.

(iv) For one-sided confidence interval estimation of B; the WLS esti-
mation procedure has a slightly better performance than ML for r=1,2.
For larger values of r, both methods provide excellent control over the

confidence coefficient.
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Table 6

100(1-0)%

two-sided

confidence intervals for B¢y based on (i) ordinary ML, (ii) ML with bias
correction, (iii) ordinary WLS, (iv) WLS with skewness correction.
g =5
1-0=0.90|r 1 2 3 4 6 8 12 20
(1) 0.841 0.875 0.884 0.886 0.892 0.885 0.892 0.896
(i1) 0.876 0.892 0.896 0.893 0.896 0.893 0.894 0.897
(iii) 0.906 0.908 0.906 0.900 0.901 0.898 0.904 0.895
(iv) 0.895 0.895 0.895 0.892 0.895 0.886 0.895 0.894
1-0=0.95
(i) 0.901 0.924 0.937 0.938 0.943 0.943 0.943 0.944
(i1) 0.932 0.942 0.949 0.946 0.947 0.946 0.951 0.948
(iii) 0.953 0.954 0.957 0.951 0.950 0.946 0.953 0.947
(iv) 0.932 0.935 0.942 0.939 0.941 0.941 0.943 0.942
1-0=0.99
(1) 0.966 0.977 0.982 0.982 0.985 0.986 0.987 0.988
(i1) 0.980 0.983 0.988 0.986 0.989 0.987 0,989 0.988
(iii) 0.990 0.988 0.991 0.989 0.990 0.988 0.990 0.989
(iv) 0.971 0.976 0.980 0.980 0.982 0.984 0.986 0.987
g=10
1-0=0.99|r 1 2 3 4 6 8 12 20
(i) 0.872 0.884 0.891 0.884 0.898 0.890 0.887 0.897
(i1) 0.885 0.890 0.895 0.892 0.898 0.895 0.888 0.897
(iii) 0.906 0.900 0.905 0.898 0.900 0.897 0.893 0.894
(iv) 0.926 0.910 0.907 0.898 0.902 0.894 0.888 0.894
1-0=0.95
() 0.924 0.937 0.942 0.944 0.946 0.945 0.944 0.944
(i1) 0.938 0.946 0.947 0.945 0.951 0.948 0.945 0.946
(iii) 0.955 0.953 0.958 0.946 0.951 0.949 0.942 0.948
(iv) 0.961 0.954 0.953 0.948 0.947 0.946 0.943 0.944
1-0=0.99
() 0.978 0.982 0.985 0.986 0.987 0.987 0.987 0.988
(i1) 0.988 0.985 0.989 0.987 0.989 0.989 0.990 0.989
(iii) 0.989 0.991 0.991 0.987 0.989 0.990 0.991 0.989
(iv) 0.990 0.984 0.986 0.986 0.987 0.986 0.985 0.987
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Table 7

Estimated confidence coefficients for approximate

confidence intervals for B; based on (i) ML, (ii)

100(1-00)%
WLS

two—sided

g =35

1-a \r 1 2 3 4 6 8 12 20

1) 0.852 0.875 0.881 0.898 0.882 0.891 0.896 0.894
0.90

Gi) | 0.901 0.903 0900 0.907 0.898 0.897 0.896  0.897

(i) 0912 0930 0935 0944 0943 00944 0.943  0.947
0.95

(i1) 0.946 0.951 0.951 0.954 0.949 0.951 0.946 0.948

() 0969 0978 0983 0985 0.989 0.986 0.988  0.988
0.99

(i) | 0987 0985 0988 0988  0.990 0.988 0.989  0.988

g =10

1- a\ r 1 2 3 4 6 8 12 20

(i) 0.872 0.891 0.892 0.892 0.892 0.898 0.897 0.904
0.90

(i1) 0.902 0.904 0.901 0.901 0.895 0.904 0.899 0.903

1) 0.929 0.946 0.941 0.944 0.940 0.944 0.951 0.948
0.95

(i) | 0946 0.949 0950 0951 0.946 0947 0951 0.951

0 0978 0985 0987 0988 0988 0988 0989 0.989
0.99

(i) | 0989 0989 0988 0989 0.990 0988  0.990  0.989
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Table 8

Estimated confidence coefficients for approximate 100(1-a)% one-sided

confidence intervals for By based on (i) ordinary ML, (ii)) ML with

bias correction, (iii) ordinary WLS, (v) WLS with skewness correction
g=>5

1-0=0.90 |r 1 2 3 4 6 8 12 20
(1) 0.960 0.951 0.941 0.935 0.933 0.925 0.922 0.916
(i1) 0.900 0.901 0.897 0.902 0.906 0.899 0.898 0.902
(ii1) 0.918 0911 0.904 0.907 0.907 0.899 0.898 0.903
(iv) 0.908 0.904 0.896 0.904 0.904 0.896 0.894 0.900

1-0=0.95
() 0.986 0.981 0.977 0.973 0.971 0.963 0.969 0.959
(i1) 0.954 0.957 0.954 0.952 0.954 0.947 0.953 0.949
(ii1) 0.968 0.961 0.958 0.954 0.958 0.950 0.957 0.948
(iv) 0.951 0.949 0.951 0.946 0.950 0.944 0.952 0.945

1-0=0.99
(1) 0.999 0.996 0.998 0.996 0.995 0.994 0.993 0.992
(i1) 0.993 0.992 0.995 0.993 0.992 0.990 0.992 0.988
(ii1) 0.998 0.995 0.996 0.994 0.994 0.991 0.992 0.989
(iv) 0.988 0.988 0.991 0.989 0.989 0.988 0.991 0.988

g=10

1-0=0.90 |r 1 2 3 4 6 8 12 20
(1) 0.949 0.934 0.936 0.924 0.921 0.917 0.910 0.908
(i1) 0.907 0.903 0.905 0.398 0.896 0.900 0.893 0.897
(ii1) 0.912 0.909 0.908 0.903 0.901 0.898 0.896 0.898
(iv) 0.905 0.906 0.904 0.900 0.898 0.897 0.894 0.897

1-0=0.95
(1) 0.977 0.973 0.970 0.962 0.966 0.962 0.955 0.952
(i1) 0.953 0.951 0.954 0.946 0.953 0.951 0.947 0.949
(ii1) 0.961 0.958 0.958 0.951 0.959 0.954 0.947 0.951
Gv) 0.949 0.953 0.953 0.946 0.954 0.951 0.945 0.947

1-0=0.99
(1) 0.998 0.996 0.995 0.994 0.994 0.993 0.993 0.993
(i1) 0.993 0.992 0.992 0.990 0.992 0.990 0.990 0.991
(iii) 0.994 0.998 0.994 0.992 0.992 0.991 0.991 0.990
(iv) 0.987 0.991 0.991 0.988 0.990 0.989 0.988 0.989
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Table 9

Estimated confidence coefficients for approximate 100(1-a)% one-sided
confidence intervals for B; based on (i) ML, (ii) WLS

g=3>5
l—oc.\ r 1 2 3 4 6 8 12 20
(1) 0.876 0.886 0.900 0.893 0.906 0.888 0.893 0.902
0.90
(i1) 0.904 0.907 0914 0.902 0910 0.895 0.900 0.905
(i) 0.926 0.940 0.949 0.947 0.949 0.944 0.949 0.948
0.95
(i1) 0.947 0.953 0.957 0.954 0.955 0.947 0.952 0.948

(1) 0.975 0982 0988 0988 0991 0987 0.991 0.989

0.99
(i1) 0984 0989 0990 0991 0992 0988 0992 0.990

l-a N\, 1 2 3 4 6 8 12 20

(1) 0.881 0.894 0904 0.896 0.897 0.894 0.897 0.897

0.90
(i1) 0.904 0.903 0904 0.894 0903 0.899 0.899 0.900
(1) 0.932 0.944 0953 0946 0947 0948 0944 0.951
0.95
(i1) 0.950 0.949 0955 0949 0950 0.951 0947 0.948
(1) 0.982 0.987 0991 0989 0990 0987 0990 0.987

0.99
(i1) 0.988 0.989 0991 0.990 0.991 0.990 0.990 0.989

6. Tests Of Hypotheses Concerning The Regression Coefficients

In regression problems we are often interested in testing the hypothesis
that a particular subset of the explanatory variables have no effect.
Without loss of generality, we shall take the subset to contain the last
k- variables, so that we wish to test the hypothesis Hop: 3; =0 for
j = t+1,6+2,..., k.  We shall writef}' = (B‘l, B'y where

B. = Bgs BroBp) By = Byips By B (6.1)
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WhenH, : B = 0 1s true ,we have

o= exp(§i Ei), i=1,...,¢g (6.2)

which, we shall refer to as the restricted model. The model p,.= exp(éi B),

i = 1,.,g will be called the full model. We firstly develop tests
based on the maximum likelihood estimators.

The log-likelihood under the restricted model is
g . —
L(B)=c- X ri(log wotpily (6.3)
9 £
where

g g g
c = .erilogri + 'Zl(ri - 1)10gyi — 'leog (ri - D!
1= 1= 1=

AN
is a constant not depending on B We let B and u = exp(§i B)denote

the ML estimates off and My under the full model. The estimates are

given by the solution of the k+1 equations

g ~ g )
.erixijyi exp( — x'i B) = X rx. j= 0,,..., k (6.4)
1= ~ =

~ 1

Under the restricted model, the ML estimateﬁl is given by the

solution of the £+1 equations

g
1=

g . .
lglrlxljylexp(— ?E' 1 E) = I‘iXij, ] = O,l, ...... . b4 (6.5)

1

Setting ﬁlO = exp(gi El),i = 1,...,g, the likelihood ratio statistic

for comparing the full and restricted models is
E o Ja_=a 1 _ ~1
Sp =225 X B~ B+ il — i) ©-9

The statistics S; is taken to be approximately distributed as x’
with k- degrees of freedom if H, is true.

The statistic S; takes on a particularly simple form when the

g
x's are centred such that ) rixij = 0 for j = 1,....k. Under this
i=1

condition use of the first likelihood equation in (6.4) gives
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%riyiﬁi_l - R, L@ =c ~RBy + 1) (6.7)

Similarly, use of the first likelihood equaton in (5.5) gives

;riyiﬁ;} = R, LB =c —RBy + 1) (6.8)

Whereﬁn denotes the ML estimate of By under the restricted model.

Hence we may write

—~

S| =2R@By - Bp) (6.9)

Al-Abood and Young (1985) show that the bias of 60 to order R™!

is -(k+1)/(2R) when the centering conditions for the x's hold. This
result also holds when H, 1is true. Under H,, the bias of [30 is

-(L+1)/(2R) to the same order of approximation and hence to order (1)
ES) =k - ¢ (6.10)

Which agrees with the first moment of the approximating chi-square

Distribution
We now consider the special case when £ = k- 1 and we are testing
Ho(k) : By = 0. In this case, S; has approximately a non-central x”

distribution with 1 degree of freedom and non-centrality parameter

A = BEKK 6.11)

where I is the (k+1)st element in the diagonal of the inverse of the

information matrix. The approximate test procedure using a double-tailed
test with significance level a is

reject H(Y if 8, > X7(1 - ) (6.12)

where X\Z/(l—(l) denotes the upper 1000% point of the X\z, distribution.

If we let Yi(S;) denote the power of the test based on S;, then using
1

the results that S; is aproximately distributed as U? whereU ~ N(kﬁ,l)

and that X12(1 —q) = u2 | > we obtain the power approximation
-«
2

o

_1L 1
B =l-9 ul_La—Bk(Ikk) 2}+(p{u1 —py Kk 2}. (6.13)
2 2
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When Bx = 0, this power is a as required.
An alternative test procedure can be made by taking( B By )/ (Ikk )5
to be approximately distributed as N(0,1). To test H(()k): Bx, = 0 against

the two-sided alternative B, # 0, we use the test statistic.
. 1
z, =B, /05%)2 and

: &) .
reject H0 if | z; | > U1 1 (6.14)

The power of the test is

1

1 1
vk(zl)p[zlﬁk(lkk) 25w g B 2}
2

+P{zlsk(1kk)

1 L
2<u1aBk(Ikk)2}
2
_1 _ 1L
sl-giu | —pakk) 2 2 L (6.15)
1—2—(1

Asymptotically (ri- —o0, 1 = 1,...,g) the powers of the S; and Z; tests

are therefore equivalent.

We now develop tests which utilise the weighted least squares
estimators which are derived from the linear model representation

Zi z'i E + €5, i = 1,..,g (6.16)
where Z; = logY¥Yi - wy(ri.)) + logri and
E(g) =0, var(g)) - y'(ri) , cov(gpg.) = 0 (6.17)
for 1 #j =0,1,....k. In matrix notation we have
Z=XB+E, E(g)=0, cov( g)=D_! (6.18)

Under the full model, the WLS estimator EW is obtained as the
value of f which minimises R(Z- z f)' D w (Z- x P) and the solution

is given; by (1.5). The generalised residual sum of squares about the
fitted full model is
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R(Bw) = (Z- x BN) D (& 5[3 )- ©.19)
-1

Writing Z— = (I-XM " X JBW) z where M

Z'@)

= X D X, we obtain
~ NW ~

RCP)=12"A 2

(6.20)
Where A = D =D XM ' X'D_ . Hence
{R(ﬁ )} - E{(B' X'+ €) A(x B+ s)} = E(¢' A ¢)
Nw ~ ~ ~ ~ ~ ~ ~ ~ ~ o~
- (A D 1 = (1~ Dy XM x
. _ =1 < _
Since tr(lg) = gand tr (QW XM " X') = ‘[r(Ik 1) = k + 1, we have
E{R(ﬁ )} —g -k -1 (6.21)
~W
This result holds for allfpand hence in particular when Hp : B2 =0
is true.
Similarly, for the restricted modelZ = X B + ¢ | the generalised
residual sum of squares about the LS fitted model is
RB ) = (Z- Xlﬁ )D (Z- X B ) (6.22)
~wl ~ ~W ~Wwi
Whereﬁ (x' D X) X' D Z .SettingsA =D -D X M 1X‘ D  where
~1 1 ~w ~w ~1 1 ~1~w
I\N/I1 =X I~)w >~<1’ we may write
RPp )=Z A Z. (6.23)
R
We Have
E{RBp ) = B'A"X B+ E(e' A, ¢)
=B')~('él)w([3+g—€—1 (6.24)
A straightforward calculation shows that

Ev X él X E - B'Z Xy él 2(2 p (6.25)
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Hence we have the exact expectation results

E{R(BWI) | HO} =g—-/7 -1 (6.26)
Using the extra sum of squares principle, a suitable test statis-
tic for testing Hy is
Sy = R(B ) —-R(P ) (6.27)
~wl ~W

for which we have the exact expectation result

This gives E(S;) = k-{when Hy 1is true.

The exact distribution of S, is unknown and an approximation is
required. Taking the {g} which are independently distributed as log-
gamma random variables to be approximately distributed as N(0," (1j)),

we obtain the approximation

S approx sz_Z(E'z X, A X, B) (6.29)

where X \; (L) represents the non-central chi-square distribution with
v degrees of freedom and non-centrality parameter A.

We now consider the special case when £ = k. -1 and we are testing
H(k) Bk 0. In this case S, 1is approximately distributed as non-

central x? with 1 degree of freedom and non-centrality parameter

hyp = BEVEK (6.30)

where V¥ is the (k+1)st diagonal element in the inverse of X' I~)w X.
he test procedure is
reject Hgk) it $,>X2(1-a) (6.31)

whereX%/(l — a) is the upper 1000% point of the distribution of X%,

The approximate power of the test is
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_1 _1
Tk(Sy) > 1o g - B (VY 2L 4 guy - B (VR 2, (6.32)

2 2

An alternative test procedure is to use the test statistic
1

Zy = By /(VKK)2 and
: k) .
reject H( if | Z >u . 6.33
d 0 | 2 | -1y (6.33)

The exact powers of the tests based on S, and Z, are equal so a choice

of test can be made on grounds of computational simplicity.

In order to examine the power properties of the tests based on the
S1,S,, Z; and Z, statistics and to assess the adequacy of the approxi-
mating powers given by ((6.13),(6.15,(6.32) and (6.34), a simulation invest-
igation has been made for the case of a single explanatory variable when
the means {pi.} satisfy the model defined in (3.1). Equal values for the
shape parameters were taken with r, = r = 1(1)10(2)20 for 1 = 1,....g

with g = 5,10. Equally spaced values x; =1 - % (g+1) were used for the

explanatory variable. Values ; = logb/(g-1) were used giving
max;ui/minip;. = 0, for 0= 1(1)5. The run-size was 2000 in each case.

The broad conclusions reached from the investigation are

(1) The use of the S; and S, tests lead to excellent control over the
significance levels for all values of r. The actual significance levels
of the Z, -test are much larger than the nominal values for r=1,2,3

but are satisfactory for larger values of r.

(i1) For the very small values of r the power of the Z;-test is greater
than that of the S; -test but this seems to simply reflect the differences
in the actual significance levels of the tests. The power differences

between the two tests are very small for r> 3.

(ii1) The power performance of the S;-test is markedly better than that
of the S, -test for r= 1,2 but the power advantage diminshes rapidly

with increasing values of r,

(iv) The power approximation given by (6.13) gives a slight overestimation
of the power, particularly for large values of 0 and small values of r.

However, the results are generally very encouraging.
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These findings are illustrated in tables 10, 11, 12 which show the
estimated powers as obtained by simulation together with approximating

powers for the S; , S, and Z; tests respectively for g = 5 and nominal
significance levels a = 0.10, 0.05, 0.01.

TablelO
Powers of the S;-test for g = 5 and nominal significance levels o as

obtained by (i) simulation, (ii) approximation (6.13)

0 1 2 3 4 5

G C SN G N €1 SN ¢ S ¢1) NN C SN €1 B C M 1)
0.109 0.100 0.146 0.151 0.232 0.225 0.279 0.295 0.311 0.357

0.106 0.100 0.209 0.200 0326 0341 0.447 0.463 0.544 0.562
0.102 0.100 0.231 0.248 0.433 0.445 0.576 0.600 0.683 0.712

0.095 0.100 0.296 0.295 0.525 0.537 0.687 0.708 0.794 0.816
0.104 0.100 0.355 0.339 0.595 0.617 0.773 0.790 0.861 0.885

0.058 0.050 0.077 0.085 0.142 0.140 0.177 0.195 0.209 0.247

0.053 0.050 0.118 0.121 0.225 0.233 0.336 0.341 0.413 0.436
0.048 0.050 0.149 0.158 0.317 0.325 0.445 0475 0.572 0.596
0.049 0.050 0.193 0.195 0.391 0.412 0.561 0.592 0.685 0.721
0.047 0.050 0.234 0.232 0480 0.493 0.682 0.688 0.790 0.812

0.011 0.010 0.017 0.022 0.039 0.044 0.060 0.070 0.064 0.096

0.009 0.010 0.033 0.036 0.075 0.089 0.137 0.152 0.200 0.219
0.010 0.010 0.057 0.052 0.126 0.142 0.233 0.249 0.322 0.355

0.009 0.010 0.068 0.070 0.187 0.201 0.324 0.351 0.466 0.488
0.009 0.010 0.091 0.089 0.242 0.263 0.431 0.450 0.571 0.606

0=0.10

a=0.05

a=0.01

N PWN —m PR WN —m VP WN = =

Table 11
Powers of the Ss-test for g =5 and nominal significance level a as

obtained by (i) simulation, (i1) approximation (6.32)

0 1 2 3 4 5
® (ii) ® (ii) ) (i) ) (i) ) (i)
0.098 0.100 0.124 0.131 0.170 0.177 0.212 0.221 0.224  0.261

0.100 0.100 0.178 0.178 0.290 0,290 0.394 0.391 0.473 0.476
0.104 0.100 0.213 0.226 0.395 0.398 0.524 0.540 0.650 0.648
0.097 0.100 0.277 0.273 0.493 0.495 0.665 0.660 0.772 0.771

0.100 0.100 0.339 0.318 0.577 0.580 0.756 0.753 0.847 0.855

0.056 0.050 0.065 0.071 0.101 0.104 0.134 0.137 0.149 0.168
0.051 0.050 0.102 0.105 0.190 0.191 0.277 0.276 0.352 0.354
0.049 0.050 0.136 0.141 0.274 0.282 0396 0415 0.522 0.526
0.047 0.050 0.175 0.177 0366 0371 0.537 0.539 0.672 0.666

0.048 0.050 0.219 0.214 0.447 0,455 0.650 0.644 0.772 0.772

0.016 0.010 0.020 0.017 0.032 0.029 0.049 0.043 0.057 0.057

0.013 0.010 0.034 0.030 0.063 0.068 0.107 0.113 0.157 0.161
0.010 0.010 0.048 0.045 0.110 0.116 0.205 0.203 0.278 0.291
0.012 0.010 0.059 0.061 0.163 0.172 0.297 0.302 0.423 0.426
0.010 0.010 0.083 0.079 0.221 0.233 0.413 0.403 0.545 0.551

0=0.10

a=0.05

a=0.01

NP WN —m N PULUN —~ U DO = =



28

Table 12

Powers of the Z; -test for g = 5 and nominal significance level o as

obtained by (i) simulation, (ii) approximation (6.15)

0 1 2 3 4 5
r 1@ a @O G O @@ GO G @ (i1)
1]0.153 0.100 0.195 0.151 0.272 0.225 0.322 0.295 0.350 0.357
2(0.132 0.100 0.231 0.200 0.358 0.341 0.478 0.463 0.568 0.562

0=0.10 3(0.122 0.100 0.247 0.248 0.447 0.445 0.582 0.600 0.711 0.712
40.102 0.100 0.305 0.295 0.532 0.537 0.705 0.708 0.805 0.816

510.106 0.100 0.352 0.339 0.607 0.617 0.783 0.790 0.865 0.885

10.087 0.050 0.127 0.085 0.182 0.140 0.234 0.195 0.254 0.247

0.072 0.050 0.137 0.121 0.249 0.233 0.358 0.341 0.437 0.436
0.064 0.050 0.159 0.158 0.332 0,325 0.468 0.475 0.588 0.596
0.052 0.050 0.205 0.195 0.415 0.412 0591 0.592 0.710 0.721

0=0.05

wn W N

0.052 0.050 0.246 0.232 0.499 0.493 0.685 0.688 0.799 0.812

[a—

0.031 0.010 0.040 0.022 0.080 0.044 0.096 0.070 0.118 0.096

0.022 0.010 0.049 0.036 0.102 0.089 0.159 0.152 0.232 0,219
0.014 0.010 0.061 0.052 0.151 0.142 0.255 0.249 0.354 0.355
0.013 0.010 0.073 0.070 0.199 0.201 0.347 0.351 0.492 0,488
0.013 0.010 0.093 0.089 0.252 0.263 0.457 0.450 0.603 0.606

0=0.01

wn W N

7. Goodness Of Fit Tests For The Exponential Link Function

Finally, we consider tests of fit for the assumed exponential link
function for the means as given by (1.2) against general alternatives.
Two tests are examined, the first utilising the ML estimates and providing
the likelihood ratio test, the second test being based on the WLS estimates.

When no model is imposed on the means {u;.}, the ML estimates are
i = Yi, i =1,...,g Using (6.3) and the first equation in (6.4), the
likelihood ratio statistic for testing the exponential link function is

D =2y (X 'ﬁ— log Y;). With loss of generality we shall assume that
I 7i~

the x’s re centred such that } rixij =0, j=1,.., k. In this case, D
i

akes the simple form
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~ g
D = 2(RB0 - i;lrilogYi). (7.1)

Using the well-known result for the expectation of a log gamma random

variable, we have

E(logYi) = logui + (1)) — logri
1 1 1 -6
= - — - + + O(r 7.2
Po 2. 12r2  120r 4 ) 7.2)
i i
if the exponential link function is correct. Setting
we obtain
1 &
E(D)zg—k—1+ngi (7.3)
i=1

ignoring terms of Ofr;”)and smaller terms

The usual procedure is to refer the statistic D to the chi-square
Distribution with g-k-1 degees of freedom . The form of (7.3)
Suggests the use of the modified statistic D* = D/(1+c), where

g _
co 1§

7.4
6(g — k - 1) i=] (7.4)

and to take D* as approximately distributed as chi-square with g-k— 1

degrees of freedom if the exponential link function is correct.

To assess the effect of the modification, moments and critical
values of the null distributions of the statistics D and D * have been
estimated by simulation for the model pi. = exp(Bo + Bixi.), with

Xi = 1 —%(g+1), i = 1,..,g, for ri- = r = 1(1)10(2)20 and g = 5,10.

The results showed that the null distribution of D*  approaches the

Xé—Z distribution much more rapidly than the distribution of D. Use

of D* therefore leads to much better control over the significance
level of the test for small values of the shape parameter. These
findings are illustrated in table 13 which shows the means and vari-
ances of D and D* and in table 14 which shows the estimated upper 10%,
5% and 1% critical values of the null distributions of D and D* for
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T.

r = 1(1)5, 1= 1,.,g and g = 5,10. The estimated significance levels

associated with the chi-square approximating critical values are shown in

parentheses.
Tablel3
Means and variances of the D and D* statistics when ri=r, 1 = 1,....g
g=>5 g= 10
mean variance mean variance
r D D* D D* D D* D D*
1 3.800 2.938 25.894 12.984 9.512 7.872 21.576 14.777
2 3.396 2.943 7.494 5.778 8.838 8.004. 18.969 15.558
3 3.217 2.944 6.963 5.823 8.597 8.039 18.401 15.676
4 3.205 2.996 6.643 5.833 8.466 8.047 18.255 16.392
5 3.170 3.003 6.456 5.895 8.431 8.094 17.436 16.069
Xz2 | 3.000 3.000 6.000 6.000 8.000 8.000 16.000 16.000
Tablel4
Upper 100 % points of the null distributions of the D and D* statistics
when 1i =1, 1= 1,.....g
g=>5
a = 0.10 a = 0.05 oa = 0.01
r D D* D D* D D*
1 | 7.52(0,165) 5.88(0.082) 9.31(0.088) 7.28(0.041) 13.56(0.024) 10.61(0.0063)
2 | 7.00(0.132) 6.14(0.095) 8.68(0.068) 7.62(0.046) 12.51(0.017) 10.98(0.0090)
3 | 6.72(0.122) 6.15(0.096) 8.20(0.062) 7.51(0.044) 12.36(0.017) 11.31(0.0100)
4 1 6.70(0.118) 6.27(0.101) 8.40(0.062) 7.86(0.051) 12.01(0.014) 11.23(0.0093)
5] 6.61(0.116) 6.26(0.101) 8.17(0.061) 7.74(0.049) 11.98(0.011) 11.18(0.0088)
x%(a) 6.25 6.25 7.82 7.82 11.34 11.34
g = 10
a = 0.10 a = 0.05 a= 0.01
r | D D* D D* D D*
1 [15.89(0.182) 13.15(0.094 18.04(0.107 14.93(0.042 23.18(0.031 19.19(0.0085)
2 |14.78(0.143) 13.38(0.101 17.17(0.076 15.55(0.051 21.79(0.019 19.74(0.0090)
3 (14.31(0.134) 13.38(0.100 16.51(0.071 15.44(0.049 21.43(0.017 20.04(0.0098)
4 (14140 110) 12 440 107 1A RAN NAR 15 R1(NDNSS 21 ASIN NTR 20 SRIN N125)
5 114.23(0.120) 13.66(0.104 16.40(0.067 15.74(0.054 20.80(0.014 19.97(0.0098)
Xé(“ 13.36 13.36 15.51 15.51 20.09 20.09
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If the gamma regression model is fitted by WLS using the transformed
observations Z; = logY¥Yi. - y(ri) + logr;, 1 = 1,...,g, a goodness of fit
statistic is provided by R (ﬁw)which was defined in (5.18). The statistic
has exact expectation g-k-1 and its distribution approaches the x>
distribution with g-k-1 degress of freedom as the {rj} increase, if

the assumed model 1is correct.

Although the means of the exact distribution of R (ﬁw) and the approx-
imation x” -distribution agree, the variances are not equal. To demonstrate
this, consider the case when the shape parameters are equal, that is,
ri =1 for i = 1,...,g. In this case the {Z;} are identically distributed
as log-gamma random variables with skewness and kurtosis coefficients
given by

3
1

1 2
1 @)=vP et or . 1) =vP o/ veZe (7.5)

forI=1,........ ,g (kahn (1979) ). The WLS estimator is the same as the OLS
estimator of B and using results from atiqullah (1962) we have

g
Var{R(BW)}={w'(r)}zVar{lei—xi'B )2}
b bl

~W

g
=2e—k=D+1, (Z) X (1-hy)? (7.6)
1=

where hii 1s the ith diagonal eclement in the hat matrix X(X' )N()_1 X'

We therefore have

VarfRB )} = 2(g — k — 1)(1 + ¢) (7.7)
~W
where

v oz a-np?
c = — ] (7.8)
2 "F@ -k - D

The form of (7.7) leads us to consider the modified statisticR * (’[5 ) =
~W

R * (B ) + b,where the constants a and b are selected to give agreement
~W

between the exact mean and variance of R * (B ) and the corresponding moments
~W
of the approximatinngg—k—l distribution.  This gives
1 1
R*B )=(0+02RE )+ (g+k-Di+0O)2 -1 (7.9)

~W ~W
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To examine the adequacy of the chi-square approximation to the null
distributions of R(ﬁw) and R*(BW), the moments and critical values of the
distributions have been estimated by simulation for the model pi. =exp(Bo +B; x;.)

with x;.— i—%(gﬂ), i =1, .gandr=r=1(1) 10(2)20, g=>5,10,

The results show that the mean and variance of the distribution of
R * (Byy ). as obtained by simulation are very close to the corresponding

moments of the approximating x> distributions. The use of the modified
statisticR * (Byy ), leads to better control of the significance levels for

small values of a and small values of r, particularly for the larger wvalue
of g. These findings are illustrated in table 15 which shows the means

and variances of R(BW ), and R*(BW), and in table 16 which shows the estimated
upper 10%, 5% and 1% critical values of the null distributions of R(B\W ),
and R * (EW)’ for ri=r=1(1)5, 1 = 1,...,gand g=5,10. The estimated

significance levels associated with the chi-square approximating critical
values are shown in parentheses.

Table 15
Means and variances of theR(ﬁ )andR*(ﬁ ) statistics when ri=r, 1=1,....g,

~W ~wW

g =5 g=10
Mean Variance Mean Variance
T RB ) R*B ) RB ) R*B ) RB ) R*B ) R(B ) R*(B )
~W ~W ~W ~W ~W ~W ~W ~W

1 2.989 2.992 9915 5.583 8.025 8.018 31.472 15.962
2 3.018 3.016 8.814 6.369 8.049 8.040 24.054 16.244
3 2.988 2.990 7.760 6.225 8.061 8.053 20.735 15.844
4 3.011 3.011 6.965 5.902 8.066 8.059 20.562 16.579
5 3.013 3.012 6.641 5.881 8.104 R.006 19.467 16.560

Xéz 3.000 3.000 6.000 6.000 8.000 8.000 16.000 16.000
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Table 16
Upper 100 % points of the null distribution of theR(p )and R * (B )
~W ~W
statistic when r; = r, i = 1,...,g
g =35
a = 0.10 a = 0.05 a - 0.01
r R(EW) R * (Byw) R(EW) R * (By)s R(EW) R * (By)s
1 6.52(0.110) 5.64(0.077) 8.88(0.068) 7.41(0.043) 16.29(0.028 12.97(0.015)
2 6.49(0.109) 5.97(0.086) 8.30(0.059) 7.51(0.044) 13.50(0.019) 11.93(0.013)
3 6.45(0.109) 6.09(0.094) 8.28(0.056) 7.65(0.045) 12.97(0.018) 11.93(0.013)
4 6.41(0.106) 6.14(0.095) 8.11(0.057) 7.71(0.047) 12.17(0.014) 11.44(0.011)
5 6.37(0.104) 6.16(0.095) 8.00(0.054) 7.78(0.048) 11.94(0.013) 11.37(0.011)
X3(a) 6.25 6.25 7.82 7.82 11.34 11.34
g = 10
o= 0.10 a = 0.05 o= 0.01
r RE DR By, RB ) R * By RE ) R * By,
1 14.96(0.131) 12.96(0.089) 18.84(0.090) 15.72(0.053) 28.73(0.042) 22.76(0.019)
2 14.04(0.119) 12.96(0.089) 17.07(0.071) 15.45(0.049) 25.38(0.027) 22.28(0.016)
3 13.92(0.117)13.18(0.095) 16.72(0.066) 15.62(0.052) 23.87(0.023) 21.93(0.013)
4 13.84(0.113) 13.28(0.098) 16.67(0.065) 15.83(0.053) 23.17(0.023) 21.70(0.014)
5 13.99(0.115)13.52(0.104) 16.36(0.064) 15.70(0.053) 21.71(0.018) 20.63(0.012)
X%(a) 13.36 13.36 15.51 15.51 20.09 20.09
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	approximation is 
	For the  given  values  of  x, we have   and  hence  the  approx- 
	With  bias  correction,   the  approximate  interval   is 
	Table  5 
	The   log-likelihood  under   the  restricted  model   is 
	We Have 
	The  approximate  power  of  the  test   is 
	D







