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Properties  of  Statistical  Inference  Procedures 

   For  A  Gamma  Regression  Model 

                          by 

    D.H. Young and A.. Al-Abood 

SUMMARY 

A  gamma  regression  model  with  an  exponential  link  function  for 
the  means  is  considered.    Approximations   to  the   percentiles   of  the 
distributions  of  the  maximum  likelihood  and   weighted   least  squares 
estimators  of   the   regression   coefficients   are   presented   and  evaluated 
for  the  case  of  a  single  explanatory  variable.     These   are   used  to 
develop   approximate  confidence   interval  and   hypothesis   testing   pr- 
cedures  for  the   regression   coefficients   which  are  assessed  by  simu- 
lation.    Finally,   the   null   distribution   properties   of   goodness   of   fit 
tests  for   the   exponential   link   function   are   investigated. 
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1 .     Introduction 

Let  Y1  ,  Y2,...,   Yg  represent g independent  gamma  random  variables 

where  Yi   has  density 
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where  the  shape  parameter  ri  is  a  known  positive  integer.    The  mean  μi. 
is  assumed  to  depend  on  the  values  xi1.   ,  xi2.  , ...,  xik  for  k  explanatory 
variables   through   the  model  
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regression   coefficients   with    unknown   values. 

This  model  has  a  number  of   important  applications.    For  example, 
consider  accelerated    life   testing    (Lawless    (1976))    in  which  there  are 
g  groups  of   items,   the   ith  group  containing  ni   items   and  having  values 
x11.   ,...,xik    for  k  test  variables.      Suppose   that   there   is    type   II   censor- 
ing  within  groups   and   let  Yi(1)   .   <  Yi(2)   ,   <   ...   <Yi(ri)   represent   the 
observed  order   statistics   in   the   ith    group,    the   remaining   ni - ri    observ- 
ations   being   right  censored  at  the  value Yi(ri).,     ...     If   the  underlying  dis- 
tributions   are   exponential   and   the   means  are  given  by   (1.2),   then  the 
statistics 
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are  distributed  independently  with  p.d.f's  given  by   (1.1).      The   {Yi} 
are  sufficient  unbiased  and  minimum  variance  estimators  of   {μi.}  and 
provide  the  basic   observations   for  a   likelihood  analysis. 

The  model  also  arises   in   connection  with   the  analysis   of   intervals 
between  events   in  g  Poisson  processes,  where   the  rates  λi -   depend  on 
explanatory   variables.      If   the   observation     Yi.    for   the   ith  process 
denotes   the   time   from  the  origin  to   the   rith     following  event   ,   then 
Yi   has  p.d.f.   given  by   (1.1)   with  1

iλiriμ
−= .     The  model  with  a  single 

explanatory  variable   is  considered  by  Cox  and  Lewis   (1966)   in   the  analysis 
of   trend   in  a   single   Poisson   process. 
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Two well-known methods of estimation of the regression coefficients 

are maximum likelihood and weighted least squares. The ML estimates are 
given  by  the  solution  of   the  k + 1   equations 

 

(1.4)k0,1,.....,r,
i

rixir
i

β̂'
i

xexp(iyirxir =∑=∑ −

 
and  an  iterative   solution   is  required.    The  WLS  method   (Kahn   (1979)) 
yields   the  non-iterative  solution 
                                               

(1.5)zwDX'1x)wD(x'wβ̂ −=                          

 where =diag {ψ’(rw~D 1),…, ψ’(r2)},zi = log yi +log ri – ψ(ri),  ~X   is 

the  design  matrix  and  where  ψ(·),   ψ'(·)   are   the  digamma  and  trigamma 
functions,   respectively. 

Asymptotically,   the  ML  and  WLS  have   the   same  efficiency  as  ri. →∞, 
i   =   1,. . .g,   but  for  small  values   of   the   {ri},   some  loss  of   efficiency 
does   occur  in  using  WLS.     Abood  and  Young  (1985)  contrast  the moment 
properties   of   the  estimators  for   small   to  moderate  values   of   the {ri} 
and  propose  modifications   to  the  ML    estimators   leading    to   bias    reduction 
and   improved  mean  square  error  efficiency. 

 
In   this   report,   we  consider   statistical   inference  procedures  based 

on  the  ML and  WLS estimates  of. 
~
β  The main objective  is  to assess  the 

performance  of  the  procedures  by  means  of  a  large  scale simulation  in- 

vestigation  for   the  case  of   a   single   explanatory  variable.     In   Sections 

2  and  3,  approximations   to  the  percentiles  of  the  distributions  of   the ML 

and   WLS  estimators of 
~
β  for the case when ~0~

β =  are  presented.  Monte  Carlo                           

results  assessing  the  percentile  approximations   are  given   in   section   4. 

Confidence   interval   estimation  procedures   are  discussed in section  5 and 

test   procedures  for  hypotheses  concerning   the  regression  coefficients 

are  evaluated   in   section  6.     Finally,  null   distribution  properties   of 

goodness  of  fit  statistics  for  testing  the  assumption   of   the   link   function 

given by  (1.2)  are presented in  section 7. 
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2.  Approximations  To  The  Distribution  Of  The  MLEstimator 

           Under  the  gamma  regression  model,  we  have 

                       ∑ ==
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where  L  denotes  the  log-likelihood.     This  leads  to  the  well-known  first 
order  expression  for   the  covariance  matrix  of  ~B

(2.2)1
~I

1)~X~D'~X(
^

~
βcova −=−=

   

where  = diag (r~D 1 , r2,…., rg )   and  where   in  the   usual  notation,  ((Irs))~I =

denotes   the  information  matrix.     For   'large'  values  of  the  {ri},  we  have 

the  ordinary  normal   approximation 

                            (2.3)k0,1,....,r,)rrI,rN(βapprox
^
rβ =

 

 
where Irs denotes   the  element   in  the(r+1)st   row  and   (s+1)st  column 

of 1
~I
− .  The  ML  estimators  are  asymptotically  unbiased  but  will   show  some 

bias   for  small  values  of  {ri}.  Abood  and Young  (1985)  show  that  the 

biases   are  to  order   Rrβ)r
^
βE(rb −= -1 ,  where  R  = ,

i ir∑   given   by 
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where  Krst =∑ .   Using  a  normal   approximation  with  bias 

i itxisxirxir

correction  we take 

(2.5)k0,1,.....,r,)rrI,rbrN( βapprox
^
rβ ~ =+  

Statistical  inferences  for  the  ßr    based  on  the  ML  estimatorsβ  r
^

are  made  using    the  distribution  properties   of    the   random   variables 

rβr
^
β − r  =  0,1,..,,k.     These  random  variables   are  distributed  independ- 
ently  of

~
β "   and  we  have   the   exact   distribution  result 

(2.6)k0,1,.....,r,
(0)^

rβrβ
^
β ~ =− d  

where 
(0)^

rβ  denotes   the  ML   estimator   of  ~0~
βwhenβr =  

Approximations   to  the  percentiles   of   the  distribution  of  are (0)
r

^
β
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needed   for  both  hypotheses   testing  and  confidence   interval   estimation. 

If  we let  br (α)denote  the  100α  percentile  of  the distribution  of  
(0)

r
^
β

the  ordinary  normal   approximation   is 

                                   ,                    r     =      0,1,…..,k                                                            (2.7) 1/2)rr(Iαu(αrb ≈)

                      

where  uα    denotes   the   100α  percentile  of   the  N(0,1)   distribution.     The 
normal   approximation  with  bias   correction   is 

                          ( ) 1/2)rr(Iαurbαrb +≈ ,            r    =      0,1,…..,k                                                            (2.8)       

       3.       Approximations   To  The  Distribution  Of  The  WLS  Estimator 

The  WLS  estimators   are  linear  functions   of   log-gamma random  vari- 

ables    and  hence   have   the  advantage   over   the  ML  estimators  that  their 

moments   are  known  exactly    for   all   values   of   the   {ri}.      In  particular, 

the  covariance  matrix  is  given  by 
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Using  an  ordinary  normal  approximation,  we  take 
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  where   Ψ(s)  (·)   denotes  the   sth  derivative  of  the  digamma  function  and   (±) 

is   the  sign  of  air. These  coefficients   may   be   used    in   an   Edgeworth   series 
representation   to   provide   skewness  and   kurtosis  corrections   to   the   normal 

approximation   to   the  c.d.f .   of   
^
β wr.
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For   the   random  variables β  r   =  0,1,...,k  we  have   the  exact βr'wr
^

−
distribution   result 

                                              )(0
wr

^
β

~
drβwr

^
β −                                                                                  (3.5) 

 

Where  denotes  the  WLS  estimator  of  (0)
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^
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β ( )αwrb ,the ordinary normal  

approximation is 
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and  the  normal  approximation  with  skewness  and  kurtosis   correction  is 
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4.       Monte  Carlo  Results 

In  order  to  assess  the  various  approximations   to   the  percentiles 

of   the  distributions  of, we  consider    the   particular   case (0)
wr

^
βand(0)

r
^
β

when  there  is  a  single  explanatory  variable  x,   the  means  being  given   by 
 
μi=  =  exp(ß0 + ß1x1   , i  =   1,...,g   .                                  (4.1) 

 
 

Without  loss  of  generality  we  suppose  that  the  x  values  are  centred 
such  that   In   this   case   the   results    for   the   estimators ∑ =

i
0ixir

take  on  particularly  simple  forms.   For  the ML  estimators we have 
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The  WLS  estimators  are 
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The  skewness  and  kurtosis  coefficients   of  the  WLS  estimators  are  then 
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In  order  to  assess   the  accuracy  of  the  percentile   approximations 

for  a   large   scale   simulation   investigation  was   made   for 'wrβandrβ ˆˆ

the   case  when   the   explanatory  variable  x  has   equally   spaced  values  with 

2
1iix −=  (g+1), i = 1,...,g.  Equal   alues   for   the   shape   parameter 

were  taken  with  ri   =  r  =   1(1)10(2)20(5)50  for  i  =   1,...,g  with  g  =  5,10 
and  ri   =  r  =  6(1)10  for  g  =  6(1)9.    A simulation run-size  of  4000  was 
used. 
 

For the  given  values  of  x, we have ∑ =
i

0
1
3x  and  hence  the  approx- 

imating  bias  b1   and  the  skewness  coefficient γ11   are  both  zero.  Hence 
the  bias  correction  and  skewness  correction   approximations   will  only 
apply   to  b0(α)   and  bwo(α)     ,   respectively. 
 

The  broad  conclusions  from  the   investigation  are 
 

i) For   the  ML   estimator  the  use  of  the bias  correction gives a ,(0)
0β̂

marked  improvement   in  the  approximation  to  the  percentiles. 
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ii)       The  ordinary  normal  approximation  tends   to  underestimate  the  upper 
percentiles  and   to  overestimate  the  lower  percentiles  of  the distribution 
of β̂ for  r  =  1,2   but   gives   satisfactory  results  for  larger  values  of  r. (0)

1

iii)     For  the  WLS  estimator    the  use  of  the  skewness   correction  to (0)
woβ̂

the  normal  approximation  appears  to  be  worthwhile  for  small  values   of   r 
and  small  values  of  the  tail  probabilities. 

iv)       The  ordinary  normal  approximation  to  the  percentiles   of   the  distribution 

of  work  satisfactorily  for  all  values  of  r. (0)
w1β̂

These  findings  are   illustrated   in  tables   1   and  2  which  gives   the 

upper    and   lower   percentiles   respectively   for  and  and   in  tables (0)
0β̂

(0)
1β̂

3  and  4  which  give  the  upper  and  lower  percentiles   respectively  for  (0)
woβ̂

and , for  the  cases  r  =  1(1)6(2)10,  g  =  5 and  α  =  0.10,0.05,0.01. (0)
w1β̂



Table  1 

Upper  percentiles  of  th  ML  estimators and when g =  5  and  x. =(0)
0β̂

(0)
1β̂ 2

11−  (g+1), 

i   -   1,...,g.     Actual   tail   probabilities   associated    with    the   percentiles   are 
shown    in  parentheses. 

      r                   1               2              3                4                5               6               8                 10 

b0(0.90) 0.374 0.304 0.267 0.234 0.208 0.195 0.179 0.160 

App(2.7) 0.573 0.405 0.331 0.287 0.256 0.234 0.203 0.181 
 (0.040) (0.049) (0.060) (0.065) (0.064) (0.068) (0.076) (0.076) 
App(2.8) 0.373 0.305 0.264 0.237 0.216 0.201 0.178 0.161 

 (0.101) (0.100) (0.103) (0.098) (0.093) (0.095) (0.102) (0.098) 

b0(0.95) 0.524 0.402 0.344 0.315 0.277 0.263 0.241 0.212 

App(2.7) 0.736 0.520 0.425 0.368 0.329 0.300 0.260 0.233 
 (0.014) (0.020) (0.023) (0.027) (0.026) (0.029) (0.037) (0.036) 
App(2.8) 0.536 0.420 0.358 0.318 0.289 0.267 0.235 0.213 

 (0.047) (0.043) (0.046) (0.048) (0.044) (0.047) (0.054) (0.049) 

bo0(0.99) 0.792 0.619 0.505 0.449 0.402 0.373 0.343 0.311 

App(2.7) 1.040 0.736 0.601 0.520 0.465 0,425 0.368 0.329 
 (0.0013) (0.0040) (0.0025) (0.0043) (0.0043) (0.0048) (0.0060) (0.0070) 

App(2.8) 0.840 0.636 0.534 0.470 0.425 0.391 0.343 0.309 

 (0.0075) (0.0085) (0.0063) (0.0075) (0.0083) (0.0083) (0.0125) (0.0108) 

b1   (0.90) 0.457 0.308 0.234 0.209 0.178 0.161 0.148 0.131 

 
App(2.7) 0.405 0.287 0.234 0.203 0.181 0.166 0.143 0.128 

 (0.124) (0.114) (0.100) (0.107) (0.097) (0.094) (0.109) (0.105) 

b1(0.95) 0.591 0.393 0.303 0.265 0.235 0.216 0.191 0.162 

App(2.7) 0.520 0.368 0.300 0.260 0.233 0.212 0.184 0.165 
 (0.074) (0.060) (0.051) (0.053) (0.052) (0.052) (0.056) (0.048) 

b1(0.99) 0.919 0.572 0.454 0.379 0.326 0.297 0.272 0.235 

App(2.7) 0.736 0.520 0.425 0.368 0.329 0.300 0.260 0.233

 (0.0253) (0.0178) (0.0148) (0.0125) (0.0095) (0.0095) 0.0128 (0.0113) 
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Table  2 

Lower  percentiles  for  the  ML  estimators  and  when  g = 5  and (0)
0β̂

(0)
1β̂

xi  =
2
1i −  (g+1),   i  =  1,...,g. 

 

r 1 2 3 4 5 6 8 10 

b0(0.10) -0.859 -0.536 -0.413 -0.345 -0.305 -0.271 -0.234 -0.207 

App(2.7) -0.573 -0,405 -0.331 -0.287 -0.256 -0.234 -0.203 -0.181 

 (0.229) (0.178) (0.159) (0.152) (0.148) (0.142) (0.139) (0.134) 

App(2.8) -0.773 -0.505 -0.398 -0.337 -0.296 -0.267 -0.288 -0.201 

 (0.131) (0.166) (0.112) (0.106) (0.107) (0.106) (0.107) (0.106) 

b0(0.05) -1.061 -0.676 -0.510 -0.439 -0.384 -0.347 -0.292 -0.261 

App(2.7) -0.736 -0.520 -0.425 -0.368 -0.329 -0.300 -0.260 -0.233 

 (0.145) (0.106) (0.093) (0.087) (0.085) (0.079) (0.078) (0.075) 

App(2.8) -0.936 -0.620 -0.491 -0.418 -0.369 -0.334 -0.285 -0.253 

 (0.078) (0.066) (0.059) (0.060) (0.058) (0.058) (0.053) (0.057) 

b0(0.01) -1.466 -0.956 -0.727 -0.633 -0.545 -0.491 -0.422 -0.367 

App(2.7) -1.040 -0.736 -0.601 -0.520 -0.465 -0.425 -0.368 -0.329 

 (0.0540) (0.0340) (0.0258) (0.0260) (0.0230) (0.0218) (0.0205) (0.0185) 

App(2.8) -1.240 -0.836 -0.667 -0.570 -0.505 -0.458 -0.393 -0.349 

 (0.025) (0.019) (0.016) (0.017) (0.016) (0.016) (0.014) (0.014) 

b1(0.10) -0.456 -0.308 -0.245 -0.208 -0.188 -0.171 -0.141 -0.129 

App(2.7) -0.405 -0.287 -0.234 -0.203 -0.181 -0.166 -0.143 -0.128 

 (0.125) (0.117) (0.116) (0.107) (0.107) (0.109) (0.098) (0.100) 

b1(0.05) -0.601 -0.399 -0.320 -0.260 -0.242 -0.222 -0.187 -0.169 

App(2.7) -0.520 -0.368 -0.300 -0.260 -0.233 -0.212 -0.184 -0.165 

 (0.075) (0.065) (0.063) (0.050) (0.059) (0.057) (0.053) (0.053) 

b1 (0.01) -0.890 -0.610 -0.471 -0.397 -0.366 -0.317 -0.270 -0.239 

App(2.7) -0.736 -0.520 -0.425 -0.368 -0.329 -0.300 -0.260 -0.233 

 (0.023) (0.019) (0.016) (0.014) (0.015) (0.015) (0.012) (0.013) 
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Table  3 

Upper  percentiles of  the WLS estimators  and when  g = 5  and (0)
w0β̂ (0)

w1β̂

xi  = 1)(g
2
1i +− ,  i  =  1,...,g. 

 

r 1 2 3 4 5 6 8 10 

bw0(0.90) 0.676 0.441 0.355 0.294 0.256 0.237 0.207 0.184 

App(3.6) 0.735 0.460 0.360 0.305 0.270 0.244 0.209 0,186 
 (0.082) (0.089) (0.094) (0.093) (0.087) (0.094) (0.095) (0.098) 

App(3.7) 0.704 0.447 0.352 0.299 0.265 0.240 0.206 0.184 
 (0.092) (0.097) (0.104) (0.096) (0.091) (0.096) (0.104) (0.100) 

bw0(0.95) 
 

App(3.6) 
App(3.7) 

0.854 
0.944 

(0.033) 
0.860 

0.559 
0.591 

(0.039) 
0.555 

0.439 
0.462 

(0.042) 
0.440 

0.380 
0.392 

(0.046) 
0.376 

0.331 
0.346 

(0.043) 
0.334 

0.303 
0.313 

(0.042) 
0.303 

0.264 
0.268 

(0.045) 
0.261 

0.235 
0.239 

(0.047) 
0.233 

 (0.049) (0.051) (0.049) (0.054) (0.048) (0.050) (0.053) (0.051)
bw0(0.99) 1.160 0.774 0.590 0.520 0,457 0.417 0.369 0.330 

App(3.6) 1.334 0.835 0.654 0.554 0.489 0.443 0.380 0.337 
 (0.0018) (0.0055) (0.0043) (0.0065) (0.0065) (0.0060) (0.0080) (0.0083)

App(3.7) 1.291 0.743 0.596 0.513 0.457 0.416 0.360 0.322 

 (0.0075) (0.0120) (0.0095) (0.0115) (0.0100) (0.0108) (0.0115) (0.0123)

bw1(0.90) 0.505 0.319 0.239 0.213 0.183 0.166 0.151 0.131 

App(3.6) 0.520 0.362 0.255 0.216 0.191 0.173 0.148 0.132 
 (0.094) (0.093) (0.086) (0.098) (0.092) (0.090) (0.103) (0.100) 

bw1(0.95) 
 

10.684 0.410 0.314 0.271 0.238 0.214 0.193 0.165 

App(3.6) 0.667 0.418 0.327 0.277 0,245 0.222 0.190 0.169 
 (0.053) (0.047) (0.044) (0.047) (0.046) (0.045) (0.053) (0.047) 

bw1 (0.99) 1.014 0.606 0.455 0.388 0.338 0.302 0.277 0.239 

App(3.6) 0.943 0.591 0.462 0.392 0,346 0.313 0.268 0.239 
 (0.0160) (0.0115) (0.0098) (0.0095) (0.0093) (0.0078) (0.0125) (0.0100)
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Table  4 

Lower  percentiles  of  the  WLS  estimators  and  when  g  =  5 (0)
w0β̂ (0)

w1β̂

and  xi  = 
2
1i −  (g+1),  i  =  1,... ,g, 

 

r 1 2 3 4 5 6 8 10 

bwo(0.10) -0.744 -0.478 -0.362 -0.307 -0.275 -0.246 -0.215 -0.190 

App(3.6) -0.735 -0.460 -0.360 -0.305 -0.270 -0.244 -0.209 -0.186 
 (0.109) (0.107) (0.106) (0.101) (0.106) (0.104) (0.109) (O.105)

App(3.7) -0.767 -0.474 -0.369 -0.312 -0.275 -0.248 -0.212 -0.188 

 (0.096) (0.101) (0.097) (0.099) (0.100) (0.097) (0.104) (0.103) 

bwo (0.05) 
 

-1.008 -0.609 -0,476 -0.401 -0.361 -0.326 -0.274 -0.257 

App(3.6) -0.944 -0.591 -0.462 -0.392 -0.346 -0.313 -0.268 -0.239 
 (0.062) (0.058) (0.054) (0.055) (0.058) (0.057) (0.053) (0.055) 

App(3,7) -1.027 -0.626 -0.485 -0.408 -0.359 -0.324 -0.276 -0.245 

 (0.046) (0.046) (0.047) (0.047) (0.051) (0.052) (0.048) (0.051) 

bwo(0.01) -1.477 -0.929 -0.675 -0.599 -0.505 -0.477 -0.400 -0.368 

App(3.6) -1.334 -0.835 -0.654 -0.554 -0.489 -0.443 -0.380 -0.337 
 (0.0168) (0.0173) (0.0138) (0.0135) (0.0128) (0.0143) (0.0130) (0.0138)

App(3.7) -1.549 -0.928 -0.711 -0.596 -0.522 -0.470 -0.399 -0.353 

 (0.0073) (0.0100) (0.0088) (0.0100) (0.0088) (0.0105) (0.0100) (0.0115)

bw1(0.10) 
 

-0.486 -0.318 -0.242 -0.214 -0.192 -0.180 -0.144 -0.131 

App(3.6) -0.520 -0.326 -0.255 -0.216 -0.191 -0.173 -0.148 -0.132 

 (0.087) (0.093) (0.097) (0.097) (0.101) (0.111) (0.093) (0,099) 

bw1 (0.05) -0.648 -0.419 -0.339 -0.272 -0.244 -0.232 -0.191 -0.171 

App(3.6) -0.667 -0.418 -0.327 -0.277 -0.245 -0,222 -0.190 -0.169 
 (0.046) (0.051) (0.056) (0.047) (0.049) (0.058) (0.051) (0.052) 

bw1 (0.01) 
 

-0.937 -0.630 -0.476 -0.412 -0.360 -0.327 -0.269 -0.240 

App(3.6) -0.943 -0.591 -0.462 -0. 39 2 -0.346 -0.313 -0.268 -0.239 
 (0.0090) (0.0128) (0.0110) (0.0110) (0.0118) (0.0125) (0.0103) (0.0103)
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5. Confidence  Interval  Estimation 

In  this  section,  we  consider  confidence  interval  estimation  for 
the regression coefficients {βj}, based on  the  use  of the  ML  and WLS 
estimates. 

If  the  exact  percentiles  of   the  distributions  of andwere were jβ̂ wjβ̂

known,   confidence  intervals  with  confidence  coefficients   equal   to  the 
nominal  confidence  coefficients  1 -α  could  be  found.   The   two-sided 
central 100(1-α)%  confidence  intervals for  βj. based  on  the ML and WLS 
estimators  would  be  given  by 

 ).(ˆˆˆ 15α)
2
1(wjbwjβα),

2
1(1wjbwj

^
β,α)

2
1(jbjβα),

2
1(1jbjβ ⎭

⎬
⎫

⎩
⎨
⎧

−−−
⎭
⎬
⎫

⎩
⎨
⎧ −−−  

respectively. For  one-sided   100(l-α)%  intervals,   the  lower  confidence 
bounds  for  βj-   would  be 

                                                    ( ) ( )αjbwjβ,αjbjβ −− ˆˆ                                                                           (5.2) 

respectively.     Upper  confidence  bounds  could  be  found  similarly. 

 
Since  the  exact  distributions  of and are  unknown,   approximate jβ̂ jwβ̂

confidence  intervals  may  be  found  using  the  percentile  approximations 
developed  in  sections 2  and  3.     Based  on  the  ML  estimate,   the  ordinary 
normal  approximating  confidence   interval   for  BJ  is  given  by 
 

                     
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
+

−
− 1/2)jj(I

α2
11

ujβ,1/2)jj(I
α2

11
ujβ

ˆˆ  (5.3)

With  bias  correction,   the  approximate  interval   is 

1/2)jj(I
α2

1u1jbjβ,1/2)jj(I
α2

11
ujbjβ −

+−
−

−− ˆˆ                                                    (5.4) 

Similarly,  using  the  WLS  estimate  the  ordinary  normal  approximating 
confidence  interval   for  βj.   is 

1/2)jj(V
α2

11
uwjβ,1/2)jj(V

α2
11

uwjβ
−

+
−

− ˆˆ                                                  (5.5)

With  skewness  correction,  the  interval  becomes 
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1
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1

α
2
11

(u1/2)jj(ywjβ ˆˆ  

 

(5.6) 

where  γ1j   .   is  given  by   (3.4).     Kurtosis  correction  could  also  be  applied 
but  will  not  be  considered  here  as   the  correction  led  to  little  improve- 
ment   in  the  percentile  approximations. 

For  one-sided   100(1-α)%  confidence  intervals,   the  ordinary  normal 
approximations   to  the  upper  confidence  bounds  are 

1/2)jj(Vα1uwjβ̂,1/2)jj(Iα1ujβ̂ −+−+                                                       (5.7)

for  ML  and  WLS   estimation,   respectively.     With   bias   correction  for 
the  ML  estimators  and  skewness  correction  for  the  WLS  estimators, 
the  approximate  upper  confidence  bounds  are 

          
⎭
⎬
⎫

⎩
⎨
⎧ −−+−+−+− 1)2

α1(u1jγ6
1

α1u1/2)jj(vwjβ̂,1/2jj(Iα1ujbjβ̂ )  (5.8)      

respectively. 

When  assessing  properties  of   approximating   confidence   intervals 
two   properties   are   particularly  important,   namely   their   average  width 
and   the  deviation  of   the  actual   confidence  coefficients   from  their 
nominal  values   1-α.     In  the  present  case,   the  widths  of  the  confidence 

intervals  are  non-random  and  for  estimation  of   ßj.   are 

1)}2
α2

11
(uijγ

6
1

α2
11

{u1/2)jj2(v3jW,)jj(v
α2

11
2uzjW,1/2)jj(I

α2
11

2uijW −
−

+
−

=
−

=
−

=  

for  ML  estimation,   for  WLS  estimation  without  skewness  correction  and 
for  WLS   estimation  with   skewness  correction,   respectively.     The    ratios 
of  the  widths  of  the  confidence  intervals  are  therefore 

)}1
α2

11
u

α2
11

(u1jγ6
1{11/2)jj/Ijj(v1j/w3jw,1/2)jj/Ijj(V1j/w2jW −

−
−

−
+==  

(5.9) 
for  j   =  0,1   respectively. 
 

We  now  consider  the  special  case  of  a  single  explanatory  variable 

with  ri   =  r,   i   -   1,….,g and =0. We  have ∑
=

g

1i ix
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and 
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α1

21
u
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11

(r)(u(2)ψ
6
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−
−

−
+=  

Table  5  shows  values  of {  and  W}1/2(r)'rψ 30/W10   for  r  =  1(1)4(2)8(4)20, 
g  =  5,10  and  α  =  0.10,   0.05,   0.01.    The  results   show  that  for  r  ≤  5, 
the  widths   of   the  confidence   intervals  based  on  WLS  without   skewness 
correction   are   considerably   larger   than   those   based   on   ML   estimation. 
This  property   is  much  less  marked  when  skewness  correction     is    
applied 
and  when a  is  very   small  WLS   leads   to  a   small   reduction   in   the  widths 
of  the  confidence  intervals. 

Table  5 
Ratio  of  widths  of  approximate  confidence  intervals  for  ß0   and  ß1 

based on ML and WLS estimation 

 ( ){ } 0.010.050.10α0.010.050.10α2
1

r'rψr

10g:10/W30W5g:10/W30W

==

==

 
 

1 1 .28 
2 1.14 
3 1.09 
4 1.07 
6 1.04 
8 1.03 

12 1.02 
16 1.02 
20 1.01 

 

1.17 1.12 1.04
1.07 1.04 0.99
1.04 1.02 0.98
1.02 1.00 0.97
1.01 1.00 0.97
1.00 0.99 0.97
1.00 0.99 0.97
1.00 0.99 0.97
0.99 0.99 0.98

 

1.20 1.17 1.11
1.09 1.07 1.03 
1.05 1.04 1.01
1.03 1.02 1.00
1.02 1.01 0.99 
1.01 1.00 0.99 
1.00 1.00 0.99 
1.00 1.00 0.99
1.00 1.00 0.99

Values   of   the   actual  confidence   coefficients  as  estimated  by  the 
simulation  investigation  described   in  section  4   are  shown   in  tables  6   and 
7  for  estimation  of   ß0   and  ß1   ,   respectively,   for  the  two-sided  case  with 
nominal  confidence  coefficients   1-α  =  0.90,   0.95,   0.99.     Tables  8  and  9 
show  the  corresponding  coefficients   for   the  one-sided  case.     For  ß0   ,   bias 
and  skewness  corrections   are  examined  but   for  ß1     these  corrections  are 
zero  under  the  given   configuration   of   values   for   the   single   explanatory 
variable. 
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The  broad  conclusions   reached  from  the  results   in  tables  6-9  are 
as  follows. 

(i)     For  two-sided  confidence  interval   estimation  of   ß0   ,   the  ordinary 
normal  approximation  based  on  ML  leads   to  confidence  coefficients   system- 
atically  smaller  than   the   nominal   values,   and   the   bias   correction   leads 
to  a  worthwhile   improvement   in  the  control   of   the  confidence  coefficient. 
Using  WLS  estimation  skewness  correction  does  not   lead  to any  improve- 
ment,    and   the   overall   control   of   the  confidence  coefficient   is  better  for 
WLS   than  for  ML. 

(ii)     For  two-sided  confidence   interval   estimation  of   ß1   ,   the  procedure 
based  on  WLS  estimation  gives  a   slightly   better   performance  than   that 
based  on  ML  estimation,   for  very  small  values   of   r.     In  general,   both 
methods  provide,  very  satisfactory  results. 

(iii)     For  one-sided  confidence  interval  estimation  of  ß0,   the  procedure 
based on the ordinary  ML estimator  leads   to  confidence  coefficients  which 
are  much  larger   than  the  nominal  values,   particularly  for  small values of 
r.     With  bias  correction,   excellent  control  over  the   confidence   coefficients 
is   obtained.    For  the WLS procedures, skewness  correction  leads only  to 
a  marginal  improvement,  but  the  control  of  the  confidence  coefficient  is 
very  good. 

(iv)     For  one-sided  confidence   interval   estimation  of   ß1  the  WLS  esti- 
mation  procedure  has  a  slightly  better  performance   than  ML  for  r = 1,2. 
For   larger  values  of  r,    both   methods  provide  excellent  control   over  the 
confidence  coefficient. 
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Table  6 

Estimated  confidence  coefficients  for   approximate    100(1-α)%    two-sided 
confidence   intervals  for  ß0  based  on   (i)   ordinary  ML,   (ii)   ML  with  bias 
correction,   (iii)   ordinary  WLS,   (iv)   WLS  with  skewness   correction. 

 

    g   = 5     

1-α=0.90 r     1 2 3 4 6 8 12 20 

(i) 0.841 0.875 0.884 0.886 0.892 0.885 0.892 0.896 
(ii) 0.876 0.892 0.896 0.893 0.896 0.893 0.894 0.897
(iii) 0.906 0.908 0.906 0.900 0.901 0.898 0.904 0.895
(iv) 0.895 0.895 0.895 0.892 0.895 0.886 0.895 0.894 

1-α=0.95         

(i) 0.901 0.924 0.937 0.938 0.943 0.943 0.943 0.944 

(ii) 0.932 0.942 0.949 0.946 0.947 0.946 0.951 0.948
(iii) 0.953 0.954 0.957 0.951 0.950 0.946 0.953 0.947
(iv) 0.932 0.935 0.942 0.939 0.941 0.941 0.943 0.942 

1-α=0.99         

(i) 0.966 0.977 0.982 0.982 0.985 0.986 0.987 0.988 

(ii) 0.980 0.983 0.988 0.986 0.989 0.987 0,989 0.988 
(iii) 0.990 0.988 0.991 0.989 0.990 0.988 0.990 0.989
(iv) 0.971 0.976 0.980 0.980 0.982 0.984 0.986 0.987 

1-α=0.99 r     1 2 3 
g=10 

4 6 8 12 20 

(i) 0.872 0.884 0.891 0.884 0.898 0.890 0.887 0.897 

(ii) 0.885 0.890 0.895 0.892 0.898 0.895 0.888 0.897
(iii) 0.906 0.900 0.905 0.898 0.900 0.897 0.893 0.894
(iv) 0.926 0.910 0.907 0.898 0.902 0.894 0.888 0.894 

1-α=0.95         

(i) 0.924 0.937 0.942 0.944 0.946 0.945 0.944 0.944 

(ii) 0.938 0.946 0.947 0.945 0.951 0.948 0.945 0.946
(iii) 0.955 0.953 0.958 0.946 0.951 0.949 0.942 0.948
(iv) 0.961 0.954 0.953 0.948 0.947 0.946 0.943 0.944 

1-α=0.99         

(i) 0.978 0.982 0.985 0.986 0.987 0.987 0.987 0.988 

(ii) 0.988 0.985 0.989 0.987 0.989 0.989 0.990 0.989 
(iii) 0.989 0.991 0.991 0.987 0.989 0.990 0.991 0.989
(iv) 0.990 0.984 0.986 0.986 0.987 0.986 0.985 0.987 
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Table   7  

Estimated  confidence  coefficients   for  approximate   100(1-α)%   two—sided 
confidence  intervals  for  ß1  based  on    (i)   ML,    (ii)    WLS 

g  =  5 
 

1-α r        1 2 3 4 6 8 12 20 

(i) 0.852 0.875 0.881 0.898 0.882 0.891 0.896 0.894 
0.90         

(ii) 0.901 0.903 0.900 0.907 0.898 0.897 0.896 0.897 

(i) 0.912 0.930 0.935 0.944 0.943 0.944 0.943 0.947 
0.95         

(ii) 0.946 0.951 0.951 0.954 0.949 0.951 0.946 0.948 

(i) 0.969 0.978 0.983 0.985 0.989 0.986 0.988 0.988 
0.99         

(ii) 0.987 0.985 0.988 0.988 0.990 0.988 0.989 0.988

g  =  10 
 

1- α r       1 2 3 4 6 8 12 20 

(i) 0.872 0.891 0.892 0.892 0.892 0.898 0.897 0.904 
0.90         

(ii) 0.902 0.904 0.901 0.901 0.895 0.904 0.899 0.903 

(i) 0.929 0.946 0.941 0.944 0.940 0.944 0.951 0.948 
0.95         

(ii) 0.946 0.949 0.950 0.951 0.946 0.947 0.951 0.951 

(i) 0.978 0.985 0.987 0.988 0.988 0.988 0.989 0.989 
0.99         

(ii) 0.989 0.989 0.988 0.989 0.990 0.988 0.990 0.989 
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Table  8 

Estimated   confidence   coefficients    for    approximate    100(1-α)%   one-sided 
confidence   intervals   for   ß0   based  on   (i)   ordinary  ML,     (ii)    ML  with 
bias   correction,      (iii)   ordinary  WLS,    (iv)   WLS  with   skewness   correction 
 

    g  =  5     
1-α=0.90 r   1 2 3 4 6 8 12 20 

(i) 0.960 0.951 0.941 0.935 0.933 0.925 0.922 0.916 
(ii) 0.900 0.901 0.897 0.902 0.906 0.899 0.898 0.902
(iii) 0.918 0.911 0.904 0.907 0.907 0.899 0.898 0.903
(iv) 0.908 0.904 0.896 0.904 0.904 0.896 0.894 0.900 

1-α=0.95         

(i) 0.986 0.981 0.977 0.973 0.971 0.963 0.969 0.959 
(ii) 0.954 0.957 0.954 0.952 0.954 0.947 0.953 0.949
(iii) 0.968 0.961 0.958 0.954 0.958 0.950 0.957 0.948
(iv) 0.951 0.949 0.951 0.946 0.950 0.944 0.952 0.945 

1-α=0.99         

(i) 0.999 0.996 0.998 0.996 0.995 0.994 0.993 0.992 
(ii) 0.993 0.992 0.995 0.993 0.992 0.990 0.992 0.988
(iii) 0.998 0.995 0.996 0.994 0.994 0.991 0.992 0.989
(iv) 0.988 0.988 0.991 0.989 0.989 0.988 0.991 0.988

 

    g = 10     
1-α=0.90 r   1 2 3 4 6 8 12 20 

(i) 0.949 0.934 0.936 0.924 0.921 0.917 0.910 0.908 
(ii) 0.907 0.903 0.905 0.398 0.896 0.900 0.893 0.897
(iii) 0.912 0.909 0.908 0.903 0.901 0.898 0.896 0.898
(iv) 0.905 0.906 0.904 0.900 0.898 0.897 0.894 0.897 

1-α=0.95         
(i) 0.977 0.973 0.970 0.962 0.966 0.962 0.955 0.952
(ii) 0.953 0.951 0.954 0.946 0.953 0.951 0.947 0.949
(iii) 0.961 0.958 0.958 0.951 0.959 0.954 0.947 0.951
(iv) 0.949 0.953 0.953 0.946 0.954 0.951 0.945 0.947 

1-α=0.99         
(i) 0.998 0.996 0.995 0.994 0.994 0.993 0.993 0.993
(ii) 0.993 0.992 0.992 0.990 0.992 0.990 0.990 0.991
(iii) 0.994 0.998 0.994 0.992 0.992 0.991 0.991 0.990
(iv) 0.987 0.991 0.991 0.988 0.990 0.989 0.988 0.989 
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Table  9 

Estimated  confidence  coefficients   for  approximate   100(1-α)%  one-sided 
confidence  intervals   for   ß1  based  on   (i)   ML,   (ii)   WLS 

g  =  5 
 

1-α. r   1 2 3 4 6 8 12  20 

(i) 0.876 0.886 0.900 0.893 0.906 0.888 0.893 0.902
0.90         

(ii) 0.904 0.907 0.914 0.902 0.910 0.895 0.900 0.905
(i) 0.926 0.940 0.949 0.947 0.949 0.944 0.949 0.948

0.95         

(ii) 0.947 0.953 0.957 0.954 0.955 0.947 0.952 0.948
(i) 0.975 0.982 0.988 0.988 0.991 0.987 0.991 0.989

0.99         
(ii) 0.984 0.989 0.990 0.991 0.992 0.988 0.992 0.990

 
 
 
  
 

 
 
      g  = 10 

1-a r      1 

  (i) 0.881 

2 
 

0.894 

 3 
 
0.904 

    4  
   
0.896 

6 
 

0.897 

8 
 

0.894 

12 
 

0.897 

20 
 

0.897
0.90     

(ii) 0.904 0.903 0.904 0.894 0.903 0.899 0.899 0.900
(i) 0.932 0.944 0.953 0.946 0.947 0.948 0.944 0.951

0.95     
(ii) 0.950 0.949 0.955 0.949 0.950 0.951 0.947 0.948
(i) 0.982 0.987 0.991 0.989 0.990 0.987 0.990 0.987

0.99     
(ii) 0.988 0.989 0.991 0.990 0.991 0.990 0.990 0.989

 

6.     Tests  Of  Hypotheses  Concerning  The  Regression  Coefficients 

In  regression  problems  we  are  often  interested  in  testing   the  hypothesis 
that  a  particular  subset  of   the  explanatory   variables   have  no   effect. 
Without  loss  of  generality,  we  shall   take  the  subset   to   contain   the  last 
k-ℓ  variables,   so   that  we  wish  to   test   the  hypothesis  H0: ßj   =0  for 
j   =  ℓ+1,ℓ+2,...,k.     We  shall  write 2'~

β,
1~

β'('
~
β =  where 

                     
                         .)kβ,.....,2β,1(β2'~

β),,.....β1β,0(β
i~

β' ++== lll                                (6.1)   
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When H0   :     is true ,we have ~02~
β =

g1,......,i),
i~

βi~xexp(iμ ==                                                                      (6.2) 

which, we  shall   refer   to  as   the  restricted  model.  The  model  µI .= ),
~
βi~xexp(  

i   =   1,..,g  will  be  called   the  full  model.     We  firstly  develop   tests 
based  on  the  maximum  likelihood   estimators. 

The   log-likelihood  under   the  restricted  model   is 

)iy1
iμ

g

1i i(log μric)
~
βL( −+∑

=
−=                                                     (6.3) 

where 

1)!i(r
g

1i
logilogy

g

1i
)

g

1i
1i(rilogrirc −∑

=
−∑

=
∑
=

−+=  

is  a  constant  not  depending  on 
~
β   We   let 

^

~
β  and  

~
)βi~xexp(μ ˆˆ = denote 

the  ML   estimates   of iμand
~
β  under  the   full  model.     The  estimates  are 

given  by   the  solution  of   the  k+1   equations 
 

∑
=

==∑
=

−
g

1i
k.0,1,.....,j,ijxir)

~
βi'

g

1i ~
xexp(iyijxir

ˆ                       (6.4) 

Under   the  restricted  model,   the  ML  estimate  is   given  by   the 
~1
β̂

solution  of   the  ℓ+1   equations 
 

).(ˆ 56
g

1i
,0,1,......j,ijxir)

~
βi'~xexp(

g

1i iyijx1r ∑
=

==−∑
=

l

Setting i   =    1,...,g,    the   likelihood   ratio   statistic 
~
),1βi'~xexp(10μ ˆˆ =

for  comparing   the  full   and   restricted  models   is 
 

).(.ˆˆˆˆ 66)1
iμ

1
10μ(iy)

~
β

~1
β(i'~x

g

1i ir21S
⎭
⎬
⎫

⎩
⎨
⎧ −−−+−∑

=
=

 
The statistics   S1     is   taken  to  be  approximately  distributed   as  x2 

with  k-ℓ  degrees   of   freedom     if  Ho     is   true. 
 
 
The  statistic  S1  takes  on  a particularly simple  form  when  the 

x's  are  centred   such   that  =  0  for  j   =   1,....,k.     Under  this ∑
=

g

1i ijxir

condition  use  of   the  first  likelihood  equation  in   (6.4)   gives 
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1)0βR(c
i

)
~
βL(R,1

iμiyir +−=∑ =− ˆˆˆ                (6.7) 

Similarly,   use  of   the   first  likelihood  equaton   in   (5.5)   gives 

                         1)0βR(c
i

)
~1
βL(R,1

i0μiyir +−=∑ =− ˆˆˆ                                        (6.8) 

where  denotes   the  ML   estimate  of   ßnβ̂ 0     under   the  restricted  model. 

Hence  we  may  write 

                                                                                                                                        (6.9) )0β0β2R(1S ˆˆ −=

 Al-Abood  and  Young   (1985)   show  that   the  bias  of  to order R0β̂
-1

 is   -(k+1)/(2R)   when   the  centering   conditions    for   the   x's   hold.   This 
 result  also  holds  when  Ho     is   true.     Under  H0,   the  bias  of  is 0β̂
-(ℓ+1)/(2R)   to   the   same   order  of  approximation  and  hence  to  order   (1) 

                                                      E(S1)    =  k  -   ℓ                                                                      (6.10)  

Which  agrees  with  the  first  moment  of  the  approximating   chi-square      

Distribution 

We  now  consider   the  special   case  when  ℓ   =  k -  1   and  we  are  testing 
        :   ß(k)

0H k    =  0.   In  this  case,  S1  has  approximately  a non-central   x2 

distribution   with    1    degree   of    freedom   and   non-centrality   parameter 

                                              kk/I2
kβKλ =                                                       (6.11) 

                                 

where   Ikk      is  the  (k+1)st  element  in  the  diagonal  of  the  inverse  of  the 

information  matrix.     The  approximate   test   procedure  using  a  double-tailed 
test  with   significance  level   α   is 

                                                                              (6.12) α)(12
1X1S  if(k)

0Hreject −>

where  denotes   the  upper   100α%  point   of   the   distribution. α)(12vx − 2vX

If  we  let  Yk(S1)   denote   the  power  of   the   test  based  on  S1,   then  using 

the  results   that   S1   is  aproximately  distributed  as  U2   where ,1)2
1

kN(λ~U  

and   that 2
α2

11
uα)(12

1X
−

=− ,   we   obtain   the  power  approximation 

                    
⎪
⎭

⎪
⎬

⎫

⎪
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⎪
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⎧

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ −
−+

−
−

−
−≈ 2

1
)kk(Ikβα2

1uφ2
1

)kk(Ikβα2
11

uφ1)1(Skγ
.  (6.13)
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When  ßk    =  0,   this  power  is  α  as  required. 

An alternative test procedure can be made by taking 2
1

kkI/kβkβ̂ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ −  

to  be  approximately  distributed  as  N(0,1).   To  test : ß(k)
0H k,  = 0 against 

the  two-sided  alternative  ßk,    ≠  0,   we  use  the  test  statistic.  

and2
1

)kk/(Ikβ̂1Z =   

reject     
α2

11
U |iz|if(k)

0H
−

>                                         (6.14) 

The  power  of   the  test   is 

               

(6.15).2
1

)kk(Ikβα2
1uφ2

1
)kk(Ikβ

α2
1-1
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  2
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1u2
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Asymptotically   (ri- →∞,   i   =   1,...,g)   the  powers  of  the  S1  and  Z1   tests 
are  therefore  equivalent. 

 
We  now  develop  tests  which  utilise   the  weighted   least   squares 

estimators  which  are  derived  from  the  linear  model   representation 
 

,i~
βi'~xiZ ∈+

 
i   =   1,... ,g 

 
(6.16)

where   Zi    =  logYi   -  ψ(ri.)   +   logri   and 

E(εi)   =  0  ,       var(εi)   -  ψ'(ri)   ,       cov(εi,εj.)   =  0 (6.17) 

for   i  ≠  j   = 0,1,...,k.      In  matrix  notation  we  have 

                    1
w~D)~εcov(,~0)~εE(,~E~

β~X~Z
−==+=  (6.18)

Where diag=w~D { })g(rψ'),.....,1(rΨ'  

Under  the  full  model,   the  WLS estimator 
~w
β̂ is obtained as  the 

value  of  
~
β which minimises R

~
β)~x~Z(w~D'

~
β)~z~

(Z −− and   the solution 

is   given; by   (1.5).  The  generalised  residual sum  of   squares about   the 
fitted   full  model   is 
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                                                               .19)6).
w~

β~x~Z(w~D'
~
)β~x~Z(~

)wβR(       (ˆˆ −−=

obtainwe,~Xw~D~X~Mwhere~z)w~D'~X
1

~M~X~I(
w~

β~X~ZWriting =−−=− ˆ                       

(6.20)~Z~A'~z)
~
β̂R( =  

Hence.w~D'~X
1

~M~Xw~Dw~D~AWhere −−=
 

)~ε~A'~εE()~ε~
β~x(~A)~ε'~X'

~
β(E)

w~
βR( =

⎭
⎬
⎫

⎩
⎨
⎧ ++=

⎭
⎬
⎫

⎩
⎨
⎧ ˆ  

.~X'1
~M~X~w

Dg~Itr()1
w~D~Atr( −−=−=  

havewe1,k)1k~Itr()'~X
1

~M~Xw~D(trandg)g~Itr(Since +=
+

=−=  

                                                    (6.21)1kg)
w~

βR(E −−=
⎭
⎬
⎫

⎩
⎨
⎧ ˆ

 

This   result  holds   for  all
~
β and  hence  in  particular  when  H0  :   ~02~

β =

is   true. 
Similarly,   for  the  restricted  model 1~ε1~

β1~X~Z +=  the  generalised 

residual   sum  of   squares   about   the  LS  fitted  model   is 

(6.22))
wi~

β1~X~Z(w~D)'
wi~

β
~1
x~Z()

w1~
βR( ˆˆˆ −−=

 

writemaywe,1~Xw~D'1~X1~M

wherew~D1~X'1
1

M1~Xw~Dw~D1~ASettings.~Zw~D1'~X
1)1~Xw~D'~x(1~

βWhere

=

−−=−=ˆ

                               

                                                                          (6.23).~Z1~A'~Z)
w1~

βR( =ˆ

We Have 
                                           )~ε1~A'~εE(

~
β~X'~A'

~
β)

wl~
βE{R( +=ˆ

                                                                                             (6.24)1g
~
β~X1~A'~X'

~
β −−+= l  

A  straightforward  calculation   shows   that 

                                                 (6.25).
2~

β2~X1~A~2X'
~2
β'

~
β~X1~A'~X'

~
β =
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Hence  we  have   the  exact  expectation  results 
 
                                                                (6.26)1.g}0H|)w1βE{R( −−= lˆ

Using  the  extra  sum  of  squares  principle,   a  suitable  test  statis- 

tic  for  testing  H0    is 
             
                                               (6.27))

w~
βR()

w1~
βR(2S ˆˆ −=

 
for  which  we  have  the  exact  expectation  result 

).(. 286
~2
β

~2X1~A2'~X'
2~

βk)2E(S +−= l  

This  gives   E(S2)   =  k - ℓ when  H0     is   true. 

The  exact   distribution  of   S2     is  unknown  and  an  approximation  is 
required.      Taking   the  {εi}   which   are   independently   distributed   as   log- 
gamma  random  variables    to   be   approximately   distributed   as   N(0,ψ' (ri)) , 
we   obtain   the   approximation 

(6.29))
2~

β2~X1~A'2~X2'~
β('2

2kx
~

approx2S −  

 

where    represents    the   non-central    chi-square   distribution  with  ) (λ'2vX
v   degrees    of   freedom   and   non-centrality   parameter  λ. 

 

We  now consider the special  case when ℓ  =  k. - 1 and  we  are  testing 

0.kβ:0H =(k)   In   this   case   S2    is   approximately   distributed   as  non- 

central   x2  with   1   degree  of  freedom  and  non-centrality  parameter 

(6.30)kk/V2
kβwkλ =  

 

where Vkk  is  the  (k+1)st  diagonal  element  in  the inverse  .~Xw~D'~Xof

he  test  procedure is 

(6.31)α)(12
1X2Sif(k)

0Hreject −>  

 
where  is  the  upper   100α%  point  of  the  distribution  of  α)(12

VX − 2
VX

The  approximate  power  of  the  test   is
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An  alternative  test  procedure  is   to  use   the   test  statistic 

2
1

)kk/(Vwkβ2Z ˆ=  and 

(6.33).
α2

11
u|2Z|if(k)

0Hreject
−

>  

The  exact  powers  of   the   tests  based  on  S2   and  Z2   are  equal   so  a  choice 
of   test   can  be  made  on  grounds   of   computational   simplicity. 

In  order   to   examine   the  power   properties   of   the  tests  based  on  the 
S1 , S2 ,   Z1  and  Z2   statistics   and   to   assess   the  adequacy  of   the  approxi- 
mating  powers   given  by   ((6.13),(6.15,(6.32)   and   (6.34),    a   simulation   invest- 
igation  has  been  made  for  the  case  of  a  single  explanatory   variable  when 
the  means  {µi.}  satisfy   the  model  defined  in  (3.1).   Equal  values   for  the 
shape  parameters  were  taken  with  ri   =  r  =   1(1)10(2)20  for  i  =  1,...,g 

with  g  =  5,10.   Equally  spaced  values  xi  = i - 
2
1  (g+1)   were  used  for  the 

explanatory  variable.     Values   ß1  =  logθ/(g-1)   were  used  giving 
maxiµi/miniµi.   =  θ,   for    θ =  1(1)5.   The run-size was  2000 in each case. 

 
The  broad  conclusions   reached  from  the   investigation  are 

(i) The  use of  the  S1  and S2   tests  lead  to excellent  control over  the 
significance  levels   for  all  values  of   r.     The  actual   significance  levels 
of   the  Z1  -test  are much  larger than  the  nominal values  for  r = 1,2,3 
but  are  satisfactory  for  larger  values   of  r. 

(ii)       For  the  very  small  values  of  r  the   power  of  the  Z1-test   is  greater 
than  that  of   the  S1   -test  but  this   seems   to  simply  reflect  the  differences 
in  the  actual   significance   levels  of   the  tests.     The  power  differences 
between  the   two   tests  are  very  small   for  r> 3. 

(iii)      The  power  performance of  the  S1-test  is  markedly  better  than  that 
of   the  S2 -test  for  r = 1,2  but  the power advantage  diminshes   rapidly 
with  increasing  values  of  r, 

(iv)       The  power  approximation given  by  (6.13)  gives  a  slight  overestimation 
of   the  power,   particularly  for  large  values   of θ and  small  values  of   r. 
However,   the  results  are  generally  very   encouraging. 

26
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These  findings  are  illustrated  in  tables  10,  11,  12 which  show the 
estimated   powers   as   obtained   by  simulation  together  with  approximating 
powers  for  the  S1   ,   S2     and  Z1   tests   respectively  for  g  =  5  and  nominal 
significance  levels  α  =  0.10,   0.05,   0.01. 

Table10 
Powers  of   the  S1-test  for  g  =  5  and  nominal  significance   levels   α  as 
obtained  by   (i)   simulation,   (ii)   approximation   (6.13) 

 

  θ        1        2       3       4  5  

 r (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 
 1 0.109 0.100 0.146 0.151 0.232 0.225 0.279 0.295 0.311 0.357 
 2 0.106 0. 100 0.209 0.200 0.326 0.341 0.447 0.463 0.544 0.562
α=0.10 3 0.102 0.100 0.231 0.248 0.433 0.445 0.576 0.600 0.683 0.712
 4 0.095 0.100 0.296 0.295 0.525 0.537 0.687 0.708 0.794 0.816
 5 0.104 0.100 0.355 0.339 0.595 0.617 0.773 0.790 0.861 0.885 

 1 0.058 0.050 0.077 0.085 0.142 0.140 0.177 0.195 0.209 0.247 
 2 0.053 0.050 0.118 0.121 0.225 0.233 0.336 0.341 0.413 0.436
α=0.05 3 0.048 0.050 0.149 0.158 0.317 0.325 0.445 0.475 0.572 0.596 
 4 0.049 0.050 0.193 0.195 0.391 0.412 0.561 0.592 0.685 0.721
 5 0.047 0.050 0.234 0.232 0.480 0.493 0.682 0.688 0.790 0.812 

 1 0.011 0.010 0.017 0.022 0.039 0.044 0.060 0.070 0.064 0.096 
 2 0.009 0.010 0.033 0.036 0.075 0.089 0.137 0. 152 0.200 0.219
α=0.01 3 0.010 0.010 0.057 0.052 0.126 0.142 0.233 0.249 0.322 0.355
 4 0.009 0.010 0.068 0.070 0. 187 0.201 0.324 0.351 0.466 0.488 
 5 0.009 0.010 0.091 0.089 0.242 0.263 0.431 0.450 0.571 0.606 

Table  11 
Powers   of   the  S2-test  for  g = 5 and nominal  significance level α  as 
obtained  by   (i)   simulation,   (ii)   approximation   (6.32) 

 

  θ       1         2  3 4  5 

 r (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 
 1 0.098 0.100 0.124 0.131 0.170 0.177 0.212 0.221 0.224 0.261 
 2 0.100 0.100 0.178 0.178 0.290 0,290 0.394 0.391 0.473 0.476
α=0.10 3 0.104 0.100 0.213 0.226 0.395 0.398 0.524 0.540 0.650 0.648
 4 0.097 0.100 0.277 0.273 0.493 0.495 0.665 0.660 0.772 0.771
 5 0.100 0.100 0.339 0.318 0.577 0.580 0.756 0.753 0.847 0.855 

 1 0.056 0.050 0.065 0.071 0.101 0.104 0.134 0.137 0.149 0.168 
 2 0.051 0.050 0.102 0.105 0.190 0.191 0.277 0.276 0.352 0.354
α=0.05 3 0.049 0.050 0.136 0.141 0.274 0.282 0.396 0.415 0.522 0.526
 4 0.047 0.050 0.175 0.177 0.366 0.371 0.537 0.539 0.672 0.666
 5 0.048 0.050 0.219 0.214 0.447 0,455 0.650 0.644 0.772 0.772 

 1 0.016 0.010 0.020 0.017 0.032 0.029 0.049 0.043 0.057 0.057 
 2 0.013 0.010 0.034 0.030 0.063 0.068 0.107 0.113 0.157 0.161
α=0.01 3 0.010 0.010 0.048 0.045 0.110 0.116 0.205 0.203 0.278 0.291
 4 0.012 0.010 0.059 0.061 0.163 0.172 0.297 0.302 0.423 0.426
 5 0.010 0.010 0.083 0.079 0.221 0.233 0.413 0.403 0.545 0.551
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Table  12 

Powers  of  the  Z1  -test  for  g  =  5  and  nominal  significance  level  α  as 
obtained  by  (i)  simulation,   (ii)  approximation  (6.15) 

 

  θ      1           2           3  4          5  

 r (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) 

 1 0.153 0.100 0.195 0.151 0.272 0.225 0.322 0.295 0.350 0.357
 2 0.132 0.100 0.231 0.200 0.358 0.341 0.478 0.463 0.568 0.562
α=0.10 3 0.122 0.100 0.247 0.248 0.447 0.445 0.582 0.600 0.711 0.712

 4 0.102 0.100 0.305 0.295 0.532 0.537 0.705 0.708 0.805 0.816

 5 0.106 0.100 0.352 0.339 0.607 0.617 0.783 0.790 0.865 0.885

 1 0.087 0.050 0.127 0.085 0.182 0.140 0.234 0.195 0.254 0.247

 2 0.072 0.050 0.137 0.121 0.249 0.233 0.358 0.341 0.437 0.436
α=0.05 3 0.064 0.050 0.159 0.158 0.332 0,325 0.468 0.475 0.588 0.596
 4 0.052 0.050 0.205 0.195 0.415 0.412 0.591 0.592 0.710 0.721

 5 0.052 0.050 0.246 0.232 0.499 0.493 0.685 0.688 0.799 0.812

 1 0.031 0.010 0.040 0.022 0.080 0.044 0.096 0.070 0.118 0.096

 2 0.022 0.010 0.049 0.036 0.102 0.089 0.159 0.152 0.232 0,219
α=0.01 3 0.014 0.010 0.061 0.052 0.151 0.142 0.255 0.249 0.354 0.355
 4 0.013 0.010 0.073 0.070 0.199 0.201 0.347 0.351 0.492 0,488

 5 0.013 0.010 0.093 0.089 0.252 0.263 0.457 0.450 0.603 0.606

 

7.      Goodness  Of  Fit  Tests  For  The  Exponential  Link  Function 

Finally,   we   consider  tests  of  fit  for  the  assumed  exponential  link 
function  for  the  means  as  given  by  (1.2)   against  general  alternatives. 
Two  tests  are  examined,   the  first  utilising  the   ML   estimates   and   providing 
the  likelihood  ratio  test,  the  second  test  being   based   on   the  WLS  estimates. 

When  no model is imposed on  the  means  {µi.},  the ML  estimates are 
iμ̂  =  Yi,   i  = 1,.....,g,    Using  (6.3)  and  the  first  equation  in   (6.4),   the 

likelihood   ratio   statistic   for   testing   the   exponential   link  function  is 

D  =    With  loss  of  generality  we  shall  assume  that  ).iYlog
~
β̂'

i1 ~X(2 −∑

the  x’s  re  centred   such   that  k.1,....,j0,
i ijxir ==∑  In  this  case,  D 

akes  the  simple  form 
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Using  the  well-known  result  for  the  expectation  of  a  log  gamma  random 
variable,   we  have  
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if   the  exponential   link  function   is   correct.      Setting 
 

1)/2R(k0β)0βE( +−≈ˆ
 

we  obtain                          
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       The  usual  procedure  is  to  refer  the  statistic  D  to  the  chi-square 

Distribution  with  g-k-1  degees  of  freedom .  The  form  of  (7.3) 

Suggests  the  use  of  the  modified  statistic D* = D/(1+c), where 

                               ∑
=

−
−−

=
g

1i
1

ir1)k6(g
1C                                                      (7.4) 

and   to   take  D*     as   approximately  distributed  as   chi-square  with   g-k—  1 
degrees   of   freedom   if   the   exponential    link   function   is   correct. 

To   assess    the   effect    of   the  modification,  moments  and  critical 
values   of   the  null   distributions   of   the  statistics  D  and  D *    have  been 
estimated  by   simulation   for   the  model   µi.   =   exp(ß0  + ß1xi.) ,   with 

xi  =  i  - 
2
1  (g+1),   i   =   1,...,g,   for  ri-   =  r  =   1(1)10(2)20  and  g  =  5,10. 

The   results   showed   that    the   null   distribution   of  D*     approaches    the 
2

2gX −  distribution   much   more    rapidly    than   the    distribution   of    D.     Use 

of  D*     therefore   leads    to   much    better   control   over   the    significance 
level    of    the    test    for   small   values   of   the   shape  parameter.     These 
findings   are  illustrated  in  table    13   which   shows    the   means    and   vari- 
ances  of  D  and  D*  and  in  table   14  which  shows  the  estimated  upper   10%, 
5%  and   1%  critical  values   of   the  null   distributions   of  D   and  D*   for 
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r.  =  r  =  1(1)5,  i  =  1,...,g  and  g  =  5,10.    The  estimated  significance  levels 
associated  with  the  chi-square  approximating  critical  values  are  shown  in 
parentheses. 

Table13 

Means and variances of  the D and D*  statistics  when  ri =r,   i  =  1,...,g 

g = 5 g= 10  
mean variance mean variance  

r D D* D D* D D* D D* 
1 3.800 2.938 25.894 12.984 9.512 7.872 21.576 14.777
2 3.396 2.943 7.494 5.778 8.838 8.004. 18.969 15.558
3 3.217 2.944 6.963 5.823 8.597 8.039 18.401 15.676
4 3.205 2.996 6.643 5.833 8.466 8.047 18.255 16.392
5 3.170 3.003 6.456 5.895 8.431 8.094 17.436 16.069

 3.000 3.000 6.000 6.000 8.000 8.000 16.000 2
2-gX 16.000

Table14 
Upper 100 % points of  the  null distributions of  the D and  D* statistics 
when  ri   =  r,   i  =  1,….,g 

g  =  5 

 α  =  0.10 α  =  0.05   α  =  0.01  
r    D    D*  D  D*   D   D* 
1 7.52(0,165) 5.88(0.082) 9.31(0.088) 7.28(0.041) 13.56(0.024) 10.61(0.0063) 
2 7.00(0.132) 6.14(0.095) 8.68(0.068) 7.62(0.046) 12.51(0.017) 10.98(0.0090)
3 6.72(0.122) 6.15(0.096) 8.20(0.062) 7.51(0.044) 12.36(0.017) 11.31(0.0100)
4 6.70(0.118) 6.27(0.101) 8.40(0.062) 7.86(0.051) 12.01(0.014) 11.23(0.0093)
5 6.61(0.116) 6.26(0.101) 8.17(0.061) 7.74(0.049) 11.98(0.011) 11.18(0.0088) 6.25 6.25 7.82  7.82  11.34 )(2

3X α   11.34 

α  =  0.10 
g  =  10 
α  =  0.05 α =  0.01  

r D D* D D* D D* 
1 15.89(0.182) 13.15(0.094 18.04(0.107 14.93(0.042 23.18(0.031 19.19(0.0085)
2 14.78(0.143) 13.38(0.101 17.17(0.076 15.55(0.051 21.79(0.019 19.74(0.0090)
3 14.31(0.134) 13.38(0.100 16.51(0.071 15.44(0.049 21.43(0.017 20.04(0.0098)
4 14 14(0 119) 13 44(0 102 16 64(0 068 15 81(0 055 21 65(0 018 20 58(0 0125)
5 14.23(0.120) 13.66(0.104 16.40(0.067 15.74(0.054 20.80(0.014 19.97(0.0098)
( ) 13.36 13.36 15.51 15.51 20.09 α

8
2x 20.09 
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If   the   gamma   regression   model    is    fitted   by   WLS  using   the   transformed 
observations    Zi   =   logYi.   -  ψ (ri)   +  logri,   i   =    1,...,g,    a   goodness    of   fit 
statistic   is  provided  by 

~
)wβ(ˆR which  was  defined  in  (5.18).     The  statistic 

has exact expectation g-k-1 and its distribution approaches the x2- 

distribution with g-k-1 degress of freedom as the {ri} increase, if 
the  assumed  model   is  correct. 

Although  the  means   of   the  exact  distribution  of  
~

)wβ(R ˆ  and  the approx- 

imation  x2  -distribution  agree,   the   variances   are   not   equal.     To  demonstrate 
this,    consider   the   case   when   the   shape  parameters  are equal,  that  is, 
ri   =  r  for  i  =  1,...,g.     In   this   case   the   {Zi}  are  identically  distributed 
as    log-gamma    random  variables  with  skewness  and  kurtosis  coefficients 
given  by 
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2
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for I= 1,……..,g (kahn (1979) ).    The  WLS  estimator is the same as the OLS  
estimator  of  

~
β   and  using  results  from  atiqullah  (1962)  we  have  
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where  hii   is   the  ith  diagonal   element   in  the  hat  matrix ~X'1)~X'~X(~X
−  

We  therefore  have 
 

(7.7)c)1)(1k2(g)}
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The  form  of   (7.7)   leads  us   to  consider  the modified  statistic  =)
w~

β(*R ˆ

b,)
w~

β(*R +ˆ where  the  constants  a  and  b  are  selected  to   give   agreement 

between  the  exact  mean  and  variance  of  and    the   corresponding  moments  )
w~

β(*R ˆ

of  the  approximating  distribution.     This  gives 1kg2X −−

(7.9)1}].2
1

C)1){(1k(g)
w~

β[R(2
1

c)(1)
w~

β(*R −+−+++= ˆˆ
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To   examine  the  adequacy  of   the  chi-square  approximation  to  the  null 
distributions   of    and     the   moments   and  critical   values   of   the )Wβ̂R( ),Wβ̂(*R
distributions  have  been  estimated  by  simulation  for  the  model   µi.  = exp(ß0    +ß1  xi.) 

with  xi.= 1),(g2
1i +−   i  = 1,. ..,g and ri = r = 1( 1) 10(2)20,  g = 5,10, 

The  results   show  that  the  mean  and  variance  of  the  distribution  of 
),Wβ(*R ˆ  as  obtained  by  simulation  are  very close to the corresponding 

moments  of  the  approximating  x2-distributions.     The  use  of  the  modified 
statistic  leads   to  better   control   of   the   significance   levels   for ),Wβ(*R ˆ

small  values  of  α  and  small  values  of  r,   particularly   for   the   larger   value 
of  g.     These  findings are illustrated  in  table   15  which  shows  the means 
and  variances  of  and  and   in  table   16  which  shows  the  estimated ),WβR(ˆ ),Wβ̂(*R

upper   10%,   5 %  and   1 %   critical  values  of   the  null  distributions  of  ),WβR(ˆ

and  for  r),Wβ(*R ˆ i.=r = 1(1)5,   i  =  1,...,g and  g= 5,10.   The estimated 

significance   levels   associated   with   the   chi-square   approximating   critical 
values  are  shown  in  parentheses. 

Table  15 

Means  and  variances  of   the  statistics  when  r)
w~

β̂(Rand)
w~

β̂R( * i=r,   i = 1,...,g, 

 
g = 5        g = 10  

         Mean Variance Mean Variance 

r )
w~

β̂R(  )
w~

β̂(*R  )
w~

β̂R(  )
w~

β̂(*R  )
w~

β̂R(  )
w~

β̂(*R  )
w~

β̂R(  )
w~

β̂(*R

1 2.989 2.992 9.915 5.583 8.025 8.018 31.472 15.962
2 3.018 3.016 8.814 6.369 8.049 8.040 24.054 16.244
3 2.988 2.990 7.760 6.225 8.061 8.053 20.735 15.844
4 3.011 3.011 6.965 5.902 8.066 8.059 20.562 16.579
5 3.013 3.012 6.641 5.881 8.104 8.096 19.467 16.560

 3.000 3.000 6.000 6.000 8.000 8.000 16.000 2
2gX − 16.000
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Table  16 
Upper 100 %  points  of  the  null  distribution  of   the  )

w~
β(*Rand)

w~
βR( ˆˆ

statistic  when  ri   =  r,  i  =  1,...,g 

g  =  5 

α  =  0.10                          α  =  0.05                               α  -  0.01  
r  ),Wβ(*R ˆ )

w~
βR(ˆ  ),Wβ(*R ˆ  )

w~
βR(ˆ  )

w~
βR(ˆ ),Wβ(*R ˆ  

1 6.52(0.110) 5.64(0.077) 8.88(0.068) 7.41(0.043) 16.29(0.028 12.97(0.015)
2 6.49(0.109) 5.97(0.086) 8.30(0.059) 7.51(0.044) 13.50(0.019) 11.93(0.013)
3 6.45(0.109) 6.09(0.094) 8.28(0.056) 7.65(0.045) 12.97(0.018) 11.93(0.013)
4 6.41(0.106) 6.14(0.095) 8.11(0.057) 7.71(0.047) 12.17(0.014) 11.44(0.011)
5 6.37(0.104) 6.16(0.095) 8.00(0.054) 7.78(0.048) 11.94(0.013) 11.37(0.011)
( )α2

3X  6.25 6.25 7.82 7.82 11.34 11.34 

g  =  10 

α=  0.10 α  =  0.05 α= 0.01  
r )

w~
βR(ˆ    ),Wβ(*R ˆ )

w~
βR(ˆ  ),Wβ(*R ˆ  )

w~
βR(ˆ  ),Wβ(*R ˆ  

1 14.96(0.131) 12.96(0.089) 18.84(0.090) 15.72(0.053) 28.73(0.042) 22.76(0.019)
2 14.04(0.119) 12.96(0.089) 17.07(0.071) 15.45(0.049) 25.38(0.027) 22.28(0.016)
3 13.92(0.117) 13.18(0.095) 16.72(0.066) 15.62(0.052) 23.87(0.023) 21.93(0.013)
4 13.84(0.113) 13.28(0.098) 16.67(0.065) 15.83(0.053) 23.17(0.023) 21.70(0.014)
5 13.99(0.115) 13.52(0.104) 16.36(0.064) 15.70(0.053) 21.71(0.018) 20.63(0.012)
( )α2

3X  13.36 13.36 15.51 15.51 20.09 20.09 
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