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1. 

1. Introduction 
 

The concept of consistent ordering is central to the 

theory of the successive over-relaxation (SOR) iterative 

method for the solution of the set of equations 
 

Ax  =   b   .      (1) 

If the matrix A is consistently ordered and satisfies 

certain convergence properties  then the theoretical 

determination of the accelerating parameter, which 

maximizes the asymptotic rate of convergence of the SOR 

method, is possible. 
 

The  ear l ies t  def in i t ion  of  cons is tent  order ing  was  

due to Young (1954), who defined a consistently ordered 

matrix in terms of an ordering vector related to the 

disposition of zero and non-zero elements in the matrix. 

Young considered only point iterative methods and his 

o r ig ina l  de f in i t ion  and  t he  r e l a t ed  theory  app l i ed  on ly  

to  a  cer ta in  c lass  o f  mat r ices ,  mat r ices  wi th  proper ty  

(A) .  More  genera l  def in i t ions  of  consis ten t  order ing  

have been given by Arms, Gates and Zondek (1956), 

Forsythe and Wasow (1960), Kjellberg (1961), Varga (1962), 

Broyden (1964, 1968), and Verner and Bernal (1968). In 

particular Arms, Gates and Zondek (1956), generalised 

Young's definitions to block partitioned matrices and
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extended the theory to block SOR, whilst Varga (1962),

with his definition of consistent ordering, extended the      

theory still  further to the much wider class of p-cyclic   

matr ices .  Matr ices  with  proper ty  (A)  are  in  fact  2-cycl ic          

and Varga’s definition includes the definitions of Young  

and of Arms, Gates and Zondek as special cases. 

A well-known property of a p-cyclic matrix is that  

it can always be transformed, by a permutation similarity 

transformation,  into a  consistently ordered form known as  

a "normal form". In fact this property is often used to 

define a p-cyclic matrix.  Although graph theory may be 

used to establish the cyclicity of a matrix (Varga (1962), 

p. 100) and to check, in certain cases, whether a given    

p-cyclic matrix A is consistently ordered, the graph 

theoretic approach does not conveniently yield the permu-

tation matrix P which transforms A into a normal and 

therefore consistently ordered form PAPT • The purpose of 

the present paper is to develop techniques for determining 

P. 

In  sect ion 2 we consider  in  detai l  a  defini t ion of  a     

p-cyclic matrix suggested by Varga((l962) ,  p.103, ex.1) .  

This definition is a generalization of Young's property (A) 

and introduces the concept of an ordering vector to the      

p-cyclic (p > 2 ) case.  By generalizing the techniques 

indicated by young (1954), we show that the use of  

ordering vectors leads to simple and systematic methods
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for establishing the cyclicity of a matrix and for 

determining P. 

The more recent definitions of consistent ordering,       

due to Broyden (1964, 1968) and Verner and Bernal (1968),  

include Varga’s definition a3 a special case but exclude 

direct reference to p-cyclicity. Many of the matrices 

encountered in these generalizations are however p-cyclic, 

and the significance of ordering vectors in these cases     

is discussed in section 3. In particular we establish 

formulae to generate ordering vectors for matrices which 

have the consistently ordered block form considered by 

Broyden (1964, p.280) and Verner and Bernal (1968, p.219). 

We note that most of the results in the present  

paper  may also be deduced from Young’s recent generaliza-

tions of property (A). (Young (1971), Chap.13). However, 

our approach highlights the usefulness of ordering   

vectors in determining consistently ordered forms of a     

p-cyclic matrix in a relatively simple and direct manner.
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2. Ordering vectors and p-cyclic matrices. 

We assume throughout that A = (ai j)  is an nxn matrix and that    

π par t i t ions  A into  submatr ices  Ai j ,   i , j  =  1 ,2  .  . . .N,  so that  the  

diagonal blocks Ai j .  are square and non-singular. 

Definition 1, (Varga (1962), p.103, Ex.1) 

The  mat r ix  A  i s  p -cyc l i c ,  r e l a t ive  to  the  pa r t i t ion ing   i f  π

there  exis t  p  dis joint  nonempty subsets  Sm,  m = 0,1,  . . . . ,p-1 of  

W, the set of the first  N positive integers, such that 

U
1p

0m
m Ws

−

=

=  

and if  then either i  = j ,  or if   then ~0/ijA ≡ mS�¸i ,Sj 1m=∈  

subscripts taken modulo p. (i .e. ,  ).1pS1S −=−  

This definition generalises the definition given by    

Young (1954), p.93t for property (A) matrices and provides a 

simple method for establishing the cyclicity of a matrix. Thus, 

given a  matrix  A we set   and  attempt  to  construct  sets mT�¸1

....,T,T,T,T 3-m2-m1 -mm  having the properties of the sets in 

Definition 1. If A is p-cyclic this process generates m-p+1 

disjoint sets,  which may be identified1+pm1 -mm T....,T,T

by the relation 

,m)1)(1p -m(k,T)1p -m(kS k +==+−  

as the sets  of Definition 1.  If A is not 1pS...,,1S,0S −

cyclic at some stage the sets T  cease to be disjoint and the i

process is terminated. 
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Example 1.  For the matrix 

 

 

p a r t i t i o n e d  s o  t h a t  i t s  d i a g o n a l  s u b  m a  t r i c e  3  a r e  1 ×1 ,  w e  o b t a i n  

t h e  f o l l o w i n g  d i s t r i b u t i o n  o f  e l e m e n t s  i n  t h e  s e t s .  

 

  T      =  S  2m− 0 T      =  S1 1-m m 2T    =   S  
Row  1    j   =   4  i       =  1 
            5  

Row  4  j   =   2 i   =  4   

Row  2  i   =   2   j   =   1 

               3 
Row  3    j   =   4 i  =    3 
             5   

Row  5  j   =   2 i   =  5   

 

A s  t h e  s e t s   a n d   a r e  d i s j o i n t  a n d  1S,0S 2S

  ,W)5,4,3,2,1(2S1S0S ==UU  

t h e  m a t r i x  A  i s  3 - c y c l i c .
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The theorem which follows is a generalisation of theorem 2.1 

of Young (1954), P.97, and introduces the concept of the       

ordering vector in the study of p - cyclic matrices. 

Theorem 1, (See Varga (1962) ,p. 103,Ex. 2).  

The matrix A is p-cyclic, relative to the partit ioning ,  if           π

and only if there exists a row vector }Ny,.,2y,1y{y =  with      

integral components such that if Ai j  ~0/≡  and i  j  then       /=

iyjy −  is equal to -1 or p - 1 and for each integer r,   

 there exists at  least one )p(modriy ≡ .  1pr0 −≤≤

Proof: Assume that A is p - cyclic and, referring to 

Definition 1, let  If .kSiifkiy ∈= ~0/Aij ≡ and i j     /=

then either, 

(i)  and kS�¸i ),0i(1kSj ≠−∈  in which case 

 and hence ,1iyjy −=−  or 1kjy,kiy −==

(ii)  and  in which case oSi ∈ ,1pSj −∈ 1pjy,0iy −==  

and hence 1piyjy −=− .  

 
Conversely assume that y exists and let kS ,1p,.,,2,1,0k, −=  

denote respectively sets of integers i  such that i  � Şk.  if  

)p(modkiy ≡ .  If   i t  follows that 1
i

yjy −=− k(modp)  iy ≡ ,  

(modp)1)-(k  iy ≡ ,   i .e. ,   ,1p..,,2,1k,1kSj,kSi −=−∈∈      

and if  i t  follows that 1piyjy −=− 0iy =  and ,1pyj −=       

i .e. ,   and  .   Since, for every integer r,  oSi ∈ 1pSj −∈

y,1pr0 −≤≤  has at least one component equal to r(modp), 
t h e  e x i s t e n c e  o f  t h e  s e t s  ,  o f  D e f i n i t i o n  1  1p10 S......,,S,S −
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is established and the proof of the theorem is complete. 

A vector y with the above properties is said to be an 

ordering vector for the matrix A.  Clearly the actual numerical 

value of a component of y is not important. Only the difference 

between any two components is significant and thus, if an 

ordering vector has M distinct components these will always be 

taken to be the integers 0,1,2,…, M-1. 

An  o rder ing  vec to r  fo r  a  p -cyc l i c  mat r ix  i s  the  vec to r  

,}y{=y N
1=i1   w h e r e  

      ,S�¸iifk=y k1
a n d  ,  a r e  t h e  s e t s  o f  d e f i n i t i o n  1 .  I n  1p...,,1,0k,kS −=

f a c t ,  p  o r d e r i n g  v e c t o r s   ,  n  =  1 , 2 ,  . . . . ,  p ,  1=i
N}y{=y )n(

1
)n(

each with p distinct components may be obtained by setting 

      .Siif)p(mod)1nk(y k
)n(

i ∈−+≡

In  genera l ,  for  a  g iven  p-cycl ic  mat r ix  there  a l so  exis t   

o rder ing  vec tors  wi th  M > p  d is t inc t  components .  Thus ,  for  the  

3  -  c y c l i c  ma t r i x  A 1 ,  o f  Ex .1 ,  f ou r  o rde r i ng  vec to r s  a r e  :     

,}0,0,1,2,1{y},,2,2,0,1,0{y},1,1,02,2{y )3()2()1( ===  

each  wi th  three  d i s t inc t  components  and  a l so  the  vec tor  

,}2,2,3,1,0{)4(y =  

which has four distinct components.  An ordering vector      

}iy{y =  with M > p distinct components can always be transformed 

into a vector }'y{'y i=  with p distinct components by setting 

)p(modyiiy ≡'  .  
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 For example, by setting 
 

)3(mody'y )4(
ii ≡  

the vector )4(y  ,  considered above, is transformed into the vector 

.)2(y}2,2,0,1,0{'y ==  

Converse ly ,  a  vec to r  y  =  {  y i  ]  wi th  p  d i s t inc t  componen t s  can  

somet imes  be  t ransformed in to  a  vec tor  wi th  more  than  p  d is t inc t  

components  by  replacing  some of  the  y i  by  y i  +  p .   For  example  i f  

t h e  c o m p o n e n t  ,yof,0=y )2()2(
3 ,  i s  r e p l a c e d  b y  3  t h e  v e c t o r  )4(y  

i s  ob ta ined .   I f  however ,  the  componen t s  ,05
)3(yand13

)3(y ==

of  )3(y  ,  a re  replaced respec t ive ly  by  4   and  3  the  resul t ing  vec tor  

{1 ,2 ,4 ,0 ,3}  i s  no t  an  o rde r i ng  vec to r .  

 
 

We define a normal form of a p-cyclic matrix as follows. 

Definition 2.   The p-oyclic matrix A, partitioned by ,  is π

said to be in a normal form if there exists an ordering vector 
N

1ii}y{y ==   s u c h  t h a t  i f   a n d  j  >  i  t h e n  ~0/ijA ≡ 1piyjy −=−     

and if  and i > j then ~0/ijA ≡ .1jyiy =−  

I t  i s  c lear  that  the  order ing vector  of  def ini t ion 2 has  i ts  

components arranged in ascending order of magnitude. Thus, the 
p-cyclic matrix A is in a normal form if a row vector y= , }y{ N

1ii =

with its components arranged in ascending order of magnitude, is 

an ordering vector for A. 
Let A be a p-cyclic matrix which has a vector 1i

N}y{y i ==
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as an ordering vector and let  P denote an nxn  permutation matrix 

which permutes the entries of A by blocks. The following theorem 

shows that A can always be transformed into a normal form PAPT. 

Theorem 2. The matrix PAPT, obtained by arranging the rows and 

columns of blocks of A with increasing yi is in a normal form. 

Proof : The vector y’, obtained by arranging the components of     y 

in ascending order of magnitude, is an ordering vector for PAPT.  

If  Pi j  denotes the nxn permutation matrix such that Pi j  A       

is  A with its i  and j  rows of blocks interchanged, then the matrix P 

of Theorem 2 say be determined as follows :  

P is set equal to the unit matrix I and when the components yi  and 

yj of y are interchanged P is premultiplied by Pi j .  The final            

matrix P obtained in this way is the required permutation matrix. 

Clearly, P is not unique and the number of normal forms PAPT ,  

associated with an ordering vector y, equals the number of ways   

that y can be transformed into y’ .  

Example 2.  Consider the 3-oyolic matrix A1 ,  of Example 1. 

A permutation matrix P, which gives a normal form PA1PT associated 

with the ordering vector y  ( 1 )  = {2,0,2,1 ,1 ]  is  determined as follows: 

y(l) = {2,0,2,1,1}     :   P = I            , 

(2,0,2,1,1} → {0,2,2,1,1}           :  P = P12               , 

{0,2,2,1,1] → {0,1,2,1,2}           :   P = P25  P1 2    , 

 {0,l,2,1,2} → {0,1,1,2,2}  y(1)’           :  P = P34 P25 P12     . 
 

          .ppp=p.e.i 122534

The theorem which follows establishes the block structure for 

a normal form of a p-cyclic matrix.
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Theorem 3. The p-cyclic matrix A, partitioned by ,  is inπ

a normal form of a p-cyclic matrix if and only if i t  has the

block form 

where all  the D1, are square block diagonal matrices, whose                            

diagonal blocks are submatrices Ai j .  of A. 

Proof: Assume that A is in a normal form of a p-cyclic 

mat r ix  and tha t  the  vec tor  y  =  wi th  M ,}y{ )N(
1=i1 >  p  d is t inc t  

components arranged in ascending order of magnitude, is an 

ordering vector for A« Assume further that ni of the components 

of  y  a re  equal  to  i  -1 ,  i  =  1 ,2 ,…,M,  and  le t   

‡”
r

1=i
1r0 ,M,..,2,1=r,nL,0=L  

so that 
 
 

.kL)1()11kL(ifor1kiy +−=−=
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The vector y  is such that if Ai j  ≠   and j  > i ,   ~0

1_p=y_y Ij  and if  and   It  ~0�‚Aij .1=y_y,j>i ji

follows that In the nk row blocks of A, lying between the row 

blocks  and 1_kL 1+Lk , apart from the diagonal entries 

,L)1()1+L(=i,A k1_kii  the only other non-null entries Ai j  

occur in the positions defined by 

 

      (3) ,1K
L)1()1L(j

L)1()1L(i

1_k1_k

k1_k
>

⎪⎭

⎪
⎬
⎫

+=

+=

 
and 

 

     (4) .2pMk
L)1()1L(j

L)1()1L(i

1_pk2_pk

k1_k
+−<

⎪⎭

⎪
⎬
⎫

+=

+=

++

 

Non-null off-diagonal entries occur, for k = 1 in positions 

defined by (4) only, and for k ≥  M - p+ 2 in positions defined 

by  (3)  only .  This  es tab l i shes  the  fac t  tha t  A has  the  b lock 

form (2). We have also shown that each Di is a block diagonal 

matrix consisting of ni  rows and columns of blocks. 

 
Conversely, suppose that A has the block form (2) where 

each D,  is  a  block diagonal  matrix  consis t ing of  n .  rows and 

columns of blocks. To show that A is p-cyclic and in a normal 

form it  is  sufficient  to exhibit  an appropriate ordering vector.  

The vector 

 
 { 0 , 0  . . . . , 0 , 1 , 1 ,  . . . . , 1 , 2 , 2 , . . , 2 , 3  , . . . . . . . ,  M  -  1  } ,
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with ni of its components equal to i  - 1 is such a vector 

and this completes the proof of the theorem. 

 

Assume that the matrix A is p-cyclic and has y  as an 

ordering vector. The proof of Theorem 3 shows that the  

block structure of a normal form PAPT, associated with y ,    

is completely determined by the number of distinct components 

in y . Thus, PAPT has the block form (2) where, 

 
 (i)  M is equal to the number of distinct components 

in y , 

 
( i i )  each D i  i s  a  b lock d iagonal  mat r ix  cons is t ing  of     

n i rows and columns of blocks, where ni  is the number of 

components in y  equal to i  -  1. (We point out that although 

the Di’s are block diagonal they are not necessarily true 

diagonal matrices). 

 
Example 3.  Consider the 3-cyclio matrix A1 of   

Example 1. The matrices (5),  (6), (7) and (8), which     

follow, are normal forms of A1 associated respectively with 

the  ordering vectors )1(y  = {2,0,2,1,1}, )2(y  = {0,1,0,2,2}, 

)3(y  = {1,2,1,0,0} and )4(y  {0,1 ,3,2,2}. (In what follows the 

subscripts i ,  j  of an element ai j .  always refer to the

position of this element in the original matrix A1.)
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(5) P34 P25 P12 A1 P12 P25 P34 =

P23 A1 P23  = (6) 

(7) P14 P25 A1 P14 P25  =
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P35 A1 P35  = (8) 

 
Appropriate ordering vectors for the matrices (5), (6),  (7) and (8) 

are respectively the vectors, 

 

)1(y ′  =  { 0 , 1 , 1 , 2 , 2 }  ,  )2(y ′=  { 0 , 0 , 1 , 2 , 2 }  ,  )3(y ′  =  { 0 , 0 , 1 , 1 , 2 }  

 

a n d  )4(y ′  =  { 0 , 1 , 2 , 2 , 3 }  .  

 

 

 From Theorems 2 and 3 it  follows that a definition of a p-cyclic 

matrix, equivalent to Definition 1 is :  

 Def in i t ion  3 .  The  n×n  mat r ix  A  i s  p -cyc l i c ,  r e l a t ive  to  the  

partitioning π ,  if there exists an n×n permutation matrix P, which 

permutes the entries of A by blocks, such that PAPT has the block form (2). 

 When p = 2, the above definition is the one given by Forsythe 

and Wasow (1960) for 2- cyclic (property(A)) matrices. 

 For  any  p-cycl ic  mat r ix  A ,  an  appropr ia te  order ing  vector  

i s  t h e  v e c t o r  }y{=y i
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where, 
 
  ,1_p..,,2,1,0=i,S�¸iifi=y ii
 
and Si are the sets of Definition 1 .  A normal form PAPT 

associated with the above vector has the block form, 

 

  

(9) 

 
(i ,e*, form (2) with M = p), and thus another definition of 

a p-cyclic matrix is ;  

 

 Definition 4. The matrix A is p-cyclic,  relative to 
the  par t i t ion ing  ,  i f  there  exis t s  a  permuta t ion  mat r ix  P ,  π

which permutes the entries of A by blocks, such that PAPT 

h a s  t h e  b l o c k  f o r m  ( 9 ) .  

 

 This is how Varga (1962) defines a p-cyclic matrix. 

The block form (9) is usually referred to as the normal form 

of a p-cyclic matrix. However, our definition of a normal 

form does not impose the restriction M=p on (2) and is thus 
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more get 

 

 We note that it  is always possible to transform a p-cyclic 

matrix A into the block form 

 

p=>M ,(10) 

 
 
where,  as before,  the Di’s are block diagonal matrices.  Thus, 
if a vector y  with  distinct components is an ordering p=>M

vector for A, the above form is obtained by arranging the rows 

and columns of blocks of A with decreasing yi .  When p = 2 ,  

forms (2) and (10) are identical and give the well  known      

tr i-diagonal representation of a properly (A) matrix. 
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3.  More general consistently ordered block forms. 

Square matrices which have the block form, 

 

(11) 

 
 
where  a l l  the  D i  a re  non-s ingu la r  b lock  d iagona l  mat r i ces ,  

a re  cons i s t en t ly  o rdered  by  the  de f in i t ions  o f  Broyden    

(1964, 1968) and Verner and Bernal (1968, see Theorem III, p. 218) . 

It  is known that such matrices are also (q + r)/d-cyclic, where 

 

     d = (q , r) 

 

is the highest common factor of q and r.  We now show that 

their  cycl ic i ty  can easi ly  be establ ished by construct ing 

appropriate ordering vectors. 

 

Let q*= q/d, r* = r/d and examine separately the 
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following two cases, in which we assume without loss of 

generality that M ≥  q + r.  
 

Case  ( i ) :  ( r ,q* + r*)  =  1 ,  i .e .   r  and  q*+r*  re la t ive ly  pr ime.  

C o n s i d e r  t h e  v e c t o r   w h e r e  ,  M
1=ii}y{=y

 

  
⎪⎭

⎪
⎬
⎫

=

+

.M.....,,2,1i

,*))r*q((mod
r

)1_i(�ßyi       (12) 

 
Since (r,q* + r* )  = 1   there always exists an integral 

solution x to the congruence 

 
   ,*))r+*q((mod)1_i(�ßrx
 
(see for ex. Birkhoff and MacLane  (1962), p24), and the 

vector y  has M components of which q*+ r* are distinct and 

equal to 0,1,. . . . . ,  q* + r* -1. Further, it  can                  

easily be shown that, 

 

  *)).r+*q((mod
r
q

�ß*))r+*q((mod1_�ß1_*r+*q  

 
Since a matrix in the form (11) is such that if  ~ji 0�‚B

then j  -  i  i s  equal  to q  or-r ,  i t  fol lows that  the vector  y ,  

as defined by (12), is such that if  then yj  – yi   ~ji 0�‚B

is equal to -1 or q* + r * - 1. Thus, with p = q* + r*, y  

satisfies the conditions of Theorem 1, showing that the 

matrix is (q* + r*) - cyclic. 

 

 C a s e  ( i i )  :  ( r , q *  +  r * )  ≠  1  .  

 E x p r e s s  r *  a s ,  

   r *  =  k d 1  ,  

where (k,d) = 1 and (d1 ,d) ≠  1, or d1 = 1 ,  and consider the
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v e c t o r  ,}y{=y M

1=ii  whose  componen t s  a r e  gene ra t ed  

a s  fo l l o w s :  

 

  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

=

+
β

γ

++
α

β

+α

.M......2,1i

,))*r*q((mod
d

�ß

,))1rq((mod
d

�ß

,))rq(mod(
k

)1_i(�ß

1

i
i

i
i

i

     (13) 

 

Since (k,d) = 1 and q + r = (q* + r*)d it  follows that 
(k,q + r) = 1 and that the vector M

1ii}{ =α=α  has 
M components of which q + r are distinct and equal to 

0,1 ,  . . . . ,  q + r - 1.  Further, since 

 

),)r+(mod(q
k
q

�ß))r+(qmod(dd-�ßdd- �ßdd-r +q 111  

 
the components of α  are such that if ~0/Bij ≡   and         

j/i ≡  then  is equal to -d1 d or q + r – d1 d.         ij
_ αα

Also, since (d, q + r + 1) = 1 and q + r – d1 d = (q*+ r*-d1) d, 

the components of the vector ,}{= M
1=iiββ  are integers, in    

the range 0 to q + r, such that if   and i  ≠  j  then  ~ji 0�‚B

ij
_ ββ  is equal to –d1 or q* + r* - d1. Finally, since          

(d1,  q* + r * - d1) = 1, the last formula in (13) is        

identical to formula (12) with r,  q* and (i - 1) replaced 

respect ively by d1 ,  q*+ r* -  d1  and β i .   I t  fol lows that          

the vector y  has M components, of which q* + r* are   

d i s t inc t  and  equa l  t o  0 ,1 ,  …,  q*  +  r* -  1 ,  such  tha t                  

i f   a n d  i  ≠  j  t h e n  y j  –  y i  i s  eq u a l  t o  - 1  o r
~ij 0/�ßB
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q* + r*-1. This shows that the matrix is (q*+ r*) -cyclic. 

We note that the block forms (2) and (10) are 

respectively the particular cases q = q = p - 1,   r = r*= 1   

and q = q* = 1, r  = r* = p-1 of  (11). When p = M formula 

(12) generates the ordering vectors [0,1,. . . ,p - 2,   p – 1}   

and [p  -1 ,  p  -2 ,  …. ,  1 ,0}  for  (2)  and  (10)   respec t ive ly .     

We also note that when d1 = 1,  i. e,   when (r* ,d)  = 1 ,  the 

vector M
1=ii}{= ββ  ,   generated by the second formula in   

(13), satisfies all  the properties of Theorem 1. Thus, in     

this special case, β  is an appropriate ordering vector for  

(11). However, the values of the components β i  range from   

0 to q + r and the third formula "normalises" the s'iβ       

so that they take the values 0,1, …, q* + r*-1. 

Example 4. We illustrate the use of formulae (12)     

and (13) by considering the following three cases of        

form (11). 

Case  (i):  q = 5, r = 3, M = 10. (8-cyclic). 

By formula (12), 
 

      ).8mod)1i(3�ß)8(mod
3

)1-i(�ßyi −  

  i  = 1,2,. . . . . . ,   9,10. 

Thus, an ordering vector in this case is,  

    y  =  {0 ,3 ,6 ,1 ,4 ,7 ,2 ,5 ,0 ,3} .  

Case (ii). q = 10, r - 6,   M =16.  (8 - cyclic). 

 In this case d = 2, q* = 5 r*= k = 3 and d1.= 1. 
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By formula (13), 

),161)(mod_(i11�ß16)(mod
3

1)_(i
�ßαi  

        i  =  1 ,2 ,   . . . . . . ,   15 ,   16 ,  

i .  e.  

α  =  { 0 , 1 1 , 6 , 1 , 1 2 , 7 , 2 , 1 3 , 8 , 3 , 1 4 , 9 , 4 , 1 5 , 1 0 , 5 }  ,  

      ,17)(mod9α�ß17)(mod
2
α

�ßβ i
i

i  

         i  =  1 ,2 ,   . . . ,  15 ,16 ,  

i .  e.  

β  = {0,14,3,9,6,12,1,15,4,10,7,13,2,16,5,11} 

and 

     ,8) (modβ�ßy ii

     i  = 1,2, …... ,15, 16, 

i .e.  

y = { 0,6,3,1,6,4,1,7,4,2,7,5,2,0,5,3} .  
 

Case  ( i i i) .  q =  30,   r  = 24,    M =  54.  (9-cyclic) 

In this case d = 6,  q* = 5,   r* = 4,  k = 1 and d1 =  4.  

By formula (13), 

          �ßα i  ( i  -  l ) (mod  54) ,  

    i  =  1 , 2 ,  . . . ,   5 3 , 5 4 ,  

i .e.  

53,=31,...α=α30,=α25,...,=α24,=α23,=α,...,1=α0,=α 54323126252421  

      55),(mod46α�ß55)(mod
6
α

�ßβ i
i

i  

         i  = 1,2,. . . ,53, 54, 
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i .e.  

18=...,51,=5=,...,50,=4,=13,=,...,46=0,= 54323126252421 ββββββββ and 

9)(mod7β�ß9)(mod
4

�ßy i
i

i
β  

         i  =  1 ,2 ,   . . . ,   53 ,54 ,  

i . e .  

.0=y...,,6=y,8=,y...,8,=y,1=y1, =y...,,7=y0,=y 54323126252421

 A p-cyelic matrix can always be transformed, by a 

permutation similarity transformation,   into form (11).        

For the case r = 1 this is established by Theorems 2 and 3.    

We now show that this property is more general and holds     

for any r which is relatively prime to q = p – r .  

Assume that the matrix A is p-cyclic, relative to the 

pa r t i t i on ing   l e t  yπ  =   be  an  o rde r ing  vec to r  f o r  N
1ii}y{ =

A and  de f ine  the  vec to r ,  

    
⎪⎭

⎪
⎬
⎫

,N1,2,..,=i,(modp)ry�ßδ

}{δ=δ

ii

N
1=ii    (14) 

where p = q +r and (q,r) = 1.  If Ai j .  ~0/�ß  and i  � j then     

yj  – yi    is equal to -1 or p - 1,  Since, 

r  (  p -1 ) �ß-r (modp) �ß q (modp) ,  
 

i t  follows that the vector δ  is such that if Ai j   ~0/�ß , 

j�‚i ,  then  is equal to q or - r. By proving         ij - δδ

a result similar to Theorem 3 it is easy to show that the 
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matriic PAP PP

T ,  obtained  by  arranging the rows and columns 

of blocks of A with increasing i . ,  has the form (11).        δ

The permutation matrix P may of course be determined by  

the technique of Example 2. 

Example 5.  T h e  m a t r i x ,  
 

 

partitioned so that its diagonal submatrices are 1x1,    

is 5-cyclic and in a normal form An ordering vector for 

this matrix is the vector 

       y  =  (0 ,1 ,2 ,3 ,4 .5 )   ,  

and with r = 2 formula (12) generates the vector, 

δ  = (0,2,4,1,3,0) .  

A permutation matrix P,  such that  PA 4PT is  A4,  with i ts  

rows and columns of blocks arranged with ascending iδ ,  is 

                        .PPP=P 362343



24. 

The  t r ans fo rmed  mat r ix  i s  then  

 

 

and has the form (11) with r = 2 and q.= 5 - 2 = 3. 

 

From the above it  is clear that the vector δ ,  as defined 

by (14), may be thought of as a generalized ordering vector 

and that block form (11) is a generalized normal form of a   

p-cyclic matrix.  It  has however been proved by Nichols and 

Fox (1969) that the optimum convergence rate for the SOR method 

is obtained when the matrix has the form (11 ) with r = 1 and 

q = p-1. (i .e.,  when the matrix has the form (2)).  Hence, in 

practice one would transform a p-cyclic matrix into form (2) 

and this could be done by using an ordering vector y satisfying 

the conditions of Theorem 1,  In particular if A has the form 

(11) and r  1 then formula (12) or (13) immediately gives �

the required y.
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