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Abstract 

Polymer-based composites are ideal for applications where high strength-to-weight and stiffness-to-weight ratios are required. In the 
biomedical field, fiber-reinforced polymers have replaced metals, emerging as suitable alternative. Reverse engineering and additive 
manufacturing methods are required to achieve the design of customized devices with specific shape and size. At the same time, micro-
mechanics and macro-mechanics play an important role in the development of highly functional composite materials. 
 
The aim of this research is to develop customized 3D models of a human mandible using reverse engineering, additive manufacturing and 
composite material technology. Experiments were carried out by loading the models through the condyles and the results show the potential to 
reproduce the mechanical behavior of a human mandible. Taking into account the curves of the load-arch width decrease, the stiffness of the 
3D composite model was 14.1± 1.9 N/mm, which is close to the tested human mandible (17.5 ± 1.8 N/mm). 
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of The Second CIRP Conference on Biomanufacturing. 
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1. Introduction 

Over the last decade, there have been great strides in the 
development of using emerging fabrication techniques and 
new materials for prosthetic and tissue engineering 
applications [1-36]. Acrylic mandibular models are often 
utilized for medical teaching, training and research. This work 
examines the process of developing and validating a synthetic 
human mandible that has implications for in vitro studies of 
dental implants and superstructures [25]. 

A key challenge in this area is the difficulty in finding 
cadaveric skeletal segments and the fact that the mechanical 
properties of the bone structure vary. The motivation of this 
work is to develop a realistic mandibular model that has close 
resemblance to the actual part in terms of geometry and its 
mechanical properties [37, 38]. 

The aim of this research is to enhance the design and 
development of a customized model of a human mandible 
using a combination of reverse engineering, additive 
manufacturing and composite materials. The properties of the 
produced model would be analyzed and compared to the 
current 3D polymeric and human mandibles. 

Previous authors have developed different polymeric 
models of temporal bone by integrating reverse engineering 
with rapid prototyping techniques [1, 25, 39]. However, the 
design of the trabecular and cortical bones have not been 
properly modelled through synthetic models because they 
behave like homogeneous isotropic materials. In addition, the 
mechanical anisotropy of trabecular [40-44] and cortical bone 
[43-46] is also often neglected. Such anisotropic behavior can 
be observed in the trabecular bone of the condyle [47] and in 
the mandible body [48, 49] and the elastic modulus of those 
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parts vary along the different directional planes. Taking the 
mechanical properties of the human mandible in 
consideration, the mechanical anisotropy of cortical bone can 
be found in the mandible body [50] and in the ramus [39] as 
demonstrated through the elastic modulus [25]. 
Anisotropic edentulous mandible models made of a 
polymethylmethacrylate (PMMA) core and a glass  fiber 
reinforced outer shell are often designed using reverse 
engineering methods and produced with composite materials 
[25, 37]. Medical grade samples use 3D customized models 
that consist of a PMMA-based bone cement as the core of the 
actual structure that simulates the trabecular bone, and an 
outer shell made of glass fiber reinforced epoxy composite to 
mimic the cortical bone. The glass fibers of the outer shell 
were oriented at angles of 0° and 90° with respect to the axis 
of the mandible corpus and at angles of ± 45° in the ramus to 
reproduce the cortical bone anisotropy. In our previous works 
[37, 38], the PMMA-based core was obtained through a multi-
step procedure. A model of the core was first manufactured by 
inkjet printing and a silicone rubber mould was developed 
from the core prototype. The material was then poured into 
the customized mould. 

In the current research the core was directly fabricated by 
additive manufacturing.   

2. Materials and Methods 

Three-dimensional (3D) composite edentulous mandibles 
were first produced using stereolithography (SLA) technique 
with composite materials. A 3D scan of a human mandible 
was performed using a Cyberware Mini Scanner and the data 
from the scanner was analyzed and repaired through the use 
of Rapid Form and Materialise Magics to ensure that the CAD 
geometries were water-tight and suitable for fabrication. 

The inner core of the composite model consisted of a 
photo-curable acrylic resin with mechanical properties similar 
to that of trabecular bone. The outer shell of the mandible 
model consisted of a photo-curable glass fiber reinforced 
composite and this material was used for the core to simulate 
the compact bone anisotropy of the mandible arch.  

To validate the polymeric and composite mandible models, 
experimental tests were designed and conducted by loading 
the composite models through the condyles up to a maximum 
load of 20 N. The testing conditions reproduce the loading 
configuration that are found in previous scientific work [51, 
52]. An extensometer was used to record the local 
displacement in the symphysis region. Finally, the results 
were compared to those of a human mandible. 

3. Results and Discussions 

3D reconstructions of a human mandible were obtained 
from 3D scan data, using dedicated software such as 
Rapidform (Fig.1a) and Magics (Fig. 1b). 

 
(a)                                             (b) 

Fig. 1. 3D reconstructions of a human mandible obtained from 3D scan data, 
using dedicated software such as Rapidform (a) and Magics (b). 

For the design of the mandible model, trabecular bone was 
replicated with an acrylic resin that has a Young’s modulus of 
2.0 GPa (Figure 2) and this value is close to that measured for 
trabecular bone (2.2 GPa) in the mandible symphysis and 
along the bucco-lingual direction [49]. The next step was to 
subject the human mandible on load-displacement tests as 
shown in Figure 3. 

 

 
                  (a)                                             (b) 

Fig. 2. Images of 3D customized polymeric (a) and composite models (b). 

 

Fig. 3. Typical images of experimental and theoretical analyses performed on 
the human mandible. 

Finally, the stiffness of both human and synthetic models 
were evaluated by examining the slope of the initial linear 
region of the load-displacement curves. Unlike the polymeric 
models, the composite model and the human mandible 
showed a load-arch width decrease curve which was linear up 
to the maximum load of 20 N (Fig. 4). 
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Fig. 4. Load-arch width decrease curves obtained from human mandible (x), 
polymeric ( ) and composite (o) models. 

The stiffness of the polymeric and composite models loaded 
through the condyles was 5.1 ± 0.5 N/mm and 14.1 ± 1.9 
N/mm, respectively; while for the human mandible, a value of 
17.5 ± 1.8 N/mm was achieved. In line with Hobkirk and 
Schwab (1991), the load of pterygoid muscles at 16 N would 
equate to the reduction of 1 mm in terms of the distance 
between the condyles. As a consequence, the in-vitro stiffness 
of the mandible was 16 N/mm. The stiffness of the designed 
composite model is close to the values of a human mandible 
(17.5 ± 1.8 N/mm). 

4. Conclusions 

The design and development of dental implants will 
improve the understanding of biomechanical features such as 
those for synthetic mandibles. Even though the geometry and 
size of these models can be easily obtained from 3D scanned 
data, the mechanical features of the part must be mechanically 
validated. Fiber-reinforced composite materials have played a 
crucial role in reproducing the anisotropy of the mandible 
cortical bone [44] and they have the potential to mimic the 
mechanical properties of natural hard tissues. By varying the 
fiber content and orientation as well as the composition of the 
matrix, we have demonstrated that we can tailor the 
mechanical properties of the materials to mimic the 
anisotropy of a human mandible [53]. Finally, this work has 
contributed to new knowledge by demonstrating the process 
of designing 3D mandibular models using reverse 
engineering, additive manufacturing and composite materials 
technology with the final product being validated through 
robust mechanical testing. 
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