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Abstract 118 

Meta-analyses of association results for blood pressure using exome-centric single-variants and 119 

gene-based tests identified 31 novel loci in discovery among 146,562 individuals with follow-up 120 

and meta-analysis in 180,726 additional individuals (Ntotal=327,288). These blood pressure loci 121 

are enriched for known cardiometabolic trait variants. Associations were also observed for the 122 

aggregation of rare/low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. 123 

In addition, blood pressure associations at 39 previously reported loci were confirmed. The 124 

identified variants implicate biological pathways related to cardiometabolic traits, vascular 125 

function, and development. Several new variants are inferred to have roles in transcription or as 126 

hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified 127 

variants were strongly associated with coronary disease and myocardial infarction. This large 128 

collection of blood pressure loci suggests new therapeutic strategies for hypertension 129 

emphasizing a link with cardiometabolic risk.130 
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Hypertension (HTN) or high blood pressure (BP) is a major risk factor for cardiovascular 131 

disease, chronic kidney disease, and mortality1. To date, in addition to rare mutations that cause 132 

monogenic high or low BP disorders2-4, candidate gene studies, genome-wide association studies 133 

(GWAS), and admixture mapping approaches5-15 have identified variants at more than 60 genetic 134 

loci that are associated with BP or hypertension. Most of the known BP loci identified in large 135 

population-based studies are common non-coding variants with small effects on BP.  136 

The Human Exome BeadChip (Exome Chip; Illumina, Inc., San Diego, CA) was 137 

designed to facilitate identification of functional variants that contribute to human traits, by 138 

focusing on variants that alter amino acid sequence. The Exome Chip includes 247,039 markers 139 

of which >90% are non-synonymous or splice modulating exonic variants that were not covered 140 

by previous genotyping arrays. While variants on previous GWAS arrays are largely common 141 

[minor allele frequency (MAF) ≥0.05], 83% of the Exome Chip variants are rare (MAF<0.01) 142 

and another 6% are low frequency (MAF 0.01 to 0.05). Only 11% of the Exome Chip variants 143 

are common, including a set of 5,542 (approximately 2% of overall array content) common 144 

variants that were drawn from the associations reported in the NHGRI GWAS Catalog16. 145 

To identify functional coding variation associated with BP, we conducted a two-stage 146 

study in up to 327,288 individuals who were genotyped with the Exome Chip (Figure 1) for 147 

systolic and diastolic BP (SBP and DBP), pulse pressure (PP), mean arterial pressure (MAP), 148 

and HTN. We identified single variant associations at 31 novel loci and gene-based associations 149 

for three novel genes (two of which overlapped with the single variant loci) associated with BP 150 

phenotypes. About half of the novel BP variants identified in this study reside in loci that were 151 

previously reported in GWAS to be associated with lipids, immunologic diseases, and metabolic 152 

phenotypes, suggesting common etiologies of BP and metabolic risk factors and an opportunity 153 
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to identify therapies that more broadly impact hypertension in the context of cardiometabolic 154 

risk.  155 

New Loci Associated with BP by Single Variant Analyses  156 

In the discovery stage (Stage 1), a total of 15 distinct novel candidate loci were associated 157 

(P<3.4x10-7) with at least one BP trait in a primary meta-analysis among samples of all 158 

ancestries and secondary meta-analyses among samples of European (EA) or African ancestry 159 

(AA) (Supplementary Table 1, Supplementary Figure 1). Meta-analysis using individuals from 160 

all ancestries identified 22 novel associations at 13 loci that met experiment-wide significance 161 

(Supplementary Table 1). All associations with P<1x10-4 for at least one trait in the primary 162 

analysis are listed in Supplementary Table 2. The sole locus that was identified in EA but not in 163 

the all-ancestry analysis was a rare missense variant rs3025380 in DBH [MAF 0.005, 0.001, and 164 

0.003 in EA, AA, and Hispanic ancestry (HA) samples, respectively]. Meta-analysis of AA 165 

individuals identified a common missense variant rs12941884 in SEZ6 (MAF=0.21 and 0.12, 166 

respectively, in AA and EA) that was not identified in EA or all ancestry samples.  167 

The Exome Chip contains 43 SNPs from loci previously identified in GWAS of BP5-15. 168 

Of these 43 loci, 39 were associated with at least one BP trait in Stage 1 analyses 169 

(P<0.05/43~0.001) (Supplementary Table 3). Twenty-six of these SNPs met experiment-wide 170 

significance (P<3.4x10-7). Conditional analysis did not reveal any new independent variants at 171 

any of these previously identified loci5-15. 172 

The 15 newly identified variants (P<3.4x10-7, Supplementary Table 1) and 62 additional 173 

variants (P <1x10-5 for at least one BP phenotype, Supplementary Table 2) from Stage 1 were 174 

selected for follow up in 180,726 independent individuals (Supplementary Methods). Of the 15 175 

newly identified variants, 11 replicated (P<0.05/15~0.0033) in the follow-up samples 176 
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(Supplementary Tables 4, and 5). In Stage 2 analyses (i.e. joint meta-analysis of results from the 177 

Stage 1 and follow-up samples), we identified 48 novel BP variants at 31 loci (including the 11 178 

replicated loci) associated with SBP, DBP, PP, or HTN at P<3.4x10-7 (MAP was not available in 179 

the follow-up analyses; Supplementary Tables 4 and 5). Among the top variants at the 31 loci, 13 180 

were missense (Table 1). In Stage 2 analyses restricted to EA samples (Supplementary Table 4), 181 

all newly identified associations in EA samples meeting the significance threshold were also 182 

statistically significant in meta-analysis combining all ancestries (Supplementary Table 5) with 183 

the exception of rs1925153 in COL21A1. In addition, all of the variants except for the four that 184 

were nominated for follow up based on PP (SBP minus DBP) showed concordant directions of 185 

effects for SBP and DBP (Supplementary Table 6).  186 

Three of the 31 significant novel SNPs were low-frequency (MAF 0.01 to 0.05). These 187 

SNPs encode non-synonymous substitutions in the genes NPR1 (rs35479618), SVEP1 188 

(rs111245230), and PTPMT1 (rs11537751). NPR1 encodes natriuretic peptide receptor 1 and has 189 

been reported to be associated with BP regulation in animal models17,18 but not previously in 190 

humans; SVEP1 and PTPMT1 are novel BP genes. The minor alleles of all three SNPs were 191 

associated with increased BP and had larger absolute effects on BP than the alleles of any of the 192 

newly identified common variants. For example, each minor allele of rs35479618 was associated 193 

with an increase of 0.85 mm Hg in SBP in the follow-up samples compared with a maximum 194 

absolute difference (per minor allele) among the novel common variants of 0.43 mm Hg in SBP 195 

(for rs8068318 in TBX2; Supplementary Table 5). 196 

Of the 28 newly identified common variants for BP, 14 were genome-wide significant in 197 

prior GWAS of lipids19, immunologic disease20-22, diabetes23-25, kidney function26, age at 198 

menarche27, resting heart rate28, waist-hip ratio29, and homocysteine concentration30, but not BP 199 
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(Table 2 and Supplementary Table 7). Six additional variants were reported for several 200 

phenotypes (Table 2) in previous candidate gene, patent filing or GWAS studies, but their P 201 

values were not specified or did not reach the genome-wide significance level31-36. By contrast, 202 

the remaining eight variants were missense SNPs that have not been reported in the NHGRI 203 

GWAS Catalog for any trait (Table 2). Several genes in Table 2 contain multiple variants 204 

showing distinct allelic roles. HOXA3 and NOS3, harbor variants rs17428471 (HOXA3)12 and 205 

rs3918226 (NOS3)10 with genome-wide significant BP association that are independent of the 206 

Exome Chip variants (r2=0.007 for rs17428471 with rs6969780 and r2=0.007 for rs3918226 with 207 

rs891511, respectively, in the 1000 Genomes data). A variant rs2651899 in PRDM16 has been 208 

reported to be associated with migraine37, but this variant is not in LD with the new BP variant 209 

rs2493292 (r2=0.01 in the 1000 Genomes data), suggesting predisposition to distinct vascular 210 

consequences for different variants at this locus. In addition, PRDM16 has been shown to play a 211 

critical role in vascular development38, adipocyte function in subcutaneous fat, and development 212 

of diabetes39. Finally, several variants in DOT1L were reported to be associated with cartilage 213 

thickness and hip osteoarthritis40. The new BP variant rs2302061, however, was not in LD with 214 

any of the prior identified signals at this locus40. 215 

Together, the 31 newly identified single variants explain 0.7% and 1.3% of inter-216 

individual variation in SBP and DBP, respectively. The previously established and newly 217 

identified variants together explain 2.8% and 2.9% of phenotypic variation in SBP and DBP, 218 

respectively. 219 

Gene Level Analyses 220 

We considered the possibility that an aggregation of rare or low-frequency coding alleles at 221 

individual genes contributes to BP variation and tested specifically for effects of non-222 
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synonymous, stop codon, and splicing coding variants with MAF<0.05 (T5 test) or MAF<0.01 223 

(T1 test) using the seqMeta package. The standard burden test41,42, which is sensitive for 224 

detecting association when all variants contribute effects on BP in a concordant direction, 225 

identified an aggregation of rare and low-frequency coding alleles in PTPMT1 that contribute to 226 

higher odds of HTN (experiment wide significance P<1x10-6, Table 3, Supplementary Table 227 

8A). The SKAT test43, which is designed to detect effects of alleles that collectively contribute to 228 

higher and lower BP effects, identified significant BP associations for DBH (T1) and NPR1 (T5; 229 

Table 3, Supplementary Table 8A). Among additional individuals of European ancestry (up to 230 

154,543 individuals) who were used for follow-up analysis, gene-based SKAT (with the 231 

RAREMETAL package) was performed for inverse normal transformed DBP, SBP, PP, and 232 

HTN (see Methods). The gene-based associations replicated in the follow-up samples at 233 

P<0.05/3~0.017 for NPR1 (P=4.4x10-5 for SBP) and were marginally significant for PTPMT1 234 

(P=0.019 for HTN) and DBH (P=0.053 for DBP) (Supplementary Table 8B).  235 

 Twenty-eight previously reported genes associated with monogenic BP disorders3 236 

contained at least two non-synonymous, stop codon, or splice-site coding variants with MAF 237 

<0.05 on the Exome Chip. Burden testing of these 28 genes identified a statistically significant 238 

association of SLC12A1 (26 variants all having MAFs<0.005) with SBP (P=0.0006<0.05/28; T1 239 

test; Supplementary Table 9). Mutations in SLC12A1, the Na-K-2Cl co-transporter, cause 240 

Bartter’s syndrome, a Mendelian salt-wasting condition associated with hypotension44. The 26 241 

variants in SLC12A1, however, did not overlap with the previously reported Bartter’s syndrome 242 

variants44. The other 27 monogenic BP genes did not reach statistical significance in standard 243 

burden testing. Additionally, none of the 28 genes showed significant association with BP using 244 

the SKAT test43 (all P>0.0006; Supplementary Table 9).  245 
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Inferred Function of the Identified BP Loci 246 

We applied several computational strategies and conducted cis expression quantitative locus 247 

(eQTL) analysis to infer biological functions associated with genes at the 31 significant single 248 

variant BP loci (see details in Supplementary Methods). 249 

Disease and pathway enrichment analysis: We examined functional annotations derived from 250 

pre-compiled gene sets in GeneGO and literature-based inference in Literature Lab45. In 251 

GeneGO biological processes, the 31 novel loci were enriched for cell signaling and 252 

development functions (e.g. “regulation of signaling”, “regulation of growth”) compared with 253 

largely cardiovascular functions (e.g. “negative regulation of [smooth] muscle contraction”, 254 

“blood circulation”) for the 39 validated BP loci (Supplementary Table 10). The novel loci were 255 

also enriched for several conditions related to cardiovascular and metabolic disease (e.g. 256 

“myocardial ischemia”, “congenital hyperinsulinism”, “acid-base imbalance”) whereas the 257 

validated loci were enriched for conditions more directly related to BP or cardiovascular 258 

conditions (e.g. “arrhythmias, cardiac”, “hypertension”, “hypotension”). Significant Literature 259 

Lab45 (Supplementary Table 11) pathways and disease MeSH headings were enriched for 260 

insulin-related terms (e.g. “IGF-1”, “type II diabetes”, “hyperinsulinism”) for the novel loci 261 

compared to BP-related terms (e.g. “cardiac muscle contraction”) and cardiovascular 262 

electrophysiology (e.g. “antiarrhythmics”) for the validated loci; both sets of loci were 263 

significant for “heart development”. In the Literature Lab45 anatomical annotations, the 264 

cardiovascular system (e.g. “myocardium”, “heart ventricles”) was highlighted for both the novel 265 

and validated SNPs, while the validated SNPs also associated with the renal system (e.g. 266 

“nephron”, “urinary tract”). Almost no annotations for either GeneGO or Literature Lab45 were 267 
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unique to the set of combined novel and validated loci with the exception of a few terms 268 

predominantly related to BP or the renal system. 269 

Protein-Protein Interaction Analysis: Using NCBI’s protein-protein interaction (PPI) network 270 

resources (Supplementary Methods), a total of 399 genes were found to be connected to at least 271 

one of the 31 novel BP genes (Supplementary Figure 2). Ordered on the basis of connectivity 272 

(“degree”; Supplementary Table 12), a measure that signifies a hub disposition in the PPI 273 

network, the top five BP candidate genes were INSR, PABPC4, NOS3, IGFBP3, and DOT1L. 274 

Based on “Google” page-rank, a connectivity measure that recognizes degree of connectivity 275 

while also emphasizing connections between highly connected nodes, the five top genes differed 276 

from ordering based on connectivity alone by the replacement of IGFBP3 by PTPMT1 277 

(Supplementary Table 12).  278 

ENCODE and Roadmap Epigenomics Analyses: RegulomeDB46 and HaploReg47 evaluations of 279 

potential cis regulatory functions identified rs8068318 (intronic to TBX2) as having the highest 280 

score among loci (or their LD proxies) that showed relatively strong evidence for a role in 281 

transcription (Supplementary Table 13). This SNP maps to an active TBX2 promoter histone 282 

mark in lung fibroblast and DNAse I hypersensitivity marks in seven cell types, while 283 

overlapping with five transcriptional regulatory motifs. TBX2 is a member of a highly conserved 284 

T-box family of transcription factors and has been implicated in cardiac developmental 285 

abnormalities48,49 and kidney function26.  286 

cis-eQTL Analysis: The 31 newly identified BP variants were queried for cis-eQTL association 287 

(Supplementary Table 14) in over 5,000 participants from the Framingham Heart Study (FHS), 288 

using microarray-based transcriptomic profiling of RNA from whole blood. A total of 720 SNP-289 

transcript pairs were tested. Forty-three pairs (representing 17 variants) were significant at 290 
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FDR<10%, among which eight variants were cis-eQTLs for multiple gene transcripts. For 291 

example, rs1953126 (near the 5’-UTR of PHF19) is a cis-eQTL for PHF19 and for multiple 292 

nearby genes including C5, GSN, PSMD5, RAB14, FBXW2, and TRAF1. Query of publicly 293 

available eQTL databases via GRASP50 and recent publications51,52 based on profiling of whole 294 

blood or other tissue types51-58 yielded eQTL assignments that were concordant with the FHS 295 

findings for most variants listed in Supplementary Table 14.  296 

Effects of BP-associated Variants on Clinical Outcomes 297 

We considered the aggregate effects of the BP loci on BP-related clinical outcomes using new 298 

Exome Chip-based results for coronary artery disease/myocardial infarction (CAD/MI), 299 

including 42,335 cases and 78,239 controls59, and for renal function measured by glomerular 300 

filtration rate (GFR) in up to 111,655 individuals. For 59 of the 70 BP associated SNPs, alleles 301 

that were associated with higher BP were also associated with increased odds of CAD/MI 302 

(Supplementary Tables 15 and 16), a highly significant concordance with the known influence of 303 

BP on CAD/MI (sign test, binomial P=4.5x10-9). Similarly, genetic risk scores (GRS) 304 

constructed from the 70 BP SNPs using weights derived from their effects on SBP, DBP, and 305 

MAP were highly significantly associated with CAD/MI with odds-ratios (per 1 mm Hg 306 

increment in SNP-based BP) of 1.05 (P=8.6x10-44), 1.08 (P=1.9x10-41), and 1.06 (P=1.1x10-45) 307 

respectively (Supplementary Table 17, Supplementary Methods). GRSs constructed solely from 308 

the rare/low-frequency variants at the three loci with significant gene-based tests (DBH, NPR1, 309 

PTPMT1) were significant for CAD/MI using MAP-based weightings for DBH (P=0.026) and 310 

HTN-based weightings for PTPMT1 (P=0.003) with a non-significant concordant trend using 311 

MAP-based weightings for NPR1 (P=0.13; Supplementary Table 18). By contrast, BP-raising 312 

alleles for only 39 of the 70 BP associated SNPs were associated with diminished kidney 313 
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function (CKD) as reflected by lower GFR, indicating a degree of concordance that was not 314 

significant (sign test, binomial P=0.40). A similar lack of association was observed for the BP 315 

GRS associations with GFR using weights for SBP (P=0.18), DBP (P=0.63), and MAP 316 

(P=0.31). 317 

Discussion 318 

Through a two-stage study design of discovery (n=146,562) followed by external look ups 319 

(n=180,726) and joint analysis (n=327,288), we identified single variant associations at 31 novel 320 

loci and gene-based associations for three novel genes (two of which overlapped with the single 321 

variant loci) associated with BP phenotypes. We also confirmed common variants at 39 322 

previously reported BP loci, raising the number of statistically significant BP loci in our study to 323 

71 and extended the number of non-monogenic BP-associated loci5-15 to over 90. The sample 324 

size for the joint analysis in this study is far larger than any prior genetic study of BP5-15. This 325 

large increase in sample size is an important reason for the discovery of many new BP loci and 326 

likely explains why some of the newly identified common loci were not discovered in previous 327 

BP GWAS. In addition, direct genotyping of coding variants likely added incremental power 328 

over imputed genotypes and tagging SNPs that were the basis of prior GWAS, suggesting that 329 

novel common variants will continue to be identified for BP phenotypes using the same set or 330 

similar set of samples with exome sequencing and whole genome sequencing. Furthermore, 331 

phenotypic and possibly genetic heterogeneity (due to additional samples in this study), 332 

differences in analysis plans, and the play of chance may be additional explanations of why some 333 

of the common variants identified in this study were not identified in prior BP GWAS.  334 

Fourteen of the novel BP variants identified in the present study reside in loci that were 335 

previously reported in GWAS to be associated with lipids19, immunologic diseases20-22, and 336 



15 
 

metabolic phenotypes23-25, 29 (Table 2 and Supplementary Table 7). Thirteen of the previously 337 

identified BP variants were also linked to non-BP traits/diseases (Supplementary Table 19). 338 

Considerable evidence has accumulated linking high BP to insulin resistance, altered lipid levels, 339 

inflammation, and other features of the metabolic syndrome60-65. Gene set enrichment, regulatory 340 

sequence variation, and PPI annotations of the new BP loci implicate genes that contribute to 341 

cardiac structure and function as well as insulin signaling and type 2 diabetes. In addition, among 342 

the previously reported BP genes that were confirmed in our study, ATXN2, GRB14, HECTD4, 343 

PTPN11, and SLC39A8 (Supplementary Table 3) have been proposed as candidate genes for 344 

metabolic syndrome based on their associations with metabolic traits and inflammatory 345 

biomarkers65.  346 

The NPR1 gene was associated with BP in both single variant and gene-based tests. This 347 

gene encodes the receptor for atrial and B-type natriuretic peptides, which regulate blood volume 348 

and BP17,18. The functional consequences of the Glu967Lys amino acid substitution that is 349 

encoded by rs35479618 (the significant NPR1 SNP in single variant analysis) is unknown, but 350 

the change results in opposite charge and a large difference in side chain volume, and is 351 

predicted to be possibly damaging (score=0.513) by Polyphen-266. The effects of the 13 rare and 352 

one low-frequency variants in NPR1 varied in directions, explaining why gene-based testing was 353 

significant using SKAT43, which is sensitive to BP-raising and lowering effects, rather than 354 

burden41,42 testing, which requires a consistent direction of BP effect, (Figure 2, Supplementary 355 

Figure 3). Of note, Npr1 knockout mice have hypertension, cardiac hypertrophy, and sudden 356 

death phenotypes17,18,67 and mice with only one copy of the Npr1 gene have salt-sensitive 357 

hypertension compared to wild type mice17. Future studies are warranted to determine if humans 358 

carrying the rare BP-increasing alleles of NPR1 also have salt-sensitive hypertension. We have 359 
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previously demonstrated that common variation that raises atrial natriuretic peptides level lowers 360 

BP13, suggesting the potential for BP-lowering strategies that target natriuretic peptide 361 

interaction with natriuretic peptide receptors. Similarly, molecular mimicking of the action of 362 

BP-lowering alleles in NPR1 may be worth exploring as a novel BP treatment.  363 

Both single variant and gene-based (T1) analysis in Stage 1 identified DBH as a BP gene 364 

(Figure 3). DBH codes the enzyme dopamine beta hydroxylase, which catalyzes the 365 

transformation of dopamine to norepinephrine. Both dopamine and norepinephrine act on the 366 

sympathetic nervous system, influencing a variety of complex traits including BP. Impaired 367 

dopamine beta hydroxylase activity has been identified in individuals with severe autonomic 368 

failure, including orthostatic hypotension68,69 , and mutation of DBH has been identified in two 369 

individuals with autonomic dysfunction70. The rare minor allele of rs3025380, encoding the 370 

Gly88Ala non-synonymous substitution, was associated with a comparatively large reduction of 371 

1.81 mm Hg in MAP even though the amino acid change is predicted to be remote from the 372 

active site71. Inhibition of DBH has long been considered a potential target for anti-hypertensive 373 

therapy72 but these efforts have been undermined due to the broad involvement of 374 

catecholamines in a variety of critical biologic processes73,74 and the potential for undesirable 375 

side effects.  376 

The remaining significant gene in gene-based testing was PTPMT1, which codes for 377 

mitochondrial protein tyrosine phosphatase 1. Knockdown of PTPMT1 expression in a rat 378 

pancreatic insulinoma cell line was found to enhance ATP production and insulin secretion75, 379 

which is closely aligned with the insulin and cardiometabolic regulatory features of many of the 380 

novel BP loci identified in this study. In addition, targeted burden testing of uncommon and rare 381 

variants in genes that cause monogenic BP disorders identified a significant BP association with 382 
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SLC12A1, the Na-K-2Cl co-transporter that is well established to harbor rare mutations that 383 

cause Bartter’s syndrome, a salt wasting condition associated with hypotension44.  384 

The Exome Chip array was designed to aid in the search for rare functional variants with 385 

large effect sizes. This study did not, however, identify any rare variants associated with BP 386 

phenotypes through single variant analyses, suggesting that rare variants with large effects on BP 387 

are an uncommon occurrence. With the current sample size, this study was not adequately-388 

powered to identify rare variants with only modest effect sizes. Within the predominant class of 389 

variants studied (i.e. low-frequency and rare non-synonymous SNPs), there may not be a large 390 

enough number of variants or effects of sufficient size to account for a substantial proportion of 391 

the remaining missing heritability of BP. Nevertheless, this study greatly extends the number of 392 

known BP-associated loci and moreover demonstrates their potential relevance to cardiovascular 393 

disease. The discovery of a total of 32 new BP loci (31 from single variant tests, 1 from gene-394 

based tests) and their overlap with other disease-related phenotypes suggest common etiologies 395 

of BP and metabolic risk factors and an opportunity to identify therapies that more broadly 396 

impact hypertension in the context of cardiometabolic risk. 397 
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Figure Legends for main text 629 

 630 
Figure 1. Overall study design. In the discovery phase, single variant and gene-based analyses 631 

were performed for systolic and diastolic blood pressure, pulse pressure, mean arterial pressure, 632 

and hypertension among 146,562 individuals from the Cohorts for Heart and Aging Research in 633 

Genomic Epidemiology Plus (CHARGE+) Exome Chip Blood Pressure Consortium. Fifteen 634 

variants were significant (P<3.4x10-7) and 62 displayed P<1x10-5. In the follow-up phase, meta-635 

analysis was performed for 77 variants with results from 180,726 individuals from the CHD 636 

Exome+ Consortium, ExomeBP Consortium, GoT2DGenes Consortium, T2D-GENES 637 

consortium. 638 

 639 

Figure 2. NPR1 Gene: Low-frequency and rare variants associated in aggregate with mean 640 
arterial pressure. The NPR1 protein (1,061 amino acids) is comprised of three domains: 641 

extracellular domain, kinase homology domain, and guanylate cyclase domain. The effects of the 642 

14 low-frequency and rare variants after adjustment for age, age2, sex, and body mass index on 643 

mean arterial pressure are shown for higher (tan) or lower (purple) values in mm Hg; dot area is 644 

proportional to the number of minor allele carriers. The minor allele of rs35479618 (MAF ~ 645 

0.012, E967K), was carried by 3,164 participants. The minor allele of rs201787421 (MAF ~ 646 

2.6x10-5, R782Q), was carried by 5 participants.  647 

 648 

Figure 3. DBH Gene: Rare variants associated in aggregate with mean arterial pressure. 649 
The DBH protein (617 amino acids) contains the dopamine β-monooxygenase N-terminal 650 

(DOMON) domain, the catalytic core (the CuH and CuM domains) and the C-terminal (C-T) 651 

domain. The effects of the 27 rare variants after adjustment for age, age2, sex, and body mass 652 

index on mean arterial pressure are shown for higher (tan) or lower (purple) values in mm Hg. 653 

The minor allele of rs74853476 (MAF ~ 0.0015), a splicing variant, was carried by 291 654 

participants. The minor allele of rs201681337 (MAF ~ 7.9x10-5, A301T), was carried by 4 655 

participants.  656 

 657 
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Table 1. The newly identified significant blood pressure loci in meta-analysis of the discovery and follow-up samples (P<3.4 x 10-7) 

                

Discovery 

(n=146,562) 

Follow-up 

(n=180,726) 

Combined 

(n=327,288) 

ICBP Discovery  

(n=69,395) 

Trait Locus* dbSNPID Chr Position 

CA/ 

NCA CAF Function† 

Beta (SE) 

/Z score‡ P value 

Beta (SE) 

/Z score‡ P value 

Beta (SE) 

/Z score‡ P value 

IQǁ or 

r2/IQ 

P value 

SBP/DBP 

Low-frequency variants (0.01 < MAF<0.05)   

SBP NPR1 rs35479618 1 153662423 A/G 0.014 E967K 1.34(0.28) 2.1 x 10-6 0.85(0.30) 3.9 x 10-3 1.11(0.20) 5.7x10-8 n.a. n.a. 

SBP SVEP1 rs111245230 9 113169775 C/T 0.032 D2702G 0.94(0.18) 2.9 x 10-7 0.44(0.19) 2.2x10-2  0.70(0.13) 1.2x10-7 1/0.91 0.009/0.003 

HTN PTPMT1 rs11537751 11 47587452 T/C 0.048 S93L 5.09 3.6 x 10-7 2.72 0.006 5.40 6.9x10-8 1/0.97 0.13/0.11 

Common variants (MAF>0.05)   

SBP PRDM16 rs2493292 1 3328659 T/C 0.151 P633L 0.42(0.09) 4.0 x 10-6 0.32(0.09) 7.2x10-4 0.37(0.07) 1.4x10-8 n.a. n.a. 

DBP PABPC4 rs4660293 1 40028180 G/A 0.208 IN 0.27(0.05) 1.1 x 10-7 0.11(0.04) 0.016 0.18(0.03) 9.6x10-8 1ǁ 0.0030/0.0018 

SBP SULT1C3 rs6722745 2 108875244 C/T 0.338 M194T 0.28(0.08) 3.3 x 10-4 0.26(0.07) 9.0x10-5 0.27(0.05) 1.1x10-7 0.99ǁ 0.37/0.37 

PP CSNK1G3 rs4530754 5 122855416 G/A 0.411 IN 0.22(0.05) 4.5x10-6 0.13(0.04) 2.5x10-3 0.17(0.03) 9.9x10-8 1ǁ 0.03/0.46 

DBP C5orf56 rs2188962 5 131770805 T/C 0.366 ncRNA_IN -0.2(0.04) 4.2x10-6 -0.19(0.04) 1.6x10-6 -0.20(0.03) 3.0x10-11 1ǁ 0.86/0.05 

DBP SNORD32B rs926552 6 29548089 T/C 0.111 ITG -0.31(0.07) 8.5x10-6 -0.22(0.07) 1.6x10-3 -0.26(0.05) 7.2x10-8 0.88ǁ 0.44/0.45 

PP 

MSH5- 

SAPCD1 rs409558 6 31708147 G/A 0.176 ncRNA_IN -0.22(0.06) 3.7x10-4 -0.29(0.06) 1.4x10-6 -0.26(0.04) 2.7x10-9 1/0.98 0.0019/0.10 

SBP SLC22A7 rs2270860 6 43270151 T/C 0.367 

SYN,  

splicing 0.33(0.07) 2.6x10-6 0.31(0.07) 2.4x10-6 0.32(0.05) 2.9x10-11 0.9ǁ 0.00013/0.037 

PP COL21A1 rs1925153§ 6 56102780 T/C 0.445 IN -0.21(0.05) 1.9x10-5 -0.17(0.05) 5.9x10-4 -0.19(0.04) 4.9x10-8 0.71ǁ 0.16/0.42 

DBP PHIP rs10943605 6 79655477 A/G 0.462 IN 0.18(0.04) 1.2x10-5 0.15(0.04) 5.4x10-5 0.16(0.03) 3.3x10-9 1ǁ 0.05/0.01 

DBP HOXA3 rs6969780 7 27159136 C/G 0.125 

5'UTR, 

splicing 0.32(0.06) 7.8x10-7 0.21(0.07) 2.0x10-3 0.26(0.05) 1.1x10-8 0.98ǁ 0.02/0.1 

PP IGFBP3 rs11977526 7 46008110 A/G 0.397 ITG -0.41(0.05) 3.8x10-18 -0.32(0.04) 3.9x10-13 -0.36(0.03) 2.9x10-29 0.87ǁ 0.62/0.004 

DBP NOS3 rs891511 7 150704843 A/G 0.373 IN -0.25(0.04) 1.8x10-8 -0.26(0.04) 2.0x10-9 -0.26(0.03) 2.0x10-16 n.a. n.a. 

DBP HRCT1 rs76452347 9 35906471 T/C 0.191 R63W -0.25(0.05) 1.1x10-6 -0.20(0.05) 1.1x10-4 -0.23(0.04) 6.8x10-10 n.a. n.a. 

PP PHF19 rs1953126 9 123640500 T/C 0.331 ITG 0.27(0.05) 6.3x10-8 0.10(0.05) 0.035 0.17(0.03) 1.8x10-7 0.99ǁ 0.11/0.86 

DBP ADO rs10995311 10 64564934 G/C 0.381 P39A -0.20(0.04) 2.4x10-6 -0.20(0.04) 1.9x10-6 -0.20(0.03) 2.1x10-11 n.a. n.a. 

DBP CYP2C19 rs4494250 10 96563757 A/G 0.319 IN 0.21(0.05) 5.2x10-6 0.11(0.04) 5.1x10-3 0.15(0.03) 3.4x10-7 0.93/0.98 0.017/0.0030 

DBP ARNTL rs900145 11 13293905 G/A 0.336 ITG -0.25(0.05) 9.1x10-7 -0.15(0.05) 0.002 -0.20(0.03) 1.8x10-8 1ǁ 0.0041/0.00087 

SBP KCNJ11 rs5219 11 17409572 T/C 0.320 K23E 0.48(0.07) 1.8x10-11 0.21(0.06) 9.4x10-4 0.32(0.05) 4.9x10-12 0.94/1 0.00018/0.0023 

DBP CERS5 rs7302981 12 50537815 A/G 0.338 C75R 0.23(0.04) 1.8x10-7 0.27(0.04) 6.5x10-13 0.25(0.03) 9.4x10-19 1ǁ 7.7x10-5/0.0053 

PP MYH6 rs452036 14 23865885 A/G 0.400 IN -0.23(0.05) 1.6x10-6 -0.31(0.05) 1.4x10-11 -0.27(0.03) 2.4x10-16 0.89ǁ 0.64/0.094 

SBP TNRC6A rs11639856 16 24788645 A/T 0.193 N185K -0.37(0.08) 7.7x10-6 -0.30(0.08) 3.6x10-4 -0.34(0.06) 1.3x10-8 0.99ǁ 0.068/0.54 

DBP DPEP1 rs1126464 16 89704365 C/G 0.215 E351Q 0.23(0.05) 6.4x10-6 0.26(0.04) 7.0x10-9 0.24(0.03) 2.4x10-13 1/0.39 0.050/0.077 

DBP TBX2 rs8068318 17 59483766 C/T 0.350 IN -0.23(0.05) 2.2x10-7 -0.28(0.04) 1.8x10-12 -0.26(0.03) 3.0x10-18 1ǁ 0.00080/9.0x10-6 

PP DOT1L rs2302061 19 2226772 C/G 0.163 V1418L 0.30(0.07) 5.1x10-6 0.28(0.06) 1.0x10-5 0.29(0.05) 2.2x10-10 0.64ǁ 0.019/0.88 

PP INSR rs7248104 19 7224431 A/G 0.395 IN -0.20(0.05) 1.8x10-5 -0.20(0.04) 3.3x10-6 -0.20(0.03) 2.6x10-10 1ǁ 0.16/0.43 

DBP RGL3 rs167479 19 11526765 T/G 0.448 P162H -0.26(0.04) 6.4x10-10 -0.33(0.04) 3.8x10-20 -0.30(0.03) 4.2x10-28 n.a. n.a. 

SBP ZNRF3 rs4823006 22 29451671 G/A 0.424 3'UTR -0.33(0.07) 8.7x10-7 -0.20(0.06) 9.2x10-4 -0.26(0.05) 7.9x10-9 0.98ǁ 0.29/0.093 

CA/NCA, coded allele/non-coded allele; CAF: coded allele frequency; SYN, synonymous; IN, intronic; ITG, intergenic; UTR3, 3’ untranslated region; The discovery meta-analysis was performed in CHARGE+ Exome Chip BP 

Consortium samples (n=146,562); The follow-up meta-analysis was performed with samples from the CHD Exome+ Consortium, ExomeBP Consortium, GoT2DGenes Consortium, T2D-GENES consortium samples (n=180,726); 

The “combined” or joint meta-analysis was performed with both discovery and follow-up samples (n = 327,288); ICBP Discovery, the discovery sample for International Consortium for Blood Pressure;  n.a, not available; IQ, 

Imputation quality; r2/IQ, linkage disequilibrium between the best proxy in ICBP and the one in “dbSNPID” column and imputation quality for the best proxy.   
* Loci are named according to the closest gene based on the position of the lead SNP.  
† Amino acid substitution is provided for a missense variant. 
‡ Meta-analysis used the inverse variance method for DBP, PP, and SBP and used the optimal Z score method for HTN. 
§ rs1925153 was significant from joint meta-analysis of EA only samples, the rest were from samples of all ancestries. 
ǁ The same variants in “dbSNPID” column were analyzed in ICBP. 
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Table 2. Novel common BP SNPs associated with non-BP traits 

Locus* (Function) dbSNPID Chr:Position CA/NCA CAF GWAS Trait† 

Amino Acid  

Substitution Literature Lab Term(s)‡ 

SNPs not previously reported in GWAS 

PRDM16 (NS) rs2493292 1:3328659 T/C 0.15 n.a. Pro633Leu  

SULT1C3 (NS) rs6722745 2:108875244 C/T 0.34 n.a. Met194Thr  

HRCT1 (NS) rs76452347 9:35906471 T/C 0.19 n.a. Arg63Trp  

ADO (NS) rs10995311 10:64564934 G/C 0.38 n.a. Pro39Ala  

CERS5 (NS) rs7302981 12:50537815 A/G 0.34 n.a. Cys75Arg  

TNRC6A (NS) rs11639856 16:24788645 A/T 0.19 n.a. Asn185Lys  

DOT1L (NS) rs2302061 19:2226772 C/G 0.16 n.a. Val1418Leu  

RGL3 (NS) rs167479 19:11526765 T/G 0.448 n.a. Pro162His  

SNPs previously reported to be significant in GWAS of other traits§ 

PABPC4 (IN) rs4660293 1:40028180 G/A 0.21 HDL   

CSNK1G3 (IN) rs4530754 5:122855416 G/A 0.41 LDL and TC   

C5orf56 (IN) rs2188962 5:131770805 T/C 0.35 Crohn’s Disease   

 
rs926552 6:29548089 T/C 0.11 T1D   

MSH5-SAPCD1  

(IN) 
rs409558 6:31708147 G/A 0.18 SLE   

IGFBP3  rs11977526 7:46008110 A/G 0.40 IGFBP3  
Insulin, 9%, IGF-1 signaling, 

55%  

PHF19  

(5’ near gene) 
rs1953126 9:123640500 T/C 0.33 RA   

 
rs900145 11:13293905 G/A 0.34 Age at Menarche    

KCNJ11 (NS) rs5219 11:17409572 T/C 0.32 T2D Lys23Glu Insulin, 0.6%, T2D, 2.5% 

MYH6 (IN) rs452036 14:23865885 A/G 0.40 Resting Heart Rate  

Heart Development, 73%, 

Hypertrophy model, 83%, 

Cardiac muscle contraction, 

84% 

DPEP1 (NS) rs1126464 16:89704365 C/G 0.22 
Homocysteine 

Concentration 
Glu351Gln  

TBX2 (IN) rs8068318 17:59483766 C/T 0.35 
Creatinine and  

eGFR 
 Heart development, 17.5% 

INSR (IN) rs7248104 19:7224431 A/G 0.395 TG  

Insulin, 90%, IGF-1 signaling, 

45%, T2D, 93%, Hypertrophy 

model, 5.4% 

ZNRF3 (UTR3) rs4823006 22:29451671 G/A 0.424 WHR   

SNPs previously reported in patent filing, candidate gene or GWASǁ  

SLC22A7 (SYN) rs2270860 6:43270151 T/C 0.37 HTN (patent filing)   

COL21A1 (IN) rs1925153 6:56102780 T/C 0.45 Bipolar disease traits   

PHIP (IN) rs10943605 6:79655477 A/G 0.46 
Colon cancer 

(patent filing) 
  

HOXA3 (UTR5) rs6969780 7:27159136 C/G 0.13 Hypospadias   

NOS3 (IN) rs891511 7:150704843 A/G 0.37 
Endothelium-dependent 

vasodilation 
 

Heart Development, 6.7%, T2D, 

3.9%, Cardiac muscle 

contraction, 14.5% 

CYP2C19 (IN) rs4494250 10:96563757 A/G 0.32 Breast cancer   

 

SNPs included in this table are common SNPs in Table 1. CA/NCA, coded allele/non-coded allele; CAF, coded allele frequency; IN, intron; NS, nonsynonymous; UTR3, 3’ 

upstream; UTR5, 5’ upstream; HDL/LDL, high/low- density cholesterol; TC, total cholesterol; T1D/T2D, Type I/Type 2 diabetes; SLE, systemic lupus erythematosus; 

IGFBP3, insulin-like growth factor-binding protein 3; RA, rheumatoid arthritis; TG, triglyceride; WHR, waist/hip ratio.  

* Loci are named according to closest gene based on the position of the index SNP.  
† Indicates whether a SNP was reported in previous genome-wide association studies (GWAS). n.a., not available. 
‡ Reported results were part of identifying biological and biochemical terms that were significantly associated with the investigated gene set using Literature Lab database. 

Percent shows relative weight of references to a BP candidate gene in relation to associated pathways / terms for the full gene set. Out of three classes of significances 

(STRONG, MODERATE and POSITIVE) above we reported only STRONG class. 
§ Reported to be significant in GWAS using P<5 x 10-8 or pre-specified significance levels in the reported study. Details of association direction were included in 

Supplementary Table 7. 
ǁ P values were not mentioned or did not reach the specified significance level. 
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Table 3. CHARGE+ Exome Chip BP Consortium: significant genes in burden and sequence kernel association tests  

Gene Chr Test* T1/T5† Phenotype 

Beta (SE) 

/Qmeta‡ P value§ N Variantsǁ CAF 

PTPMT1 11 Burden T5 HTN 0.05(0.01) 3.5x10-7 4 0.053 

NPR1  1 SKAT T5 MAP 270678.8 4.4x10-8 14 0.025 

DBH 9 SKAT T1 MAP 145331.4 9.2x10-7 27 0.028 

CAF, cumulative coded allele frequency for variants used in an analysis. The experiment wide significance level for gene-based tests is P<1x10-6.  

* The standard burden test collapses the rare variants into a single variable and tests the association between this variable with a phenotype; the sequence kernel 

association test (SKAT) was designed to detect effects of alleles that collectively contribute to higher and lower BP effects. 
† Meta-analysis was conducted at the gene level to evaluate aggregate effects from multiple non-synonymous or splicing variants with MAFs<0.01 (T1) and <0.05 

(T5).  
‡ The burden test yields beta/SE and the SKAT test provides Qmeta.     
§ In pooled samples of all ancestries.        
ǁ Number of variants used in analysis.
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Online Methods 1 

Study Participants 2 

A total of 146,562 individuals of European American (EA) (n=120,473), African American (AA) 3 

(n=21,503), and Hispanic American (HA) (n=4,586) contributed from 16 studies (Supplementary 4 

Table 20 and Supplementary Note) were included in the discovery stage association analyses. 5 

The entire discovery sample was also included in the meta-analyses of discovery and follow-up 6 

stage results (Figure 1). All study participants provided written informed consent for genetic 7 

research, with the exception of the BioVU biorepository, in which DNA was extracted from 8 

discarded blood collected during routine clinical testing and was linked to de-identified medical 9 

records. All studies received approval to conduct this research from their respective Institutional 10 

Review Boards. Studies contributing to the discovery analyses included a wide range of mean 11 

measured BP values (110 to 142 mm Hg for SBP and 69 to 84 mmHg for DBP), hypertension 12 

prevalence (2% to 77%), and proportion of individuals taking anti-hypertensive medications (0.6 13 

to 63%) (Supplementary Table 20). 14 

Genotyping and Quality Control 15 

All samples were genotyped on the Illumina Infinium Human Exome Array v1.0 or v1.1 16 

(Supplementary Table 21). Ten studies (51,106 individuals) were jointly called at the Human 17 

Genetics Center of the University of Texas Health Science Center in Houston76. Six additional 18 

studies followed genotyping calling protocols from Illumina or from the CHARGE consortium, 19 

and strand assignment for allele encoding specified by the CHARGE consortium76. All studies 20 

followed quality control guidelines recommended by the CHARGE analysis committee. Quality 21 

control procedures were further applied at the cohort level as described in Supplementary Table 22 

21. Variants were removed for genotype call rate less than 95%, HWE p-value less than 1x10-6, 23 
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and concordance rate (between overlapping variants from previous GWAS and the Exome Chip) 24 

less than 95%; individual samples were removed for call rate less than 95%, discordance rate less 25 

than 95% with GWAS data, or in the event of a suspected sample swap, sex mismatch, or 26 

heterozygosity F-value greater than 10. 27 

BP Phenotypes 28 

In the discovery stage, the BP phenotypes included were SBP, DBP, PP (SBP minus DBP), and 29 

MAP (1/3 SBP + 2/3 DBP). A participant was classified as having HTN if she/he had SBP ≥140 30 

mm Hg, or DBP ≥90 mm Hg, or was taking anti-hypertensive medication. SBP and DBP values 31 

were obtained from the first examination attended for longitudinal studies; when available, the 32 

average of two single occasion measurements was used for SBP and DBP. To account for the 33 

reduction in BP due to medication use, all individuals taking BP lowering medication had15 mm 34 

Hg added to the measured SBP, and 10 mm Hg to the measured DBP15. The four continuous BP 35 

traits are moderately or highly correlated such that among the larger contributing cohorts, the 36 

ranges of correlations were: 0.70-0.82 (SBP-DBP), 0.92-0.95 (SBP-MAP), 0.73-0.89 (SBP-PP), 37 

0.92-0.99 (DBP-MAP), 0.20-0.45 (DBP-PP), and 0.43-0.68 (MAP-PP). Such correlations 38 

appeared to be consistent across different ethnic populations within these same studies. 39 

Association Analyses and Meta-analyses 40 

Power Estimation: Nearly 90 percent of the markers on the Exome Chip are low-frequency 41 

(MAF 0.01-0.05) or rare (MAF <0.01) variants. Power for association was evaluated for MAP 42 

assuming a mean of 100 mm Hg with standard deviation of 10 mm Hg using QUANTO77 for a 43 

sample size n=150,000 at the significance level of 3.4 x 10-7 for a variant with MAF of 0.0005, 44 

0.001, 0.005, or 0.01. To reach 80% power, an effect size of 5, 3.5, 1.6, or 1.1 mm Hg, is needed, 45 

respectively, for a variant with MAF=0.0005, 0.001, 0.005, or 0.01. 46 
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The Fraction of the Common Variants Tagged by the Exome Chip: We downloaded the phase 3 47 

genotype data for the European ancestry from HapMap project. The phase 3 file 48 

“hapmap3_r2_b36_fwd.CEU.qc.poly” includes 1,416,121 variants (1,352,770 with MAF>0.01 49 

and 1,223,919 with MAF> 0.05). We used the PLINK command “show-tags” to estimate the 50 

number of common variants (MAF>0.05) that can be tagged by Exome Chip variants. We 51 

estimated that 172,220 (linkage disequilibrium r2≥0.5) and 88,186 (linkage disequilibrium 52 

r2≥0.8) common SNPs (MAF >0.05) can be tagged by the Exome Chip variants. Compared to 53 

the number of variants tagged by a GWAS chip (e.g. Affymetrix 500K), the Exome Chip tags 54 

much fewer common variants. 55 

Cohort-specific Analysis: Gene-based (or region-based) testing was performed using the seqMeta 56 

package78. Covariates included age, age-squared, sex, body mass index (BMI), and principle 57 

components (if applicable) to account for population structure. All variants were recoded to 58 

conform to the alleles specified in a “Recode” file distributed to each study. In all analyses, 59 

variant effects were modeled additively. Conditional analysis was performed to identify 60 

independent BP signals at previously reported BP loci5-15 using the seqMeta package78 by 61 

adjusting at the cohort level for the previously reported GWAS SNP with the smallest p-value in 62 

association analysis. Similarly, for any newly identified locus with multiple variants, conditional 63 

analysis was performed by adjusting for the most significant variant in the region to identify non-64 

redundant signals. 65 

Meta-analysis at the Single Variant Level: Meta-analysis of single variant associations from 66 

discovery and follow-up stage results was performed using the inverse variance weighted fixed-67 

effects method79 implemented in the seqMeta package78. In the discovery stage, the primary 68 

meta-analysis was performed in all samples to identify variants showing consistent effects with 69 
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BP traits across multiple ancestry groups. Secondary analysis was performed in each of the three 70 

ancestries separately to identify novel variants with different ancestral origin. Meta-analysis was 71 

also performed on results from conditional analysis and compared with the original meta-72 

analysis to identify non-redundant signals. Although we performed association and meta-analysis 73 

on all genotyped variants that passed quality control, we only reported results from about 74 

147,000 variants that had minor allele counts (MACs) ≥30 in meta-analyses of all samples. Since 75 

the BP traits are highly correlated, we used an array-wide Bonferroni-corrected significance 76 

threshold of 3.4 x10-7 (=0.05/147,000). The Exome Chip array contains numerous previously 77 

published variants or their LD proxies, mostly from GWAS using imputed genotype information 78 

for a variety of human traits. Using exome chip experimental genotypes, associations from 79 

previous BP GWAS5-15 were considered significant with P values ≤ 0.05/n, where n is the 80 

number of previously identified SNPs or SNPs that showed at least moderate LD (r2≥0.3) on the 81 

Exome Chip. 82 

Meta-analysis at the Gene Level: Meta-analysis was also conducted at the gene level to evaluate 83 

aggregate effects from multiple non-synonymous and splicing variants with MAFs ≤0.01 (T1) 84 

and ≤ 0.05 (T5) in a gene using both the sequence kernel association test (SKAT)43and the 85 

standard burden test41,42 implemented in the seqMeta package78. The standard burden test 86 

collapses the rare variants and has optimal properties when these variants all have the same 87 

directionality and magnitude of effect on phenotype. In contrast, SKAT aggregates individual 88 

variant score test statistics and offers better power compared to the burden test when there are a 89 

variety of effect sizes and directions, e.g. both protective and deleterious effects in a gene43. 90 

Approximately 17,000 genes were included two or more non-synonymous variants in the 91 

primary meta-analysis of all study samples. An association was deemed to be signficant at P<1 92 
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x10-6 for gene-based tests. Among up to 154,543 individuals of European ancestry from CHD 93 

Exome+ Consortium, ExomeBP Consortium, GoT2DGenes Consortium, T2D-GENES 94 

consortium (Supplementary Note), gene-based SKAT was applied to HTN and inverse normal 95 

transformed DBP, SBP, PP using the RAREMETAL software package80. We performed lookup 96 

in their SKAT results for the genes that displayed P<1 x10-6 in Stage 1 analysis of this study.  97 

The Follow-up Study at the Single Variant Level 98 

The follow-up study was performed in external samples (follow-up samples) including a total of 99 

180,726 individuals from the CHD Exome+ Consortium, ExomeBP Consortium, GoT2DGenes 100 

Consortium, T2D-GENES consortium (Supplementary Note). Summary information about 101 

participants, genotyping and quality control in the follow-up samples are presented in 102 

Supplementary Note. The follow-up samples provided SNP association statistics for DBP, PP, 103 

SBP, and HTN but not MAP for a total of 180,726 individuals. Significant variants (P ≤ 3.4 x 10-104 

7) in the discovery samples were considered replicated in the follow-up samples with P ≤ 0.05/n 105 

with their pre-specified BP trait in the follow-up sample alone, where n was the number of 106 

variants tested in the follow-up samples. Both the significant variants from discovery and 107 

additional variants with P ≤ 1 x 10-5 from the discovery samples were selected for joint meta-108 

analysis with the follow-up samples. The primary meta-analysis of the discovery and follow-up 109 

results was performed in individuals of all ancestries. The secondary meta-analysis was 110 

conducted in the EA only samples. The inverse variance weighted method was used in meta-111 

analysis of the discovery and follow-up stage results for DBP, PP and SBP. Because the follow-112 

up samples provided only z-scores and sample sizes for HTN, the optimally weighted z-score 113 

method81 was used in meta-analysis of HTN. The threshold of P ≤ 3.4 x10-7 was required for 114 

significance in meta-analyses of the discovery and follow-up samples.  115 
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Functional Inference 116 

We applied several computational strategies to infer biological functions associated with 117 

candidate genes of the 31 novel loci reaching P <3.4x10-7 (Table 1) and 39 validated loci 118 

(Supplementary Table 3): 1) To test whether SNPs in Table 1 and Supplementary Table 3 were 119 

significantly enriched among pre-specified gene sets defined in pathways, or by shared roles in 120 

particular diseases or biological processes, we performed gene pathway, disease, and Gene 121 

Ontology (GO) enrichment analysis using GeneGo software and Literature Lab45 data mining of 122 

literature (Supplementary Methods); 2) To investigate whether the coding and non-coding 123 

variants listed in Table 1 may influence the transcriptional regulation, we compared BP 124 

candidate SNPs with ENCODE and Roadmap Epigenomics regulome features summarized for 125 

mainly cis regulatory function in HaploReg47 and RegulomeDB46. The inclusion of coding 126 

variants in this analysis was justified by previous research showing that transcriptional regulation 127 

can be influenced by both non-coding and coding variations; a recent publication has shown that 128 

~15% of human codons simultaneously specify both amino acids and transcription factor 129 

recognition sites82; and 3) To identify genes that encode proteins especially connected to other 130 

proteins and therefore inferred to be important, we performed protein-protein interaction network 131 

analysis (PPI) on SNPs in Table 1. The PPI network was constructed using the NCBI PPI 132 

database information, which sources information from HPRD, BIND, BioGRID and EcoCys 133 

databases. By design, 2% of the Exome Chip variants were identified from previous GWAS. To 134 

investigate if these previous GWAS SNPs may artificially increase the extent of GeneGO 135 

enrichment in known functional classes, we performed GeneGO enrichment analysis on 10 136 

randomly selected sets of genes from the Exome Chip (with replacement) with the size of new 137 
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and previously BP candidates discovered. None of these random sets showed gene-set 138 

enrichment with significance comparable to the enrichment for the BP SNPs. 139 

To further assess putative functionality for the novel loci, we performed cis-eQTL 140 

analysis between each of the newly identified variants with gene expression within 1 Mb 141 

flanking that variant in peripheral whole blood samples of ~ 5000 individuals from the 142 

Framingham Heart Study (FHS). Statistical significance in the FHS expression data was 143 

evaluated at FDR<10% for newly identified variants83. We also searched for cis-associations 144 

between novel variants and gene transcripts within 1 Mb flanking the lead SNP based on 145 

databases of previously published expression quantitative trait locus (eQTL) analyses at the false 146 

discovery rate (FDR) <10%51,84. 147 
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