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SUMMARY 

Two  numerical  methods   are  considered  for  the  conformal  mapping  of  a 

bounded  simply-connected  domain  onto  the  unit  disc.     The  two  methods 

are  respectively  the  Bergman  kernel  method,  which  has  been  described 

in  [17],   and  the  so-called  Ritz  method.     In  this  paper  we  indicate  the 

close   theoretical  relationship  of  the  two  methods,   compare  their 

computational  efficiencies   and  present  a  number  of  practical 

applications   of  the  approximate   conformal  maps. 
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1.   Introduction

Let   Ω  be  a  bounded  simply-connected  domain  in  the  complex  z-plane,   and 

let  w  =  f (z)   be  the  function  which  maps   conformally   Ω  onto  the  disc 

|w| <R.      In  this  paper  we  consider  the  problem  of  determining  numerical 

approximations   to   the  mapping  function  f.     More   specifically,  we  consider 

two  closely  related  methods  which   lead   to  approximations  of  the   form 

,(z)juja
n

1j
(z)nf ∑

=
=      (1.1)

where   {uj }   is  an  appropriate   set  of  basis  functions.     One  of   these  two 

methods   is   the  Bergman  kernel  method   (BKM),   proposed  recently  by  Levin, 

Papamichael   and  Sideridis   [17].     The  other  method  is   the  so-called  Ritz 

method   (RM). 

The  RM  is  a  variational  method,  based  on  the  "property  of  minimum  area", 

i.e.   the  property   that   the  derivative  f  of  the  mapping  function  f 

minimizes   the  integral 

dxdy2|(z)u|Ω∫∫           (1.2) 

over  a  certain  class  of  analytic  functions.     In  this  method   the 

coefficients  a.,   of  the  approximation  ( 1 .1 ) ,    are  determined  by  solving 

an   (n-1)   x   (n-1)   complex  linear  system  with  a  Gram  matrix  of  coefficients. 

The  BKM  is  based  on  the  use  of   the   so-called  Bergman  kernel  function  of 

Ω.     This  kernel   function  is   closely  related   to   the  function  f'  which 

minimizes   (1.2)   and,   for   this  reason,   the  RM  and  BKM  can  be  regarded  as 

being   theoretically  equivalent.     However,   in  the  BKM  the  approximation 

(1.1)   is  obtained  by  constructing  a  Fourier  series  representation  of   the 

kernel  function,   and  the  coefficients  aj   are  determined  by  means  of  an 

orthonormalization  procedure.     Thus,   the   two  methods   are  computationally 

different. 

The   theory  of  the   two  methods   is   treated  extensively  in  the   literature; 
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see  e.g.   [2],   [10],   [19],   [20]   and   [31].     In  particular,   Gaier   [10] 

considers   fully  not  only   the   theory  but  also   the  numerical   implementation 

of   the  two  methods.     However,   the  numerical  methods  of   [10]   involve  the 

use  of   a  polynomial  basis   set   {u j}  and,   in  many  cases,   such  a  basis   does 

not   lead   to  approximations   of  acceptable   accuracy.     In  the  present  paper 

the  basis   set,   for  both  the   RM  and   the   BKM,   is   selected  by  using  the 

procedure  proposed,   in  connection  with   the  BKM,   in  [17].      This  procedure 

leads   to   a  non-polynomial  basis   set,   which  includes   terms   that  reflect 

the  main  singular  behaviour  of  f  in  the  complement  of   Ω. 

The  objectives   of   the  present  paper  are  as   follows.     To  indicate   the 

close  theoretical  relationship  between  the  BKM  and  the  RM,   to  present 

the   computational  details  of   the  RM  and   to compare   the  computational 

efficiencies   of   the   two  methods.     The  motivation  for  such  a  comparison 

emerges   from  the  results  contained  in  [10,p. 154],  which  suggest  that 

the  RM  is   substantially  faster   than  the  BKM.     Our  numerical  experiments 

show  that   the   two  methods  require   the   same   computational  effort  for 

producing  approximations  of  comparable  accuracy.     These  experiments   also 

show  that  both   the  BKM  and   the  RM  can  be  used   to  produce  approximations 

of   high  accuracy.     The   essential  requirement  for  this    is   that   the  basis 

set    includes    appropriate   "singular"    functions. 

In  addition  to   the  objectives   stated  above,   another  major  purpose  of   the 

present  paper  is   to  consider  certain  practical  applications  of   the 

approximate  conformal  maps.     In  particular,   we  show  that   these 

approximate  maps   can  be  used   to  produce,   with  very  little  additional 

computational  effort,   accurate  approximations   to  the  moduli   of   a  class 

of  doubly-connected  domains. 
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2.    The Property of Minimum Area 

Let   Ω be  a  bounded   simply-connected  domain  with  boundary  3Ω in the  complex 

z-plane   (z  =  x+iy),   and  assume,  without  loss  of  generality,   that  the  origin 

0  is  in  Ω.     Also,   let 

w  =  f(z)   , (2.1) 

be  the  mapping  function which  maps  Ω  conformally  onto  the  disc, 

DR  =   {w:|w|<R}   , 

in  such  a  way  that  f(0)   =  0  and  f ' (0)   =   1.     The  radius  R  of  the  disc  is 

called   the  conformal  radius  of  the  mapping. 

It  is  well-known  that  the   space  of  all   square  integrable  analytic   functions 

in  Ω  is   a  Hilbert   space  with   inner  product 

dxdy(z)2g(z)1gΩ)2g,i(g ∫∫=      (2.2) 

see  e.g.   [32;p53],     We  denote  this  space  by  L2 (Ω)   and  let 

and K(1)  (Ω)   =  {u (z):u∈L2 (Ω)   and  u(0)  =  1}   , 

K ( 0 )  (Ω)   =  {v(z):v∈L2(Ω)   and  v(0)   =  0}   . 

The   theory  on  which  the  two  numerical  methods  are  based  emerges  by 

considering    the    following    variational    problem. 

Problem  2.1.     To  minimize 

,dxdy2|(z)u|Ω
2||u|| ∫∫=         (2.3)

 over   all  u∈ K (1)  (Ω). 

 The  following results  hold: 

R 2 .1  Problem 2.1   has   a unique  solution u0  . 

R  2. 2 The  minimal   function  un  is  related  to   the  mapping 

                                        function  f  by 

                                        u0 (z)   =  f ' ( z ) .  (2.4) 

R 2.3 The  minimum  of   (2.3)   is  equal   to   the  area  of   the  disc 

DR ,  i.e. 

|| u0  ||2   =  πR2 (2.5) 
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R_2._4_ The  minimal  function  u0     is  orthogonal   to  every 

function  v∈ K(0)       (Ω),   i.e. 

(u0,v)   = 0, V v∈ K(0)  (Ω). (2.6) 

R  2.5 The  space   L2(Ω)   has  a  unique  reproducing  kernel 

K(z;0)    such  that 

g(0)   =   (g,K), V g∈L2(Ω)      , (2.7) 

and  this  kernel  is  related   to   the  minimal   function 

u0  by 

K(z;0)   =  u 0 ( z )  /  |  | u 0 | | 2 .  (2.8) 

Since   K(1)  (Ω)   and  K(0) (Ω)   are  respectively  a  closed  convex  subset   and  a 

closed  subspace  of  L2  (Ω),   the  results  R2.1   and  R2.4  are  direct  consequences 

of   two   standard  results  of   the  theory  of  Hilbert  spaces;   see  e.g.   Pryce 

[25;p.p.168-69].     Alternatively,   R2 .1 ,    R2.4  and  also  R2.2   and  R2.3  can  be 

established  by  making  use  of  the  properties  of  the  mapping  function  f;   see 

e.g.   Gaier [10,p.118]  and   Walsh [31,p.322].      Finally,    R2.5   follows  from  the 

theory   of   reproducing   kernels  of  Aronszajn [1],   by   observing   that   if 

|  z-z0 |   ≤  r  lies  entirely  within  Ω  then 

)(2g,2||g||2πx
12|)0(zg| Ω∈∀≤ L        (2.9) 

see  [l ,p,343]  and,   for  a  proof  of   (2 .9) ,    [10,p.117]. 

The   results  R2. 1   -  R2.3  constitute   the  well-known  property  of  minimum 

area  of  Bieberbach [4].     The  kernel  K(z;0)   of   (2.8)   is  known  as   the  Bergman 

kernel  function  of   Ω.     Its  properties  and  its  application  to  conformal  mapping 

mapping  are  studied  fully  in  [2]. 

3. Numerical  Methods

The   theoretical  results  of  Section  2   lead   to   the   following  two  numerical 

methods   for  determining  approximations   to  the  mapping  function  f. 

3.1   The  Ritz  Method    This  method  emerges  by  seeking  the  solution  of  the 

finite-dimensional   counterpart  of  Problem  2.1 

Let  {nj(z)} be a complete  set  of  L2(Ω)   and  denote  by  K n
(1)  (Ω)   and  K n

(0) (Ω) 
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the  n-dimensional  counterparts  of  K(1)(Ω)   and  K(0) (Ω) corresponding   to 

the  set  {n j . ( z )} ,  i.e. 

   

,0(0)nand
n

1j jc,jηjdn:(z)n)((0)
n

and

,1(0)nand
n

1j jc,jηjcn:(z)n)((1)
n

C

C

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

=∑
=

∈==Ω

=∑
=

∈==Ω

ψψψ

φφφ

Κ

Κ

Then  the  finite-dimensional  variational  problem  corresponding  to  Problem 

2.1   can  be  stated  as  follows. 

Problem  3.1    To  minimize 

,dxdy2|(z)n|Ω
2||n|| φφ ∫∫=     (3.1)

over     all    .)((1)
nn Ω∈Κφ

The   following  results  hold: 

R  3.1 Problem  3.1   has   a  unique   solution  φ
)

n   . 

R  3.2 The  minimal   function  φ
)

n     is   completely  characterized 

by  the  property 

( φ
)

n , ψn ) =  0,                      )((0)
nnψ Ω∈∀ Κ

R  3.3 The  minimal  function  φ
)

n converges    almost   uniformly 

in Ω  to   u0=f' .      (By  almost  uniform  convergence  we 

                                          mean  convergence   in  every  closed  subdoraain  of   Ω.) 

The   results    R3.1   and  R3.2  are    the   finite-dimensional   counterparts   of   R2.1 

and  R2.4.     Like  R2.1   and  R2.4,   they  are  particular  cases   of  standard 

results   from   the    theory   of   Hilbert    spaces.      The   theory   of   Hilbert    spaces 

also  shows   that   φ̂ n     converges   to  u0     in  the  norm  of   L2 (Ω).     The  result  R3.3 

is   a  direct   consequence  of   the   fact   that   in  L2 (Ω)   convergence   in   the   norm 

implies  almost  uniform  convergence;   see  e.g.   Simirnov  and  Lebedev  [27,p.209]. 

To  determine  an  approximation  fn   (z)   to  f(z)   we  proceed  as   follows.     We 

choose  the   set   {ηj  (z) }  so  that 

η1(0)   =   1   and  η j  ( 0 )    =  0;   j   =  2 ,3 , . . . ,  (3.2) 

and  let 

,(z)jujc
n

2j
(z)1η(z)n ∑

=
==φ            (3.3) 
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Then,   from  R3. 2,   the   n-1   complex  coefficients  cj   must  be  determined  so 

that 

.)((0)
nnψ0)nψ,n( Ω∈∀=φ Κ)

        (3.4)

Because  of   the   choice   (3.2)   of   the  nj,   any  function    has  an )((0)
nnψ Ω∈Κ

expansion  of   the   form 

,(z)jηjd
n

2j
(z)nψ ∑

=
=  

This   implies   that   a  necessary  and  sufficient  condition  for   (3.4)   to  hold 
is 

( φ
)

 n , ni )   =  0   ; i   = 2,3,......,n. 

or 

0)iη,j(ηjc
n

2j
)iη,1(η =∑

=
+    ;        i   = 2,3,......,n. 

The  equations   (3.5)   constitute   an   (n-l)x(n-l)   complex  linear   system  with 

a  Gram  matrix  of   coefficients.     Thus,   the  matrix  in  (3.5)   is  Hermitian 

and  positive   definite. 

The   system   (3.5)   is   solved  for  the  unknown  coefficients   cj   in   (3.3)   and 

then,   from  R3.3, 

(3.5) 

 
,d ς)(n

z
(z)nf ςφ

∩
= ∫

)
     (3.6) 

 
gives   an  approximation  to   the  mapping  function  f.      Also,   from   (2.3), 

π/||n||nR φ
)

                           (3.7) 

gives   an  approximation  to   the  radius   R  of   the  disc  D R  .     This   implies   that 

         { } ,||n||/dς(n
z
0π(z)nF φφ∫=

))
ς      (3.8) 

gives  an  approximation  to   the  function  F  which  maps  conformally   Ω  onto 

the   unit   disc   D1   in  such  a  way  that  F(0)  = 0 and F' (0)>0. 

We  shall   refer  to   the   above  method  of  numerical  conformal  mapping  as   the 

Ritz  method  (RM)  with  basis  ( n j  ( z ) } .  

3.2     The   Bergman  Kernel  Method.     The  mapping  function  f  is   related   to   the 

Bergman  kernel   function  of   Ω  by 

{ } (0,0)K/dς)0;(Kz
0(z)f ς∫=      (3.9)
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This   follows  at  once  from  (2.4)    and   (2 .8) ,    by  observing  that 

K(0,0)   =   1/ | |  µ0  | | 2 .  (3. 10) 

In   the  Bergman  kernel  method   the  approximation  to  f  is  determined  from 

(3.9),   by  first  approximating  the   kernel  K(z;0)   by  a  finite  Fourier  series 

sum. 

Let   {η (z)}  be   a  complete  orthonormal   set  of  L*
j 2 (Ω)   and  consider  the  Fourier 

series  expansion  of  K ( z ; 0 ) .      Because  of  the  reproducing  property  (2.7), 

the  Fourier  coefficients  are 

(K,n*)  =  n*  (0). j j

Thus,   the  kernel  has   the  infinite   series   expansion 

   ,(z)*
jη(0)*

jη1j
0);(zK ∑

∞

=
=               (3.11) 

which  certainly  converges   in  the  norm  of L2 (Ω) .       Furthermore,   as   in  the 

case  of  R3.3,   this   norm  convergence  implies   that   (3 .11)    converges   almost 

uniformly  in  Ω. 

Given  a  complete  set   {n j ( z ) }   of  L2  (Ω),   the  results   (3.9)   and   (3.11)   suggest 

the   following  procedure   for  obtaining  a   numerical    approximation   to    the 

mapping  function  f.   The  set  {n j ( z )} n
j = 1 .   is  orthonormalized  by  means  of 

the   Gram-Schmidt  process   to  give  the  set   of  orthonormal    functions 

{ n *  ( z ) }j
n
j = 1  . The   series   (3.11)   is   then  truncated   after n  terms   to  give 

the  approximation 

         ,(z)*
jη(0)*

jη
n

1j
0);(znK ∑

=
=            (3.12) 

to     K(z;0)   and   finally  equation   (3.9)   is   used  to   give   the  approximation 

{ } ,ςd0);(ςnKz
0

1(0,0)nK(z)nf ∫
−=  

to   the  mapping  function  f.     Also,   from   (2.3)   and   (3.10), 

(3.13) 

Rn    =   {π Kn (0 ,0)}-½   , (3.14) 

is   an   approximation   to   the   radius   R   of   the   disc.    Thus, 

      ,ςd0);(ςnKz
0

1

(0,0)nK
(z)nF ∫

−

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ π              (3.15)
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gives  an  approximation  to  the  function  F  which  maps  Ω  conformally  onto 

the  unit  disc  D1 . 

      We  shall  refer   to  the  above  method  of  numerical  conformal  mapping  as   the 

      Bergman  Kernel  method   (BKM)   with  basis   {n j (z)} .  

4.   Choice  of  Basis

Both  the  RM  and  the  BKM  lead  to  approximations  of  the  form 

,(z)juja
n

1j
(z)nf ∑

=
=       (4.1) 

where  the  uj   are  integrals  of  the  basis  functions   nj .     In  the  RM  the 

coefficients   aj    are   derived  from  the  solution  of  the   linear  system   (3.5), 

whilst  in  the  BKM  the  determination  of  the  aj   involves  the  use  of  the 

Gram-Schmidt  process-     Unfortunately  both  these  methods  for  determining 

the  aj   may  lead  to  a  significant  loss  of  accuracy,   due   to  ill-conditioning 

of  the  matrix  in  (3.5)   or  to  numerical  instability  of  the  Gram-Schmidt 

process;   see  vecova[28]  and  Davis  and  Rabinowitz [9;p.61].   Thus,  in v
S

practice,   only  a  limited  number  of  terms  in  the  series  approximation  to 

f  can  be  computed  accurately.    This  implies  that  the  success   of   either 

the  RM  or  the  BKM depends  strongly  on  the  speed  with  which  the  approx- 

imating  series   converges.     Since   this  convergence  depends  on  the   set  of 

basis   functions   used,   it   follows   that   the   choice  of   an  appropriate   basis 

is  of  paramount  practical   importance. 

A  computationally  convenient  basis  is  the  set  of  monomials 

nj(z)   = z j -1   ;        j   =   1,2, ........  (4.2) 

This   set  is  complete  in  L2(Ω)   provided  that  Ω  is  a  Caratheodory  domain, 

i.e.   provided  that   Ω  is  also  the  boundary  of  the  complement  cΩ     of  Ω   = 

Ω U∂Ω;   see  e.g.   [2,p.14]   and  [19;p.38,p.117]. 

The  use  of   (4.2)   as  basis  for  the  BKM  is  considered  by  Bergman  and  Herriot 

[3],   Burbea [6]   and,   for  both  the  RM  and  the  BKM,  by  Gaier[10].     Unfortunately, 

the  convergence  of  the  resulting  polynomial  approximations  is  often 

extremely  slow  and,   for  this  reason,   the  use  of  (4.2)   as  basis  does  not 
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lead  to  a  practical  method  for  numerical  conformal  mapping. 

The  use  of   the  BKM  is   also  considered  by  Levin,   Papamichael  and  Sideridis 

[17].     They  observe   that   the  slow  convergence  of   the  polynomial   approxi- 

mations   is  due   to  the  presence   of   singularities   of  the   mapping   function 

f  in the  complement   Ωc ,  of  Ω.    They  also  observe   that,   in  many cases, 

considerable   information  about   these  singularities    is   available   and,  by 

using  this  information,   they  construct  a  non-polynomial  basis   for  which 

the  series   (3.11)   converges   rapidly.     More   specifically  the  method  of 

Levin  et  al   [17],   for  constructing  a  basis  for  the  BKM,   is  to  augment  the 

monomial   set   (4.2)   by  introducing  functions  which  reflect   the  main  singular 

behaviour  of   the  kernel  K(z ;0) .     Naturally,  the  same  procedure  can be 

used  to  obtain  an  appropriate  augmented  basis  for  the  RM. 

The  singular  functions  needed  for  augmenting  the  set   (4 .2)    are  determined 

by   considering   the   poles   and   branch  point  singularities  of   the  mapping 

function  f  as   follows: 

4,1     Poles     Let   the  mapping  function  f  have  a  simple  pole   at  a  point 

p∈ cΩ   .     Then,   since 

u0(z)   =  f ' ( z ) ,      K(z;0)   =  K(0 ,0 ) f ' ( z )    and  f(0)   =  0, (4.3) 

in  order   to  remove  the   influence  of  this  pole  from  the  numerical  process 

we  augment  the  set   (4.2)  by  introducing   the   function 

η(z)   =   {z /(z-p)}'   +  c 

=   {-p/(z-p)2}   +  c   , (4.4) 

where  c  =  1/p   in  the   case  of   the  RM,   and  c =  0  in  the  case  of   the   BKM. 

(The   reason   for   including    the   constant   c  in    (4.4)   is    that    in  the   RM  the 

basis  functions  must   satisfy  the   conditions   (2.2).)   The  basis   is   constructed 

in  this  way  be  considering  only  the  poles  of  f  that  lie  close   to   the 

boundary ∂Ω     Thus,   the  procedure  of   [17]   for  constructing  a  basis  requires 

knowledge  of   the  dominant  poles  of  f .   This  knowledge  is   often  available 

through  the  Green's   function  G(x,y;0)   of  Ω   which  is   connected   to   f  by 

f (z)   =  exp {-27π(G(x,y;0)   +  iH(x,y))}, (4.5) 
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where  H  is   the  harmonic   conjugate  of   G. 

Let   G  have   a  singularity  of   the   form 

{log |z-p| }/2π   , (4.6) 

at   the  point  p∈ cΩ    .     Then,   it  follows   from   (4.5)   that  f  has  a  simple  pole 

at   p.      This   shows   that   the   construction  of   the  augmented  basis   requires 

knowledge  of   the   dominant   singularities  of  the   Green's   function  of   Ω,   in 

the  complement  of   Ω .     For  polygonal  domains,   and  for  domains  whose 

boundaries   consist   of  straight   line   segments  and   circular   arcs,    these 

singularities   can  be  determined  by  the  method  of  images;   see   [17;p.l75] 

and  also  Copson  [8;p.l50].     For  domains   involving  more  general  boundaries 

no   standard   technique  for  determining   the   dominant   singularities   of  G, 

and  hence   the   corresponding  poles   of   f,   is  available.     However,   as   is 

observed  in  [17],   if   a  good  approximation  p~    to   the   pole   at   z =p   can  be 

obtained,   by  some  method,   then  the  introduction  of  the  function 

{- p~  /(z- p~ )2}  +  c 

into   the   set   (4.2)   is   sufficient   to   remove  the   influence  of   the  pole   from 

the  numerical  process. 

4.2     Branch  Point  Singularities.     Let   Ω  be  partly  bounded  by  two  analytic 

arcs   Г1   and  Г2  which  meet  at  a  point   z0     and  form  there  a  corner  of   interior 

angle   air,   where   a  =  p/q   is   a  fraction  reduced   to   lowest   terms.     We  consider 

the   asymptotic  behaviour  of  the  mapping  function  f   in  the  neighbourhood  of 

z0 . 

If   Ω  is   a  polygonal  domain  then  the  Schwarz-Christoffel   formula  shows 

that,   in  the  neighbourhood  of  z0 , 

,k/α)0z(zka
1k

)0f(z(z)f −∑
∞

=
−

or  since  f(0)   -  0, 

,}k/ α)0z(k/ α)0z(z{ka
1k

(z)f −−−∑
∞

=
=              (4.7) 

where   a1   ≠  0;   see  e.g.   Copson  [8;p.l70].     This   shows   that  unless   1/α  is 

an  integer  f  has   a  branch  point  singularity   at    z   ,   due   to  the  presence  of 
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fractional  powers   of   (z-z0)   in  (4 .7) .      In  order   to  remove   the  influence 

of  such  a  singularity  from  the  numerical  process,  we  follow  the  procedure 

of  [17]   and  augment   the   set   (4.2)   by  introducing  the  functions 

dk/α)0z(k/α)0z(z(z)η −−−−=
⎭⎬
⎫

⎩⎨
⎧  

        d1-k/α)0z(z −−=
α
k          (4.8)

corresponding  to  the  first  few  singular  terms  of   (4.7).     In   (4.8), 

/α1-k/α)0z(kd
⎭
⎬
⎫

⎩
⎨
⎧ −=   in  the  case  of  the  RM,   and  d  =  0  in  the  case  of  the 

BKM.. 

If  Ω  is  a  non-polygonal  domain  then  the  singular  functions   required  for 

the  augmentation  of   (4 .2)    can  be  determined  from  the  asymptotic  expansion 

,m))0z(z(log/α,k,)0z(zm,,k,B
m,,k,

)0f(z(z)f −−∑=− l
l

l
                          (4.9) 

which   is  due   to  Lehman  [16].    In  (4.9),  k = 0,1,2, ................. ,  l ≤ℓ≤p,  0≤m≤k/q , 

B 0 ,  1   0   ≠   0,   and the  term  corresponding  to  B k, ℓ, m   precedes   the   term 

corresponding  to B k',ℓ ' ,m'  if  either  k +  ℓ/a  < k'+ ℓ' /α  or  k+ℓ /α  = k'+ℓ'/α 

and m >m' . 

We  note   that   (4.9)   differs  from  (4.7)   in  that apart  from powers  of   (z-z0) 

it  also  involves  terms   of  the  form 

( z-z0) β  {log (z-z0) } m  , (4.10)
where  m  is   an  integer.     This   implies   that  for  a  non-polygonal  domain,  we 

       cannot   conclude   that   there   is   no   singularity  at   z0 even  when   1/α  is   an 

        integer. 

5.   Computational  Details  and  Numerical  Examples.

In  all   the  examples  considered  in  this   section  we  compute   approximations 

to  the  mapping  function  F  which  maps  conformally  Ω  onto  the  unit  disc  D1. 

Thus,   in  the  case  of  the  RM  the  approximation  Fn  is  determined  from  (3  3) 

and   (3.8),   and  in  the  case  of  the  BKM  from  (3.12)   and   (3.15). 

The  evaluation  of  the  coefficients  of  the  linear  system  (3.5)   and  the 

orthonormalization  of  the  set   {n j ( z )}   by  means  of  the  Gram-Schmidt  process 
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require   the   computation  of  the  inner  products 

;dxdy(z)sη(z)rη)sη,r(η ∫∫Ω=    r, s   = 1,2 ,…, n   .  

Using  a  Green's   formula   ([10,p. 118],    [20,p.240]),   the   inner  products   are 

expressed  in  the   form 

,(z)sη(z)'sμdz(z)sμ(z)rηΩ2i
1)sη,r(η =

∂
= ∫       (5.1)

and   the   integrals   in   (5.1)   are   computed,  as  proposed  in [17,p.177],  by 

Gaussian  quadrature.     If,   due   to   the  presence  of  a  corner,   the  basis   set 

contains   functions   of  the   form  (4.8)   or   (4.10)   then  the    Gauss-Legendre 

formula  may  fail   to  produce   sufficiently  accurate  approximations   to   the 

inner  products  which  involve   these   singular  functions.     It  is   then 

necessary   to  use   special   techniques   in  order   to   imporve   the   accuracy  of 

the   quadrature.     These   techniques   depend  on  the   geometry  of   ∂Ω  and,   for 

this   reason,   it   is   not  possible   to  describe   a  procedure   for   a  general   ∂Ω. 

If  however,   as   is   frequently   the   case,   the   arms   Г1   ,  Г2   of  the  corner  z0 

are   both   straight   line   segments   then  the   singularities  of   the   integrands 

can  always  be  removed,   quite  simply,  by  choosing  an  appropriate  parametric 

representation  for   ∂Ω;   see   [ 1 7 , p . l 7 7 ]    for  further  details. 

In   the   RM  the   complex  linear   system  (3.5)   is   solved  by  using  the  NAG 

Library  routines   F01BN  and  F04AW.     These   routines   compute   the   solution  of 

(3.5),   by  applying  Cholesky's  method  on  the  positive  definite  Hermitian 

matrix  of  coefficients.     The   orthonormalization  procedure  used   in  the 

BKM  is  based  on  the  standard  Gram-Schmidt  algorithm;   see  e.g.   [9,p.67] 

and  [6,p.822]. 

An  estimate  of   the  maximum  error   in   |Fn (Z) |   is   given  by   the  quantity  En . 

This   is  obtained,   as  described   in  [17],    by  computing 

en(z)   =   1   -   | F n ( z ) |     , (5.2) 

at   a  number  of  "boundary  test  points"   z j  ∈ δΩ   and   then  determining 

.|)j(zne|max
jnE =           (5.3) 
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In  each  example,   the  BKM  results  presented  correspond  to   the  approx- 

imation  FN o p t ,   where   n  =  N o p t   is   the  "optimum  number"   of  basis   functions 

which   gives  maximum  accuracy   in  the   sense  explained  in  [17,p. 177].     That 

is,    this   number   is   determined   by   computing  a   sequence   of   approximations 

{Fn   (z)},   where   at   each  stage   the   number  n   of   basis    functions   is    increased 

by  one.      If   at   the   (n+1) th       stage    the    inequality 

E  n + 1  <  E n     , (5.4) 

is   satisfied  then   the  approximation  F n + 2   is   computed.     When  for  a  certain 

value   of  n,   due   to  numerical   instability,    (5.4)   no  longer  holds   then  we 

terminate   the  process   and   take  n  =  Nopt

In   the   case   of   the  RM  the   above   procedure   for   determining  Nopt     is 

computationally   expensive,   since   for  each  new  value  of  n  the  determination 

of  Fn   requires   the   solution  of  a  new   (n-1)x(n-1)   complex  linear  system. 

For  this   reason,   in  each  example,   the  RM  approximations   correspond   to 

n  =  Nopt  ,     where   Nopt  is   the  optimum  value   of  n  used  in  the BKM.    It  should 

be   observed   that   if   the   number  of  basis   functions   is   increased  above   a 

certain  value   n  our  RM  procedure   fails.     This   failure   is   due   to  our   choice 

of   subroutines   for   the   solution  of   the   linear   system   (3 . 5)   and  occurs 

when,   due   to   the   accumulation  of   rounding  errors,   the  matrix  of   (3.5) 

ceases  to  be  positive  definite.     We   do  not  regard  this   as  a  drawback  of 

the  method,   since   such  a  failure  serves  as  a  warning  of   ill-conditioning 

and   indicates   that   the  value   of  n  should  be   decreased. 

In  presenting   the   results  we   adopt   the   notation  used  in   [17 ]  and  denote 

the  BKM with monomial basis  (4.2)  by BKM/MB  and  the BKM with augmented 

basis  by BKM/AB.     Similarly.   we  denote   the  corresponding  RM  methods  by 

RM/MB  and  RM/AB.     For  each  example  we   list  the  singular  functions  used 

for   augmenting   ( 4 . 2 ) ,    the  boundary  test  points   and   the  order  of  the 

Gaussian  quadrature   used.     Also,   when   the   accurate   computation of   the 

inner  products  requires   the  use  of  a  special  parametric  representation 

for  part  of  the  boundary  ∂Ω,   we  give  this   representation.     In  each  case 
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the   numerical  results  presented  are  values  of  EN o p t      obtained,   as  described 

above,   by  using   (5.3).     We  also  present   the  computed  values   RNopt   , 

approximating  the  conformal   radius  R.     These  approximations   are  computed, 

in  the  case  of   the  RM.,   from  (3.7)   and,  in the  case of  the  BKM,   from  (3.15). 

The   domains   in  the   three  examples   considered  below  are   chosen    because 

they  are  needed  for  the  applications  contained  in  Section  6.     Several  other 

geometries,   illustrating   the   application  of   the   BRM  and   the   considerable 

improvement  in  accuracy  obtained  by  using   the  BKM/AB  instead  of  the  BKM/MB, 

are  considered  in [17].    Also,   the  explicit  BKM/AB   formulae   for   the 

approximate  conformal  mapping  of  several  domains  can  be   found  in  [21]. 

All  computations  were  carried  out,   in  single  length  arithmetic,   on  a  CDC   7600 

computer. 

Example   5.1    Quadrilateral;    Figure  5 .1 .  

 

FIGURE  5.1 

Augmented   Basis.      The   following   singular   functions,   corresponding   respectively 

to   the  poles   at   the  points  p j  ;    j  =   1 ,2 ,3 ,4   and   the  branch  point  singularity 
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at   the  corner  C   =   zC     are   used:      - p j  / ( z - p j ) 2    +  cj ;    j  =  1,2,3,4    and  

;kd
13

4k
)Cz(z

3
4k −

−
−    k  = 1, 2,    where   in   the   BKM/AB   cj  =  0,  dk    =   0  and  in 

the   RM/AB,  cj   =   1/Pj ,  dk   =     3. /  
1

3
4k

)Cz(4k

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ −
−   

Quadrature.      Gauss -Legendre   formula  with   16  points   along  each   side   of   the 

polygon. 

In  order   to  perform   the   integration  accurately   we  choose  the  parametric 

representations  of   BC   and  CD  to  be 

z   = 
(zB - zB C ) (2  -  τ)  +  z3

C , 1≤ Τ ≤2;   for   BC, 

(zD - zC ) (Τ -  2)3  +  zC,  2 ≤ Τ ≤3  for  CD. 

Boundary  Test  Points.      Sixteen  points   equally   spaced,   in  steps   of   0.25, 

starting   from  A. 

Numerical   Results. 

BKM/MB   :   Nopt =    13,   E 13  =   5.865   x   10-3,    R13  =   1.15608265313. 

RM/MB      :                       E13  =   5.865    x   10-3,    R13  =   1,15608265325. 

BKM/AB   :   Nopt  =   16,   E 1 6 =   5.368   x   10-6,    R16   =   1.15601515324. 
RM/AB      :                       E16   =   5.285   x   10-6 ,   R16   =   1.15601515316. 

In   table   5.1   we   present   the   detailed   execution   times   obtained  by   applying 

the   above   four  methods,   i.e.  the  BKM/MB  and  RM/MB  with  n  =  13 and  BKM/AB 

and   RM/AB  with   n  =   16.      These   results   indicate   that,   for   the   same   set  of 

basis   functions,    the   execution   time   of   the   RM   is   comparable   to   that   of 

the   BKM  although,   in  general,   the   BKM/AB   turns  out   to  be   slightly   faster 

than  the   RM/AB.      This   can  be  explained  by   the   fact   that   the   singular 

functions   used   in   the   RM/AB   involve   the   additional   constants   cj   and   dk . 

These   observations   regarding   execution  times  do  not   agree   with   those  of 

Gaier   [10,   p.    154],     The   experiments  of   [I 0 ] ,    preformed  by   using  a 

monomial   basis,   indicate   that   the   RM  is   considerably   faster   than   the 

BKM.     The   reason  for   this  variance   could  be  due   to   the   differences 
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between   the   computing   equipment   available   in   1964   and   the   present   time. 
 

   Execution    times    in    secs 

 BKM/MB RM/MB BKM/AB RM/AB

Evaluation  of   Inner  Products 0. 3 75 0. 178 0.429 0.496 
Orthonormalization  Process 0.005 - 0.010   - 
Solution  of  Linear   System - 0.001    - 0.002 

Total  Time 0 . 2 1 2  0.204 0.497 0.529 

TABLE  5.1 

Example   5.2        The   region  shown  in  Figure   5.2 
 

FIGURE   5.2

Augmented   Basis.      The   following   singular  functions corresponding  respect- 

ively  to   the  poles  at   the  points  p j ,      j   =   1,2,3,4,5  and  the  branch  points 

singularities  at   the   corners   B  and  D  are  used: 

         -pj  /  (z-pj)2  +  cj,    j  =   1,2,3,4,5
and 

           1,2,k;2kd
13

4k
)Dz(z

3
4k,1kd

13
4k

)Bz(z
3

4k =−
−

−−
−

−  
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where   in  the  BKM/AB,   cj   =0,   d lk  =  d2 k  =  0 

and  in  the  RM/AB2  cj  =  1/pj,   d1k  =  .3
1

3
4k

)Dz(4k  d2k       3,   
1

3
4k

)Bz(4k //
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

−=
−

−  

Quadrature.      Gauss-legendre   formula  with   16  points   along  AB,   BC,....,FA. 

In  order   to  perform  the   integration  accurately  we   choose   the  parametric 

representations   of  AB,   BC,   CD,   DE   to  be 

     

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤ ,   + )

≤≤ ,   + )

≤≤ ,   + )
≤≤ ,   + )

=

DE,for;4τ3Dz33  -  ( ) Ez - D(z
CD,for;3τ2Dz3  τ-  (3 ) Dz - C(z
BC,for;2τ1Bz31  -  ( ) Bz - C(z
AB,for;1τ0Bz3  τ-  (1 ) Bz - A(z

z

τ

τ

Boundary  Test  Points.      Twenty  four  points   equally  spaced,   in  steps   of 

0.25,   starting   from  A. 

Numerical   Results. 

BKM/MB   :  Nopt  = 15,  E15   =   5.041   x10-3,     R15   =  0.690478428461. 
RM/MB     :                     E15   =   5.116   x10-3,     R15   =  0.690476981221. 
BKM/AB   :   Nopt  = 19,  E19   =  8.680    x10-7,    R 19  =  0.690412899521. 
RM/AB     :                       E19  =   9.245   x10-7 ,    R19   =  0.690412899521. 

Example   5.3     The   region  shown  in  Figure   5.3.      In   this, EA  is   inclined  at 

an  angle  of   37π/4   to   the  real   axis,   and  AB  is  an  arc   of   the  circle  with 

centre   (-1,    1.4)   and   radius   0.8. 

Augmented  Basis.      The   following   singular   functions   corresponding   to   the 

poles   at   the  points  p . ;     j   =   1 ,2 ,3 ,4    are   used: 

-pj /(z  -  pj )2   +  cj ;      j   =   1 ,2 ,3 ,4 ,   where  in  the  BKM/AB , cj = 0 and  the 
RM/AB,  cj   =   1/pj . 

Quadrature.      Gauss-Legendre   formula  with   16  points   along  AB,   BC,....,FA. 

Boundary  Test  Points.      Twenty   four  points.      On  the   straight   line   segments 

these   points   are   equally  spaced,    in  steps   of   0,25,    starting   from  B. 
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(The  point  p2   is   the  inverse  point  of  the  orgin  with  respect   to   the  arc  AB.) 

FIGURE  5.3

Numerical  Results. 

BKM/AB   :     No p t  =  25,  E25  =   1.468  x  10 - 7,     R25  =  0.478807443760. 

RM/AB     : E25  =   1 . 0 1 1    x   30-7,     R25  =  0.478807443760. 

Example   5.4     The  region  shown  in  Figure  5 .4 
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FIGURE   5.4

Augmented  Basis.     The  following  singular  functions  corresponding 

respectively  to  the  poles  at   the  points  p j ;      j   =   1,2,3  and  the  branch 

point   singularity   at   the   corner  B   are   used: 

-pj  / (z - pj) 2   +  cj   ;   j  =  1,2,3  and ;kd
13

2k
)Bz(z

3
2k −

−
−  k  =  1,2,4,5,7, 

where   in   the  BKM/AB   c.   =  0,   d     =0   and   in  the  RM/AB   c..=   1/p., 

3.
1

3
2k

)Bz(z2k
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⎪
⎩

⎪
⎨

⎧

−
−

=  

 

Quadrature.     Gauss-Legendre   formula  with   16  points  along  AB,   BC,....,FA. 

In  order   to  perform  the  integration  accurately  we  choose  the  parametric 

representations   of  AB,   BC   to   be 
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Boundary  Test  Points.     Twenty  four  points  equally  spaced,   in  steps  of 

0.25,   starting  from  A. 

Numerical  Results. 

BKM/AB   :   Nopt   = 20, E20  =  2.171    x   10-5,     R20  =  0.829851089401. 
RM/AB      :  E20 =  1.8 0 4  x   10-5,     R20  =  0.829851090640. 

6.     Applications. 

All   the  examples   considered  in  this   section  involve   the  conformal  mapping  of 

the  domain  Ω∈   z-plane  onto   the  rectangle 

Ω '  =   {(ξ ,η)    :   0<ξ<1,    0<η<H}     , (6.1) 

in  the  w'  -plane   (w '   =   ξ  +  iη),   so   that  four  specified  points  Ai∈∂Ω, 

i   =   1,2,3,4,   on  the  boundary  of   Ω,   are  mapped  respectively  onto  the  four 

vertices   (0,0),   (0,H),    (1 ,H)    and   (1,0)   of  Ω'.     This  mapping  can  be 

performed  by   using  the  subroutine  CTM1   of  Papamichael  and  Sideridis   [22], 

after   first   transforming  Ω  onto  the  upper  half  w-plane  by  means  of   the 

tranformation 

w   =   T(z)   =   i{l  +    F(z)}  /  {1 -   F(z)}   , (6.2) 

where  F  is   the   function  mapping  Ω  onto   the  unit  disc;   see  Figure   6.1. 

The   subroutine  CTM1   maps   the  upper  half-plane  onto   the  rectangle   Ω'  by 

means   of   a  bilinear   and  a  simple  Schwarz-Christoffel   transformations.     Its 

main  computational  requirement  is   the  calculation  of   two  incomplete  e l l ipt ic  

integrals  of   the   f i r s t   kind   for  each  transformed  point;   see   [23]   and   [24], 

In  particular,   if   the   exact  mapping  function F   is  known  then   (6.2),   in 

conduction with  the  CTMl,   produces  essentially  the  exact  conformal  map  of 

Ω  onto  Ω'   .     If  F   is   not  known  analytically  then  an  approximate  conformal 

map  is   obtained  by  replacing   (6.2)   by 

w = T~  (z)  =  i  {1  + F~ (z)} / {1 - F~ (z)}   , (6.3) 
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where   F~   is  an  approximation  to   F. 
 

FIGURE  6.1

The   above   procedure  for  mapping  Ω  onto    Ω'    forms   the  basis   of   a  conformal 

transformation  method  for  the  numerical   solution  of  a  class  of  elliptic 

boundary  value  problems.     This  method  is  discussed  fully  in  Papamichael 

and  Sideridis   [23]   and,   for   this   reason,   its   application  is   not   considered 

here.     Instead,   we  consider  a  number  of  examples  which  require   only  the 

computation  of  the  height  H  of  the  rectangle  Ω'.     This  is  a  particularly 

simple   computation,   since   H  is   given  by   the   formula 

H  =  K { ( 1   -  k2}½ / K(k)      , (6.4 ) 

where   K(k)   is   the   complete  elliptic   integral  of  the   first  kind  with 

modulus 
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dk              (6.5)

In   (6.5),   T(zi)   are   the   images   of  the  points  Ai    =  zi   in  the  w-plane,   i.e. 

d   is   the  cross-ratio  of  these  images;   see  e.g.   [5],   [12]  and   [22]. 

It  follows  from  (6.4)   and   (6.5)   that,   for  a  given  domain  Ω,   the  height 

H  of  the  rectangle  Ω'   is   determined  completely  by  the  position of   the 

four  boundary  points  Ai  .     We   indicate   this  by  writing 

H =  H {A1, A2,A3,A4 }   .           (6.6) 
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In  fact  H   is   the   so—called   conformal   module   of   the   quadrilateral   defined 

by  the  points  Ai  ,   i   =   1,2,3,4;   see   Gaier   [11],   [12],     This  domain 

functional  has  many  practical  applications  and   some  of  these   are  described 

briefly  below. 

Consider  a  thin  resistor   in  the   shape  of   ft,   cut   from  a  sheet   of  material 

of   uniform  resistivity.     Assume   that   constant  voltages   are   applied  to 

the  boundary   segments A1A2   and  A3 A 4  whilst   the   remainder  of  ∂Ω is   insulated. 

Then   1/H,   the  reciprocal  of  the   conformal  module   (6.6),   gives   the   geometric 

resistance  of  the  resistor;   see  e.g.   Bowman   [5,p.63]   and  Trefethen   [30]. 

The   conformal  module   is   also  closely  related  to   the  capacitance  C   between 

A1A2  and  A3A4 .   This  is  defined   as   the  charge  on  A1A2   when  A3A4   is   at 

unit  potential   and   the   remainder  of    ∂Ω  is   at   zero  potential;    see   e.g. 

Campbell   [7].     If   H is  the  conformal  module  (6.6)  then  it   is   shown  in 

Gaier   [13]   that 

{ 1]π/H1)2r[sinh1)(2r
1r2π

2C −−−∑
∞

=
= }       (6.7)

The   final   application  considered  here  concerns   the   computation  of   the 

moduli   of  certain  doubly-connected  domains.     Let   the  bounded   simply- 

connected  domain  ft  lie   in   the  upper  half  z-plane  and  assume   that   it   is 

partly  bounded  by  two   line   segments  A1A2   and  A3A4  on  Re{z},   where  A1A2 

A3A4   are   the   only  boundary   segments   on  the  real   axis;   see  Figure   6.2(a). 

Let  G  be   the   doubly-connected  domain  obtained  by  reflecting Ω  about   the 

real  axis.     Then,   0  can  be  mapped   conformally  onto   the  circular   annulus 

1  < |w"|<M  in  the  w'-plane,   where   the   radius  M  of   the  outer  circle   is 

called   the  modulus   of  G.     This   conformal  mapping  of   G  has  many  practical 

applications,   and  in  these   the  value  of   the  modulus  M  is  often  of   special 

significance;   see  e.g.   Lewis   [18]  where  M  is  simply  related  to  the   flow 

parameter  of   a  hydrostatic  oil  bearing.     Referring   to   the  domain  ft  of 

Figure   6.2(a),   let  H  =  H{A1,A2,A3,A4}  be   the  conformal  module   of   the 

quadrilateral  defined  by  the  four  points   A.;   i  =   1,2,3,4.     Then,   the 
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FIGURE  6.2

modulus  M  of  G  Is  related  to  H  by 

M  =  exp{πH}     ; (6.8) 

see  e.g.   Gaier  [11,p.188],     The  result   (6.8)   can  be  deduced    from  the 

observation  that   the  conformal  map 

w~ =  exp{π(iwʹ  + H ) }    , (6.9) 

transforms  the  rectangle  Ω'  of  Figure  6.1   onto  the  domain 

Ω” =  {rei θ : 1<r<M  = expπH ,  0<θ<Π }  , 

so  that   the  corners  A i ;    i  =   1,2,3,4  of Ω'  are  mapped  respectively  onto 

the  points   (M,0),    ( 1 , 0 ) ,    (-1,0)   and   (-M,0).     Similar  results  hold  if   the 

doubly-connected  domain  consists  of  more   than  two  identical  and 

symmetrical  parts.     For  example,   if  G  is  obtained  through  the  reflexion 

of  the  domain Ω  of  Figure  6.2(b)   about   the  real  and  imaginary  axes  then 

clearly 

M  =  exp{πH/2}   , (6.10) 

In  the  examples  presented  below  we  use  the  approximate  conformal  maps 

obtained   in  Section  5   to   compute  approximations   to  various   conformal 

modules  and  hence,   by  means  of   (6.8),   approximations   to   the  moduli  of 

certain  doubly  connected  domains. 



-   24   - 

Example   6.1.      Let   G  be   the   square   frame 

G  =  {(x,y):   0.5<|x|<l,|y|<l}  U  {(x,y):    | x|<1,0.5<| y |<1}      , 

illustrated   in   Figure   6.3. 

 

FIGURE  6.3

We  determine   two   approximations   to   the  modulus  M  of   G,   by   first   computing 

approximations  H~ 1 ,  H~ 2   to   the  conformal   modules 

H1   =  H1{ B' , C' ,A}   , H2   -  H2{B,C,D,A}      , 

corresponding  respectively   to   the  L-shaped  domain  Ω1   bounded  by  ABB'C 'CDA 

and   to   the  quadrilateral   Ω2  bounded  by  ABCDA. 

In  the  case  of   Ω1,   the  exact  value  of   the   cross-ratio   d  corresponding  to 

H1   can  be  derived   from  the  results   of  Gaier   | 11, p. 189],   which  give 

d   =   (7√3   +   12)/24. 

Hence,   the  exact  value   of  H1   can  be   determined  by  means   of   (6 .4) - (6 .5) .       In 

this   way   we   find   that,    correct   to   six   significant   figures, 

H ,  =  0.390850   and  H2   =   2H1   =  0.781701. 
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In   computing   H~ 1   and   H~ 2 ,  the  approximations  F~   used  in  (6.3)  for  the 

mapping   of   Ω1    and   Ω2   are   as   follows.      In   the   case   of   Ω1  ,  F~    is   the   BKM/AB 

approximation  which   is   given   explicitely   in   [21,Ex.2.3].      In  the   case   of 

Ω2 ,    F~    is    the   BKM/AB   approximation  obtained   in  Example   5.1,      The   numerical 

results   obtained   are 

H~ 1  =  0.390840    and H~ 2  =  0.781708. 

These   give   respectively   the   approximations 

M~ 1 =   exp {π H~ 1 / 2}  =  1.847680, 

and 

M~ 2   =   exp{πH~ 2 /4}   =  1.847719, 

to   the   modulus    M  of   G.      The   exact   value   of   M,    correct   to   seven 

significant   figures,    is 

M=   exp {π H1/2}   =   exp{πH2 /4}   =   1.847709. 

Example   6.2.      Let    G  be   the   doubly—connected   domain  illustrated   in   Figure 

6.4.    The  outer  boundary   of   G is   a   square   of   length   4   whose   sides   are 

parallel    to    the    co-ordinate    axes.      The   inner   boundary   is   a   concentric 

square,   of   length   √2,   whose   sides   are   rotated   through   45     with  respect 

to   the   axes, 

 
FIGURE  6.4
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To  determine  an approximation M~  to   the modulus  M of  G,  we  first  compute 

an approximation H~    to   the   conformal  module 

H  = H{A,B,D,E}   , 

corresponding  to   the  domain Ω bounded by ABUEFA,   i.e.   Ω is   the   domain of 

Example   5.2.   For  the  computation of   H~ ,  we  take  in  (6.3)  F~   to  be   the  BKM/AB 

approximation  obtained  in Example  5 .2 .      In  this  way  we    find 

H~  =  0.602630 

and 

M~   =  exp{πH~ /2}  =  2.576958, (6.11) 

In  this   case   the   exact  value   of  M  is   not  known.     However,   the   approximation 

(6.11)   should   be   compared  with   the  value   2.578411,   obtained  by   an  integral 

equation  method  in  Richardson  and  Wilson   [26,p.316],   and  with  the  result 

2.57623<M<2.57806, 

established   in  Gaier   [11,p.192],   by   a  finite   difference  method   based   on 

a  variational   property  of   the  Dirichlet   integral  of  Ω. 

Example   6.3.      Let   G  be   the  doubly  connected  domain 

G  =   {(x,y):    |x|<l,|y|<l}   ∩   {z :   | z |>0.4}   , 

illustrated  in  Figure  6.5. 

 
FIGURE  6.5
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Let Ω be the domain bounded by the straight lines BC, CE, EA, and the 

circular arc AB, i.e. Ω is the domain of Example 5.3. We compute the 

approximation  H~    to  the   conformal  module 

H   =  H{E,A,B,C} 

of   Ω,   by   taking  in   (6.3)   F~    to  be   the  BKM/AB  approximation  obtained  in 

Example  5.3.     In  this  way  we  find 

H~    =   1.263102. 

Hence, 

M~   -  exp{πH~ /4}  =  2.696725, 

gives   an  approximation  to   the  modulus   M  of  G.     This   approximation  M~  

should   be   compared  with   the  values   2.69861   and   2.69677  obtained  in  Gaier 

[14 ],   by  using  respectively  the   integral  equation  methods   of  Symm   [29] 

and  Hayes   et   al   [15],   and   the  value   2.696724   obtained  by  using   a  variational 

method   for  doubly-connected   domains;   see   [10,p.2491.     As   is  pointed  out 

in  [ 14 ],   this   last  value   is   probably  correct   to   five   decimal   places. 

Example  6.4.      Let   G  be   the   doubly-connected   domain  illustrated   in  Figure 

6.6.      This   domain  is   the   intersection  of   the   square   domain 

{(x,y):   | x | < 4 , | y | < 4 }    , 

with   the  complement  of   the  domain 

{(x,y):    | x | < 3 , | y [ < l }    U   {(x,y):  | x | < l , | y | < 3 }    . 

Let   Ω  be   the   domain  bounded  by  ABCDFA,   i.e.   Ω  is   the  domain  of   Example 

5.4.      We  compute   the  approximation  H~    to   the   conformal  module 

H   =  H{F,A,C,D} 

of  Ω,   by   taking   in   (6.3)   F~    to   be   the   BKM/AB   approxiamtion  of  Example   5.4. 

In  this   way  we   find 

H~    =  0.497750. 

Hence, 

M =  exp{πH~ /4}  =   1.478358 

is    an  approximation  to   the   donulus  M of  G.     This   approximation   should   be 

compared  with   the  value   1.478296  which  we   obtained  by  using  a  method 
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based  on  the  variational   technique  for  doubly-connected  domains   described 

in   [10,p.249]. 

 
FIGURE  6,6

Discussion

The  numerical  examples  of  Section  5   indicate  clearly  that  the  RM  produces 

results   of   comparable   accuracy   to   those   obtained  by   the   BKM.      Like   the 

BKM,   the   RM  with  a   suitable  augmented  basis   is   an  extremely  efficient 

method   for   the   numerical   confortnal  mapping  of   simply—connected   domains. 

Regarding  conputational  effort,   our   experiments   show   that   for   the   same 

number  of  basis   functions   the   computation  time  of   the  RM  is   comparable 

to   that   of   the  BKM.     However,   the   RM  involves  the  solution  of   a  new 

(n+m-1)   x   (n+m-1)   complex  linear  system,   each   time   that   the   number  n  of 

basis  functions  is   increased   to  n+m.     This  is  clearly  a  drawback  of  the 

method. 

The  procedure   described   in  Section  6,   for  mapping  a  given  simply-connected 

domain   onto  a  rectangle,   has   a   number  of  practical  applications.      In 
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particular,   as   the   examples   of  Section  6   indicate,   this   procedure   leads 

to   an  efficient  method   for   determining  accurate   approximations   to   the 

moduli   of   a   class   of   doubly—connected   domains. 
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