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        by 
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Summary

  A regression model is considered in which the response variable has 
a type 1 extreme value distribution for smallest values. Small sample 
moment properties of estimators of the regression coefficients and scale 
parameter, based on maximum likelihood, ordinary least squares and best 
linear unbiased estimation using order statistics for grouped data, are 
presented, and evaluated, for the case of a single explanatory variable. 
Variance efficiency results are compared with asymptotic values. 
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2 
1. Introduction 

 
Consider the classical multiple linear regression model 

                                 i = 1,. .. ,n                        (1.1) i
~

'
i~iii εβxεuY ====

where  (1,x='

i~
x .i1 , ...,x ),  = (β'

~
β 0 , β 1, . . . , β k) , the values xi 1 , . . . ,xik

representing observations on k non-random explanatory variables for the 

ith individual. We shall assume that the true residuals {εi} are inde- 

pendently and identically distributed with 

                      E(εi) = 0 ,     var(εi) = σ 2 ,   i = 1 ,. . . ,n                                  (1.2) 

If the distribution of the { ε i. } is not specified, the estimators of 

the regression coefficients are usually determined by ordinary least 

squares (OLS) and are given by the value of which minimises )
~
β

~
X-

~
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~
β

~
X-

~
Y( , 

where  = (Y'Y
~

1 ,. . . ,Yn ) and  is the design matrix. Assuming that  is 
~
X

~
x

of rank k+1, the OLS estimator is given by 
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(1.4) 
An unbiased estimator of σ2 is given by the LS estimator 

     .)
~

~
β~X~Y(' )

~

~
β~X~Y(1)k(n

2~
σ −−−−=                       (1.5) 

 
The justification for using least squares when the distribution 

of the {εi} is unknown, is that the OLS estimators }r
~
β{  have minimum 

variance among estimators that are linear combinations of the {Yi.}. 
Further the estimator has minimum variance within the class of 2~σ
estimators which are quadratic forms in the {Yi}. When the distribution 
of the { εi} is specified, estimates of  and σ

~
β 2 may be found by maximum 

likelihood (ML). The ML estimator of 
~
β , denoted by  will be a non-linear 

~
β̂

function of the {Yi} except for the normal case when  and 
~
β̂

~
β~  are the same. 

The ML estimator  of σ
2σ̂ 2 is equal to for (n-2) 

2~σ  the normal case but 
in general is not a quadratic form in the {Yi}. Calculation of the ML 
estimates usually requires an iterative solution but the extra comput- 
ational effort is often worthwhile as appreciable loss of variance effic- 
iency can occur if LS is used for non-normal cases. 
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         In this report, we consider the case when the {Yi} have a type 1 
extreme value distribution for smallest values with p. d. f. 
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where γ = 0.577216 is Euler's constant and θ>0 is the common scale para- 
meter . The mean and variance of the distribution are 

                                  ,    
~
β'

i~x)iE(Y = 2θ2π6
1)ivar(Y =      (1.7) 

respectively. The distribution is nonsymmetrical with skewness and 
kurtosis coefficients given by 

                          γl(Yi) = 1.29857       γ2(Yi) = 2.4.              (1 .8) 

       The type 1 extreme-value (EV) distribution with p.d.f. given by 
(1.6) arises under certain conditions as the 1imiting distribution of 
the smallest value of a large number of independent and identically 
distributed random variables. It therefore often provides a useful 
approximation to the distribution of system life or system breaking 
strength when a system contains a large number of components and 
'failure' occurs as soon as one component fails.  

As is well-known, the type 1 EV distribution is closely related 
to the Weibull distribution. Thus the c.d.f. of Yi. is 
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If we put 

 Wi = exp(Yi) ,  i = 1,…,n               (1.10) 

the random variable W. has the Weibull distribution with c.d.f. 

  (w) = 1 - exp{ - (w/δ)
iwF l/θ} , 0 < w < ∞                       (1.11) 

where the scale parameter 5 is 
      .              (1.12) })x({exp

~

'

i~
γθ+β−=δ

We have 

  i = 1 ,. .. ,n              (1.13),)x(exp)w(E
w~

'

i~i β=
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where 

           owβ
= βo + δθ + logΓ (1+θ) ,        βwr = βr ,          r = 1,...,k .              (1.14) 

It follows that the regression model for the {Yi} with additive model 

µi. = 
~
β'

i~x  for the means is equivalent to that based on the {W.} with an 

multiplicative exponential model for the means. No special treatment 
is therefore required for the Weibull model. 

       When no explanatory variables are present, many investigations 
have been made to assess and compare the properties of various estimators 
for the location and scale parameters of the type 1 EV distribution. A 
useful survey is given by Mann (1968). Lawress (1982) discussed statis- 
tical inference procedures for the type 1 EV regression model and also 
gives asymptotic efficiency results for LS estimation relative to ML 
estimation. However, little work appears to have been done to assess 
the small sample properties of the estimators in the regression case. 

       This report focuses attention on the moment properties of estimators 
for the parameters in the regression model. In section 2, four comput- 
ational procedures for determining the ML estimators are described and 
some findings relating to their computational efficiency are given. 
Approximations to the biases and variances of the ML estimators are given 
in section 3 and evaluated by simulation for the case of a single explan- 
atory variable. The OLS estimators are considered in section 4 and in 
section 5 we discuss the best linear unbiased estimators (BLUE'S) based 
on order statistics when grouped data are available. Finally, in 
section 6 small sample variance efficiency results as obtained by simu- 
lation are compared with asymptotic results. 

2.     Computational Procedures For Maximum Likelihood Estimation

In this section, we describe four computational methods for determining 
the maximum likelihood estimates. The first two methods use the Newton- 
Raphson and Fisher's scoring approach respectively, while the last two 
methods are designed to facilitate the use of the statistical package 
GLIM which provides ML fits of generalised linear models. 

           We first present results for the first and second order derivatives 
of the logarithm of the density given by (1.6). For notational conven- 
ience we set 
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                             i = 1 ,...,n      (2.1)  ,)xy(z '

i~i
1

i γ−−θ= −

and we have 

                     log (y
iYf i) = θ-1 exp(zi -  )     (2.2) iz

e

with  

       ∂zi/∂β r = -xir /θ , ∂ zi./∂⎝ = -(zi +γ)/θ . 
 
We set 
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for r,s = 0,1,...,k, and a straightforward calculation gives 
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θ U, 1)- iz
(e1- θ ir x=  (i)
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          γ)}i(ziz
e1- iz
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rθV  ,  iz

e 2- θ isxir x=  (i)
rsV ++=    (2.6)

 

                     (2.7) 1)}-1)- iz
γ){ei2(ziz

e2γ)  i{(z 2- θ - =  (i)
θθV +++

     If L(
~
β , θ) =  log  (y

i
∑

iYf i) denotes the log-likelihood we have 
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0U

i.θ

θ),
~
β(L

,(i)
rU

irβ

θ),
~
β(L

∑=∂

∂
∑=∂

∂
     (2.8) 

Thus the ML estimates are given by the solution of the k+2 equations 

                         (2.9)n1)iẑ
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i
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(eirx
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                               i = 1 ,... ,n                                     (2.10) ,)xy(z
~

'
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1
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The second order derivatives of the log-likelihood are given by 
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(i) Newton-Raphson Method

Using the Newton-Raphson approach to find an iterative solution 
to the likelihood equations, we set 
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where )(
θ,

)(

~
β

ll ∧∧  denotes the approximations to
∧

~
β and 

∧
θ  at the  

stage of iteration. The new approximations are given by 
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(ii) Fisher's Scoring Method

        A simple and well-known modification to the Newton-Raphson approach 
is to use Fisher's scoring method in which the elements in are replaced 

2~D

at each stage by the current estimates of their expected values. We 
first need some simple expectation results for the random variables 

=−−−= i,γ)
~
β'

ixi(Y1θiZ  1,…….n, which are independently and identic- 

ally distributed with p.d.f. 

                            fz (z) = exp(z-ez ) , -∞ < z < ∞ .                                          (2.15) 
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The moment generating function of Z is 

         (2.16),)t1(dt}ze)1t(z{exp)t(zM +Γ=−+
∞

∞−
= ∫

 

giving 

   E(ZreZt) = drMz (t) /dtr=dr Γ(1+t)/dtr      (2.17) 

Using the results that 

                
2

sx
(x) Γ dlog

2dx
(x) Γ log2d

Γ(x)
(x)Γ",dx

(x) Γ dlog
Γ(x)

(x)Γ'
⎭
⎬
⎫

⎩
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⎧+==  

where dlogr(x)/dx and d2logΓ(x)/dx2 are the digamma and trigamma func- 

tions respectively, we obtain 

E(eZ) =Γ(2) = 1 , E(ZeZ) = Γ'(2) =0.422784 , E(Z2eZ) = Γ"(2) =0.823680 . (2.18) 

Setting 

                    (2.19) )(i)
θθV

i
E(θθI,)(i)

rθV
i

E(rθI,(i)
rsV

i
E(rsI ∑−=∑−=∑−=

and using (2.6), (2.7) and (2.18), the elements in the information 
matrix are given by 

            22.644934n θθθI,irx
i

2θrθI,isxirx
i

2θrsI −=∑−=∑−=            (2.20) 

for r,s, = 0,1,...,k. These elements replace those in  and are esti- 
2~

D

mated at the ℓth stage using the current approximation to 
)(l∧

θ
∧
θ , the 

elements being independent of  Iteration continues using the scheme 

given by (2.14) until satisfactory convergence is obtained. 
~
β

  The calculation of the ML estimates by the Newton-Raphson or 

Fisher's scoring method is straightforward using a matrix inversion 

subroutine. For large scale simulation work in GLIM, we have examined 

two other computational approaches for finding the ML estimates, which 

we now describe. 

(iii) Two-Stage Method

  The log-likelihood under the type 1 EV regression model is 
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Consider a fixed value of 0, say ℓ. Putting 
                       
                β*0 = γ + θ ,β1

0
−

0 ,       β*r = θ β1
0
−

r ,  r = 1,...,k 

               n,...,1i,)
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/θ
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we have    
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*~
β(1L.

*~
β  is the log-likelihood treating the 

{y*i .} as observations on independent exponentially distributed observ- 

ations with means {µ*i }, where logµ*i 
*~
β'

i~x  The value )( 0*~
β

*~
β θ

∧
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which maximises )0θ,
*~
β(1L  may therefore be obtained using GLIM by 

specifying an exponential error distribution and a logarithmic link 
function. 
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~
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Using a Newton-Raphson approach to find an iterative solution for 0, 
if θ ℓ. denotes the ℓ th approximation to θ̂ , we have 

   ,)
~
β,θg(/)

~
β,θg(θ1θ llll

∧∧
−

∧
=+

∧
  ℓ = 1,2,.. .    (2.25)

Since in practice both
~
β and are unknown, the following two—stage 

iteration method may be used. If 1,
~

∧
θ

∧
β  denote preliminary approx- 

imations to  respectively, the new approximation 
∧
θ

∧
β and
~

2 is given by 

.)
1~
β,1θ(g'/)
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β,1θg(1θ

∧∧∧
=

∧ ∧ The transformed observations  
∧

θ= )2/iyexp(i*y

are then used in a GLIM fit to obtain
∧
β

2*~
and hence

∧
β
2~
. The same steps 

are used repeatedly until satisfactory convergence is obtained. 
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(iv)      The Roger/Peacock Method 
 
        An alternative method specially designed for work in GLIM was proposed 
by Roger and Peacock (1982). Their method copes with censored observations 
and has the advantage over the preceding method of providing the estimated 
asymptotic covariance matrix of the ML estimates directly from the output 
of a GLIM fit. To apply their method, we put 
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i~xiy
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⎟
⎟
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We have 

        i = 1 ,.. , ,n            (2.27) ,*
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~
β 0 + γ) , - α β 1 ,...,-α β k, } and the log-likelihood may 

be written as 
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Let denote the ML estimates of α and.  To use GLIM, we may 
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^
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proceed as follows. Suppose that we have n independent Poisson random 
variables Z1 ,...,Zn with means µ1

* ,,..,µ*
n satisfying (2.27), and an 

independent binomial random variable Zn+1 based on n trials and 'success1

probability α: The log-likelihood for realised values z1 , ,,.,zn and zn+1 
is 
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For the specific realisation zi = 1, i = 1 ,. . . ,n and zn+1 = n, we have 

α),*
~
β(1L α),*

~
β(L=  + constant. Hence maximisation of ),*

~
(L αβ  is equiv- 

alent to maximisation of the log-likelihood based on the random variables 
Z1.,...,Zn and Zn+1 , , when the realised values are z.=1, i = 1 , . . . ,n 
for  the  Poisson  variables  and   zn+1    = n  for  the  binomial  variable.     Roger 
and Peacock give a GLIM program, containing five macros including four 
macros for fitting a user-defined model, which may be used to find the 
ML estimates. 
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          Some idea of the variations in computer time required to determine 
the ML estimates can be obtained from table 1 which shows the computer 
processing units (CPU) for each of the four methods of estimation for 
10, 20 and 50 sets of sample data generated by simulation for n = 25. 
The results indicate that the Fisher-scoring method requires less time 
than the Newton-Raphson method and gives considerable savings over the 
two-stage method. Comparisons with the Roger/Peacock method are more 
difficult to make, as the stopping rule for convergence is not controlled 
by the user but is implemented in the GLIM system. Further, a run with 
100 sets of data showed that in a few cases the Roger/Peacock method 
failed to produce a solution because negative values were produced for 
the total deviance. 

Table 

    CPU usage for four methods for obtaining ML estimates  

  Run Size    Roger/Peacock   Fisher scoring    Newton-Raphson    Two Stage
10   59 sec      74 sec               83 sec      115 sec 
20 108 sec     150 sec             151 sec       216 sec 
50 255 sec     334 sec            458 sec       626 sec 

3.     Moment Properties Of The Maximum Likelihood Estimators

        The exact moments of the ML estimators are unknown, but approximations 
to their biases, variances and covariances correct to 0(n-1 ) can be obtained 
by standard methods. 

        Without loss of generality, we shall assume that the values of the x's 

are centred such that for r = 1,...,k. In this case, use of 0irx
n

1i
=

=
∑

(2.20) shows that theinformation matrix may be written as 
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I  refers to θ and β 0 irefers
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Since 
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we have the standard approximations 
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The approximate covariance matrix for =  is)kβ̂,....,1β̂(
'
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To obtain the approximate biases, we first need the third order 
derivatives of the logarithm of the density given by (1.6). Setting 
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∂
=θβ∂β∂β∂

∂
=

 
  (3.5) 

and using the second order derivatives given in (2.6) and (2.7) we obtain 
 

                   (3.6) 2)γi(ziz
eisxirx3θ(i)

rs θW,iz
eitxisxirx3θ (i)

rstW ++−= −=

 

        =  θ)i(
rW θθ

-3  xir [  {ziz
e i. + γ ) 2 +  4 (zi + γ)  + 2 }  -  2]                (3.7) 

 

             
)i(Wθθθ = θ-3 [  iz

e X{(zi +γ)3  +6 (zi + γ)2 +6(zi + γ) } -6(zi +γ) -2] .             (3.8) 
 
We set 
 

)(i)
θθθW

i
E(θθθK,)(i)

rθθW
i

E(rθθ)K(i)
,rsθW

i
E(rsθK,)(i)

rstW
i

E(rstK ∑=∑=∑∑=     (3.9) 

 
Using (2.17) we obtain 
 

E{(Z + γ)exp(Z:)} - Γ'(2) + γ = 1               (3.10) 
 
E{(Z + γ)2exp(Z)} = Γ"(2) + 2γΓ'(2) + γ2 = 1.64494                           (3.11) 
 
E{(Z+γ)3exp(Z)} - Γ"' (2) + 3γΓ"(2) + 3γ2Γ'(2) + γ3 = 2.53070           (3.12) 

 
and hence 
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(3.14)n316.4.003 θθθθK,irx
i

35.64494 θrθθK

(3.13)isxirx
i

33θrsθK,itxisxirx
i

3θrstK

−=∑−=

∑=∑−= −

  
Finally, we require the values of the quantities 

            
{ }

{ }[ ]

{ }[ ]
{ }[ ]

{ } { }[ ]

{ } { }[ ] (3.20)11)Z(eγ)2(ZZe2γ)(Z11)Z(eγ)(ZE3nθ

)(i)
θθV(i)

θU
i

(Eθθθ,J

(3.19)Z1)eZ(eγ)(Z1Ze11)Z(eγ)(ZEisx
i

3θ

(i)
sθV(i)

θU
i

(Esθθ,J

(3.18)11)Z(eγ)(ZZeEitxisx
i

3θ(i)
stV(i)

rU
i

(Estθ,J

(3.17)11)Zγ)e2(ZZe2γ)(Z1)Z(eEirx
i

3θ

(i)
θθV(i)

rU
i

(Eθθr,J

(3.16)γ)(ZZe1Z(e1)Z(eEisxirx
i

3θ(i)
sθV(i)

rU
i

(Esθr,J

(3.15)1)Z(eZeEitxisxirx
i

3θ(i)
stV(i)

rU
i

(Estr,J

−−+++−−+−−=

∑=

−++−−−+∑−−=

∑=

−−+∑−−=∑=

−−+++−∑−−=

∑=

++−−∑−−=∑=

−∑−−=∑=

 
 
Using (2.17) we have E{Zr exp(2z) } = dr (x)/dxr evaluated at x = 3 which 
gives 

E(e2Z) = r(3) = 2 , E(Ze2Z) - T'(3) = 1.84557 

          E(Z2 e 2Z) = Γ"(3) = 2.49293 , E(Z3e2Z) = Γ"'(3) = 3.44997 . 

Use of these results in (3.15) to(3.20) gives after simplification 
 

(3.21)n.311.11040 θθθθ,J,isx
i

33.64493 θstr,J

(3.22)itxisx
i

3θstθ,J,irx
i

35.64493 θθθr,J

(3.21)isxirx
i

33θsθr,J,itxisxirx
i

3θstr,J

−−=∑−−=

∑−−=∑−−=

∑− −−=∑−=
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  denote the biases of and θ, θ)
^
θE(θbandrβ)r

^
βE(rbIf −=−= r

^
β

respectively, r = 0,1,..., k, then from Cox and Snell (1968) the bias 
approximations correct to 0(n ) are 

(3.25))sut,J2stu(K
utIθsI

uts2
1

θb

(3.24))sut,J2stu(K
utIrsI

uts2
1

rb

+∑∑∑−=

+∑∑∑−=

 
where the summations are over s,t ,u = 0,1,...,k, θ and Irs, I θS etc. 
denote elements in the inverse of the information matrix. 
 

Simple expressions for the biases can be obtained straightforwardly 
for the case when the x's satisfy the conditions 
 

     0 for all r ≠ s = 0,1,...,k .      (3.26)isXirX
n

1i
∑
=

The elements in the inverse of the information matrix are then 

I00 = 1.6079n-1 θ2 , Iθθ = 0.6079n-1θ2 , Irr = θ2/Σixir. 

    for r = 1 ,... ,k                        (3.27) 

Iθθ = -0.6079n-1θ, Ir0 = Irθ = Irs = 0  for  r ≠ s - 1 , . . . ,k                       (3.28) 

with the regression coefficient estimators rβ̂ , r = 0,1,...,k being 
pair-wise asymptotically uncorrelated. We may write 
 

rArrI2
1,)θAθ0I0Aθ0(I2

1
θb,)θA0θI0A00(I2

1
cb =+=+=    (3.29)

for r = 1,...,k, where 

∑ ∑ +∑=+∑=
t t

)θut,2Jθtu(KtuI
uθA,)rut,2Jrtu(KtuI

urA    (3.30) 

 
A straightforward calculation gives 
 

(3.31)1θ3.9304)(3kθA,)2
itX

i
/2

itXirX
i

k

1t
1θrA,11.3921)θ(k0A −+−=⎟

⎠
⎞

⎜
⎝
⎛

∑∑∑
=

−−=−+−=  

 
from which we obtain 
 

 b0 = θn-1(0.1080k + 0.0754) ,            (3.32) 
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     K...,1r,2
itX

i
/2

itXirX
i

k

1t
2
irX

i

2
1

rb =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

=

θ
−= ∑∑∑

∑
   (3.33)

 
bθ = -θn-1(0.6079k + 0.7715) .                                                    (3.34) 

 
In the case of a single explantory variable x with values centred such 
that these bias expressions give ,0iX

i
=∑

 

          θ1.3794n1^
θ

b,2)2
iX

i
(/3

iX
i

θ2
1

1b,θ10.1834n0b −−=∑∑−=−= .           (3.35)

An important property which can easily be deduced from the likelihood 
equations is that the random variables 

  k...,1,0,r,say(1)
r

^
βr/θ)rβr

^
β(,say(1)θ/θ

^
θ ==−=              (3.36)

 
are distributed independently of 

~
β and 0. Thus from (2.9) the likelihood 

equations depend on  which may be written as iẐ
 

    γ
(1)^
θ/)(1)

~
β'

i~xi(ui
^
Z −−=

 
where 
 

       (3.37).n,...1,i,)
~
β'

i~xi(y1θiu =−−=

The {ui} are independently and identically distributed with p.d.f. 
 
                          fU (u) = exp(u - γ - eu-γ ) ,     -∞ < u < ∞ 
 
which is the standardised type 1 EV distribution for smallest values 
and which does not depend on or θ It follows that the joint dis- 

~
β

tribution of the random variables  and(1)θ̂
(1)

~
β̂  is the same as that 

of the ML estimators of 9 and when the 'observations' {ui} have the 

p.d.f. given by (3.38). Consequently, 
(1)

~
β̂ and  are distributed (1)θ̂

independently of and θ. 
~
β

It is straightforward to show that the above distribution property 

for  and(1)θ̂
(1)

~
β̂  holds generally for the class of regression models with 

(y) = θ-1 f{y-µi)/0}, where  This generalises the result 
~
β'

i~xiu −
iYf

given by Antle and Bain (1969) for the case when no explanatory variables 
are present. 
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In order to examine the adequacy of the bias and variance approx- 

imations and to assess other moment properties of the ML estimators, a 

Monte-Carlo simulation investigation was made for the case of simple 

linear regression with grouped data, the model being 

                  Yij = βo + βi
x

i + εij ,          i = 1, . . . g    j = 1,...,mi    (3.39) 
 

where }ij{Ytheand2θ2πθ
1)ij(εvar,0)ijE(ε ==  are independently 

distributed with p.d.f. given by 
 

.y,γθ
iX1β0βy

expγθ
iX1β0βy

expθ
1(y)ijYf ∞<<∞−

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−−

−−
=               (3.40) 

  

Equally spaced values of x were taken with
2
1iiX −=  (g + 1) , i - 1,...,g. 

Equal sample sizes mi = m = 1,2,5(5)20 for i = 1 ,. .. ,g were used with 
g = 5,10. Without loss of generality, the values

~~
0β = and θ = 1 were 

used, the y-variate observations for the simulation being generated by 

sampling the distribution with density given by (3.38). The ML estimates 

were found correct to at least four decimal places using Fisher's scoring 

method. In each case, two independent runs each of size 2000 were made 

and the moment results then averaged over the two runs. 

       Values of the biases and variances of the ML estimates as obtained 

by simulation are shown in tables 2, 3, 4 for β0, β1 and θ respectively. 

The approximations to the biases and variances are also shown. 

The results show that the approximate biases given by (3.35) agree 
quite well with the biases obtained by simulation even when m is very 

small. Further the biases in are appreciably larger than the biases 
^

θ
of the ML estimates of the regression coefficients. The large sample 
approximation for the variance of  works well for all m but the ^

~0
β

approximating variance of  underestimates the true variance when ^

~0
β

m = 1,2. In the case of ,the approximating variance given by (3.3) 
^
θ

generally agrees well with the values obtained by-simulation, but there 
is some overestimation of the variance when m = 1 and g = 5. 
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Table 2 

Biases x 102 θ-1 and variances x 10 2 θ-2 of the ML estimates of β 

   Bias             Variance 
Simul  Approx (3 .35)    Simul       Approx (3.3) 

       m 

g=5 

g = 10 

 
1 3.07 3.67 
2 1 .34 1 .83 
5 0.73 0.73 

10 -0.08 0.37 
15 0.35 0.25 

20 0.15 0.18 

1 2.53 1 .83 

2 0.77 0.92 
5 0.40 0.37 

10 0.02 0. 18 
15 0, 19 0.12 
20 -0.20 0.09 

 
32.423 32.158 
15.631 16.079 
6.575 6.432 
3.158 3.216 
2.118 2.144 

1.580 1 .608 

15.807 16.079 

7.853 8.040 
3. 152 3.216 
1 .591 1 .608 
1 .075 1 .072 
0.825 0.804 

  
                  Table 3

     Biases × 10  θ   and  variances x 10  θ   of  the  ML    estimates  of  β2 -1 2 -2
1

 

g=5 

g-10 

 
 Bias  
 Simul Approx (3 .35)
m   
1 -0.48 0.00
2 0.40 0.00
5 -0.29 0.00

10 -0.14 0.00
15 -0.06 0.00

20 0.13 0.00

1 -0.12 0.00

2 0.00 0.00
5 0.12 0.00

10 0.08 0.00
15 0.12 0.00
20 0.07 0.00

Variance 
S imul           Approx (3.4) 

14.241 10.000
5.705 5 .000

2. 130 2.000
1 .017 1 .000
0.681 0.667

0.507 0.500

1 .491 1 .212

0.670 0.606
0,260 0.242
0.124 0.121
0.082 0.081
0.061 0.061
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Table 4 

Biases x 102 θ-1 and variances x 102 θ-2 of the ML estimates of θ 

         Bias                     Variance 

                    Simul      Approx (3.35)           Simul   Approx (3.3) 

    m 

g=5 

g=10 

 
1 -29.87 -27.59
2 -14.51 -13.79

5 -5.78 -5.52

10 -2.61 -2.76

15 -1 .89 -1.84

20 -1.37 -1.38

1 -14.94 -13.79

2 -7.05 -6.90

5 -2.93 -2.76

10 -1.31 -1.38

15 -0.87 -0.92
20 -0.67 -0.69

 
10.357 12.158

5.743 6.079

2.417 2.432

1.241 1.216

0.826 0.811

0,598 0.608

5.944 6.079

2.931 3.040

1.238 1.216

0.608 0.608

0.411 0.405
0.314 0.304

        The shapes of the distributions of the ML estimates can be seen from 

the histogram plots which are shown in figures la,..., "If. Values of the 

skewness coefficient γ1 (β ) 0
ˆ

0β̂ θ̂t γ1( ), γ1( ) and the kurtosis coefficients 

γ2(  ), γ0β̂ 1β̂ θ̂2( ) γ2( ) as obtained by simulation are also given correct 

to 2 decimal places . These must be treated with caution as their sampling 

errors are quite large even for the run-size of 4000 used in the investi- 

gation. The plots and the coefficients indicate that the distributions 

are reasonably close to the normal even for these moderately small values 

of m. 
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FIGURE (1.α ) : HISTOGRAM PLOT FOR ML ESTIMATE , m=5,g=5 
^
βθ
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FIGURE (1.b) : HISTOGRAM PLOT FOR ML ESTIMATE m=5,g=5 
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FIGURE (1.c) : HISTOGRAM PLOT FOR ML ESTIMATE  m=5,g=5
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FIGURE (1.d) : HISTOGRAM PLOT FOR ML ESTIMATE m=1θ,g=5 
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FIGURE (1.,e) : HISTOGRAM PLOT FOR ML ESTIMATE m=1θ,g=5 
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FIGURE (1.f) : HISTOGRAM PLOT FOR ML ESTIMATE   m=1θ,g=5 
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We have noted that the results in table 4 show that the bias and 

variance approximations for work well even for moderately small values 
^
θ

of n and that the bias is considerably larger than the standard deviation. 

Further the biases of the estimator
^
θ are much larger than those of the 

estimatorsβ  andβ , This suggests that it may be worthwhile considering 
^ ^
0 1

estimators of θ with reduced bias and possibly an improved mean square 
error performance. Two such estimators are now developed. 

Setting c = 1.3794 and a = 0.6079 we have to order n 

 1n2aθ)
^
θvar(,1n θ c^

θ
b −=−−=

which gives the approximation 

 .    (3.41))2n2C1(an2θ)
^
θmse( −+−≈

 
An estimator having bias of order n is given by 
 

            (3.42)
^
θ)1cn(1

^*
θ −+=

 

with  Ignoring terms of order n.2θ/n2c
^*
θb −≈ -3 and smaller terms, 

we have the approximation 
 

       (3.43))22acn1(an2θ)
^*
θmse( −+−≈

 
so the proportionate reduction in the mse" is 

 .1.9020.6.8n
0.226

2can
2ac2C

)
^
θmse(

)
^*
θmse()

^
θmse(

+=
+
+≈−     (3.44)

 

An alternative estimator of the form  can be 
^
θ)1kn(1

*^*
θ −+≈

considered, where k is selected to minimise the approximating mse of 
the estimator. The bias and variance of  to order n**θ̂ -1 are 
 

             (3.45)1n2aθ2k*)*
^
θ(var,}2kcn1c)n(kθ{**

^
θb −=−−−−=

 
giving the approximation 
 

   [ ] .}2c)(k{2ak2n1an2θ)
*^*
θmse( −+−+−≈             (3.46) 

Setting ∂ mse gives k = c - a, so the estimator is 0k/*)*
^
θ( =∂

                     (3.47) 
^
θ)10.7715n(1

*^*
θ −+=



25 
with an associated approximate mse 

.)2n)2a{2ac1an(2θ*)*
^
θmse( −−+−≈      (3.48)

The proportionate reduction in the mse compared with the ML estimator 

  is 
^
θ

 .1.9030.6.8n
0.595

2can

2a)(C

)
^
θmse(

)
^*
θmse()

^
θmse(

+=
+

−≈−     (3.49)

Values of the biases and mse's of the estimates ,  and  
^
θ *

^
θ **

^
θ

as estimated by simulation are shown in table 5. 

The results show that the bias reduction estimator has a *
^
θ

much better bias performance than the ML estimator . Its mean square 
^
θ

error performance is also much better when m= 1, but for m> 1 the diff- 

erences in mean square error are small. The estimator  generally **
^
θ

has a slightly improved mean square error performance compared with  
^*
θ

but it has a poorer bias performance. 
 

Table 5 

Biases × 102 θ-1 and mse's × 102 θ-2 of the estimators  
^
θ *

^
θ **

^
θ

 

    Bias        mse 

      **
^
θ*

^
θ

^
θ**

^
θ*

^
θ

^
θm  

 

g=5 
 
 
 
 
 
 
 

g=10

1 -29.87 -10.52 -19.05
2 -14.51 -2.71 -7.91
5 -5.18 -0.58 -2.87

10 -2.61 0.08 -1.11
15 -1 .89 -0.08 -0.88
20 -1 .37 -0.01 -0.61

1 -14.94 -3.21 .-8.38

2 -7.05 -0.64 -3.46
5 -2.93 -0.25 -1.43

10 -1.31 0.05 -0.55

15 -0.87 0.05 -0.36
20 -0.67 0.02 -0.29

19.280 17.967 17.429
7.847 7.510 7.288
2.755 2.694 2.651
1.310 1.310 1.292
0.862 0.857 0.851

0.617 0.615 0.61 1

8.179 7,800 7.598

3.428 3.353 3.281
1.326 1.308 1 .296
0.625 0.625 0.620
0.419 0.419 0.417
0.319 0.318 0.318



26 
4. Moment Properties Of The Ordinary Least Squares Estimators

The OLS estimator of ~Y'~X
1)~X'~X(

~

~
βis

~
β −= showing that the individual 

parameter estimates  r = 0,1,...,k, are linear functions of the {Y,βr

~
i}, 

whose moments are known exactly. It follows that the exact moments of 

the }r
~
β( can be found. The estimators are unbiased and we have 

 .1)~X'~X(
2θ2π6

1)
~

~
β(cov −=       (4.1) 

Assuming that for r = 1 k we have 0irX
n

1i
=∑

=

                     .))isxirx
i

((
2~

Iwhere,
0

2~
I

n
0~X'~X ∑=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

Hence we have 

 /n21.6449 θ/n2θ2π6
1)0β

~(var ==      (4.2) 

and the covariance matrix of 
~

isβk)...1,
~
β

~
0β(

~

1~
β =  

   .1))isxirx
i

((21.6449 θ1
2~I

2θ2π6
1)

1~
β~cov( −∑=−=     (4.3)

 

The exact skewness and kurtosis coefficients of  can be found using ,
~

rβ

the following results due to Scheffé (1959). Let  be a ii

n

i
YC∑

=
=

1
ξ

linear combination of n independent random variables {Yi} where Y. has 
variance σ1

2, skewness coefficient γi,i . and kurtosis coefficient γ2, i . .. 
Then the skewness and kurtosis coefficients for ξ are given by 
 

where   (4.4) 
.2

iσ
2
iC

i
/2

iσ
2
iCiα

i2,γ2
iα

n

1iξ2,γi1,γ3/2
iα

n

1iξ1,γ

∑=

∑
=

=∑
=

=

We let cir denote the i th element in the rth row of so'~X
1)~X'~X( −  

~
,2.4000i2,γ,1.2986i1,γ,2θ2π6

12
iσwith,iYirC

n

1ir   β ===∑
=

=

i - 1,...,n. Hence use of (4.4)gives 

   

(4.6)2
irC

i
/4

irC
n

1i
2.4)rβ

~(2γ

(4.5)3/2)2
irC

i
(/3

irC
n

1i
1.2986)rβ

~(
1
γ

∑∑
=

=

∑∑
=

=

for r = 0,1,...,k. 
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For the OLS estimator of 9, approximate bias and variance results 
~
θ

can be obtained using the exact results available for the mean and variance 

of  The LS estimator is  unbiased for 
2~

θ
2~

σ σ 2 and from Atiqullah (1962), 
its exact variance is 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−∑−−+−−= 2)iih(1
i1kn

2γ
2
111kn

42σ)
2~
σ(var    (4.7) 

 

where γ2 is the coefficient of kurtosis of the distribution of the response 
variable Y and hii.- is the ith diagonal element in the 'hat' matrix 

'
~
X1)

~
X'

~
X(

~
X

~
H −=

 
For the type 1 EV distribution we have γ2 = 2.4 and 

hence the unbiased estimator of θ2 given by 
 

 }21)πk(n{/2)
~

~
β'

i~Xi(Y
i

6
2~
θ −−−∑=      (4.8)

has exact variance 

.2)iih(1
n

1i1kn
1.211kn

42θ)
2~
θ(var

⎭
⎬
⎫

⎩
⎨
⎧ −∑

=−−+−−=     (4.9)

Writing 

      ...)2(8θ/2)2θ
2~
θ(θ) (2/)2θ

2~
θ(θ2

1
}2/θ)2θ

2~
θ(θ{1

~
θ −−−+=−+=

 
and using the result that tr( ~H ) = k+ 1 we obtain to order n-1 , 

       )10.55nθ(1)
~
θE( −−=        (4.10)

  

var  = 1.1n)
~

(θ -1 θ2 .                                                         (4.11) 

Table 6 gives values of the exact variances skewness and )2x( −θ

kurtosis coefficients for the OLS estimators
~
0β and 

~
β  for the simple 1

linear regression model considered in the presvious section. Table 7 

shows values of the approximate biases and variances of the OLS estimator 

θ~  given by (4.10) and (4.11) for the same model. The biases and vari- 

ances of θ~ as obtained by simulation are also shown, the simulation again 

using a run-size of 4000. 
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Table 6 

 
Exact variance (x 102 θ -2 ), skewness and kurtosis coefficients of 

the OLS estimators 1
~
β0

~
β  

          0
~
β                

~
1β  

  

g=5 

g=10 

 
    m         var.   skew.   kurt.

1 32.899 0.58 0.10
2 16.449 0.41 0.02
5 6.580 0.26 0.00

10 3.290 0.18 0.00
15 2. 193 0. 15 0.00
20 1 .645 0. 13 0.00

1 16.449 0.41 0.02

2 8.225 0.29 0.01
5 3.290 0.18 0.00

10 1.645 0.13 0.00

15 1.097 0.11 0.00
20 0.823 0.09 0.00

 
 var.  skew. kurt.

16.449 0.00 0.08

8.225 0.00 0.02

3.290 0.00 0.00
1.645 0.00 0.00
1.097 0.00 0.00
0.823 0.00 0.00

1 .994 0.00 0.01

0.997 0.00 0.00

0.399 0.00 0.00

0. 199 0.00 0.00
0. 133 0.00 0.00
0. 100 0.00 0.00

   Table 7
Biases and variances ( x 102 θ -2 )

  Bias Variance 

g=5 

g=10 
 

App. (4.11) Simul
22.000 18.921
11.000 9.413

4.400 3.929
2.200 2.060

1.467 1.461
1.110 1.074

11.000 9.623

5.500 4.916
2.200 2.126

1.100 1.058
0.738 0.759
0.550 0.540

         m      App. (4.10) Simul
1 -11.00 -10.40

2 -5.50 -5.21
5 -2.20 -2.43

10 -1.10 -1 .03
15 -0.73 -0.88

20 -0.55 -0.66

1 -5.50 -5.60

2 -2.65 -2.68
5 -1.10 -1.16

10 -0.55 -0.63
15 -0.37 -0.35
20 -0.27 -0.32
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        Histogram plots of the distributions of 0β
~ , 1β

~
 , and θ~  as generated 

by simulation are shown in figures 2a,...,2f for g = 5 and m = 5,10. 
The values of the skewness and kurtosis coefficients for θ~   are also 
shown.  The plots show that the distribution of the estimators are 
close to the normal. 
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FIGURE (2.α) : HISTOGRAM PLOT FOR OLS ESTWATE m=5, g=5 
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FIGURE (2.b) : HISTOGRAM PLOT FOR OLS ESTIMATE m=5,g=5 
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FIGURE (2.c) : HISTOGRAM PLOT FOR OLS ESTIMATE m=5,g=5
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FIGURE (2.d) : HISTOGRAM PLOT FOR OLS ESTIMATE m=10,g=5 
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FIGURE (2.e) : HISTOGRAM PLOT FOR OLS ESTIMATE m=1θ,g=5 
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FIGURE (2.f) : HISTOGRAM PLOT FOR OLS ESTIMATE 8, m=1θ,g=5 
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5.    Best Linear Unbiased Estimators Based On Order Statistics 
       For Grouped Data

       In this section, we shall assume that we have g distinct sets of 
values xil, ...,x ik , i = 1,...,g for the explanatory variables and 
suppose that mi observations on Y are made at the point (xi1 , . . . ,xik ) . 

We let n = ∑
 
m

=

g

1i
i. denote the total number of observations. With grouped 

data, it is possible to find the best linear unbiased estimates (BLUE's) 
of the {βr } and θ based on the order statistics within the groups. These 
estimators are asymptotically as efficient as the ML estimators and have 
appreciably smaller variances than the OLS estimators. 

       We first need some results for the case when a single random sample 
of m observations is drawn from a population with the type 1 EV c.d.f. 

   { },ξ)/θ(yeexp1F(y) −−−=  —∞ < y < ∞ .     (5.1)

It is convenient to allow for censoring. Thus if Y(1) < Y(2) , < ... < Y (m) 

denote the order statistics in the sample, we shall assume that only 
The first r order statistics observed. We let  

          (5.2)(i)Yib
r

1i*
^
θ,(i)Yia

r

1i

^
*ξ ∑

=
=∑

=
=

denote the BLUE's for ξ and θ respectively, that is we require  ,)*
^

(E ξ=ξ

)
*

^
θE(  = 0 and var  ≤ var,  var ≤. var , where  ,denote )

*

^
ξ( )'

^
(ξ )

*
^
θ( )*

^
(θ

any other linear unbiased estimators of ξ and θ, respectively. 

If we put X(i) = (Y(i)-ξ)/θ , i = 1, ...r, then X(1),X(2) , .. .,X(r) 
are distributed as the first r order statistics in a random sample of 
m observations from the standardised type 1 EV distribution with c.d.f. 
F(x) = 1 - exp(-expx), - ∞< x < ∞. Putting 

                   E(X(i)) = ei,m, cov(X(i),X(j)) = ci j ,m    (5.3) 

we have 

E(Y(i)) =ξ + θ ei , cov(Y(i),Y(j) ) - θ2
i j, m3.     (5.4) 

 In matrix form, we have the linear model representation 

      (5.5) ~C
2θ)

(.)~Y(cov,~n~A)
(.)~YE( ==
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θ), ξ ('~n,)(r)Y....,,(2)Y,(1)(Y'
(.)~Ywhere ==  

               (5.6)

mrr,Cmr1,C
..
..

m2r,C...m21,C
m1r,C...m11,C

~C,

mr,e1
..
..
..

m2,e1
m1,e1

~A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

From generalised least squares theory, the BLUE for ~n  is 

.21)
~
A1

~
C'

~
A()

^

~
n(covwith

(.)~
Y1

~
C'

~
A1)

~
A1

~
C'

~
A(

^

~
n θ−−=−−−= The linear co- 

efficients ai = ai (r,m) and bi = bi(r,m) giving the BLUES are obtained 
as the elements in the first and second rows of the matrix 

1
~
C'

~
A1)

~
A1

~
C'

~
A( −−−

 
which -is of order 2 × r. Further, writing 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
==−−

(3)
mr,V(2)

mr,V

(2)
mr,V(1)

mr,V
~V

1)~A
1

~C'~A(      (5.7) 

we have 
 

va (ξ) = θ2V      var (θ ) = θ,(1)
r,m ˆ 2 V   cov( ) , = θ,(3)

mr, θ̂,ξ̂ 2 V  .  (5.8) (2)
mr,

 

White (1964) gives tables of the linear coefficients {ai.} and 

{bi} and the elements V  , V  , V  (1)
mr,

(2)
mr,

(3)
mr, required for computation of 

the covariance matrix for 2 ≤ n ≤. 20 and r = 2(1 )n. The mean of the 
distribution given by (5.1) is µ = ξ - γθ so the BLUE for u is 

 

             (5.9)(i))Yiγbi(a
r

1i*

^
μ −∑

=
=

with 

                      (5.10) saymVr,2θ)(3)
r,mV2γ(2)

r,mV   γ2(1)
r,m(V2θ)

*
μ̂var( =+−=

 
         Suppose now that we have g populations, the c.d.f. for the ith 
population being 

                 Fi(y) = 1 - exp[ - exp{(y- ξi)/θ}] ,       -∞ < y < ∞ (5.11) 
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i = 1,...,g. Let Yi(l), .. < Yi(2)., < ... < . denote the order statistics )ii(mY

in a random sample of mi. observations drawn from the ith population. 
If only the first ri order statistics Yi(1) , ., Yi(2) ..., , . are observed )ii(rY

for the ith group, the BLUE's are 

 (5.12),i(j)Yijb
ir

1j

^
iθ,i(j)Yija

ir

1ji
^
ξ ∑

=
=∑

=
=

 
where aij = aj(ri ,mi) and bij = bj (ri,mi.) are the linear coefficients 
for best linear unbiased estimation. Since the { } are independent iθ̂

estimators of the assumed common θ with var(  ) = θiθ̂
2 V(3)

i,mir
 , the 

minimum variance linear unbiased estimator of θ is 

      sayiθ̂iw
g

1i(3)
im,ir

1/V
g

1i

(3)
im,ir

/Viθ̂
g

1i
*
θ̂ ∑

=
=

⎟
⎠
⎞

⎜
⎝
⎛

∑
=

∑
==      (5.13)

 
where 
 

                     
1

)(3)
i,mir

(1/V
g

1i
(3)

i,mir
Viw

−

⎭
⎬
⎫

⎩
⎨
⎧

∑
=

=  ,    i  =  1,…..,g  .   (5.14)

We have 

              (5.15).1)(3)
i,mir

(1/V
i

2θ)
*

^
θ(var,θ)

*
^
θE( −

⎭
⎬
⎫

⎩
⎨
⎧

∑==

The best linear unbiased estimator of the mean µi. = ξi . - γθ for the ith 
group is 

.*
^
θγi

^
ξi*

^
μ −=              (5.16) 

 Using the result that cov  we obtain ,2
im,)2(

iVriW)
^
i,i

^
(CoviW

^
)*,i( θ=θξ=θξ

   ⎥
⎦

⎤
⎢
⎣

⎡ −
⎭
⎬
⎫

⎩
⎨
⎧

∑
⎭
⎬
⎫

⎩
⎨
⎧ +−+= 1)(3)

im,ir
/V(1

i
2γ)(3)

im,ir
V/(2)

im,ir
2γγ((1)

im,ir
V2θ)i*

^
μ(var

 
      = θ2w1i , say.                  (5.17) 

Also 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−= )
*

^
θ(var2γ)i

^
ξ,*

^
θ(cov)i

^
ξ,*

^
θ(covγ)j*

^
μ,i*

^
μ(cov   
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)(3)

i,mir
V/(1

i

2γ(3)
j,mjr

V/
j

(2)
j,mjr

V(3)
i,mir

V/(2)
i,mir

Vγ
2θ

∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+−

=  

 
 

   = θ2 wij ,      say        (5.18) 
 

Since . is an unbiased estimator of µi*μ i. = we have the linear 
~
β'

i~x

model 

      i =  1,...,g        (5.19) i*ε~
β'

i~xi*
^
μ +=

 
where E( .) = 0, var( ) = θi*ε i*ε

2wii and cov( , ) = θi*ε j*ε
2 wij. Setting 

),g*ε,....,l*(ε'
*~εand)g*μ̂,....,1*μ̂(

'
*~

μ̂ ==  the matrix form of the linear 

model repres entation is 

       (5.20) *~ε~
β

1~X*

^

~
μ +=

with E( ) = 
*~ε ~0  and cov( ) = θ

*~ε
z

~W , where 

         (5.21).

gg....wg2wg1w
.
.

2gw...22w21w
1gw...12w11w

~W,

gkx...g1x1
.
.

2kx21x1
1kx11x1

1~X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

 
Based on the { }, the BLUE of  is given by i*μ̂ ~

β

,
^

~
μ1

~W
'
1~X

1)
1~X

1
~W

'
1~X(*

^

~
β −−−=      (5.22) 

 
with covariance matrix 

     cov      (5.23).2θ1)
1~

X1
~W

'
1~X()

*

^

~
β( −−=

 
       We now consider the important special case when the sample sizes 
are equal and the same degree of censoring occurs within each group, 
that is mi = m, ri. = r for i = 1,...,g. In this case we have 
 

      
{ }

{ (5.25).say,w(2)
mr,V  γ2(3)

mr,V2γ1gijW

(5.24)say,V(2)
mr,V  γ2(3)

mr,V2 γ1g(1)
mr,ViiW

=−−=

=−−+=
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Letting w(i j) denote the (i,j)th element in -1

~
W  , we have 

}w)1g(v){wv(
w)ij(w,

}w)1g(v){wv(
w)2g(v)ii(w

−+−
−=

−+−
−+

=

 

for i ≠ j = 1,2, . . . ,g. 

putting  

                          

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑
=

∑
=

∑
=

∑
=

∑
=

∑
=

∑
=

∑
=

∑
=

2
ikx

g

1i...ikxi2x
g

1i...ikxi1x
g

1i

.

.
ikxi2x

g

1i
...2

i2x
g

1i...i2xi1x
g

1i

i1xi1x
g

1i...i2xi1x
g

1ii1x
g

1i

~M

 

we may write 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

−−+−−+

=−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−+
=−−

gkx1w)(v...1kx1w)(v
.
.

g1x1w)(v...11x1w)(v

11)w}(g{v...11)w}(g{v

1
~W

'
1~X,1

~Mw)(v~0
~0g

1)w(gv
1)

1~X
1

~W
'
1~X(

            (5.27) 
Since 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=−

gkx...1kx
.
.

g1x...11x
1...1

'
1~X,1

~M~0
~0

1g1)
1~X

'
1~X(         (5.28)

it follows that 

     (5.29) '
1~

X1)
1~

X'
1~

X(1
~
W'

1~
X1)

1~
X1

~
W'

1~
X( −=−−−

showing that the OLS esimate of based on the { } provides the 
~
β i*μ̂

BLUE. It should be stressed that this result only applies when the 
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sample sizes are equal and the same degree of censoring occurs ia each 

sample. However, the result leads to a useful simplification for comp- 

utation of the estimates. 

Using (5,23) and (5.27) gives 

.)k*β....,,1*β(1*~
βwhere

(5.30)1
~Mw)(v2θ)1*β(cov,w}1)(g{v2θ1g)0*β(var

∧∧
=

∧

−−=
∧

−+−=
∧

 

Values of the exact variances ( × θ-2 ) of the BLUE's ,  and *
^
θ 0*

^
β

i*β̂  have been computed using (5.15) and (5.30) for the simple linear 
regression model Yi j = β0 + β1xi + εij, i = 1,...,g, j - 1,...,mi with 
x. = i - ½(g+1).The uncensored case with ri. = mi = m was considered 

with m = 5(5)20 and g = 5,10. The values of W(1) , W(2)  and w(3)  m,m mm, mm,
needed for the calculations were taken from White's tables. The results 
are shown in table 7. 

                                    Table 7 

Exact variances (x 102 9-2 ) of the BLUE's  ,  ,  for the simple 0*
^
β 1*

^
β *

^
θ

linear regression model 
g = 5       g = 10 

m 
0*

^
β   

1*

^
β  *

^
θ  

2 16.449  6.596 14.237

5 6.523  2.314 3.333 

10 3.244  1.133 1 .432

15 2.158  0.748 0.907 
20 1.616  0.559 0.663 

0*
^
β  1*

^
β  *

^
θ  

8.225 0.800 7.119 

3.262 0.281 1.667 

1.622 0.137 0.716 

1.079 0.091 0.453 

0.808 0.068 0.331 

To examine the shape characteristics of the distributions of the 

BLUE's, their empirical distributions were obtained by simulation, using 

a run-size of 4000 in each case. Histogram plots of the distributions 

are shown in figures 7, 8 and 9. The values of the observed skewness 

and kurtosis coefficients are also given. 
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6.       Small Sample Variance Efficiency Results

The variance results given in the previous sections enable us to 

examine the small sample efficiencies of the OLS estimators and the 

BLUE's relative to the ML estimators and to assess how rapidly they 

approach the asymptotic efficiencies. 

We let 

     )
~
rβvar(/)

^
rβ(var1rE,)

~
θvar(/)

^
θvar(1θE ==   (6.1) 

denote the efficiencies of the OLS estimators relative to the ML 

estimators,  for  θ  and  βr  respectively,  r = 0,1,...,k.   The  corres- 

ponding efficiencies of the BLUE's based on order statistics for 

grouped data, relative to the ML estimators will be denoted by 
 

               (6.2) ,
^

)r*β(
^

var/)rβvar(2rE,)*
^
θ(var/)

^
θvar(2θE ==

 
for r = 0,1,...,k. 
 

Using  the  variance  results  given  in  (3.3),  (3.4),  (4.2)  and  (4.3), 

the asymptotic efficiences of the OLS estimators β~ r relative to β̂ r are 

                  E  = 0.978 ,       E(a)
1θ

(a)
1r  = 6/π2 = 0.608 ,  r = 0,1,,..,k .          (6.3) 

 

gives(4.11)and(3.3)

ofuse,nas11)k(n/2)iih(1
n

1i
limthatassumeweIf ∞→=−−−∑

=

  
 
                                              E (a)

1  = 0.553.                           (6.4) θ

Values of -the small sample variance efficiences have been computed 

for the simple linear regression model Yij = β0 + β1xi + εij , 

i = 1,...,g,  j = 1,...,m, for grouped data with equal sample sizes. 

The exact variances for β
~

0 , 
~
β 1 , 

~
β *0 

~
β *1., and θ, which are known for 

all sample sizes were used, while estimated variances obtained by 

simulation were used for θ~  , β̂ 0 , β̂ 1 and θ . The results are shown in ˆ

table 8. 
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Table 8 

Variance efficiencies of OLS estimators and BLUE's relative to 
ML estimators for simple linear regression 

g=5 

 
 m  E10  E2 0  E11  E21  E1θ  E2θ

1 0.99 - 0.87 - 0.55 - 
2 0.95 0.95 0.69 0,87 0.61 0.40 
5 1 .00 1 .01 0.65 0.92 0.62 0.73 

10 0.96 0.97 0.62 0.90 0.60 0.87 
15 0.97 0.99 0.62 0,91 0.57 0.91 
20 0.96 0.98 0.62 0.91 0.56 0.90  

1 0.96 - 0.75 - 0.62 - 
2 0.96 0.96 0,67 0,84 0.60 0.43 

g=10  10    0.96 
0.97 

0.97 
0.98 

0.65
0.62

0,93
0.91

0.58 
0.57 

0.74 
0.85 

15 0.98 1.00 0.62 0.91 0.54 0.91 
20 1.00 1.02 0.61 0.90 0.58 0.95 

The following broad conclusions can be drawn from the results 
in table 8, 

a) After allowance for the simulation errors, the efficiency values 
for OLS for β0 and θ appear to converge very rapidly to the asymptotic 
values 0.978 and 0,553, respectively. For β 1 , the OLS efficiency is 
appreciably higher than the asymptotic value 0.608 when m = 1,2. 

b) The efficiency of BLUE for β 1 is much higher than the OLS efficiency 
for all m and exceeds 90% for m ≥ 5. For estimation of θ, BLUE is 
less efficient than OLS when m = 2, but for higher values of m its 
performance is much better than that of OLS. 
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