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CONSISTENCY MEASURES 
 

Section O. Introduction 

In this paper we discuss several measures of consistency as 

applied t udgements based upon pairwise mparison etween a o j co s b

set of n options. The methods discussed in Section 2 are Saaty's 

Eigenvector method (2.1) the so-called Geometric Method (2.2) and         
the Trace Index (2.3). 

The first two methods also produce weights or scores for the 

options. 

The consistency measures can be viewed as a measure of confidence                  
in these weights. 

We show in Section 2.4 that the above two methods of obtaining 

scores agree closely when the consistency is high as measured by                
the Trace Index. 

Also we discuss the so-called instabil i ty of the relative weights  
of the remaining options when an option is deleted from 

       

consideration. We show in Section 3 that such behaviour is to be 
expected and is reasonable. 

These measures have been used in several well known applications         
e.g. the decision support systems EXPERT CHOICE , PDS and 

PRIORITIES.. 
 
Section 1. Definitions 

Let Ω = {01,…,0n} be a set of n options which are 

to be pairwise compared. 

We shall abuse notation by referring to the options by their index 
number i rather than by 0i. 

Let  }0x:RI{RI * >∈= x

If we have a function c: Ω  x  Ω → such that  such that *RI

1. Ω∈∀= ji
ijc

jic ,
),(

1),(  

2.  Ω∈∀= i,1)j,i(c

then  c  i s  ca l led  a  compar ison  method and we th ink of  c ( i , j )  g iv ing 
the  relative preference of option i to option j.  
The  compar i sons  a re  mul t ip l i ca t ive  in  the  sense  tha t  in  a  
completely  consis tent  set  of  pairwise comparisons between the  
options i, j, k we expect: 
 c(i, j)c(j, k) = c(i, k)      (1). 
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This is the basic assumption underlying the treatment of 

consistency in the rest of this paper. 

If there is a human decision-maker formimg these comparisons 

then it is likely that (1) is not satisfied for all i,j,k . 

We shall measure the deviation from consistency in several ways , 

all applied to a fixed comparison method c. 
 
1.1 Example of a comparison method  
Consider the following scale : 

 

Equal                  Preferred                     Strongly      v. Strong                    Absolutely 

               Preferred      preferred                     preferred 
                                   |                                            |               |               |     

1              2             3            4                 5             6              7               8             9 

 

Given distinct options i, j a decision—maker compares them by 

using the scale above and finds the numerical point c on the scale 

closest to her strength of preference of one over the other. 

If i is preferred to j then c(i, j) = c , c(j, i) = 1/c. 

(see [3], [5]). 

Given the comparison method c as applied to the options Ω  we then 
obtain a matrix A = (ai,j) where ai,j = c(i,j) , 1 ≤ i,j ≤ n 

A is called a reciprocal matrix as  , 1 ≤ i,j ≤ n. 1
i,jj,i aa −=

 

If the comparisons are  consistent i.e. 

c(i,j)c( j,k> = c(i,k) for all triples i, j, k Є Ω we call the 

matrix A consistent. 

Note that 

Lemma 1

A consistent niwww in ≤≤∈∃↔ 1,RI),,....,( *1  such that 
 
 Ω∈∀= j,iw/wa jij,i  

proof 

See [ 5 ]. 
 
A contains  al l  the information needed to define a  consis tency 
measure and we now give some examples 
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Section 2. Consistency Measures 

2.1 Saaty's Eigenvector Method  

(see [5] for more details ) 

Let A be a reciprocal matrix. All entries of A are positive. 

Hence the Perron-Froebenius Theorem [6] can be applied to show 

that A has a maximal eigenvalue λ with associated eigenspace E of 
dimension 1. The eigenvector (w1 ,....,wn ) ,wi ∈   , in E which 

satisfies  is therefore unique. 

*RI

1w
n

1i
i =∑

=

The method then continues by defining 

1n
n

−
−λ

=µ  and using µ as a measure of inconsistency. 

Note that µ ≥ 0 as it is shown in [ ] that λ ≥ n. 

Also µ = 0 iff A is consistent. 

The eigenvector (w1 ,...,wn ) ,wi *RI∈ ,  1w
n

1i
i =∑

=

i s  t hen  t aken  t o  r ep re sen t  t he  no rma l i s ed  s co re s  g iven  t o  t he  
op t ions  i n  Ω .  
 
2.2 Geometric Method 
This  method of  measuring consis tency was developed independently 
by Crawford and Williams [ 1 ] and by  Foster [2 ].  

Th is  method ,  fo r  want  o f  a  be t t e r  t e rmino logy  ,  i s  ca l l ed  
Geomet r i c  fo r  two  reasons  

1. It uses the geometric mean 

2. Vector space techniques are used to analyse it.  

Basic Definitions 

All matrices will be n x n. All logs are to base e and denoted by 

1n(x) , for x . RRI *∈ *. 

Skew-Symmetric Matrices 

Let ℜ  denote the set of reciprocal matrices 

Let A = (ai,j) ∈  ℜ  

Let B = (bi,j) be defined by bi,j = 1n(ai,j) 

Then B is skew—symmetric i.e. bi,j = - bj,i,. 

Let m be the vector space of all nn ×  matrices over RI . 

Let G M be the subspace of skew—symmetric matrices . ⊆

G has dimension  ).1n(n
2
1

−  

Hence In defines a map Ln : →ℜ G which is 1-1 and onto. 
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The inverse map is given by 

)e())b((Ex j,ib
j,i =  

The zero matrix in M will be denoted by 0 , without we hope, any 

confusion. 

If @  is the set of all consistent matrices then we let ℜ⊆

.@Ln=ℜ  

Lemma 2 

B = (bi,j) iff  such that bℜ∈ n1 b,....,b∃ i,j = bi – bj ∀ i,j. 

G⊆ℜ  is a subspace of dimension n-1. 

Proof 

Follows from Lemma 1 

E.O.P. 

Note that Ln and Ex together with Lemma 2 allows us to analyse 

reciprocal and consistent matrices in the category of vector 

spaces. 

In order to analyse these further we need the idea of distance  in 

M. 

Metrics 

Let B,C∈M where B = (bi,j), C = (ci,j). 

Define 
 

( )
2/1

n

1j

n

1i

2
j,ij,i cb)C,B(d ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

= =

 

 
Thus m is identified with  and the metric is the standard 

2

RI n

Euclidean Distance on.  
2

RI n

Also we have the norm )0,B(dB =  and associated inner product 

 

∑∑
= =

>=<
n

1j

n

1i
j,ij,i cbC,B . 

 
Using this inner product allows us to define orthogonality i.e. 

B,C are orthogonal iff <B,C> = 0. 

Subspaces U, B  are G∈ orthogonal iff A U∈ , B B∈ ⇒  <A,B> = O. 

We say orthogonal subspaces GBU, ∈ form an orthogonal

decomposition iff U+B=G 

In this case we write U⊕B=G and we have 
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BBU,AGC ∈∈∃→∈  such that C = A + B and A and B are 

unique, (see [4]). 

We now describe an orthogonal description of G. 

First we need: 

Let 1 be the 1 x n vector 
)1,....,1,1(

n
1 . 

We have a linear map: 

w : G →  defined by w(A) = A1. nRI

Thus  w(A)  i s  the  column vector  wi th  i th  ent ry  the  mean of  the  sum 
of  the  ent r ies  of  the  i th  row of A. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

n

1j
j,ii a

n
1)A(w  

 

Note that  as A is skew—symmetric. 0)A(w
n

1i
j =∑

=

Now let  .G)ker( ⊆= wS

Note that dimension )2)(1(
2
1)1()1(

2
1 −−=

−−−
= nnnnnS  

Lemma 3

S G=ℜ⊕  

Proof 

First we show that the two subspaces Are  orthogonal. 

Let A  , B ; A = (aS∈ ℜ∈ i,j) , B = (bi,j). 

Then  such that bn1 b,....b∃ i,j = bi – bj, j,i∀  . 

∑∑∑∑
= == =

−=>=<
n

j

n

i
jiji

n

j

n

i
jiji bbabaBANow

1 1
,

1 1
,, )(,  

   ∑∑∑∑
====

−=
n

i
ji

n

j
j

n

j
ji

n

i
i abab

1
,

11
,

1

 

∑∑
==

==
n

1i
j,i

n

1j
j,i 0aaBut  

 
Hence <A,B> = 0. so ℜ  and S are orthogonal.  

We now note that 

)dim()1(
2
1)1()2)(1(

2
1)dim()dim( GnnnnnRS =

−
=

−+−−
=+  

Hence we have  GSR =⊕

E.O.P. 
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Lemma 4

Let  Let B = (bGA∈ i,j) where bi,j = w(A)i. - w(A)j 

Then d(A,ℜ> = d(A,B). 

Thus B is the unique closest matrix in ℜ  to A. 

Proof 

It is easy to show that w(A-B) = 0 . 

Hence A - B  which implies the result. S∈

E.O.P. 

We use d (A,B) as a measure of the consistency of A. 

Thus d (A,B) = 0 iff A∈  R iff Ex(A) ∈  iff Ex (A) is consistent 

We note that w :G → nRI  is onto the subspace of Rn given by 

}0x:)x,....x{(
n

1i
in1 =∑

=

  and w| ℜ  is an isomorphism. 

I n  t h e  a b o v e  d i s c u s s i o n  a  r e c i p r o c a l  m a t r i x  A  =  ( a i , j )  w a s  

l inear ised  by  cons ider ing  Ln(A)  =  (1n(a i , j ) )  which  i s  a  skew 

symmetr ic  matrix. 

B y  L e m m a  4  t h e  m a t r i x  C  =  ( c i , j )  = ( w ( L n ( A ) ) i  –  w ( ( L n ( A ) ) j )  i s  

t h e n  t h e  closest matrix in Ato(@)Ln=ℜ  
 

Note that 

( )
n
1

,2,1,

,2,1,
,,, ...

...
n1)(n1)(n1

n
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−= ∑

njjj

niii
kjkiji aaa

aaa
aac  

 

Thus  on  conver t ing  back in to  rec iprocal  mat r ices  us ing  Ex we see  

tha t  C conver t s  to  the  consistent matrix Ex(C) = (ri/rj) where 

.n,...1i,)a...aa(r n
1

n,i2,i1,ii ==  
rj is the geometric mean of the ith row. 

Thus we have: 

1 .  ( r 1 , . . . , r n  )  i s  a n  e s t i m a t e  o f  t h e  r e l a t i v e  w e i g h t s  o f  t h e  

o p t i o n s  i . e .  E x ( C )  g i v e s  relative values of the options. 

2. The measure of consistency of A is given by 

2
1

1 1

2
,, ))(log(),()( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−== ∑∑

= =

n

j

n

i
jiji CaBAdAµ  

 
where B is as in Lemma 4 and 
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n
1

n,2,1,

n,2,1,
, ...

...
n1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

iaaa
aaa

c
jj

iii
ji  

i.e. 
 

µ(A)   =  

1
2

2
,,nn,,,,,,11,

11

1 ))......(n1( ⎥
⎦

⎤
⎢
⎣

⎡
∑∑
==

ijiiijjzziijji

n

i

n

j
n aaaaaaaaa

 
2.3 Trace Index 
 

If M = (mi,,j) is a matrix then  is the trace of M. ∑
=

=
n

1i
i,im)M(tr

Let A be a reciprocal matrix. 

Then  ∑∑∑=
k j i

i,kk,jj,i
3 aaa)A(tr

Let cijk = ai,j aj,k ak,i. 

A is consistent iff .k,j,i1Cijk ∀=  

 
There are 6 possible permutations of a fixed i,j,k. 

Tes t ing  the  va lues  o f  each  such  pe rmuta t ion  g ives  b )  and  c )  in  the  

fo l l owing  Lemma .  

Lemma 5

a) cijk = 1       if any two of i,j,k are the same. 
b) cijk = cabc    if a,b,c is an even permutation of i,j,k. 
c)   if a,b,c is an odd permutation of i,j,k. 1

abcijk cc −=
 

G i v e n  i , j , k  w h e r e  i  <  j  <  k  t h e n  t h e r e  a r e  t h r e e  

p e r m u t a t i o n s  w h i c h  a r e   o d d ,  t h r e e  even. 

A l s o  t h e  t o t a l  c o n t r i b u t i o n  t o  t r ( A 3 )  f r o m t r i p l e s  w h e r e  a t  l e a s t  

two  a r e   t he  s ame  i s  by  a )  above 

 
)2n)(1n(nn)2n)(1n(n

6
1.6n

3
3 −−−=−−−  

 
Hence we see that tr ∑

<<

− +++=
kji

ijkijk cc 313 n)2(3)A(  

We let 
 

∑
<<

− −+=
−

=τ
kji

21
ijkijk2

33

n/)2cc(3
n

n)A(tr)A( . 

We call  the )A(τ trace index of A. 
 

 
 
 
 
7



 

 

Properties of τ (A)
1. τ(A)  0 ≥
2. τ (A) = 0 iff A is consistent  
Proof 
1. follows as ci j k +   - 2  0 for all i, j, k 1−

ijkc ≥
2. A is consistent → ci j k =1 for all i,j,k 

  →τ (A) = 0 

τ (A) = 0 →   ∑
<<

− =−+
kji

jkijki 0)2cc( 1

     → c  for all i,j,k 02c 1 =−+ −

2cc 1 −+ −

jkijki

     → ci jk   = 1 for all i.j.k as the mi minimum value of 

jkijki at ci jk = 1. 

Hence A is consistent. 

E.O.P. 

Note that in order to compute τ(A) we need only consider the 

n
6
1 n(n-l)(n-2) triples i,j,k where i<j<k . 

Further if we consider A3 = (di,j) then we call 

2

2
i,i

i n
nd

)A(
−

=τ  the i - index  , ni1 ≤≤  

Lemma 6

a)   ,i = 1,..,n 0)A(i ≥τ

b) τ(A) =∑  
=

τ
n

1i
i )A(

c) A is consistent iff ∃  i such that τi(A) = 0 

Proof 

a) and b) follow easily from the definition.. 

For c) we observe that  1cccc −= ijliklijkjkl

Hence τ(A) = 0  c⇔ ijk =1  for all j,k ⇔  cjkl =1 for all j,k,l  

⇔ A is consistent.  

The i— indices τ(A) i = l,..,n are useful in indicating which  

option is linked to the most inconsistent decisions. 

We examine this in more detail in the next section. 
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2.4  .The Saaty , Geometric Weights and the Trace Index 

We now show for sufficiently small trace index that the Saaty 

eigenvector and the geometric weights agree to within a given 

tolerance. 
 
 

Using the Saaty method we have the maximum eigenvalue λ and the 

associated eigenvector (w1 ,...,wn) such that wi > 0 for all i and  

.n≥λ  
 

Note that ∑
=

=λ
n

1j i

j
j,i v

v
a  

Using the geometric method we have geometric weights 
 

(v1,....vn ) where vi = n
1

in2i1i )a...aa(    , i = 1,..,n.  
 

Let ∑
=

=
n

j i

j
jii v
v

aS
1

,  

=∑
=

n

1j

n
1

i,nn,jj,ii,11,jj,i )aaa....aaa(  

Now ∑
=

≤
n

1k
i,kk,jj,i

n
1

i,nn,jj,ij,11,jj,i aaa
n
1)aaa....aaa(  

This follows by the usual arithmetic mean - geometric mean 

inequality. 

Hence we obtain for i = l,..,n 
 

∑∑
= =

≤
n

1j

n

1k
i,kk,jj,ii aaa

n
1S  

Let .S
n
1 n

1i
i∑

=

=σ  

Then 2

s

1 1 1
,,, n

)tr(Aaaa2
n
1

=⎥
⎦

⎤
⎢
⎣

⎡
≤ ∑∑∑

= = =

n

i

n

j

n

k
ikkjjiσ  

Let us now assume that 0
n

n)A(tr)A( 2

33

>ε=
−

=τ  

Hence we have that tr(A3) = εn2 +  n3 

And it follows that .n
n

nn
2

32

ε+=
+ε

≤σ  
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Lemma 7

Assume τ(A) = ε  , then 

1.  .n ε+≤σ

2. . ε+≤≤ nnSn i

Proof 

1. is shown above 

Proof of 2.

We  have  ∑
=

=
n

1j i

j
j,ii v

v
aS  

   n
1

n21
n
1

in2i1i
j

)v...vv()a...aa(
v
n

≥  

  nv
v
n

i
i

==  

as v1 v2...vn =1 

Hence    n,..,1,nS =≥ ii

Also ninni ,..,1,S =+≤ ε  

follows from ∑
=

ε+≤σ=σ
n

1i
i ..nandS

n
1  

E.O.P. 

Now let V=   (v1 , v2 ,...vn ) . Since Si = ∑
=

n

1j i

j
j,i v

v
a  we have  

)'.vS,...,VS,VS('AV nn2211=  

Thus Lemma 7 implies that the smaller τ(A) = ε  is the closer that 

V' is to an eigenvector associated to the maximum eigenvalue i.e. 

the Saaty eigenvector. 

Note that V' is not in general an eigenvector and that the  

variance of the Si , i = l,..,n , measures to some extent how far 

V' is from being an eigenvector with associated eigenvalue σ.  

Thus in the presence of "large" values of τ(A) , or major  

inconsistencies in the pairwise comparisons ,the geometric 

weights and the Saaty weights derived from the eigenvector will 

differ. 
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This was investigated in [1] where it was also -found that the  

geometric weights were better than the eigenvector weights in the  

following sense. 

A perfectly consistent matrix A gives a  set  of weights which are the  

same for b o t h  m e t h o d s ,  g e o m e t r i c  o r  e i g e n v e c t o r .    

The matrix was then perturbed by changing some of the entries,  

although these changes were constrained by the perturbed matrix 

remaining  reciprocal. The geometric and eigenvector  weights were 

then calculated for the perturbed matrix and compared with the 

original weights. It was found over a large number of trials that                         

t h e  g e o m e t r i c  w e i g h t s  w e r e  s t a t i s t i c a l l y  s i g n i f i c a n t l y  c l o s e r  t o  

t h e  o r i g i n a l  w e i g h t s  t h a n  t h e  e i g e n v e c t o r  w e i g h t s  w h e n  t h e  

i n c o n s i s t e n c y  w a s  h i g h .  

 

Section 3. Deletion and Addition of Options 
Let A(i) be the (n-1) × (n-1) matrix obtained by deleting the ith 

row and  co lumn.  Note  t ha t  A ( i )
 i s  s t i l l  a  r ec ip roca l  ma t r ix .   

Cons ide r  the  fo l l o w i n g  d e f i n i t i o n :  

The i - inconsistency of option i is the trace index of A(i) . 

i.e. τ(A(i)).  

Lemma 7

n,...,1,))A(3)A((
)1n(

nτ(A 2

2
(i) =−

−
= iiττ  

Proof 

Follows by an easy computation. E.O.P. 

T h u s  w e  n o t e  t h a t  i f  w e  d e l e t e  t h e  o p t i o n  w i t h  l a r g e s t  i  –  i n d e x  

τ i (A)  then  we obta in  the  most  consis tent  (as  measured  by  the  t race  

i n d e x )  s e t  o f  n - 1  o p t i o n s .  

For  th i s  r eason  we  can  cons ider  τ i  (A)  as  a  r easonab le  measure  o f  

t h e  c o n t r i b u t i o n  t h a t  a  p a r t i c u l a r  o p t i o n  h a s  o n  t h e  i n c o n s i s t e n c y  

o f  t h e  s e t  o f  d e c i s i o n s .  

I f  w e  c a l c u l a t e  t h e  g e o m e t r i c  o r  S a a t y  w e i g h t s  o f  A ( i )  , i . e .          

a f t e r  de l e t i ng  op t i on  i  ,  we  do  no t  i n  gene ra l  p r e se rve  t he  

r e l a t i v i t i e s  b e t w e e n  t h e  o t h e r  o p t i o n s  a s  c a l c u l a t e d  f r o m  A .  

(Al t h o u g h  t h e y  a r e   p r e s e r v e d  f o r  A  c o n s i s t e n t . )  
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For example: 

Suppose there are 4 options and the -following comparison matrix A 

is formed using the 9 point scale described in Section 1.1 .  Also 

we have the normalised geometric weights calculated from this 

matrix: 
 
  

 Decision Matrix A Geometric Weights
1 1/3 ½ ½ 0.1427 
3 1 1 2 0.3531 
2 1 1 1 0.2695 
1 1/2 1 1 0.2347 

 
 

Table 1 

Now let us add another option to be compared to the other 4 and we                        
obtain the following matrix B, where the fifth options' comparisons                        
are included in the fifth row and column and the weights have been                        
r e c a l c u l a t e d  a s  s h o w n . .  
 

Decision Matrix B Geometric Weights
1 1/3 1/2 1/2 7 0.1833 
3 1 1 2 9 0.3422 
2 1 1 1 7 0.2612 
2 1/2 1 1 7 0.2274 
1/7 1/9 1/7 1/7 1 0.0309 

 
 

Table 2 
If we consider the first 4 options then their relative weights                        
have changed e.g. if ri,j is the ratio of option i to option j                        
weights we have for the above matrices  
 
  r1,2  r2,3  r3,4 
 
    A        .3384  1.3171  1.1944 
    B  .4073  1.3237  1.1487 

This has been considered a problem (see [׀]) and as a result                        
these methods of obtaining weights from a reciprocal matrix have                        
been criticised .  

However these criticisms are readily answered by considering the                        
effect of adding the fifth option. 
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Matrix A provides a set of normalised weights for the first  4 
options as in Table 1 .  
Also the fifth column of matrix B gives weights wi ,  i=1,…4 for 
the first four options where wi = bi 5 .  On normalising these 
weights we now have two normalised lists of weights for the first  
four options. 
 

From Matrix A   From Last Column of B  

0.1427 0.2333 

0.3531     0.3000 

 0.2695     0.2333 

 0.2347     0.2333 
 

Thus there are two differing sets of weights (not too dissimilar 

due to the reasonable overall  consistency of this example as 

meaured by the trace index). 

Thus it  is not reasonable to expect that the weights of the first 

four options as calculated from A should remain  the same in the 

presence of the extra comparisons given by B. 

The methodologies adopted by Saaty or in the Geometric Method have 

within them implicit  methods of combining these conflicting lists 

of weights. 

For example ,  in the Geometric Method the two lists above are 

combined by taking the weighted geometric mean of the entries of 

the lists and then renormalising. The weights used are 4/5 for the 

weights from A and 1/5 for the weights from  the last column of B. 

This is reasonable given the relative amounts of information 

provided by A and the last  column of B as far as the first four 

options are concerned. 

The above argument clearly demonstrates that in the presence of 

significant inconsistency it  would be invalid for the deletion of 

an item to lead ,  in general ,  to the same relative weights for 

the other options. 
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