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Whole Transcriptome Sequencing 
Analyses Reveal Molecular Markers 
of Blood Pressure Response to 
Thiazide Diuretics
Ana Caroline C. Sá1,2, Amy Webb3, Yan Gong1, Caitrin W. McDonough1, Somnath Datta4, 
Taimour Y. Langaee   1, Stephen T. Turner5, Amber L. Beitelshees6, Arlene B. Chapman7,  
Eric Boerwinkle8, John G. Gums9, Steven E. Scherer10, Rhonda M. Cooper-DeHoff1,11, 
Wolfgang Sadee12 & Julie A. Johnson1,2,11

Thiazide diuretics (TD) are commonly prescribed anti-hypertensives worldwide. However, <40% of 
patients treated with thiazide monotherapy achieve BP control. This study uses whole transcriptome 
sequencing to identify novel molecular markers associated with BP response to TD. We assessed 
global RNA expression levels in whole blood samples from 150 participants, representing patients 
in the upper and lower quartile of BP response to TD from the Pharmacogenomic Evaluation of 
Antihypertensive Responses (PEAR) (50 whites) and from PEAR-2 (50 whites and 50 blacks). In each 
study cohort, we performed poly-A RNA-sequencing in baseline samples from 25 responders and 25 
non-responders to hydrochlorothiazide (HCTZ) or chlorthalidone. At FDR adjusted p-value < 0.05, 
29 genes were differentially expressed in relation to HCTZ or chlorthalidone BP response in whites. 
For each differentially expressed gene, replication was attempted in the alternate white group and 
PEAR-2 blacks. CEBPD (meta-analysis p = 1.8 × 10−11) and TSC22D3 (p = 1.9 × 10−9) were differentially 
expressed in all 3 cohorts, and explain, in aggregate, 21.9% of response variability to TD. This is 
the first report of the use of transcriptome-wide sequencing data to identify molecular markers of 
antihypertensive drug response. These findings support CEBPD and TSC22D3 as potential biomarkers of 
BP response to TD.

Hypertension (HTN) affects approximately 80 million adults in the United States and one billion worldwide1,2. 
HTN is the most important modifiable risk factor for cardiovascular and renal diseases, and the use of antihyper-
tensive medications is associated with decreased morbidity and mortality3. Despite the availability of numerous 
blood pressure (BP) lowering medications from different drug classes with different mechanisms of action, only 
about half of patients treated with antihypertensive medications achieve appropriate BP control4,5.

Thiazide diuretics are among the most commonly prescribed antihypertensive medications in the US, with 
more than 50 million hydrochlorothiazide (HCTZ) prescriptions in 20146, and likely double that when combi-
nation products are considered. Thiazides are a first-line option for HTN treatment, yet patients’ responses vary 
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widely and less than 40% of patients achieve BP control4,7. This reveals that the inter-individual variability in BP 
response to TD is likely to contribute to the suboptimal BP control.

In the past 10 years, pharmacogenomic studies have increased our understanding of the potential role of 
specific genetic variants with BP response to antihypertensive drugs8–10. Recently, two replicated regions, one 
in PRKCA (protein kinase C, alpha) and the other one near GNAS (G protein alpha subunit), were identified 
with potentially clinically relevant effects on BP response to HCTZ11. Despite success with the GWAS approach, 
stringent cutoffs for statistical significance (P < 5.0 × 10−8) relative to the sample sizes available in hypertension 
pharmacogenomics cohorts limit the detection of additional polymorphisms influencing BP response to antihy-
pertensive drugs. In addition, these results suggest the involvement of multiple genes, each contributing only a 
fraction to the overall genetic influence on hypertension.

The study of RNA transcriptomes by deep sequencing12 (RNA-Seq) represents an alternative approach to 
identifying candidate genes. RNA transcripts are the most proximate phenotype that reflects the integration of 
multiple genetic variants in cis and in trans, in addition to restraints imposed by gene networks and pathways13,14. 
As a result, RNA levels can serve as proximate indicators of a disease state or drug response, with greater sensitiv-
ity than genetic variants by themselves. RNA-Seq has brought relevant qualitative and quantitative improvements 
to transcriptome analysis, offering an unprecedented level of resolution and a unique tool to simultaneously 
investigate different layers of transcriptome complexity. RNA levels and allelic-specific RNA expression, the latter 
a sensitive indicator of cis-regulatory variants15, can serve to discover regulatory genetic variants associated with 
expression and RNA processing, thereby adding to our understanding of factors that influence phenotype. Thus, 
in this study, we aim to identify genes/transcripts associated with BP response to thiazide diuretics and investigate 
allele specific expression within these genes, as a mechanism to potentially explain the detected differences in 
gene expression.

Results
In order to study inter-individual variability in expression that potentially impacts BP response to TD, we gen-
erated transcriptome sequencing data from 150 hypertensive participants treated with HCTZ or chlorthalidone, 
and data passed quality control procedures on 149. For each sample, RNA-Seq reads were mapped to the human 
genome, resulting in 11–63 million mapped reads per sample. Of those, 79–95% of the reads were uniquely 
mapped. These and other mapping statistics are presented in the Supplementary Table 1.

Table 1 displays baseline and demographic characteristics from PEAR and PEAR-2 participants selected for 
RNA-Sequencing. Age, gender and baseline BP among responders and non-responders to HCTZ were simi-
lar. However, these characteristics did differ significantly between PEAR-2 white and black responders and 
non-responders to chlorthalidone, as shown in Table 1.

Mean changes of serum potassium concentrations and uric acid levels in non-responders were determined 
before and after treatment with HCTZ and chlorthalidone (Table 2), with the premise that if the cause of the 
nonresponse in BP lowering was nonadherence, then it would be unlikely that there would be any observed 
adverse metabolic responses typically seen with TD treatment16–18. Change in serum potassium and uric acid, 
from baseline to after treatment, was assessed with paired t-tests. After treatment with HCTZ and chlorthalidone, 
there were significant reductions in serum potassium and significant increases in serum uric acid in participants 
classified as non-responders (Table 2), consistent with previously reported adverse metabolic effects of TD19,20, 
suggesting non-adherence with TDs in the group of BP non-responders is unlikely.

Differential mRNA Expression.  We identified genes differentially expressed between responders and 
non-responders to HCTZ and chlorthalidone, in PEAR and PEAR-2 whites. Overall, 12,948 and 13,160 tran-
scripts were detected with FPKM ≥ 1 in the responders or non-responders to HCTZ and chlorthalidone, respec-
tively. At Q value < 0.05, 11 and 18 unique genes were differentially expressed in PEAR and PEAR-2 whites, 
respectively (Fig. 1 and Supplementary Tables 2 and 3).

Characteristics

Whites (n = 99) Blacks (n = 50)

HCTZ Chlorthalidone Chlorthalidone

Responders 
(n = 24)

Non-responders 
(n = 25)

Responders 
(n = 25)

Non-responders 
(n = 25)

Responders 
(n = 25)

Non-responders 
(n = 25)

Age 48 ± 12 48 ± 8 53 ± 8 48 ± 10 52 ± 8 50 ± 10

Female, n (%) 11 (44%) 10 (40%) 15 (75%)* 5 (25%)* 12 (48%) 12 (48%)

Baseline DBP 93 ± 5 94 ± 4 97 ± 6* 93 ± 5* 98 ± 6* 93 ± 4*

Baseline SBP 146 ± 10 144 ± 10 152 ± 11* 144 ± 9* 152 ± 10* 146 ± 10*

DBP response 
to TD −9 ± 6*** 0.06 ± 4*** −14 ± 4*** −0.2 ± 2*** −17 ± 4*** −1.4 ± 3***

SBP response 
to TD −12 ± 6*** −0.9 ± 6*** −22 ± 7*** −1.5 ± 5*** −27 ± 7*** −4.4 ± 5***

Table 1.  Characteristics of PEAR and PEAR-2 participants classified as responder and non-responders for 
RNA-Seq differential expression and allele specific expression analyses. Mean and Standard Deviation values 
for the continuous variables were presented. SBP: systolic blood pressure; DBP: diastolic blood pressure; TD: 
thiazide diuretics. ***P < 0.001.
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Validation of gene expression associations with BP response to TD.  In order to validate the 
differential expression results, replication in the other white group and in PEAR-2 blacks for each gene dif-
ferentially expressed in PEAR or PEAR-2 whites was attempted (Supplementary Tables 2 and 3). CEBPD and 
TSC22D3 showed statistically significant differences in expression in the same direction (FPKM in respond-
ers compared to non-responders) in all 3 groups tested (Table 3). The results from the meta-analysis displayed 
in the Table 2 revealed that association of CEBPD and TSC22D3 expression with BP response to TD achieved 
transcriptome-wide significance (CEBPD: P = 1.8 × 10−11 and TSC22D3: P = 1.9 × 10−9). Higher CEBPD expres-
sion was observed in responders than non-responders to TD across blacks and whites and the two different 
drugs in the TD drug class: HCTZ and chlorthalidone (Fig. 2A–C). In contrast, TSC22D3 showed increased 
expression levels in non-responders to TD consistently in PEAR whites and PEAR-2 white and black participants 
(Fig. 2D–F). These results identify CEBPD and TSC22D3 transcripts robustly associated with BP response to TD.

The differential expression results with edgeR, including age, gender and baseline BP in the statistical model, 
revealed similar effect sizes, fold change in expression between responders and non-responders, when compared 

Parameters

Whites Blacks

Non-responders to HCTZ 
(n = 25)

Non-responders to Chlorthalidone 
(n = 25)

Non-responders to Chlorthalidone 
(n = 25)

Mean change ± s.d. P value Mean change ± s.d. P value Mean change ± s.d. P value

Serum K+ (mEq/L) −0.2 ± 0.4 0.016 −0.6 ± 0.4 2.0E-07 −0.45 ± 0.6 0.001

Serum uric acid, mg/dl 0.9 ± 1.0 9.6E-05 1.1 ± 1.0 2.8E-05 1.1 ± 1.4 5.6E-04

Table 2.  Potassium and uric acid mean changes in participants classified as non-responders after treatment 
with HCTZ and chlorthalidone. P values represent the comparison between baseline and the end of the 
monotherapy.

Figure 1.  Volcano plots comparing gene expression between responders and non-responders to HCTZ in 
PEAR whites (A) and chlorthalidone in PEAR-2 whites (B). Plot of log-fold changes versus log-p-values of 
probability of differential expression. Each gene is represented on the plot as a single dot. The red dots represent 
genes that passed the statistical threshold of FDR adjusted p-value < 0.05.

Genes

HCTZ whites Chlorthalidone whites Chlorthalidone blacks Meta-analysis

Fold Change P-Value Fold Change P-value Fold Change P-value P-value

CEBPD 1.4 5.0E-05 1.2 2.4E-03 1.3 5.3E-04 1.8E-11

TSC22D3 0.8 1.8E-03 0.8 4.87E-02 0.8 8.8E-03 1.9E-09

Table 3.  Genes differentially expressed between responders and non-responders to HCTZ and chlorthalidone 
in all 3 cohorts, with consistent direction and transcriptome-wide statistical significance when meta-analyzed. 
Fold change corresponds to gene expression levels in responders divided by levels in non-responders, in 
fragments per kilobase per million reads (FPKM).
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to the results with Cuffdiff for CEBPD (Supplementary Table 4), although the p value of this association was not 
as low. The edgeR analyses for TSC22D3 were not statistically significant (Supplementary Table 4).

Since TSC22D3 is located in the X chromosome, we also investigated the overall expression levels (FPKM) 
of this gene in PEAR and PEAR-2 male and female participants (Supplementary Figure 1). There were no 
sex-specific differences detected in TSC22D3 expression (PEAR: P = 0.09, PEAR-2 whites: P = 0.37 and PEAR-2 
blacks: P = 0.39), which suggests that X inactivation escape was not the cause of the observed TSC22D3 differen-
tial expression results.

Biomarker evaluation with model building and validation.  Multiple logistic regression analy-
sis revealed that TSC22D3 or CEBPD gene expression alone were not statistically significant predictors of BP 
response to TD using PEAR whites as the derivation cohort. However, the combination of these genes in the 
model was statistically significant (P = 0.01), and explained 21.9% of the variability in drug response to TD in 
the derivation cohort. For independent assessment of this model in PEAR-2 whites, the area under the curve was 
0.74, indicating a good prediction model for BP response to TD (Fig. 3).

Allele Specific Expression Analysis.  We also sought to determine whether there was evidence of cis-acting 
regulation for CEBPD and TSC22D3. However, we were not able to achieve sufficient number of heterozygous 
(>2) or enough RNA-Seq coverage (>30 reads) for ASE analysis in these candidate gene regions.

Discussion
To the best of our knowledge, this is the first study to investigate the association of global gene expression levels 
with BP response to antihypertensive drugs. Unlike other studies profiling gene expression, here, RNA-Seq data 
from whole blood samples obtained from 3 cohorts of participants selected based on the extremes of BP response 
to TD were included: PEAR whites treated with HCTZ and PEAR-2 whites and blacks treated with chlorthali-
done. The application of robust methods to quantify gene expression, with high sequencing resolution and avail-
able data for the replication and validation of the results reveal the potential to provide previously unrecognized 
insights into BP regulation and responses to antihypertensive drugs.

Herein, 29 genes were differentially expressed (Q value < 0.05) between white participants classified 
as responders and non-responders to HCTZ or chlorthalidone. Among them, CEBPD and TSC22D3 were 

Figure 2.  Plots showing CEBPD and TSC22D3 baseline expression levels between thiazide responders 
compared to non-responders in the PEAR and PEAR-2 RNA-Seq analyses. (A) CEBPD in PEAR (whites). (B) 
CEBPD in PEAR-2 whites. (C) CEBPD in PEAR-2 blacks. (D) TSC22D3 in PEAR. (E) TSC22D3 in PEAR-2 
whites. (F) TSC22D3 in PEAR-2 blacks. Abundance comparisons between thiazide diuretics responders and 
non-responders were carried using Cufflinks v2.2.1. Error bars indicate standard error of the mean. HCTZ: 
hydrochlorothiazide, FPKM: fragments per kilobase per million reads.
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differentially expressed between responders and non-responders in three different cohorts treated with thiazide 
diuretics, with consistent directional fold change in whites treated with HCTZ and whites and blacks treated with 
chlorthalidone.

The top differentially expressed gene, CEBPD, (meta-analysis P-value = 1.8 × 10−11), is located at chromo-
some 8p11.2-p11.1 and encodes the transcription factor CCAAT/enhancer binding protein delta. Previously, the 
expression of CEBPD was associated with strain-specific differential transcription activation of Platelet-Derived 
Growth Factor-α Receptor (PDGF-αR) expression between spontaneously hypertensive (SHR) and normoten-
sive (Wistar-Kyoto) rats21. This strong bimodal (all versus none) strain-specific effect in PDGF-αR expression 
suggests that PDGF-αR and its transcription-regulating factors are significantly related to genetic hypertension 
through proliferation and migration of vascular smooth muscle cells21. Additionally, members of the CEBP family 
of transcription factors, especially CEBPB (beta) and CEBPD, showed regulatory effects on the expression of the 
angiotensinogen (AGT) gene by increasing the promoter activity mediated by interleukin 622. CEBPD is known to 
facilitate the binding of other transcription factors and contribute to chromatin remodeling not only for the genes 
mentioned here23, with documented impact in hypertension, but also genes involved in immune and inflamma-
tory responses24. Therefore, further experiments will be valuable to understand the regulatory mechanisms by 
which CEBPD is involved in BP response to TD.

Differences in TSC22D3 expression was also strongly associated with BP response to HCTZ and chlo-
rthalidone (meta-analysis P-value = 1.9 × 10−9). TSC22D3, located at the chromosome Xq22.3, encodes the 
anti-inflammatory protein glucocorticoid (GC)-induced leucine zipper, also known as Gilz. TSC22D3 expres-
sion is stimulated by glucocorticoids25, interleukin 1026 and aldosterone27, and the latter plays a role in sodium 
homeostasis in the distal nephron via activation of the apical epithelial sodium channel (EnaC)28. Aldosterone 
dose-dependent activation of TSC22D3 mediates the inhibition of the negative feedback mechanism, regulating 
the EnaC deactivation, which ultimately drives sodium retention27. Further experimental validation will be cru-
cial to close the link between TSC22D3 and BP regulation with TD.

Although in humans the majority of X-linked genes are subject to X-inactivation, at least 15% of them are 
thought to escape X-inactivation, being expressed from both the active and inactive X chromosomes in women29. 
Due to the localization of TSC22D3 in the X chromosome, the association between gene expression levels with 
gender (Supplementary Figure 1) was tested. There was no statistically significant difference in expression levels 
between genders. Collectively, these results suggest that an effect of X inactivation escape can be dismissed.

There are some limitations worthy of mention. First, our sample size for RNA-Seq differential expression 
and ASE analysis may have restricted the power to identify additional signals, as well as to validate some of the 
findings; however, the power of the number of samples tested was enhanced by taking an extreme phenotype 
approach. Second, using whole blood samples for RNA-Seq data analysis may have also limited the detection of 
some tissue-specific genes/regulatory mechanisms. However, it is challenging to select only one tissue in order 
to investigate gene expression as a marker of BP regulation since drug response to anti-HTN might arise from a 
variety of target tissues such as vasculature, heart, brain, or kidney. Not only are these tissues difficult to access 
in relatively healthy patients, as hypertensive patients are, but it is not obvious which tissue should be used. Thus 
whole blood is a surrogate for multiple tissues, recognizing the limitations of tissue specific expression with this 
approach.

In conclusion, this is the first report of whole transcriptome sequencing analysis to identify genes poten-
tially involved in the phenotype of antihypertensive drug response. More specifically, differences in CEBPD and 
TSC22D3 expression associated with BP response to HCTZ and chlorthalidone in 3 unique cohorts were identi-
fied. Additional experiments are needed to demonstrate the mechanisms by which, CEBPD and TSC22D3 may 
influence BP response to TD.

Figure 3.  Receiver operator curve for assessment of logistic regression model prediction in PEAR-2 whites. 
Model includes TSC22D3 and CEBPD expression measures in Fragments per Kilobase of Exon per Million 
mapped (FPKM).
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Methods
Study Participants.  The primary analysis of this study included clinical data and whole blood samples from 
hypertensive participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and 
PEAR-2 studies (NCT00246519, NCT01203852 www.clinicaltrials.gov). Details of these studies were previously 
published30. In brief, PEAR was a multicenter, randomized clinical trial with one of the primary aims to evaluate 
the role of genetics on BP response of HCTZ and/or atenolol treated patients. PEAR recruited 768 study partici-
pants with uncomplicated HTN from the University of Florida (Gainesville, FL), Emory University (Atlanta, GA), 
and the Mayo Clinic (Rochester, MN). These participants were randomized to receive monotherapy of either the 
thiazide diuretic HCTZ, or the beta-blocker atenolol for a period of 9 weeks. Fasting blood (including DNA and 
RNA) and urine samples were collected at baseline (untreated), after 9 weeks of monotherapy, and after 9 weeks 
of combination therapy (HCTZ + atenolol). BP response measurements were assessed using office, home, and 
24-hour ambulatory BP and then a composite BP response was constructed31.

PEAR-2 was a prospective, multi-center, sequential monotherapy clinical trial, which recruited a hypertensive 
population with similar characteristics to the one in PEAR. One of its primary aims was to investigate the role of 
genetics on metoprolol, a beta-blocker, and chlorthalidone, a thiazide-like diuretic. Details of this prospective, 
clinical trial were previously published32. Briefly, 417 hypertensive participants had at least a 4-weeks washout 
period prior to each active treatment period with metoprolol (beta-blocker) and then chlorthalidone (thiazide 
diuretic). Home and clinic BP measurements, adverse metabolic effects, RNA and DNA from whole blood, and 
urine samples were collected.

All study participants from PEAR and PEAR-2 provided written informed consent. The Institutional Review 
Boards at the University of Florida, Emory University, and the Mayo Clinic approved both PEAR and PEAR-2 
studies, which were conducted in accordance with the principles of the Declaration of Helsinki and the US Code 
of the Federal Regulations for Protection of Human Subjects.

Gene expression profile with RNA-Seq.  RNA-Seq was performed in 150 PEAR whites and PEAR-2 
white and black participants, selected based on the differences in their BP response to HCTZ and chlorthalidone 
treatment, respectively. Sample selection was based on BP responses to either HCTZ or chlorthalidone in the 
top and bottom quartiles from each of the three cohorts and participants were classified as poor BP responders 
(non-responders) and good BP responders (responders).

Total RNA was from whole blood samples using the PAXgene Blood RNA kit IVD (Qiagen, Valenica, CA), 
then mRNA was selected using poly(A) selection protocol with Sera-Mag Magnetic Oligo(dT) Beads (Illumina, 
San Diego,CA) and fragmented to a mean length ~ 120 to 180 base pairs. Strand-specific complementary DNA 
libraries were prepared and sequenced on an Illumina HiSeq. 2000, performed at Baylor Human Genome 
Sequencing Center in Texas. One of the samples from HCTZ responders did not achieve enough yield of libraries 
for adequate performance in sequencing.

The paired-end 100 bp reads generated were uniquely mapped to the human reference genome (hg19) using 
TopHat v2.0.1033 allowing for four reads mismatches, read edit distance of six, one mismatch in the anchor region 
of a spliced read, and a maximum of five multi-hits. PCR duplicates were removed using Picard (http://picard.
sourceforge.net) MarkDuplicates option. Transcript structure assembly was performed using Cufflinks v2.2.1 on 
each sample. Gene expression levels (in Fragments per Kilobase of Exon per Million mapped, FPKM) were cal-
culated by considering per-isoform FPKM measurements carried out with Cuffdiff v2.2.1. Expression levels < 1 
FPKM fall below the threshold for mRNA abundance required for protein detection, and therefore were not 
included in this analysis34–36.

Additionally, alternative tools were applied for differential expression analysis with the purpose to include 
age, gender and baseline diastolic BP in the statistical model for association with BP response to TD. With BAM 
files from TopHat 2 alignments, the htseq-count function from the HTSeq bioconductor package37 was applied 
to directly count the number of reads for assigned to the known human genes (Gencode gene annotation release 
18). Then, these read counts were modeled to a Negative Binomial distribution using a generalized linear model 
in edgeR38. Recent independent comparison studies for differential expression analysis have shown that no single 
method is likely to perform favorably for all datasets39–41. In our study, we followed the expert recommendation42 
to perform differential expression analyses with more than one method: using Cufflinks/Cuffdiff and HTSeq/
edgeR.

Statistical Methods.  The primary data analysis for this study was performed in whites treated with HCTZ 
or chlorthalidone. Whole transcriptome expression levels were quantified by measuring read counts that overlap 
protein coding genes (count matrix) and Fragments per Kilobase of transcript per Million mapped reads (FPKM). 
A t-test was applied in order to assess the statistical significance for the observed differences in expression levels 
between responders and non-responders to TD. False discovery rate (FDR) adjusted p-values (Q value) < 0.05 
were considered statistically significant.

In order to validate the association of gene expression differences with BP response to TD, we aimed to rep-
licate the finding in PEAR-2 blacks and the alternate group of whites for each gene differentially expressed in 
PEAR and PEAR-2 whites. The a priori criteria for validation was Q value < 0.05 (considering the subset of genes 
differentially expressed) and consistent fold change direction (up or down regulation of expression) in all three 
groups: 1) whites treated with HCTZ, and 2) whites and 3) blacks treated with chlorthalidone.

The differential expression results from each study cohort were combined in a meta-analysis, using standard-
ized p-values to follow the assumption of the Fisher p-value combination method implemented by the R pack-
age MetaRNASeq.43. We considered that genes with meta-analysis p-values < 2.0 × 10−6 (0.05/25,000) achieved 
transcriptome-wide association with BP response to TD.

http://www.clinicaltrials.gov
http://picard.sourceforge.net
http://picard.sourceforge.net
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Biomarker evaluation with model building and validation.  To evaluate whether TSC22D3 and 
CEBPD robustly predict BP response to TD, PEAR participants were assigned into the derivation cohort for logis-
tic regression model building. PEAR-2 whites constituted the validation cohort, in which area under the receiver 
operator curve was calculated in the R ROCR package44 for model evaluation. TSC22D3 and CEBPD expression 
measures in FPKM were used for this analysis.

Allele Specific Expression (ASE) Analysis.  We also tested for allelic mRNA expression imbalance in the 
upstream/downstream within 2 kb of the coding region for the genes that passed the validation criteria in the 
differential expression analysis. The ASE analyses were conducted with heterozygous white participants from 
PEAR and PEAR-2 (n = 100) as our sample size in blacks (n = 50) was too small for a meaningful analysis. A 
personalized genome was built by substituting the reference allele with the variant allele SNP in hg19 using GATK 
FastaAlternateReference tool (www.software.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_
fasta_FastaAlternateReferenceMaker.php) in order to overcome potential bias in read alignment, where reference 
allele reads can be preferentially aligning over alternative allele reads15. RNA-Seq reads were mapped using STAR 
v2.5.2b and a two-pass strategy. We followed the Broad Institute best practices workflow for SNP and indel calling 
from RNA-Seq data (https://www.broadinstitute.org/gatk/guide/article?id = 3891). For each SNP, ASE ratios were 
obtained from the division of reference allele counts over alternative allele reads counts. A binomial statistical test 
was applied to determine whether this ratio deviates from the expected 50:50, when the two alleles are expressed 
equally.
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