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Corticolimbic hyper-response to emotion and glutamatergic
function in people with high schizotypy: a multimodal
fMRI-MRS study
G Modinos1, A McLaughlin1, A Egerton1, K McMullen2, V Kumari1, GJ Barker1, C Keysers3,4 and SCR Williams1

Animal models and human neuroimaging studies suggest that altered levels of glutamatergic metabolites within a corticolimbic
circuit have a major role in the pathophysiology of schizophrenia. Rodent models propose that prefrontal glutamate dysfunction
could lead to amygdala hyper-response to environmental stress and underlie hippocampal overdrive in schizophrenia. Here we
determine whether changes in brain glutamate are present in individuals with high schizotypy (HS), which refers to the presence of
schizophrenia-like characteristics in healthy individuals, and whether glutamate levels are related to altered corticolimbic response
to emotion. Twenty-one healthy HS subjects and 22 healthy subjects with low schizotypy (LS) were selected based on their Oxford
and Liverpool Inventory of Feelings and Experiences rating. Glutamate levels were measured in the anterior cingulate cortex (ACC)
using proton magnetic resonance spectroscopy, followed by a functional magnetic resonance imaging (fMRI) scan to measure
corticolimbic response during emotional processing. fMRI results and fMRI × glutamate interactions were considered significant
after voxel-wise Po0.05 family-wise error correction. While viewing emotional pictures, HS individuals showed greater activation
than did subjects with LS in the caudate, and marginally in the ACC, hippocampus, medial prefrontal cortex (MPFC) and putamen.
Although no between-group differences were found in glutamate concentrations, within the HS group ACC glutamate was
negatively correlated with striatal activation (left: z= 4.30, P= 0.004 and right: z= 4.12 P= 0.008 caudate; left putamen: z= 3.89,
P= 0.018) and marginally with MPFC (z= 3.55, P= 0.052) and amygdala (left: z= 2.88, P= 0.062; right: z= 2.79, P= 0.079), correlations
that were not present in LS subjects. These findings provide, to our knowledge, the first evidence that brain glutamate levels are
associated with hyper-responsivity in brain regions thought to be critical in the pathophysiology of psychosis.
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INTRODUCTION
Compelling support has recently accumulated for a continuum
model of psychosis.1 With mounting evidence from clinical,
genetic, neurobiological, social and environmental studies, this
view proposes a dimensional continuity between subclinical
psychotic experiences in healthy individuals (also termed schizo-
typy) and clinically relevant psychosis.2,3 An underlying factor
structure that broadly corresponds to the positive, negative and
disorganized dimensions of schizophrenia is commonly found for
subclinical psychotic experiences,3–5 and recent reviews acknowl-
edge the multidimensionality of the schizotypy construct,
proposing its use as a broad label subsuming positive, negative
and disorganized facets.6,7 While the majority of healthy people
with schizotypy as identified through self-report questionnaires
are not expected to develop psychosis, high schizotypy (HS) is
associated with higher risk for developing a psychotic disorder,8

and represents a useful and widely applied paradigm to investi-
gate etiological factors of schizophrenia spectrum disorders.6

Consistent with the continuum model of psychosis, individuals
with HS scores demonstrate similar—albeit attenuated—abnorm-
alities in the processing of social and emotional information to
patients with schizophrenia.9 Socio-emotional dysfunctions are

some of the most commonly observed symptoms in schizo-
phrenia, have a negative impact on social and vocational function,
are associated with poor outcomes and are not effectively treated
by available antipsychotic medications.10,11

Emotional and social dysfunctions in schizophrenia involve
impairments in emotional perception and expression, as well as
heightened emotional responsivity and arousal.12,13 Such dysfunc-
tions have measurable neural correlates, with functional magnetic
resonance imaging (fMRI) studies consistently demonstrating
abnormalities within a corticolimbic network including the
prefrontal cortex and anterior cingulate cortex (ACC), insula,
amygdala, hippocampus and striatum.9,14,15 These findings con-
verge with animal and post-mortem evidence, suggesting that
dysregulated corticolimbic interactions play an important role in
the development of schizophrenia-like characteristics.16–18 In
rodent models of psychosis, increased medial prefrontal levels of
the excitatory neurotransmitter glutamate (Glu), due to a
reduction in GABAergic inhibition of local pyramidal neurons,
are proposed to lead to amygdala hyper-responsivity to environ-
mental stress.19,20 Amygdala hyper-responsivity is found to reduce
GABAergic interneuron function in the hippocampus through
direct projections, leading to disinhibition of pyramidal cells
and consequently elevating hippocampal activity.21 In turn,
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heightened output from the hippocampus to the striatum is
shown to drive the striatal dopamine dysregulation that is
characteristic of schizophrenia.22,23 In human studies, hyper-
responsivity of the amygdala and related emotional regions is
observed in patients with schizophrenia24–26 and individuals at
ultra-high risk (UHR) for psychosis,27,28 as well as recently in the
largest population-based study of emotional processing in healthy
people with subclinical psychotic experiences.29 In separate
research, increased Glu concentrations are found in schizophrenia
across several corticolimbic areas,30,31 and prefrontal elevations in
Glx (glutamate+glutamine) levels in antipsychotic-naive indivi-
duals at UHR for psychosis,31 thus highlighting a role for abnormal
levels of glutamatergic metabolites in increasing psychosis
vulnerability. However, despite animal models suggesting an
association between prefrontal glutamatergic neurotransmission
and corticolimbic function, the interactions between these
abnormalities in man remains unclear.
We investigated this issue by examining corticolimbic response

during emotional processing and its relationship with regional Glu
levels in a sample of healthy individuals with HS, relative to similar
individuals with low schizotypy (LS) scores. While such subjects do
not have clinical symptoms of psychosis, they allow investigation
of processes on the psychosis continuum to be studied without
the potentially confounding effects of previous antipsychotic
treatment or illness chronicity. Unlike the UHR research paradigm,
which designates help-seeking individuals showing attenuated
clinical signs of psychosis who are in the putative prodrome of a
psychotic illness (as determined with clinical diagnostic interviews
such as the Comprehensive Assessment of At Risk Mental
States32), the HS paradigm involves typically non-treatment-
seeking individuals from the general population who show high
levels of schizotypy or subclinical psychotic experiences, com-
monly identified through psychometrically validated self-report
measures (for example, the Oxford and Liverpool Inventory of
Feelings and Experiences (O-LIFE) questionnaire,33 or the Schizo-
typal Personality Questionnaire (SPQ)4). On the basis of evidence
for corticolimbic dysfunction during emotional processing in
healthy people with subclinical psychotic experiences,29,34,35

largely convergent with reports of structural abnormalities in
overlapping regions in such individuals,36–38 and the above-
mentioned magnetic resonance spectroscopy (MRS) findings in
schizophrenia and UHR studies, we hypothesized that, relative to
those with LS, HS subjects would show (1) corticolimbic circuit
hyper-reactivity to emotional stimuli, (2) increased Glu levels in the
ACC and that (3) interactions between these two measures would
be altered in subjects with HS.

MATERIALS AND METHODS
Participants
Healthy participants were included in the study based on their score on
the short version of the O-LIFE questionnaire.33 To capture the extremes of
the distribution and have a balanced proportion of participants with high
and low O-LIFE scores, 250 subjects who responded to online advertise-
ment (Research Volunteer Recruitment Webpage of King’s College London,
KCL) were pre-screened. As in previous imaging research in HS,34 we
invited participants with high levels of unusual experiences (HS group; that
is, scored 47 on the Unusual Experiences (UE) subscale of the O-LIFE), and
participants with a low level of UE (LS group; that is, scored o2 on the
O-LIFE UE subscale). The UE subscale of the O-LIFE was chosen because it is
associated with higher severity of positive symptoms in patients with
schizophrenia.39

The recruited sample included 23 individuals in the HS group (11 males;
age range, 18–55 years; mean age 28.48 years) and 25 in the LS group (14
males; age range, 18–58 years; mean age 28.36 years). Participants did not
have any personal or first-degree family history of neurologic or psychiatric
disorders, as confirmed both with the Mini International Neuropsychiatric
Inventory40 (administered by a trained interviewer and reviewed by an
experienced neuropsychologist (G Mosinos)) and the Psychosis Screening

Questionnaire.41 Participants had not used recreational drugs in the
2 weeks prior to MRI scanning, and did not meet criteria for substance
dependency by self-report. Ethical approval for the study was obtained
through the KCL Research Ethics Committee system and all participants
provided written informed consent.

Behavioral measures
Before the start of the scanning session, all subjects completed the
following assessments: the SPQ4 as additional measure of schizotypal
symptoms; a semi-structured interview adapted from the Early Psychosis
Prevention and Intervention Centre (EPPIC) Drug and Alcohol Assessment
Schedule (http://www.eppic.org.au) to assess current/past medication use
and current/past use of alcohol, tobacco and illicit drugs; the Social
Functioning Questionnaire (SFQ)42 to measure social functioning; and a
validated short version of the Wechsler Adult Intelligence Scale-III (WAIS-
III)43 to measure intelligence.

fMRI task
The fMRI task was the same as in a previous study from our group in
patients with first-episode psychosis and UHR subjects.27 The stimulus set
consisted of 50 color pictures from the International Affective Picture
System,44 10 in each of the following categories: negative high arousal
(NHA), negative low arousal (NLA), positive high arousal (PHA), positive low
arousal (PLA) and neutral (NEU), matched for social content (~50%).
Pictures for each category were chosen based on normative ratings,44,45

and the final selection of images was the same as in our previous study.27

Before scanning, all subjects were trained on the task using 10
International Affective Picture System images different from those used
in the fMRI experiment.
Participants were scanned while viewing each picture for 4000 ms,

followed by a gray screen showing a fixation cross that served as low-level
baseline condition (varying from 1000 to 10 000 ms). This was followed by
a rating screen presented for 4000 ms during which time subjects
indicated their subjective emotional arousal to the previously presented
stimulus via button press (1 = not at all aroused, 2 = slightly aroused,
3 = highly aroused). Arousal ratings and reaction times were used as
behavioral metrics of emotional processing. Trial presentation order was
pseudo-randomized based on simulations to optimize
experimental power.

fMRI acquisition and preprocessing
Echo-planar images sensitive to blood oxygenation level-dependent
(BOLD) contrast were acquired to measure hemodynamic responses on a
General Electric Discovery MR750 3 T system (Milwaukee, WI, USA) at the
Institute of Psychiatry, Psychology and Neuroscience, King’s College
London (repetition time: 2000 ms; echo time, 30 ms; flip angle, 75°;
3.3 × 3.3 × 3.0-mm voxels; field of view, 211; 41 axial sections collected with
sequential (top down) acquisition and 0.3-mm interslice gap). Structural
data were acquired by means of a three-dimensional T1-weighted
inversion recovery-prepared gradient echo sequence (voxel size:
1.05 × 1.05 × 1.2 mm, field of view: 270 mm, 196 slices, repetition time:
7.3 ms, echo time: 3.0 ms, inversion time: 400 ms). Four participants had to
be excluded because of failure to complete the fMRI task (3 LS, 1 HS).
Functional MRI data were preprocessed using the SPM12 software

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12). After slice timing, rea-
lignment, segmentation, co-registration and stereotaxic normalization
(2 × 2× 2 mm3), images were spatially smoothed using an 8-mm full-width
at half-maximum Gaussian filter and a high pass filter (128 s). Excessive
movement was considered at 43 mm of translation and 3 degree of
rotation in any axis; no images exceeded this threshold.

MRS acquisition and quantification
A proton MRS (1H-MRS; PRESS, Point RESolved Spectroscopy) was acquired
during the same scanning session, prior to the fMRI task, from the ACC
(Figure 1a), as described in previous studies from our group in UHR
subjects and patients with first-episode psychosis.46–48 Total scanning time
was ~ 75 min.
A standard GE PROBE (proton brain examination) sequence was used,

which incorporates a standardized chemically selective suppression
(CHESS) water suppression routine (echo time: 30 ms; repetition time:
3000 ms; 96 averages were collected). For each acquisition, unsuppressed
water reference spectra (16 averages) were also acquired. Shimming and
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water suppression were optimized, with auto-prescan performed
twice before each scan. The region of interest (ROI) in the ACC was
prescribed from the midline sagittal localizer, and the center of the
20× 20× 20 mm ROI was placed 13 mm above the anterior section of the
genu of corpus callosum at 90° to the anterior comissure - posterior
comissure line.
Spectra were analyzed using LCModel version 6.3-1l (http://s-pro

vencher.com/pages/lcmodel.shtml).49 Water-scaled Glu, glutamine (Gln),
Glx, myo-inositol, choline, creatine and N-acetylaspartate values were
corrected for the cerebrospinal fluid (CSF) content of the voxel using the
formula: metabolite corrected=metabolite concentration × (proportion
WM+proportion GM+(1.55× proportion CSF))/(proportion WM+proportion
GM), where GM (gray matter) and WM (white matter). We determined the
voxel CSF content for each subject by extracting the location of the voxel
from the spectra file headers, and using an in-house program to calculate
the percentage GM, WM and CSF content using the segmented T1-weighted
images, to correct the spectroscopy results for partial volume CSF
contamination. Cramer–Rao minimum variance bounds420% as reported
by LCModel, which are estimates of fit of the metabolite peaks, was used to
determine poorly fitted metabolite peaks for exclusion from statistical
analysis;50 one subject exceeded this threshold and the final sample thus
involved 21 HS subjects and 22 LS subjects (in line with previous imaging
studies detecting significant effects in HS during social cognitive tasks35,51,52).
The primary 1H-MRS measure was Glu corrected for voxel CSF.

Statistical analysis
Behavioral data. Analysis of behavioral and demographic data was
performed in SPSS 23 (http://www-01.ibm.com/software/uk/analytics/
spss/). The effect of group on these measures was tested using
independent sample t-tests for parametric data and Χ2-tests for non-
parametric data. Between-group differences in emotional processing were
tested using a repeated-measures analysis of variance with ‘Condition’ as
within-subject factor (NHA, NLA, PHA, PLA and NEU) and ‘Group’ (LS, HS) as
between-subject factor. The same procedure was used for analysis of
reaction time. Significant effects are reported at Po0.05 and trend effects
at Po0.1.

fMRI analysis. Statistical analyses of fMRI data were conducted using the
general linear model implemented in SPM12. Separate regressors of

interest were specified for each trial type: NHA, NLA, PHA, PLA and NEU.
In addition, realignment parameters (x, y, z, pitch, roll, yaw) were
included in all first-level models as covariates of no interest to account
for variance associated with head movement. All regressors were
convolved with a canonical hemodynamic response function during the
4000 ms ‘viewing’ screen, in order to focus on activation related to
experiencing emotion rather than to cognitively assessing one’s subjective
response to stimuli.27

One contrast image was generated for each participant examining
emotional-related activation, by contrasting all emotional trials versus
neutral trials, which was then submitted to an independent samples t-test
for second-level analysis in SPM12. Emotional perception comprises a
network of regions involved in core affect processing, including the medial
prefrontal cortex (MPFC) and ACC, the insula, medial temporal regions
(hippocampus, amygdala) and the striatum (caudate, putamen,
pallidum).53,54 Thus, we restricted our analyses to this circuitry using a
ROI approach, with a mask created with automated anatomical labeling as
implemented in the WFU_Pickatlas toolbox in SPM (Figure 1b shows our
ROI mask overlaid on a standard brain template). We used an initial search
threshold of Po0.005 uncorrected, to then enforce voxel-wise correction
for multiple testing at Po0.05 family-wise error.

1H-MRS analysis. Between-group differences in ACC Glu concentrations
were examined with an independent samples t-test in SPSS. Exploratory
analyses of the other metabolites present in the spectra were also analyzed
with a t-test corrected for multiple comparisons (threshold for six
metabolites, one voxel; P=0.008). Levene’s test was used to check for
equality of variance across groups.

Integration of fMRI and 1H-MRS data. The relationship between the BOLD
response to emotional scenes within our network of interest and Glu levels
in the ACC was investigated by entering the individual Glu values as
covariates in an analysis of variance design with the fMRI contrast images
(emotional4neutral) using SPM12. Glutamate × BOLD response interac-
tions were assessed separately for subjects with LS and subjects with HS, to
then interrogate group× glutamate × BOLD response interactions in the
same SPM design matrix. As above, an initial search threshold was set at
Po0.005 uncorrected, to then consider significant regions surviving voxel-
wise correction at Po0.05 family-wise error.

Figure 1. (a) Magnetic resonance spectroscopy (MRS) voxel placement in the anterior cingulate cortex. (b) Pre-defined anatomical mask used
for region of interest (ROI) analysis within an emotional processing circuit.
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Table 1. Sample characteristics

Low schizotypy (n= 21) High schizotypy (n= 22) Analysis

Age (years) 27.00 (5.64) 27.36 (7.61) t=− 0.177, P= 0.860
Gender (% female) 42.9% (9 F) 50% (11 F) X2= 0.220, P= 0.763
Ethnicity (% Caucasian) 76.2% (n= 16) 59.1% (n= 13) X2= 4.289 , P= 0.232
IQ (WAIS-III short version) 121.10 (12.59) 117.41 (18.55) t= 0.052, P= 0.452

O-LIFE total 16.24 (8.92) 38.23 (12.62) t=− 6.620, Po0.001
O-LIFE unusual experiences 0.86 (1.01) 11.59 (4.93) t=− 10.003, Po0.001
O-LIFE cognitive disorganization 5.38 (4.14) 11.32 (6.69) t=− 3.518, P= 0.001
O-LIFE introvertive anhedonia 4.90 (3.21) 9.05 (2.50) t=− 4.736, Po0.001
O-LIFE impulsive nonconformity 5.10 (4.35) 6.27 (4.60) t=− 0.863, P= 0.393

SPQ total 9.05 (8.57) 23.89 (14.04) t=− 4.160, Po0.001
SPQ suspiciousness 0.43 (.68) 2.45 (2.32) t=− 3.918, P= 0.001
SPQ constricted affect 1.14 (1.65) 1.82 (1.84) t=− 1.263, P= 0.214
SPQ ideas of reference 0.19 (0.51) 3.36 (2.40) t=− 6.056, Po0.001
SPQ no close friends 1.43 (2.06) 2.41 (2.04) t=− 1.567, P= 0.125
SPQ odd speech 1.86 (2.08) 3.91 (2.51) t=− 2.955, P= 0.005
SPQ odd/eccentric behavior 1.33 (2.01) 2.45 (2.41) t=− 1.655, P= 0.106
SPQ odd beliefs 0.05 (0.22) 1.41 (1.84) t=− 3.440, P= 0.002
SPQ excessive social anxiety 2.33 (2.08) 3.30 (2.58) t=− 1.343, P= 0.187
SPQ unusual perceptual experiences 0.29 (0.46) 2.73 (2.38) t=− 4.730, Po0.001

Social functioning questionnaire total 4.10 (3.13) 5.50 (2.87) t=− 1.534, P= 0.133
Daily tobacco use (mean) 0.78 (3.35) 0.30 (0.75) t= 0.619, P= 0.540
Daily caffeine use (mean) 1.82 (1.52) 2.82 (2.52) t=− 1.566, P= 0.125
Alcohol use (median (range)) 2 (0–5) 1 (0–5) X2= 5.046, P= 0.410
Marijuana use (median (range)) 1 (0–3) 0 (0–3) X2= 2.562, P= 0.464
Parental socio-economic status (% professional level) 66.7% (n= 14) 63.6% (n= 14) X2= 0.343, P= 0.842
Educational level (% university level) 90.5% (n= 19) 77.3% (n= 17) X2= 1.374, P= 0.241

Abbreviations: O-LIFE, Oxford–Liverpool Inventory of Feelings and Experiences; SPQ, Schizotypal Personality Questionnaire; WAIS-III, Wechsler Adult
Intelligence Scale-III.

Table 2. Foci of activation during the emotional processing task (Emotional4Neutral contrast; region of interest analysis)

Brain region Side MNI Number of voxels Z-score P-value FWE

x y z

Task effects
Insula L − 36 24 0 568 5.04 o0.001

R 30 22 − 12 314 4.47 0.002
Caudate L − 2 6 − 4 268 4.89 o0.001
Pallidum − 8 2 − 4 4.33 0.003
Caudate R 4 6 − 4 138 4.34 0.003
Hippocampus R 24 − 6 − 18 73 4.49 0.006

R 22 − 30 − 4 44 3.88 0.028
L − 22 − 30 − 4 64 3.49 0.071

Amygdala R 22 − 4 − 18 78 4.17 0.004
L − 18 − 4 − 14 17 3.01 0.067

Medial prefrontal cortex R 8 58 18 1179 3.67 0.035
Anterior cingulate cortex L − 2 18 22 94 3.32 0.061

Group effects
HS4LS
Caudate L − 6 6 − 6 178 3.81 0.023
Medial prefrontal cortex R 16 56 8 91 3.39 0.081
Putamen R 16 12 − 8 91 3.39 0.085
Anterior cingulate cortex R 16 44 4 95 3.38 0.051
Hippocampus L − 24 − 36 4 24 3.29 0.063

LS4HS
No suprathreshold effects

Abbreviations: FWE, family-wise error correction; HS, high schizotypy; L, left; LS, low schizotypy; MNI, Montreal Neurological Institute; R, right. P-value (voxel-
wise) after FWE.
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RESULTS
Full demographic and behavioral results are presented in Table 1.
Briefly, the only significant differences between our study groups

related to the schizotypy measures. Individuals with HS showed
higher scores than those with LS on O-LIFE: total (Po0.001), UE
(Po0.001) and cognitive disorganization (P= 0.001). We also
observed significantly higher levels of SPQ: total (Po0.001),
suspiciousness (P= 0.001), ideas of reference (Po0.001), odd
speech (P= 0.005), odd beliefs (P= 0.002), and unusual perceptual
experiences (Po0.001) in HS compared to LS subjects.

Behavioral performance
There was a main effect of condition in arousal ratings (F
(4,3.231) = 105.776, Po0.001), by which NHA pictures were rated
as most emotionally arousing compared to all other conditions,
followed by PHA, PLA, NLA. NEU pictures were rated as least
arousing, and there was no difference between NLA and PLA
ratings. There was no evidence for a main effect of group (F
(1,41) = 1.739, P= 0.195) or group × condition interaction (F
(4,3.231) = 1.890, P= 0.130). For reaction time, there was a trend
for a significant main effect of condition (F(4,1.000) = 2.408,
P= 0.051), but no main effect of group (F(1,41)o1, n.s.), or
group × condition interaction (F(1,41)o1, n.s.).

fMRI results
As expected, across groups the contrast Emotional4Neutral
induced increased activation in the MPFC, ACC and bilaterally in
the striatum, insula, hippocampus and amygdala (Table 2 and
Figure 2a).
Group comparisons revealed hyper-responsivity to emotional

pictures in HS subjects compared to LS subjects in the caudate,
and trend-level hyper-responsivity in the ACC, hippocampus,
MPFC and putamen (Table 2 Figure 2b). There were no areas of
significantly lower activation in HS relative to LS individuals.

Figure 2. (a) Statistical parametric maps showing activation during the emotional processing task across all subjects (Emotional4Neutral). (b)
Brain areas where high schizotypy (HS) subjects showed greater activation than those with low schizotypy (LS). All effects considered
significant at voxel-wise Po0.05 family-wise error correction; statistical parametric maps thresholded at Po0.005 uncorrected for display
purposes.

Table 3. 1H-MRS quality parameters and metabolite levels by group

Low
schizotypy

High
schizotypy

Mean s.d. Mean s.d. P-value

SNR 25.14 4.40 25.73 4.76 0.678
Line width 4.95 0.97 4.72 0.56 0.343
Voxel CSF 0.24 0.04 0.26 0.05 0.298
Voxel GM 0.64 0.05 0.63 0.05 0.376
Voxel WM 0.11 0.03 0.11 0.04 0.830
Glutamate % CRLB 6.00 0.95 5.73 0.94 0.348
Glutamate 13.75 1.79 13.97 1.90 0.695
Glutamine % CRLB 14.44 4.07 14.73 3.50 0.869
Glutamine 6.08 1.21 5.80 1.52 0.661
Glx % CRLB 6.52 1.17 6.32 1.21 0.574
Glx 17.96 2.56 18.41 3.12 0.605
Creatine % CRLB 2.48 0.51 2.50 0.51 0.880
Creatine 13.14 4.24 13.56 4.56 0.759
Myo-inositol % CRLB 4.71 0.64 4.64 0.90 0.747
Myo-inositol 7.63 0.86 7.55 0.94 0.760
N-Acetyl-aspartate % CRLB 2.95 0.50 2.73 0.46 0.129
N-Acetyl-aspartate 12.94 1.19 13.19 1.42 0.538
Choline % CRLB 3.14 0.36 3.09 0.53 0.709
Choline 6.54 5.45 6.94 5.44 0.812

Abbreviations: CRLB, Cramer–Rao Lower Bounds; CSF, cerebrospinal fluid;
Glx, glutamate+glutamine; GM, gray matter; 1H-MRS, proton magnetic
resonance spectrum; SNR, signal-to-noise ratio; WM, white matter.
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1H-MRS spectral quality
Spectra obtained were of good quality, with LCModel reporting
mean± SD signal-to-noise ratio of 25.44 ± 4.5 and line width of
4.83 ± 0.8 Hz. For Gln, only data from 9 LS subjects and 11 HS
subjects were usable (Cramer–Rao minimum variance
boundso20%). There were no significant group differences in
any of the parameters relating to spectral quality or in voxel tissue
content. Data relating to spectral quality by group are presented
in Table 3.

1H-MRS results
No between-group differences were found in Glu concentrations,
or in any of the other metabolites that could be reliably quantified
within the voxel selected (Gln, Glx, myo-inositol, choline, creatine
and N-acetylaspartate; Table 3). There were no significant
correlations between metabolite concentrations and age.

fMRI group x glutamate interactions
Within the HS group, there was a significant negative correlation
between ACC Glu levels and response to emotional stimuli in a
striatal region spanning adjacent parts of the left caudate and
putamen, as well as in the right caudate, and at trend level in the
MPFC and in the amygdala bilaterally (Table 4 and Figure 3a).
Furthermore, there was a significant interaction between ACC Glu
levels, BOLD response to emotion and Group in the caudate
bilaterally, which was driven by the negative association in the HS
group compared to LS (Table 4; Figure 3b).

DISCUSSION
The main finding of our study is that individuals with HS show
hyper-reactivity to emotional pictures in the striatum, and
marginally in the hippocampus, ACC and MPFC compared to
those with LS. Although there were no significant differences in
ACC Glu concentrations between the two groups, in HS subjects
Glu levels were negatively associated with the degree of activation
to emotional pictures in the striatum, as well as marginally in the

amygdala and MPFC. These associations were absent in the LS
group. This may suggest that hyperactive neural responses during
emotional processing in schizotypal individuals are related to
decreased ACC Glu concentrations.
Hyper-responsivity within an emotional processing circuitry has

been described in patients with schizophrenia and individuals at
UHR for psychosis.24,25,27,28,55 The principal regions within this
circuitry are the MPFC (including the ACC), anterior insula and
limbic areas such as the amygdala, hippocampus and striatum.53

This circuitry instantiates neural representations of core affect, and
provides the substrate for perception and experience of emotion.
These neural representations indicate whether an object or
situation is helpful or harmful, rewarding or threatening, requiring
acceptance or rejection.54 Core affect is underpinned by amygdala
recruitment relating to the salience or potential information value
of stimuli,56,57 with the striatum (caudate, putamen and globus
pallidus) assessing the affective value of stimuli in a more general
sense across motivation, reward and learning,53 the anterior insula
assessing interoceptive cues58 and prefrontal regions contributing
to making inferences about one’s own moment-to-moment
feelings and engaging in emotional regulation processes.53 In
turn, this circuitry projects to midbrain and brainstem areas that
influence autonomic, chemical and behavioral responses to help
establish an affective representation of an object.54 Therefore, the
involvement of this corticolimbic circuitry is not limited to
entailing a pleasant or unpleasant feeling but it also controls the
degree of cortical and physiological arousal to a given stimulus. In
an independent group of healthy subjects with HS, we previously
reported heightened neural response and decreased functional
connectivity during the regulation of negative emotion.35 We also
previously showed that a differential pattern of activation within
the emotional brain circuitry could accurately classify individuals
with HS versus those with LS.51 In addition, further support for
neural hyper-response to emotion in HS has been recently
provided in the largest community sample examined to date.29

It is noteworthy that structural MRI studies in healthy subjects with
HS have reported converging abnormalities in similar regions. For
example, gray matter volume/density reductions in HS compared

Table 4. Anterior cingulate cortex glutamate effects on fMRI response to emotional stimuli (Emotional4Neutral contrast; region of interest analysis)

Brain region Side MNI Number of voxels Z-score P-value FWE

x y z

Correlation in HS subjects
Positive
No suprathreshold effect

Negative
Caudate L − 20 4 20 695 4.30 0.004
Putamen L − 20 - 10 3.89 0.018
Caudate R 16 0 20 759 4.12 0.008
Medial prefrontal cortex R 4 64 26 107 3.55 0.052
Amygdala L − 10 0 − 12 12 2.88 0.062

R 28 − 8 − 12 8 2.79 0.079

Correlation in LS subjects
Positive
No suprathreshold effect

Negative
No suprathreshold effect

Group × ACC glutamate interaction
Caudate L −14 16 14 275 3.44 0.040

R 16 6 24 120 3.35 0.051

Abbreviations: ACC, anterior cingulate cortex; FWE, family-wise error correction; HS, high schizotypy; L, left; LS, low schizotypy; MNI, Montreal Neurological
Institute; R, right. P-value after voxel-wise FWE.
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with LS subjects have been reported in MPFC, orbitofrontal and
temporal regions,37 in the insula and dorsolateral PFC,38 as well as
negative correlations between MPFC volume and schizotypal
personality measures.59 In addition, gray matter volume increases
in HS compared with LS individuals have been found in posterior
cingulate cortex and precuneus,60 as well as positive correlations
between cortical thickness in dorsolateral PFC and SPQ total
score,61 and between gray matter volume in the precuneus and
negative-dimension schizotypy.36 Collectively, these findings
support the view that subclinical psychotic experiences in healthy
subjects and psychotic symptoms in patients with schizophrenia
share similar neurobiological bases, and that dysfunction of the
circuitry underlying emotional processing has an important role in
the expression of psychotic-like experiences.
The present study did not find direct differences in Glu levels in

subjects with HS compared to those with LS. The first meta-
analytic effort at synthesizing evidence of regional Glu concentra-
tions in patients with schizophrenia indicated converging

reductions in MPFC/ACC Glu levels in schizophrenia, while Gln
levels were found to be increased compared with controls.30 A
more recent meta-analysis included measurements in other brain
regions as well as in subjects at UHR for psychosis and with a first-
episode of psychosis, allowing putative effects of disease stage
and exposure to antipsychotics to be ascertained.31 Elevated
medial frontal Glx levels were observed in UHR individuals, which
were absent after illness onset (first-episode psychosis and chronic
schizophrenia). In contrast, elevated Glx in the medial temporal
lobe was found in chronic schizophrenia but not in early psychosis
(UHR or first-episode psychosis groups).31 In schizotypy, the only
previous study using MRS reported no significant correlation
between Glx levels in the thalamus and scores on a measure of
magical ideation.62 Similarly, we did not find significant group
differences in any of the other measurable metabolites (including
Glx) in our prefrontal voxel. These findings suggest that sizeable
regional alterations in MPFC/ACC glutamatergic metabolites may
appear at a later stage, once psychotic-like experiences are

Figure 3. (a) Section views of the negative association between glutamate levels in the anterior cingulate cortex (ACC) and functional
activation during emotional processing in high schizotypy (HS) subjects. (b) Section views of the interaction between Group activation to
emotion and ACC glutamate levels. (c) Plots showing the interaction between left and right caudate activation and glutamate levels in the HS
group relative to low schizotypy (LS). (d) Scatterplots of the association between ACC glutamate levels and activation in the left and right
caudate. All effects considered significant at voxel-wise Po0.05 family-wise error (FWE) correction; statistical parametric maps shown at
Po0.005 uncorrected for display purposes. BOLD, blood-oxygenation level dependent.
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exacerbated and the phenotype becomes clinically relevant. As
our report is, to our knowledge, the first to interrogate prefrontal
glutamatergic function in HS, future studies are warranted to
replicate our findings.
Our third prediction was that the relationship between

neurophysiological and neurochemical measures would be altered
in subjects with HS. This hypothesis was confirmed. Within the HS
group, functional activation in the emotional circuitry was
negatively correlated with Glu levels in the ACC, whereas in LS
these associations were lacking. Recent studies in the healthy
brain reported a positive correlation between prefrontal Glu levels
and ACC activation to facial expressions of anger,63 as well as
positive correlations between ACC Glu levels and local response
during an empathy task.64 Our finding of an inverse correlation
between Glu levels and functional response to emotion in HS
individuals was in the opposite direction and significantly different
from that observed in the LS group. In UHR individuals,
multimodal studies have also demonstrated negative associations
between thalamic Glu levels and prefrontostriatal activation
during verbal fluency tasks,65,66 as well as between temporal Glu
levels and local activation during verbal encoding.67 A direct
relationship between corticolimbic hyper-responsivity to emotion
and Glu levels in HS provides support to the notion that
dysfunction of this circuitry may have an important role in the
pathophysiology of psychotic-like characteristics, as suggested by
converging animal and human evidence. More specifically, a
validated neurodevelopmental preclinical model of psychosis
proposes that an imbalance of Glu and GABAergic function in
prefrontal brain regions would induce a failure to regulate the
amygdala response to emotion, thereby unfolding a neurobiolo-
gical cascade to striatal hyperdopaminergia via excitation/inhibi-
tion imbalances through a multisynaptic pathway including the
hippocampus,68 leading to schizophrenia-like symptoms.23 The
critical role of emotional dysregulation and excitation/inhibition
imbalances has been further illustrated by recent work, showing
that premorbid administration of benzodiazepines at anxiolytic
doses in an animal model prevents the emergence of psychotic-
like characteristics in adulthood (such as hyperdopaminergia,
hippocampal hyperactivity, increased locomotor response to
amphetamine).16,69 Future longitudinal studies testing this model
comprehensively, including subjective and neurophysiological
responses to emotion, and their association with GABAergic,
glutamatergic and dopaminergic neurotransmission, will be
fundamental to understanding the mechanisms underlying the
development of schizophrenia, and may provide a scientific basis
for the development of novel interventions focused on emotional
regulation to prevent or delay progression from the vulnerability
to the psychotic state.
While patients with schizophrenia and UHR subjects report

stronger subjective feelings of emotion than healthy controls,9,13

we did not observe an increase in subjective arousal in HS
compared with LS subjects. The lack of significant group effects on
subjective emotion could indicate that experiential correlates of
corticolimbic dysfunction may become manifest at stages in the
psychosis continuum that are closer to a clinically relevant
disorder. An alternative explanation may be that the observed
activation increases reflect compensatory mechanisms in these
otherwise healthy, non help-seeking individuals. In fact, we
observed negative interactions between ACC Glu and fMRI
response to emotion, suggesting that the observed hyperactiva-
tion during emotional processing in schizotypal individuals is
related to lower ACC Glu levels. Although in schizophrenia and
UHR the relationship between prefrontal Glu or Glx levels
(typically increased) and functional response to emotion (typically
increased) is yet to be investigated, our study in HS suggests
opposite fMRI-MRS correlations from what would be predicted in
those clinical groups. As our study involves high-functioning HS
individuals, our findings may provide evidence for potentially

protective neurobiological mechanisms in this population. Further
research examining the relative contributions of excitatory and
inhibitory neurotransmission in these different groups (schizo-
phrenia, UHR, HS) and their interactions with functional response
during emotional tasks has the potential to provide substantial
insights into the neurobiology of risk and resilience for psychiatric
disorders.70

As a limitation to our study, the results should be considered in
the context of subjects pooled from a university sample, with
relatively high IQs and no differences in substance use between
groups, and as such may not generalize to all individuals with
schizotypy. Larger community-based studies would help define
the normal variation in schizotypy. In addition, MRS concentration
estimates reflect both intra- and extracellular Glu and are
consequently unable to discriminate between neuronal (e.g.,
pyramidal) and non-neuronal (that is, glia) metabolite concentra-
tions; therefore, the present results should be interpreted to
reflect total tissue Glu levels rather than glutamatergic neuro-
transmission specifically. Finally, using our approach of PRESS with
an echo time of 30 ms at 3 Tesla, the partially overlapping signals
from Glu and Gln cannot be entirely resolved, with contamination
of the Glu signal by Gln estimated as o10%.71

In summary, the present study suggests that hyper-responsivity
within a neural circuitry underlying emotional processing is
associated with Glu levels in subjects with HS. These findings
support the view that there is neurobiological continuity between
subclinical psychotic experiences in healthy individuals and
psychotic experiences in schizophrenia, while also indicating
potential neurobiological mechanisms of resilience, which may be
at play in schizotypy. Future multimodal studies investigating the
pathway linking emotional dysregulation and the neurotransmit-
ter systems GABA and Glu in different groups along the psychosis
continuum have the potential to unveil a mechanistic framework
for the development of psychosis, and to demonstrate whether
clinical interventions targeting this pathway have the potential to
block the development of psychosis in vulnerable individuals.
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