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Abstract: Linear models that contain a time-dependent response and ex-
planatory variables have attracted much interest in recent years. The most
general form of the existing approaches is of a linear regression model with
autoregressive moving average residuals. The addition of the moving average
component results in a complex model with a very challenging implementa-
tion. In this paper, we propose to account for the time dependency in the
data by explicitly adding autoregressive terms of the response variable in
the linear model. In addition, we consider an autoregressive process for the
errors in order to capture complex dynamic relationships parsimoniously. To
broaden the application of the model, we present an l1 penalized likelihood
approach for the estimation of the parameters and show how the adaptive
lasso penalties lead to an estimator which enjoys the oracle property. Fur-
thermore, we prove the consistency of the estimators with respect to the
mean squared prediction error in high-dimensional settings, an aspect that
has not been considered by the existing time-dependent regression models.
A simulation study and real data analysis show the successful applications
of the model on financial data on stock indexes.
Keywords: time series, high dimensional models, lasso

1 Introduction
This paper deals with fitting a general time series-regression model using l1
regularized inference. In the context of linear models, l1 penalized approaches
have received great interest in recent years as they allow to perform variable
selection and parameter estimation simultaneously for any data, including
high-dimensional datasets, where classical approaches for parameter estima-
tion break down, e.g. [14, 7, 10, 17, 12]. [17] have shown that a model where
penalties are adapted to each individual regressor enjoys oracle properties.
Most of the advances in regularized regression models have been for the case
of independent and identically distributed data. A recent line of research has
concentrated on regularized models in time dependent frameworks. Amongst
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these, [15] showed the successful application of l1 penalised inference in the
context of autocorrelated residuals for a fixed order, by proposing the model

yt =
r∑
i=1

x′tiβi +

q∑
j=1

θjεt−j + et,

and studied the properties of this model in low-dimensional settings. [11]
studied the theoretical properties of a regularized autoregressive process on
Yt for both low and dimensional cases, whereas [13] studied the l1 estimation
of vector autoregressive models. In both cases, no exogenous variables are
included in the model. [9] studied the asymptotic properties of adaptive
lasso in high dimensional time series models when the number of variables
increases as a function of the number of observations. Their model covers a
lagged regression in the presence of exogenous variables, but does not consider
autocorrelated residuals. Recently, [16] proposed an extension of the model
of [15] by adding a moving average term, that is they propose a model of the
form

yt =
r∑
i=1

x′tiβi + εt, εt =

q∑
j=1

θjεt−j + et +

q∑
j=1

φjet−j.

Similarly to [15], they proved the consistency of the model in low-dimensional
cases. Despite the generality of this model, considering an ARMA process
for the errors results in a complex model with a challenging implementation.

In this paper, we propose to account for the time dependency in the data
by explicitly adding autoregressive terms of the response variable in the linear
model, as in [11], as well as an autocorrelated process for residuals, as in [15],
in order to capture complex dynamics parsimoniously. In particular, given
fixed orders p and q, we propose the model

yt = x′tβ +

p∑
j=1

φjyt−j +

q∑
i=1

θiεt−i + et. (1)

We name the terms in the right hand side of (1) as REGression term,
AutoRegressive term and Moving Average term respectively and call the
resulting model REGARMA. We assume that all time dependent compo-
nents in REGARMA are stationary and ergodic. Figure (1) illustrates a
schematic view of the model.
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Figure 1: Schematic illustration of a REGARMA(p,q) model

In Section 2, we formulate the model and present an l1 penalized likeli-
hood approach for the estimation of the parameters. In Section 3, we prove
the asymptotic properties of the model and show how the adaptive lasso
penalty leads to estimators which enjoy the oracle property. Furthermore,
we prove the consistency of the model with respect to the mean squared
prediction error in high-dimensional settings, an aspect that has not been
considered by the existing time-dependent regression models. In section 4,
we discuss the implementation of REGARMA. A simulation study, given
in section 5, will accompany the theoretical results. In section 6 we apply
the model to two real datasets in finance and macroeconomic, respectively.
Finally, we draw some conclusions in section 7.

2 L1 penalised parameter estimation of RE-
GARMA

The general form of REGARMA consists of a lagged response variable, co-
variates and autocorrelated residuals. Consider the following Gaussian RE-
GARMA model of order p and q,

yt = x′tβ+

p∑
j=1

φjyt−j+

q∑
i=1

θiεt−i+et, et
iid∼ N(0, σ2), t = 1, 2, 3, . . . , T

where x′t is the tth row of the matrix of r predictors X ′T×r, {yt} and {εt}
follow stationary time series processes, that is all roots of the polynomials
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1−
∑p

i=0 φiL
i and 1−

∑q
i=0 θiL

i are unequal and outside the unit circle, ets
are independent and identical Gaussian noises with mean of zero and finite
fourth moments, and p and q are both less than the number of observations
T . Moreover, we assume that the errors and explanatory variables in X
are independent of each other. To remove the constants from the model we
follow the literature on regularized models, e.g. [14, 5], and standardize the
covariates and response to zero means and unit variance.

Given the first T◦ = p + q observations, maximizing the l1 penalized
conditional likelihood of the model is equivalent to minimizing

Qn(Θ) =

T∑
t=T◦+1

(yt − x′tβ)−
p∑
i=1

φiyt−i −
q∑
j=1

θjεt−j

2

+
r∑
i=1

λ|βi|+
p∑
j=1

γ|φj |+
q∑

k=1

τ |θk|

(2)
where λ, γ, τ are tuning parameters and Θ = (β′, φ′, θ′) is the vector of re-
gression, autoregressive and moving average parameters. Following the liter-
ature, and given the superior properties of adaptive lasso models [17], we also
propose an adaptive version of REGARMA penalised estimation as follows

Q∗n(Θ) =
T∑

t=T◦+1

(yt − x′tβ)−
p∑
i=1

φiyt−i −
q∑
j=1

θjεt−j

2

+
r∑
i=1

λ∗i |βi|+
p∑
j=1

γ∗j |φj |+
q∑

k=1

τ∗k |θk|

where λ∗i , γ∗j , τ ∗k , i = 1, 2, . . . , r; j = 1, 2, . . . , p; k = 1, 2, . . . , q are tuning pa-
rameters.

2.1 Matrix representation of the model
For convenience, we write the model in matrix representation. Let H ′ =
(H(p), H(q), X

′) be a n × (p + q + r) matrix including lags of autoregres-
sive (H(p)), moving average (H(q)), and explanatory variables (X ′). Let Θ =
(φ′, θ′, β′) denote the vector of corresponding parameters, e′ = (eT0+1, e2, . . . , eT )
be the vector of errors, T◦ = p + q and n = T − T◦, as previously defined.
Then, in matrix form, the model can be written as

Y = H ′Θ + e

and the l1 penalized conditional likelihood given the first T0 observation is
equivalent to

Qn(Θ) = L(Θ) + λ′|β|+ γ′|φ|+ τ ′|θ|,
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where L(Θ) = e′e, λ′ = {λ}1×r, γ
′ = {γ}1×p, τ

′ = {τ}1×q. Similarly, the
adaptive form of the model is given by

Q∗n(Θ) = L(Θ) + λ′∗|β|+ γ′∗|φ|+ τ ′∗|θ|, (3)

where the parameters are given by

λ∗
′
= (λ∗1, λ

∗
2, . . . , λ

∗
r), γ

∗′ = (γ∗1 , γ
∗
2 , . . . , γ

∗
p), τ

∗′ = (τ ∗1 , τ
∗
2 , . . . , τ

∗
q ),Θ = (β′, φ′, θ′).

3 Theoretical properties of REGARMA and
adaptive-REGARMA

In order to study the theoretical properties of REGARMA and adaptive-
REGARMA, we define the true coefficients by Θ◦ = (β◦

′
, φ◦

′
, θ◦

′
) and as-

sume that some of these coefficients are zero. The indexes of non-zero co-
efficients in each group of coefficients, β, φ and θ, are denoted by s1, s2 and
s3 respectively, whereas sc1, sc2, sc3 are the complementary sets and contain
the indexes of zero coefficients. We also define β◦s1 , φ

◦
s2
, θ◦s3 and their cor-

responding (REGARMA) estimations by β̂s1 , φ̂s2 , θ̂s3 . Similarly, adaptive-
REGARMA estimations are denoted by β̂∗s1 , φ̂

∗
s2
, θ̂∗s3 . Finally, different com-

binations of model parameters are going to be used, with obvious meaning,
in particular Θ◦1 = {β◦′s1 , φ

◦′
s2
, θ◦

′
s3
} , Θ◦2 = {β◦′sc1 , φ

◦′
sc2
, θ◦

′
sc3
}, Θ̂1 = {β̂ ′s1 , φ̂

′
s2
, θ̂
′
s3
} ,

Θ̂2 = {β̂ ′sc1 , φ̂
′
sc2
, θ̂
′
sc3
}, Θ̂∗1 = {β̂∗′s1 , φ̂

∗′
s2
, θ̂∗

′
s3
} , Θ̂∗2 = {β̂∗′sc1 , φ̂

∗′
sc2
, θ̂∗

′
sc3
} .

3.1 Assumptions
To prove the theoretical properties of the estimators, in line with the litera-
ture, we make use of the following assumptions:

(a). ets are i.i.d Gaussian random variables with finite fourth moments

(b). The covariates, Xi, i = 1, 2, 3, . . . , r, and response variable, Y , are
stationary and ergodic with finite second order moments. Also,
we assume that none of the roots of 1 −

∑p
i=1 φiL

i and/or 1 −∑q
j=1 θjL

i are equal and outside of the unit circle

(c). Xi, i = 1, 2, 3, . . . , r are independent of the errors

(d). 1
n
X ′X →a.s E(X ′X) <∞ and max1≤i≤rX

′
iXi <∞.
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Assumptions (a)− (b) are standard assumptions for dealing with stationary
time series. Assumption (c) − (d) are used to guarantee that explanatory
variables have finite expectations.

3.2 Theoretical properties of REGARMA when r < n

In the following theorems, we extend the theorems of [15] to cover a model
with a lagged response.

Theorem 1. Assume λn
√
n→ λ◦ , γn

√
n→ γ◦ , τn

√
n→ τ◦ and λ◦, γ◦, τ◦ ≥

0. Then under assumptions a− d, it follows that
√
n(Θ̂−Θ◦)

d→ arg min (k(δ))
where

k(δ) = −2δ′W + δ′UBδ + λ◦

r∑
i=1

{uisign(β◦i )I(β◦i 6= 0) + |ui|I(β◦i = 0)}

+ γ◦

p∑
j=1

{vjsign(φ◦j)I(φ◦j 6= 0) + |vi|I(φ◦j = 0)}

+ τ◦

q∑
k=1

{wksign(θ◦k)I(θ◦k 6= 0) + |wk|I(θ◦k = 0)}

with δ = (u′, v′, w′) is a vector of parameters in R(r+p+q),W ∼MVN(O, σ2UB)
and UB = E(HH ′).

The proof is given in the Appendix. Theorem (1) shows that the RE-
GARMA estimator has a Knight-Fu type asymptotic property [7] and it
implies that the tuning parameters in Qn(Θ) cannot shrink to zero at a
speed faster than n−1/2. Otherwise, {λ◦, γ◦, τ◦} are zero and k(δ) becomes a
standard quadratic function,

k(δ) = −2δW + δ′UBδ

which does not produce a sparse solution. In addition, the proof of theorem
(1) requires the errors to be independent and identically distributed but we
do not make a strong assumption on the type of distribution for the errors,
due to the use of the martingale central limit theorem for large n.

[7] proves that a lasso optimization returns estimates of non-zero param-
eters that suffer an asymptotic bias. This applies also to the REGARMA
model, as we show with the following remark.
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Remark 1. Consider a special case of REGARMA when β◦i > 0, 1 ≤ i ≤ r
but θ◦j1 = 0 and φ◦j2 = 0 for 1 ≤ j1 ≤ q, 1 ≤ j2 ≤ p, j1, j2 ∈ N. If minimizing
k(δ) can correctly identify Θ, it means that u 6= 0 and v, w = 0. That is,
k(δ) must satisfy

∂k(δ)

∂u
=
∂k(u, 0, 0)

∂u

=
∂

∂u

(
− 2(u′, 0, 0)W + (u′, 0, 0)′UB(u′, 0, 0) + (nλ′n|β◦ +

u√
n
| − nλ′n|β◦|)

)
= −2W1:r + 2u′UB1:r + λ◦1r×1 = 0

=⇒ u′ =
1

2
(2W1:r − λ◦1r×1)U−1

B1:r
.

Then using Theorem 1,
√
n(β̂−β◦) d→ arg min(k(δ = u′)) = MVN

(
E(u′) 6=

0, U−1
B1:r

)
, where U−1

B1:r
is the matrix with the first r rows of UB corresponding

to the r covariates.

If λ◦, γ◦ and τ◦ are positive, remark (1) shows that Qn(Θ) suffers an
asymptotic bias and is different from the oracle estimator, MVN

(
O,U−1

B1:r

)
.

In other words, REGARMA is not asymptotically consistent unless λ◦, γ◦, τ◦ →
n→∞

0. The following remark can be extended to other groups of coefficients.

3.3 Theoretical properties of adaptive-REGARMA when
r < n

Following the notation of section 2, we consider the adaptive version of the
penalised likelihood and estimate the model parameters by minimizing

Q∗n(Θ) = Ln(Θ) + nλ′∗|β|+ nγ′∗|φ|+ nτ ′∗|θ|

where

Ln(Θ) =

(
Y −X ′β −H(p)φ+H(q)θ

)′(
Y −X ′β −H(p)φ+H(q)θ

)
λ∗
′
= {λ∗}′r×1, γ

∗′ = {γ∗}′p×1, τ
∗′ = {τ ∗}′q×1, Θ = (β′, φ′, θ′).
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Following [15] and [3], we define the maximum and minimum penalties for
significant and insignificant coefficients by

an = max(λ∗i1 , γ
∗
i2
, τ ∗i3 ; i1 ∈ s1, i2 ∈ s2, i3 ∈ s3),

bn = min(λ∗ic1 , γ
∗
ic2
, τ ∗ic3 ; ic1 ∈ sc1, ic2 ∈ sc2, ic3 ∈ sc3),

and prove a number of results on the theoretical properties of adaptive RE-
GARMA.

Theorem 2. Assume an = o(1) as n→∞. Then under assumptions a− d,
there is a local minimiser Θ̂∗ of Q∗n(Θ) such that

(Θ̂∗ −Θ◦) = Op(n
−1/2 + an).

The proof of the theorem is in the Appendix. Let αn = an + n−1/2,
then, theorem (2) proves that there exists a

√
n− consistent local minimiser

Q∗n(Θ), when the tuning parameters (for significant variables) of REGARMA
converge to zero at the speed faster than n−1/2 (since nα2

n → o(1)).
As the next step, we prove that if the tuning parameter associated with

insignificant variables in REGARMA shrink to zero at a speed slower than
n−1/2, then their associated REGARMA coefficients will be estimated exactly
equal to zero with probability tending to 1.

Theorem 3. Assume bn
√
n→∞ and ||Θ̂∗ −Θ◦|| = Op(n

−1/2) then

Pr(β̂∗sc1 = 0)→ 1, P r(φ̂∗sc2 = 0) → 1, P r(θ̂∗sc3 = 0)→ 1.

The proof of the theorem is in the Appendix. Theorem (2) and (3) in-
dicate that

√
n − consistent estimator Θ̂∗ satisfies Pr(Θ̂∗2 = 0) → 1 under

certain conditions on the tuning parameters, leading to the following result:

Theorem 4. Assume an
√
n→ 0 and bn

√
n→∞. Then, under assumptions

a− d, the component Θ̂∗1 of the local minimiser of Θ̂∗ in Theorem 3 satisfies
√
n(Θ̂∗1 −Θ◦1)

d→MVN(O, σ2U−1
0 )

where U0 is the sub-matrix UB corresponding to Θ◦1.

The proof of the theorem is in the Appendix. Theorem (4) implies that if
an tends to zero at the speed faster than

√
n and simultaneously bn increases

at the speed slower than
√
n, then adaptive REGARMA is asymptotically

an oracle estimator. In the next subsection, we consider the theoretical
properties of adaptive REGARMA for high-dimensional problems.
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3.4 Theoretical properties of adaptive REGARMA when
n� r

In the proofs of the low-dimensional results (refer to proof of theorem 1), we
rely on a unique path of reaching the maximum of the log likelihood. This
is not true in high-dimensional cases, so different results are needed in this
case. In this section we follow a similar strategy to [2] to prove theorems
in the high dimensional case, an aspect which has not been considered by
existing time-dependent regression models, such as those of [15] and [16].

In order to study the consistency of REGARMA in high-dimensional
situations, we show that under assumptions a− d, REGARMA is consistent
with respect to the mean squared prediction error.
Without loss of generality, we define the REGARMA model as a constrained
optimization [14]. Thus, we have

min{(y −X ′β −H(p)φ−H(q)θ)
′(y −X ′β −H(p)φ−H(q)θ)}

Subject to
r∑
j=1

|βj| ≤ Kλ,

p∑
k=1

|φk| ≤ Kγ,

q∑
l=1

|θl| ≤ Kτ ,

and Kλ ≥ 0, Kγ ≥ 0, Kτ ≥ 0

(4)

where there is a one-to-one correspondence between λ, γ and τ in REGARMA,
and Kλ, Kγ and Kτ in (4). Define the Mean Squared Prediction Error,
(MSPE), and its estimated value, M̂SPE, by

MSPE(β̂, φ̂, θ̂) = E(‖Ŷ − Y ◦‖2), M̂SPE(β̂, φ̂, θ̂) =
1

n
‖Ŷ − Y ◦‖2

where Y ◦ and Ŷ are the REGARMA predictions of Y based on the true
parameters (β◦, φ◦, θ◦) and REGARMA estimates (β̂, φ̂, θ̂) from (4), respec-
tively. Then the following theorem holds.

Theorem 5. Under assumptions a− d and ‖X‖∞ ≤ M1, ‖H(p)‖∞ ≤ M2,
‖H(q)‖∞ ≤ M3 and Mmax = sup{M1,M2,M3}, let β̂ , φ̂ and θ̂ be the RE-
GARMA estimates, and Kmax = sup{Kλ, Kγ, Kτ} such that

r∑
j=1

|βj| ≤ Kλ <∞,
p∑

k=1

|φk| ≤ Kγ <∞,
q∑
l=1

|θl| ≤ Kτ <∞.

9



Then

M̂SPE(β̂ , φ̂, θ̂) ≤ 2KmaxMmaxσ√
n

(√
2 log(2r) +

√
2 log(2p) +

√
2 log(2q)

)
. (5)

The proof of the theorem is in the Appendix. Note that in the situation
where p = 0 and q = 0, equation (5) results in the standard lasso consistency
formula in [2]. When Kmax is correctly chosen, equation (5) also shows that
REGARMA is prediction consistent when max{log(r), log(p), log(q)} � n.
It is also possible to extend this result to MSPE.

Remark 2. Under the same conditions as Theorem (5),

MSPE(β̂ , φ̂, θ̂) ≤ 2KmaxMmaxσ√
n

3∑
i=1

(√
2 log(2ai)

)
+ 8K∗

3∑
i,j=1

(
MiMj

√
2log(2aiaj)

n

)
,

where Kmax and Mmax are defined as before, K∗ is defined in the Appendix
and a1 = r, a2 = p and a3 = q.

Remark (2) shows that if max
i,j=1,2,3

log(aiaj) � n then REGARMA is con-

sistent. Given that relatively small orders p and q are sufficient for most time
series analyses, the consistency of the estimator is mainly dominated by the
high-dimensional regression part. IfM1 ≥M2 ≥M3 then the above equation
approximately reduces to a form similar to the standard lasso results in [2],

MSPE(β̂ , φ̂, θ̂) ≤ 2KλM1σ√
n

√
2 log(2r) + 8K∗M2

1

√
2log(2r2)

n
.

4 Algorithm
SinceQn(Θ) ⊆ Q∗n(θ), that is REGARMA is a subset of adaptive-REGARMA,
and given the improved properties of adaptive REGARMA, we mainly fo-
cus on adaptive REGARMA in this section. Our formulation of the model
lends itself naturally to its implementation, in contrast to the more complex
implementation of the model of [16].

As the model contains regressions, moving averages and autoregressive
coefficients, we use the two-step optimization procedure

First step: ε̂ = Y −X ′β̂ −H(p)φ̂, Second step: Y = X ′β +H(p)φ+ Ĥ(q)θ.
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Steps 1 and 2 provide a solution to REGARMA using the adaptive-Lasso
algorithm of [17].

In terms of the selection of the penalties λ, γ and τ , these can be chosen
using K-fold cross-validation or using an information criterion such as BIC or
AIC, CP similarly to [15], [16] and [4]. The weights in adaptive-REGARMA
are defined by using the (non-adaptive) REGARMA estimates. Some notes
are needed about the selection of the orders p and q in the REGARMA
model. We propose two general approaches to choose the optimal orders for
the model: (a) setting an upper bound P and Q and choosing the model that
minimizes BIC or AIC inside these bounds (b) setting an upper bound P and
Q and letting the model choose the best orders by keeping or eliminating the
time series coefficients under L1 sparsity constraints. These two approaches
are very similar but there is a slight difference between them: in the second
approach, the fitting is based on n = T − (P + Q) time points, whereas in
the first approach, the number of time points depends on the orders p and
q. Then a rule of thumb is to use the first approach when the number of
observations is low and choose the second approach when there are enough
observations.

We are in the process of implementing the methods into an R package.
This is particularly needed in this area as, to the best of our knowledge,
there is no implementation available. The current version of the package is
available at http://people.brunel.ac.uk/~mastvvv/Software/.

5 Simulation study
We design a simulation study to compare the REGARMA model with exist-
ing methods. In the simulation, we:

1. Set the proportion of zero coefficients to 90%, 50% or 10%.

2. Assign unequal random numbers in (−1, 1) to each non-zero coefficient.

3. Generate the design matrix, X, using stationary Gaussian processes,
with r = 25, 75, 200, 300, 400 and T = 50, 100, 150, 200, 250.

4. Generate e ∼ σ ×N(0, 1) where σ ∈ {0.5, 1, 1.5},

11
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5. Set unequal AR and MA parameters, under the constraint that the
roots of stationary polynomials site outside the unit circle and simulate
data from a REGARMA model with p ≤ 3 and q ≤ 3.

6. Repeat each combination of models 10 times.

We compare the adaptive REGARMA model with adaptive lasso, as it is
the closest model in the literature for which an implementation is available.
Similar results were found in the comparison of the non-adaptive versions
(results not reported). BIC was used to choose the optimal penalties, whereas
the autoregressive and moving average orders were fixed as the true ones.

Figure (2) to (5) compare adaptive REGARMA and adaptive Lasso with
respect to mean squared prediction error, BIC and mean squared error of
β̂ for n = 50, 100, 150, 200, 250, σ = 0.5, 1, 1.5 and r = 25, 75, 200, 300, 400.
The figures show overall how REGARMA dominates lasso both for low and
high-dimensional problems. Figure (2) shows that as the number of data
points T increases, the relative outperformance of REGARMA versus lasso
with respect to MSPE increases. Figures (3) shows how REGARMA achieves
lower BIC values than lasso, particularly when T < r but also for some
high-dimensional cases. Figure (4) compares REGARMA and lasso with
respect to the mean squared error of β̂, averaged over the different regres-
sion coefficients. This plot shows the advantage of using REGARMA on
time-dependent data in comparison with lasso. Finally, Figure (5) shows an
outperformance of REGARMA over lasso, regardless of the level of noise σ.

6 Real data analysis
For the first application, we consider REGARMA in a low-dimensional prob-
lem. In particular, we consider financial data on daily returns of the Istan-
bul Stock Exchange(ISE) with seven other international indices, SP, DAX,
FTSE, NIKKEI, BOVESPA, MSCE EU, MSCI EM, for a period of two years
from 2009 to 2011. The data are publicly available at http://archive.ics.
uci.edu/ml and are considered also by [1]. The goal of the analysis is to
detect the most effective indices in relation to the ISE index.
We set a maximum order of 4 for both p and q and use BIC to select the
optimal penalty parameters (i.e. method b on page 11). Table (1) shows a
comparison of REGARMA with adaptive lasso. For REGARMA, we consider

12
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Figure 2: Comparison of adaptive lasso and adaptive REGARMA with re-
spect to mean squared prediction error on simulated data with different values
of r and T .

also the sub-model with only autoregressive terms, REGAR, and the one with
only moving average terms, REGMA (which is essentially the model of [15]),
as well as the full REGARMA model. All four models choose BOVESPA,
EU and EM as the most effective indices for the Istanbul exchange market.
These are within the 6 variables selected by [1]. From Table (1) and the
residual analysis in Figure (6), we can conclude that the REGARMA fam-
ily shows a better performance with respect to Mean Squared Error (MSE),
Mean Absolute Error (MAE) and BIC compared to adaptive lasso.

For a hight dimensional example, we consider S&P500 indices. S&P500
is one of the leading stock market index for US equity: it is based on 500
leading companies and captures approximately 80% coverage of the available

13



Figure 3: Comparison of adaptive lasso and adaptive REGARMA with re-
spect to BIC on simulated data with different values of r and T .

market capitalization. The goal of the analysis is to find the S&P500 indices
most related to the AT&T Inc index based on monthly data in a period
of fourteen years from 2000 to 2014. These data are publicly available at
http://thomsonreuters.com/. After removing variables with the majority
of missing values, the dataset contains 416 variables and 170 datapoints. As
before, we apply adaptive lasso and adaptive REGARMA to these data and
choose the optimal penalties by BIC. Moreover, we set a maximum order of 4
for both p and q and let the model choose the optimal orders (using method
b on page 11).

Table (2) summarises the results in terms of MSE, MAE, BIC and the
number of non-zero coefficients. Moreover, Figure (7) illustrates the resid-
ual analysis of these four models. Both Table (2) and Figure (7) show an
improved performance of REGARMA compared to the other methods.

14
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Figure 4: Comparison of adaptive Lasso and adaptive REGARMA with re-
spect to mean squared error of β̂ on simulated data for different values of r
and T .

7 Conclusion
In this paper we extend the idea of regression-time series models proposed
in [15] to a more general class of models, thus covering a wide spectrum
of applications involving multivariate time-dependent data. In particular,
we study an autoregressive moving average model with time-dependent ex-
planatory variables and present l1 penalised inference for the estimation of
its parameters. Our model lends itself naturally to parameter estimation and
implementation, contrary to the linear regression with ARMA errors of [16].
We prove asymptotic properties of the proposed model in low and high di-
mensional situations, with the latter not considered by the existing literature
on time-series regression models. We test the performance of the model on
a simulation study and show a successful application on financial data.

15



Figure 5: Comparison of adaptive Lasso and adaptive REGARMA with re-
spect to mean squared prediction error on simulated data for different values
of σ, r and T .

Table 1: Comparison of adaptive lasso and REGARMA models on Istanbul
stock exchange (ISE) data.
MAX AR-MA orders: (4,4) ADAPTIVE-LASSO REGAR(2) REGMA(1) REGARMA(2,1)
MEAN SQUARED ERROR 0.4194 0.4191 0.4192 0.4079
MEAN ABSOLUTE ERROR 0.4932 0.4927 0.4927 0.4907
BIC 552.44 549.12 549.12 541.41

Table 2: Comparison of adaptive lasso and REGARMA models on AT&T
Inc and S&P500 data.
MAX AR-MA orders: (4, 4) ADAPTIVE-LASSO REGAR(2) REGMA(1) REGARMA(2,3)
MEAN SQUARED ERROR 1.34 1.84 4.18 .083
MEAN ABSOLUTE ERROR 87.01 112.30 182.07 75.34
BIC 28.83 27.81 31.2 22.63
NON-ZERO COEFFICIENTS 272 266 282 263
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Figure 6: Residual analysis of Adaptive-Lasso, REGAR, REGMA and RE-
GARMA on Istanbul stock exchange data.
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Figure 7: Residual analysis of Adaptive-Lasso, REGAR, REGMA and RE-
GARMA on AT&T index.
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8 Appendix (Proof of theorems)
Proof 1 (Theorem 1). Assume λn

√
n → λ◦, γn

√
n → γ◦, τn

√
n → τ◦, and

δ = (u′, v′, w′). Define

kn(δ) = Qn(Θ◦ + n−(1/2)δ)−Qn(Θ◦). (6)

Note that kn achieves a minimum at δ =
√
n(Θ̂−Θ◦). Using (2), it implies

that

kn(δ) =

(
Ln(Θ◦ +

δ√
n

)− Ln(Θ◦)

)
(7a)

+ (nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) (7b)

+ (nγ′n|φ◦ +
v√
n
| − nγ′n|φ◦|) (7c)

+ (nτ ′n|θ◦ +
w√
n
| − nτ ′n|θ◦|). (7d)

The last three terms can be simplified as

(nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) =

(√
nuλ′n(

|β◦ + u/
√
n| − |β◦|

u/
√
n

)

)
→
n→∞

λ◦

r∑
i=1

{(uisign(β◦i )I(β◦i 6= 0)) + |ui|I(β◦i = 0)}.

Similarly, for the other two terms, we have

(7c) →
n→∞

γ◦

p∑
j=1

{(vjsign(φ◦j)I(φ◦j 6= 0)) + |vj|I(φ◦j = 0)}

(7d) →
n→∞

τ◦

q∑
k=1

{(wksign(θ◦k)I(θ◦k 6= 0)) + |wk|I(θ◦k = 0)}.

For (7a), we have

(7a) =− e′e+

(
(Y −H(q)θ

◦ −H(p)φ
◦ −X ′β◦)− (X ′, H(p), H(q))

δ√
n

)

)′
×
(

(Y −H(q)θ
◦ −H(p)φ

◦ −X ′β◦)− (X ′, H(p), H(q))
δ√
n

)

)
.
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Set A = (X ′, H(p), H(q)) and recall that e = Y − H(q)θ
◦ − H(p)φ

◦ − X ′β◦.
Then, we have

Qn(Θ◦ +
δ√
n

)−Qn(Θ◦) = (e′ − δ′√
n
A′)(e− A δ√

n
)− e′e+ (7b) + (7c) + (7d).

The right-hand side of the last equation is equivalent to

(
δ′A′√
n

)(
Aδ√
n

)− (
δ′A′√
n

)e− e′(Aδ√
n

) + (7b) + (7c) + (7d). (8)

From left to right, we now prove that the first term in (8) is bounded and the
two other terms follow (asymptotically) normal distributions, i.e.

(
δ′A′√
n

)(
Aδ√
n

)→ O(1) (9)

(
δ′A′√
n

)e→ f1 (10)

e′(
Aδ√
n

)→ f ′1 = f1. (11)

Let H ′2 = A′√
n
. Then,

H ′2e =
1√
n

(X ′, H(p), H(q))
′e

√
nH ′2e = (X ′, H(p), H(q))

′e

H◦t =
√
nH ′2tet = (X ′t, H(p)t , H(q)t)

′et.

H◦t is a martingale difference sequence(in short mds) because

E(H◦t |t = t− 1, t− 2, . . . , t− (p+ q)) = E((X ′t, H(p)t , H(q)t)
′et| < t)

= (X ′t, H(p)t , H(q)t)
′E(et) = 0.

In order to establish that the conditions of the mds central limit theorem are
satisfied (refer to (author?) [8, p 51] for the mds central limit theorem and
conditions), define

µ̄ =
1

n

T∑
t=T0+1

H◦t , σ̄2 =
1

n

T∑
t=T0+1

V ar(H◦t ) = σ4UB.
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To show the boundedness condition in the martingales central limit theorem,
choose δ = 2, so that

E(|H◦t |4) = E(e4
t )E

(
X ′t, H(p)t , H(q)t

)4
.

Under assumption a, E(e4
t ) <∞ and it can be shown that E

(
X ′t, H(p)t , H(q)t

)4
<

∞, provided yt and xt are stationary and ergodic. Moreover

1

n

T∑
t=T0+1

e2
t

(
Xt, H

′
(p)t

, H ′(q)t

)2
=

1

n

T∑
t=T0+1

(e2
t − σ2)

(
X ′t, H(p)t , H(q)t

)2
+ σ2 1

n

T∑
t=T0+1

(
X ′t, H(p)t , H(q)t

)2
. (12)

The first term in (12) is a mds, which has mean zero. So using the weak law
of large numbers, we have that 1

n

∑T
t=T0+1(e2

t − σ2)
(
X ′t, H(p)t , H(q)t

)2 p→ 0.
The second term in the right hand side of (12) also tends to σ2UB. As a
result

1

n

T∑
t=T0+1

e2
t

(
Xt, H

′
(p)t , H

′
(q)t

)2 p→ σ2UB.

Therefore, by the central limit theorem for martingales, it follows that 1√
n
H ′2e

d→
N(0, σ2UB) and

(
δ′A′√
n

)e
d→ δ′W,

where δ = (u′, v′, w′) and W ∼MVN(O, σ2UB). Then

− ((10) + (11))
d→ −2δ′W.

If Xi, i = 1, 2, 3, . . . , r and yt are stationary and ergodic, it is possible to show
that (9) tends to δ′UBδ where UB is the covariance matrix of (X ′, H(p), H(q)),
i.e. (9)→ O(1). Finally, kn(δ) in equation (6) converges to

kn(δ)
d→ −2δ′N(O, σ2UB) + δ′UBδ + λ◦

r∑
i=1

{(uisgn(β◦i )I(β◦i 6= 0)) + |ui|I(β◦i = 0)}

+ γ◦

p∑
j=1

{(vjsgn(φ◦j)I(φ◦j 6= 0)) + |vi|I(φ◦j = 0)}

+ τ◦

q∑
k=1

{(wksgn(θ◦k)I(θ◦k 6= 0)) + |wk|I(θ◦k = 0)}.
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Up to here, we have proved that kn(δ)
d→ k(δ). To show that arg min(kn(δ)) =

√
n(Θ̂ − Θ◦)

d→ arg min(k(δ)) it is enough to prove that arg min{kn(δ)} =
Op(1) [6, 7]. To show this, note that

kn(δ) = (
δ′A′√
n

)(
Aδ√
n

)− (
δ′A′√
n

)e− e′(Aδ√
n

)+

(nλ′n|β◦ +
u√
n
| − nλ′n|β◦|) + (nγ′n|φ◦ +

v√
n
| − nγ′n|φ◦|) + (nτ ′n|θ◦ +

w√
n
| − nτ ′n|θ◦|)

≥ (
δ′A′√
n

)(
Aδ√
n

)− (
δ′A′√
n

)e− e′(Aδ√
n

)− (nλ′n|un−1/2| − (nγ′n|vn−1/2|)− (nτ ′n|wn−1/2|)

≥ (
δ′A′√
n

)(
Aδ√
n

)− (
δ′A′√
n

)e− e′(Aδ√
n

)− (λ′◦ + ε0)|u| − (γ′◦ + ε0)|v| − (τ ′◦ + ε0)|w|+ fn(δ)

= k∗n(δ)

where ε0 > 0 is a vector of positive constants. The fourth term in k∗n(δ)
for example, comes from the fact that ∀ε0 > 0, there exists an N such that
if n ≥ N , then |λ◦ −

√
nλn| < ε0. Then,

√
nλn < λ◦ + ε0. In addition,

kn(0) = k∗n(0) and fn(δ) = op(1). As a result arg min{k∗n(δ)} = Op(1) and
arg min{kn(δ)} = Op(1). The proof of the theorem is completed.

Proof 2 (Theorem 2). Let αn = n−1/2 + an, and {Θ◦ + αnδ : ||δ|| ≤ d, δ =
(u, v, w)′} be a ball around Θ◦. Then for ||δ|| = d we have

Rn(δ) = Q∗n(Θ◦ + αnδ)−Q∗(Θ◦)
≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) +K

≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) +K ′

≥ Ln(Θ◦ + αnδ)− Ln(Θ◦) +K ′′

where

K =n
∑
i∈s1

λ∗i (|β◦i + αnui| − |β◦i |) + n
∑
j∈s2

γ∗j (|φ◦j + αnvj | − |φ◦j |) + n
∑
k∈s3

τ∗k (|θ◦k + αnwk| − |θ◦k|)

(Using triangular inequality) : K ′ = −nαn
∑
i∈s1

λ∗i |ui| − nαn
∑
j∈s2

γ∗j |vj | − nαn
∑
k∈s3

τ∗k |wk|

(Penalties ≤ αn by definition) : K ′′ = −nα2
n(r◦ + p◦ + q◦)d. (13)

The last equation holds because of the decreasing speed of αn. Similar calcu-
lations to those in theorem (1) result in

Ln(Θ◦ + αnδ)− Ln(Θ◦)→ nα2
n{δ′UBδ + op(1)}. (14)

22



Because (14) dominates (13), then for any given η > 0 , there is a large
constant d such that

Pr[ inf
||δ||=d

{Q∗n(Θ◦ + αnδ)} > Q∗n(Θ◦)] ≥ 1− η.

This result shows that with probability at least 1−η, there is a local minimiser
in the ball {Θ◦ + αnδ : ||δ|| ≤ d} and as a result a minimiser, Q∗n(Θ), such
that ||Θ̂∗ −Θ◦|| = Op(αn). The proof is completed.

Proof 3 (Theorem 3). This proof follows from the fact that Q∗n(Θ̂∗) must
satisfy

∂Q∗n(Θ)

∂βi

∣∣∣∣
Θ̂∗

=
∂Ln(Θ̂∗)

∂βi
− nλ∗i sign(β̂∗i )

=
∂Ln(Θ◦)

∂βi
+ nUi(Θ̂

∗ −Θ◦){1 + op(1)} − nλ∗i sign(β̂∗i ) (15)

where Ui is th ith row of UB and i ∈ sc1. The second term in (15) is a direct
result of (3) by adding a ±X ′β◦,±H(p)φ

◦ and ±H(q)θ
◦ to Ln(Θ̂∗). By using

the central limit theorem, the first term of equation (15),
∑

t etx
′
ti, will be of

order Op(n
1/2) and the second term of order Op(n

1/2). Furthermore both are
dominated by nλ∗i since bn

√
n → ∞. Then the sign of ∂Q∗n(Θ̂∗)

∂βi
is dominated

by the sign of β̂∗i and β̂∗i = 0 in probability. Analogously, we can show that
Pr(φ̂∗sc2)

p→ 1 and Pr(θ̂∗sc3)
p→ 1.

The proof is completed.

Proof 4 (Theorem 4). From Theorem (2) and (3) one can conclude that

Pr(Θ̂∗2 = 0)
p→ 1. Thus, Q∗n(Θ)

with pr→1

−−−−−−→ Q∗n(Θ1). So it implies that the
Lasso estimator Θ̂∗1 satisfies the equation

∂Q∗n(Θ1)

∂Θ1

|Θ1=Θ̂∗1
= 0.

From Theorem (2), Θ̂∗1 is a
√
n− consistent estimator, thus a Taylor expan-

sion of the above equation yields

0 =
1√
n

∂Ln(Θ̂∗1)

∂Θ1

+ F (Θ̂∗1)
√
n

=
1√
n

∂Ln(Θ̂◦1)

∂Θ1

+ F (Θ̂◦1)
√
n+ U0

√
n(Θ̂∗1 −Θ◦1) + op(1),
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where F is the first-order derivation of the tuning function∑
i∈s1

λi|βi|+
∑
j∈s2

γj|φj|+
∑
k∈s3

τk|θk|.

For n sufficiently large, F (Θ̂∗1) = F (Θ◦1), thus

(Θ◦1 − Θ̂∗1)
√
n =

U−1
0√
n

∂Ln(Θ◦1)

∂Θ1

+ op(1)

d→ N(0, σ2U−1
0 ).

The proof is completed.
Proof 5 (Theorem 5). Let Y = (y1, y2, . . . , yn)′, Ŷ = (ŷ1, ŷ2, . . . , ŷn)′ and
Y ◦ = (y◦1, y

◦
2, . . . , y

◦
n)′ be observations, REGARMA predictions and predic-

tions from the true model, respectively, that is

Ŷ = X ′β̂ +H(p)φ̂ +H(q)θ̂

Y ◦ = X ′β◦ +H(p)φ
◦ +H(q)θ

◦.

Define a set C = {X ′β + H(p)φ + H(q)θ;
∑r

j=1 |βj| ≤ Kλ,
∑p

k=1 |φk| ≤
Kγ,

∑q
l=1 |θl| ≤ Kτ}. Note that C is a compact and convex subset of Rn

and that Ŷ is the projection of Y on C. As a result of the convexity of C, for
any vector v in C, the vector v − Ŷ must be at an obtuse angle to the vector
Y − Ŷ . This means that 〈

(v − Ŷ ), (Y − Ŷ )

〉
≤ 0.

Since Y ◦ ∈ C, then the inner product of (Y ◦−Ŷ ) and (Y −Ŷ ) is non-positive〈
(Y ◦ − Ŷ ), (Y − Ŷ )

〉
≤ 0. (16)

Using (16) and some simple algebra we have

M̂SPE =
1

n
‖Y ◦ − Ŷ ‖2

≤ 1

n

〈
(Y − Y ◦), (Ŷ − Y ◦)

〉
≤ 1

n
e′
(
X ′(β̂ − β◦) +H(p)(φ̂ − φ◦) +H(q)(θ̂ − θ◦)

)
=

1

n

(
e′X ′(β̂ − β◦) + e′H(p)(φ̂ − φ◦) + e′H(q)(θ̂ − θ◦)

)
≤ 1

n

(
2Kλ max

1≤i≤r
|e′Xi|+ 2Kγ max

1≤j≤p
|e′H(p)j

|+ 2Kτ max
1≤k≤q

|e′H(q)k
|
)
. (17)
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On the other hand, conditioning on X and history of y results in

e′X ′ ∼ N(O, σ2(XX ′))

e′H(p) ∼ N(O, σ2H ′(p)H(p))

e′H(q) ∼ N(O, σ2(H ′(q)H(q))).

Using Lemma 3 in [2],

E(max |e′Xi|)
i=1,2,3,...,r

≤M1σ
√

2n log(2r) (18)

E(max |e′H(p)j |)
j=1,2,3,...,p

≤M2σ
√

2n log(2p) (19)

E(max |e′H(q)k |)
k=1,2,3,...,q

≤M3σ
√

2n log(2q). (20)

Substituting (18,19,20) in (17) result in

1

n
‖Y ◦ − Ŷ ‖2 ≤ 1

n

(
2KλM1σ

√
2n log(2r) + 2KγM2σ

√
2n log(2p) + 2KτM3σ

√
2n log(2q)

)
.

But Mmax = sup{M1,M2,M3} and Kmax = sup{Kλ, Kγ, Kτ}, therefore

1

n
‖Y ◦ − Ŷ ‖2 ≤ 2KmaxMmaxσ

n

(√
2n log(2r) +

√
2n log(2p) +

√
2n log(2q)

)
and

M̂SPE(β̂ , φ̂, θ̂) ≤ 2KmaxMσ√
n

(√
2 log(2r) +

√
2 log(2p) +

√
2 log(2q)

)
. (21)

The proof of the theorem is completed.

Lemma 1. If X1, X2, X3, . . . , Xm are m dependent mean zero random vari-
ables where |Xi| ≤ L,∀i ∈ {1, 2, 3, . . . ,m}. Then, ∀β ∈ R,

E(eβ
∑m

i=1 xi) ≤ e(mLβ)2 .

Proof. This result extends the result of [2] from independent variables to
dependent variables.

It is obvious that
∑m

i=1 xi ≤ mL then,

E(eβ
∑m

i=1 xi) =

∫ mL

−mL
eβ

∑m
i=1 xidµ(

m∑
i=1

xi),
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where µ is a probability distribution. On the other hand, x 7→ exβ is a convex
map. Define t =

∑m
i=1 xi
2mL

+ 1
2
, then

eβ
∑m

i=1 xi = e
β

(
t(mL)−(1−t)(mL)

)
≤ teβmL + (1− t)e−βmL.

Using the fact that E(
∑m

i=1 xi) =
∑m

i=1 E(xi) = 0,

∫ mL

−mL
e
β

(
t(mL)−(1−t)(mL)

)
dµ(

m∑
i=1

xi) ≤
∫ mL

−mL
teβmL + (1− t)e−βmLdµ(

m∑
i=1

xi)

=
eβmL + e−βmL

2
= cosh(βmL) ≤ e(mLβ)2/2.

The proof is completed.
Proof 6 (Remark (2)). Consider

E(Y ◦ − Ŷ )2 =E

(
(X ′(β◦ − β̂) +H(p)(φ

◦ − φ̂) +H(q)(θ
◦ − θ̂))′

(X ′(β◦ − β̂) +H(p)(φ
◦ − φ̂) +H(q)(θ

◦ − θ̂))

)
. (22)

On the other hand
1

n
‖Y ◦ − Ŷ ‖2 =

1

n
(X ′(β◦ − β̂) +H(p)(φ

◦ − φ̂) +H(q)(θ
◦ − θ̂))′

(X ′(β◦ − β̂) +H(p)(φ
◦ − φ̂) +H(q)(θ

◦ − θ̂)). (23)

Combining (22) and (23) results in,

E(Y ◦ − Ŷ )2 − 1

n
‖Y ◦ − Ŷ ‖2 ≤ 4K2

λ max
(1≤j≤r,1≤k≤r)

|E(XjX
′
k)−

1

n
XjX

′
k|

+ 4K2
γ max

(1≤j≤p,1≤k≤p)
|E(H ′(p)j

H(p)k
)− 1

n
H ′(p)j

H(p)k
|

+ 4K2
τ max

(1≤j≤q,1≤k≤q)
|E(H ′(q)j

H(q)k
)− 1

n
H ′(q)j

H(q)k
|

+ 8KλKγ max
(1≤j≤r,1≤k≤p)

|E(XjH(p)k
)− 1

n
XjH(p)k

|

+ 8KγKτ max
(1≤j≤p,1≤k≤q)

|E(H ′(q)j
H(p)k

)− 1

n
H ′(q)j

H(p)k
|

+ 8KλKτ max
(1≤j≤r,1≤k≤q)

|E(XjH(q)k
)− 1

n
XjH(q)k

|.

(24)
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Take K∗ = max{K2
λ, K

2
γ , K

2
τ , 2KλKγ, 2KλKτ , 2KγKτ} and notes that each

term in the max expressions is bounded (e.g. |E(XjX
′
k) − XijX

′
ki| ≤ 2M2

1 ).
Using Lemma (1) and lemma 3 of [2], each term in (24) is bounded by

2MiMj

√
2log(2aiaj)

n
, i ∈ {1, 2, 3, . . . , r}, j ∈ {1, 2, 3, . . . , p}, k ∈ {1, 2, 3, . . . , q},

a1 = r, a2 = p and a3 = q. Then,

MSPE(β̂ , φ̂, θ̂) ≤ 2KmaxMmaxσ√
n

3∑
i=1

(√
2 log(2ai)

)
+ 8K∗

3∑
i,j=1

(
MiMj

√
2log(2aiaj)

n

)
.

The proof is completed.
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