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Abstract Drought is one of the most widespread and destructive hazards over the Loess Plateau (LP) of
China. Due to climate change, extremely high temperature accompanied with drought (expressed as hot
drought) may lead to intensive losses of both properties and human deaths in future. A hot drought
probabilistic recognition system is developed to investigate how potential future climate changes will impact
the simultaneous occurrence of drought and hot extremes (hot days exceeding certain values) on the LP.
Two regional climate models, coupled with multiple bias‐correction techniques and multivariate
probabilistic inference, are innovative integrated into the hot drought probabilistic recognition system to
reveal the concurrence risk of droughts and hot extremes under different Representative Concentration
Pathway (RCP) scenarios. The hot‐day index, TX90p, indicating the number of days with daily maximum
temperature (Tmax) exceeding the 90th percentile threshold, and the Standardized Precipitation Index are
applied to identify the joint risks on the LP using copula‐based methods. The results show that precipitation
will increase throughout most of the LP under both RCP4.5 and RCP8.5 scenarios of 2036–2095, while Tmax

may increase significantly all over the LP (1.8–2.7 °C for RCP4.5 and 2.7–3.6 °C for RCP8.5). The joint
return periods of Standardized Precipitation Index and TX90p show that fewer stations will experience
severe drought with long‐term hot extremes in two future scenarios. However, some stations may experience
hot droughts that are more frequent and extreme, particularly certain stations in the southwest and
south‐central regions of the LP with recurrence period less than 10 years.

1. Introduction

Extreme climate events, such as drought and hot extremes, have been occurring on a wide range of time
scales and in many parts of the world in relation to climate change (Bates et al., 2008; Mishra & Singh,
2010; von Buttlar et al., 2018). Heat waves cause water loss, lower the yield of agricultural products, increase
energy consumption, and adversely affect human health in a variety of direct, indirect, immediate, and
delayed ways (Mazdiyasni & Aghakouchak, 2015; U.S. Department of Energy, 2013; Zaitchik et al., 2006).
Drought, characterized by less than normal precipitation over a period of months to years (Zhang &
Zhou, 2015), has devastating impacts on the ecological environment and social‐economic sectors, including
the urban water supply, modern industries, and also the agricultural production (Food and Agricultural
Organisation of United nations (FAO), 2002; Heim, 2002; von Buttlar et al., 2018; World Bank, 2003).
Drought is one of the most expensive natural disasters and causes annual losses estimated at $6–8 billion
in the United States (Keyantash & Dracup, 2002). Furthermore, drought‐related disasters killed over half
a million people in Africa during the 1980s (Kallis, 2008).

High temperatures and drought often interact with each other: a sustained precipitation deficit during summer
plays an important role in intensifying subsequent extreme temperatures, and drought may also be triggered
and aggravated by temperature extremes (Bandyopadhyay et al., 2016; Mueller & Seneviratne, 2012;
Zaitchik et al., 2006). Drought can occur simultaneously with a heat wave, and concurrent events have been
observed to cause a series of extreme effects on human and natural systems (Zscheischler & Seneviratne, 2017).

Occurring with a heat wave, the Great U.S. Drought of 2012 led to a damage cost more than $33 billion,
which is the most extensive drought in the United States since the 1930s (NOAA, 2018). Furthermore, the
associated summer heat wave caused 123 direct deaths (Masters, 2013; NOAA, 2018). It is thus vitally
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important to analyze the correlations between concurrent droughts and heat waves (hot droughts) and
determine their characteristics of simultaneous occurrence to enable water resource management planning
and the development of adaptive strategies to mitigate the associated negative effects of climatic change.

No uniform definitions of drought currently exist, but many quantitative definitions and related indices have
been proposed to accurately assess the drought severity for risk management (Burke et al., 2006). The Palmer
Drought Severity Index, Standardized Precipitation Index (SPI), and the Standardized Precipitation
Evapotranspiration Index are three of the most commonly used drought indexes, and they all have their
own advantages and disadvantages (Dubrovsky et al., 2009; Guttman, 1998; Keyantash & Dracup, 2002;
Vicente‐Serrano et al., 2010). In this study, the SPI index which has been recommended by World
Meteorological Organization is selected to quantify the degree of meteorological drought. The SPI is applied
due to its strong ability in drought identification and assessment of drought grade (Mishra & Singh, 2010).
This index is also one of the drought identification indicators recommended by China Meteorological
Drought Classification Standard (National Climate Center, 2017) and has good performance in identifying
meteorological drought on the Loess Plateau (see Huang et al., 2018; Liu et al., 2016; Wu et al., 2018; Xu
et al., 2015). Based on precipitation projections from global climate models (GCMs) or regional climate mod-
els (RCMs), SPI is widely used to address future meteorological drought in many parts of the world (Asadi
Zarch et al., 2015; Huang et al., 2018; Osuch et al., 2016; Vidal &Wade, 2009). Five temperature indices were
applied by Mekis and Vincent (2006) to study extreme temperature; of these, we have applied the number of
days with daily maximum temperature (Tmax) exceeding the 90th percentile threshold (TX90p) in our study,
in accordance with the World Meteorological Organization standards (Karl et al., 1999).

The Loess Plateau (LP) is located in the upper andmiddle reaches of the Yellow River and it is acknowledged
to be an area suffering from severe soil erosion and a shortage of water resources. However, the LP is an
important agricultural region in China, and its natural conditions (i.e., water shortage, serious soil erosion,
and its different climatic regions) make it particularly important to assess its drought and high‐temperature
response to global climate changes (Zhang et al., 2012). Most past studies have focused on either drought or
high temperatures, and few assessments have been made that combine these characteristics, particularly for
the LP. However, some studies have simply identified the occurrence of drought or high temperatures and
their spatial distribution, although they have not quantitatively expressed a joint probability recurrence per-
iod (Li et al., 2010; Liu et al., 2016; She & Xia, 2018). It has been predicted that the frequency and severity of
extreme events may change in the future in relation to the effects of greenhouse gas emissions and global
climate change (IPCC, 2007). Therefore, it is of considerable important to determine how future climate
change in the Loess Plateau will affect drought and high temperatures, to ultimately develop improved
adaptive strategies.

GCMs are commonly used to generate future climate projections under different Representative
Concentration Pathway (RCPs; Wang et al., 2014). However, as GCMs are too coarse to assess regional or
local scale climatic characteristics and may have large systematic biases, RCMs are usually employed to
transform GCM outputs to a higher resolution prior to subsequent bias corrections (Wang et al., 2014;
Zhou et al., 2017). Consequently, this study aims to establish a modeling system for investigating the poten-
tial future climate change impacts on hot droughts in the Loess Plateau. In detail, the PRECIS (Providing
Regional Climates for Impacts Studies) and RegCM are used to simulate precipitation and Tmax of historical
and projected future (in both moderate (RCP 4.5) and high (RCP 8.5) future emissions scenarios) periods in
the LP. After conducting a bias correction process, the commonly used quantile mappingmethod (Qmap) tool
is used to correct the Tmax bias, while a multidimensional copula model is developed to correct for monthly
precipitation. After the implementation of statistical test, the selected marginal distributions and copulas are
fitted to construct copula‐based joint distributions of TX90p and SPI (SPI value for May to October). Finally,
the performance of a single variable and bivariate return periods at different levels under different scenarios
in the future is analyzed.

2. Study Area and Data
2.1. Study Area

The LP is located in the upper and central reaches of the YellowRiver between 33°43′ to 41°16′N and 100°54′
to 114°33′E, and it occupies a total area of 64 × 104 km2 (Figure 1). The climate for most of the region is
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subhumid and semiarid, and annual precipitation ranges from 150 to 800 mm (increasing from northwest to
southeast). The LP has an uneven precipitation distribution, strong evaporation, and poor vegetation
coverage, and it thus suffers from severe water shortages, serious soil erosion, and land degradation (Shi
& Shao, 2000). The annual mean temperature ranges from 3.6 °C in the northwest to 14.3 °C in the
southeast, and it has increased by 0.22 °C per decade over the past 60 years for the whole LP (Wang et al.,
2017). Precipitation across the LP has shown a slightly decreasing trend of −3.17 mm per decade over the
past six decades (Zhou et al., 2015). In addition, 80–91% of the precipitation occurs during the rainfall
season between May and October; therefore, when the drought level is determined for these six months, it
is representative of the drought level for the whole year.

Although 8.5% of China's total population live in this region (the total population is approximately 86 mil-
lion), the water resources of the LP account for only 2% of the country's total water resources. In addition,
the water utilization ratio of the major rivers is up to 70%, which far exceeds the internationally recognized
water utilization threshold of 40% (Gao et al., 2009). Furthermore, according to the Yellow River Water
Resources Bulletin, human water consumption increased by 86% on the LP from the 1980s to 2010, in line
with rapid social economic development (Gao et al., 2017; Wang et al., 2017).

2.2. Data

In this study, gridded daily precipitation and maximum temperature data from the HadGEM2‐ES climate
model under historical (1985 to 2005) and two RCPs (i.e., RCP4.5 and RCP8.5 for 2036–2095) are applied
to the RegCM (RegCM4.4) and the PRECIS (PRECIS2.0) model to generate high‐resolution projections.
Reliability of high‐resolution regional climate projections are influenced by many factors such as the
RCMs themselves and the driving forces from GCMs. In addition, it is noteworthy that with complex terrain,
only a limited number of GCMs perform well in LP area. In the case of limited conditions for running RCMs
and limited options for GCM data which can appropriately simulate the precipitation and temperature in
this area, it is particularly important to select the appropriate GCM data to drive the RCM models. Based
on previous research works, the outputs from HadGEM2‐ES are applied to drive the RegCM and PRECIS
in our study because HadGEM2‐ES performs well in simulating both temperature and precipitation in
China (Wang & Chen, 2014). HadGEM2‐ES outputs are available from the Program for Climate Model
Diagnosis and Intercomparison (http://www‐pcmdi.llnl.gov). Thereafter, downscaled high‐resolution cli-
mate change scenarios (at horizontal resolutions of approximately 25 km) from the RegCM and PRECIS
RCMs are extracted. The projections from RegCM and PRECIS are corrected through the bias correction

Figure 1. Location and topography map of Loess Plateau and meteorological stations.
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procedure to enhance the accuracy of climate projections for further char-
acterization of the occurrence of drought with hot extremes over PL under
climate change.

The observed daily maximum temperature and precipitation data for 44
meteorological stations across the LP (Figure 1) were collected from the
National Meteorological Information Center (http://data.cma.cn/), cover-
ing the period between 1971 and 2016. For the reason that there are fewer
missing observed data of all stations in the period of 1986–2004, and it is
also the latest period of historical outputs from the climate model (data

are incomplete in 2005), data for the period 1986 to 2004 were used to conduct the bias correction and vali-
dation analyses for daily maximum temperature and monthly precipitation. The first 10‐year (1986–1995)
data of maximum temperature and precipitation were used to develop the bias‐correction models, and the
remaining nine‐year data (1996–2004) were applied to conduct model validation (checking the bias‐
corrected results). The precipitation in the region has shown an insignificant decreasing trend over the past
six decades (Zhou et al., 2015). The KS test of precipitation fromMay to October for periods of 1986–1995 and
1996–2004 shows that the p values of all stations are all greater than 0.05, which also indicate that there is no
obvious difference in precipitation between the two periods in the LP. The Tmax from May to October in
1996–2004 is significantly higher than that in 1986–2004 (increased by an average of 0.58°). The p values
of only four stations are greater than 0.05, which means that Tmax of two periods are significantly different
and can fully validate the performance of bias correction method. Data for the entire time period (1971–
2016) were employed to make a comparative study with future scenarios. Detailed descriptions of the data
usage for each time period are shown in Table 1.

3. Method

Figure 2 illustrates the hot drought probabilistic recognition (HDPR) system. The HDPR systemmainly con-
sists of four modules: (i) a dynamic downscaling process for HadGEM2‐ES outputs, (ii) a bias correction pro-
cess for daily maximum temperature (Tmax) andmonthly precipitation, (iii) selection of themost appropriate
marginal distributions and copulas for TX90p and SPI, and (iv) a joint disaster risk inference (hot drought
identification) under projected climate. In detail, modules (i) and module (ii) aim to improve the quality
of simulation data for future years; module (iii) is proposed to construct the reliable joint risk identification
model for the risk inference module (iv), which reveals changes in projected future joint risks.

3.1. Copula Concept

As a multivariate statistical analysis method, copulas are employed to model the dependence structure
between correlated random variables (Chen et al., 2017). In detail, copulas are multivariate distribution
functions with marginal distributions that are uniform on the interval [0, 1] According to Sklar's theorem
(Nelsen, 2006; Sklar, 1959), for an n‐dimensional distribution function, F, with univariate marginals F1, …
, Fn, a multivariate copula function, C, exists that can be expressed as

F x1; x2;…; xnð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ;…;Fn xnð Þð Þ (1)

where x1, x2,… xn are observed values of random variables X1, X2, … , Xn, F1(x1), F2(x2), …, and Fn (xn) refer to
the CDFs of random vector (X1, X2, … , Xn). If all these marginal distributions are continuous and differenti-
able, then a single copula function exists, which can be written as (Nelsen, 2006; Sraj et al., 2015)

C u1; u2;…;unð Þ ¼ F F−1
1 u1ð Þ;F−1

2 u2ð Þ;…;F−1
n unð Þ� �

(2)

where u1 = F1(x1), u2 = F2(x2 …),… and, un = Fn (xn). More details about the theoretical background and
characteristics of different copula families are shown in Nelsen (2006).

A large number of copulas families are widely used in risk analysis, including Archimedean, elliptical, and
extreme value copulas. Of these, Archimedean copulas are quite attractive because their mathematical tract-
ability (which can be expressed by a single‐argument generator function) and can capture varieties of depen-
dence structures with several desirable properties, such as symmetry and associativity (Fan et al., 2015).

Table 1
Detailed Statistical Description of Data Sets

HadGEM‐ES

Observation UsagePRECIS RegCM

Time 1 1986–1995 1986–1995 Develop bias‐correction
models

Time 2 1996–2004 1996–2004 Model validation
Time 3 2036–2095 1971–2016 Comparative studies
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Rank‐based statistical tests for bivariate symmetry of SPI and Tx90p are conducted for all stations under both
historical and two future scenarios (44 stations × 3 scenarios) in this study (see Genest et al., 2012; Hofert
et al., 2018). It is found that most of the stations (42 of historical, 41 of RCP4.5, and 42 of RCP8.5) have
obvious symmetry in SPI and Tx90p for both historical and future scenarios, copulas with symmetric
structure are beneficial to drought events with high temperature studies. With a large variety of copulas
belong to this family, the Archimedean copula family can be applied when the correlation among
variables is positive or negative. The benefit of the elliptical family over the Archimedean is that elliptical
copulas can specify different levels of correlation between the marginal distributions (Berentsen et al.,
2014). As is know that extreme copula is beneficial for the analysis of extreme situations, however, the
goal of this research is to model the entire distribution to capture events with high return frequencies and
not only the extremes. Hence, extreme value copulas might not be appropriate in this study.

In the present study, the Frank, Clayton, and Gumbel copulas (in the Archimedean family) and the
Gaussian, Student's t copulas (most commonly used elliptical copulas) are selected as candidate models to
construct the bias correction and risk assessment models. The t‐copula and some of the Archimedean copu-
las can perform well in capturing tail dependency (e.g., Clayton copula for lower tail dependence and
Gumbel copula for upper tail dependence; see Schölzel & Friederichs, 2008). The Frank and Gaussian copu-
las are comprehensive in capturing the full range of dependence between two random variables (Bhat &
Eluru, 2009), which also fulfill the needs of modeling the entire distribution to capture events with high
return frequencies and extremes. Some basic properties for the three chosen Archimedean copulas are pre-
sented in Table 2.

The CDF of a d‐dimensional Gaussian copula is given by

C u1; u2;…;ud;Σð Þ ¼ ΦΣ Φ−1 u1ð Þ;…;Φ−1 udð Þ� �

¼ ∫
Φ−1 u1ð Þ
−∞ …∫

Φ−1 udð Þ
−∞

1

2 πð Þd=2 Σj j1=2
exp −

1
2
wTΣ−1w

� �
dw

(3)

where ΦΣ represents the multivariate normal distribution with a correlation matrix, Σ, Φ−1 is the inverse of

Figure 2. Hot drought probabilistic recognition system, which mainly consists of four modules (1) to (4).
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the univariate normal distribution, and w symbolizes the integrand variable matrix. The distribution
function of the d‐dimensional t copula is given by

C u1;u2;…; ud;Σ; vð Þ ¼ ΦΣ;v Φ−1 u1ð Þ;…;Φ−1 udð Þ� �

¼ ∫
Φ−1 u1ð Þ
−∞ …∫

Φ−1 udð Þ
−∞

Γ
vþ d
2

� �

Γ
v
2

� � 1

πvð Þd=2 Σj j1=2
1þ wTΣ−1w

v

� �−
vþ d
2 dw

(4)

where ΦΣ,v represents the standard multivariate Student's t distribution with a correlation matrix, Σ, and v
degrees of freedom, and Φ−1 is the inverse of the univariate t distribution.

The parameters for copulas are obtained through a maximum likelihood estimation (Fan et al., 2015; Shih &
Louis, 1995). To evaluate the performance and select the best fitted copulas, the goodness‐of‐fit statistics test
is conducted based on Akaike's information criteria (AIC; Akaike, 1974) and Cramér von Mises statistics
(Genest et al., 2009). The AIC can be obtained as follows (Karmakar & Simonovic, 2009):

AIC ¼ N× log MSEð Þ þ 2k (5)

where N is the sample size, MSE is the mean square error, and k is the number of parameters, which
describes the effective degree of freedom.

3.2. Bias Correction Model for Precipitation

In this study, the Kendall's correlation coefficients between observed precipitation and PRECIC/RegCM
simulations at all stations range from 0.32/0.34 to 0.60/0.62 in the period of 1986–2004. The copula functions
are applied to establish a multivariate probabilistic model between observed precipitation and the projection
from two RCMs. The established model is then used to conduct bias correction for simulated precipitation in
projected future periods. The detailed theoretical calculation process is as follows: once the copula function
(mentioned above) is established, the joint probability density function f(x1, x2, … , xn) corresponding to the
joint CDF F(x1, x2, … , xn) can be obtained by a product of the marginal densities and copula probability
density c(u1, u2, … , un) (Fan et al., 2017),

f x1; x2;…; xnð Þ ¼ ∂nC u1; u2;…;unð Þ
∂u1∂u2…∂un

∂u1
∂x1

∂u2
∂x2

⋯
∂un
∂xn

¼ c u1;u2;…;unð Þ∏
n

i¼1
f i xið Þ; (6)

where fi(xi) is the probability density function of Fi (xi).

The parameters of multidimensional copula functions are usually difficult to calculate directly, and an alter-
native scheme that decomposes a multivariate density into multiple two‐dimensional copula functions is
always implemented (Aas et al., 2009). For equation (6) above, f(x1, x2, … , xn) can be decomposed as

f x1; x2;…; xnð Þ ¼ f 1 x1ð Þf 2∣1 x2jx1ð Þ⋅f 3∣1 ;2 x3jx1; x2ð Þ
⋅…⋅f n∣1;2;…;n−1 xnjx2;…; xn−1ð Þ (7)

where fj ∣ 1,2, … ,j − 1(xj| x2, … , xj − 1) j = 2,3,…, n represents the conditional probability density distribution
and is abbreviated as f(xj| x2, … , xj − 1) in the following sections.

Table 2
Basic Properties of Applied Bivariate Archimedean Copulas

Copula C (u, v; θ) τ ¼ 1þ 4∫
1

0
φ tð Þ
φ0 tð Þ dt Generator (φ(t)) θ

Frank

− 1
θ ln 1þ e−θu−1ð Þ e−θv−1ð Þ

e−θ−1

� 	
1− 4

θ D1 −θð Þ−1½ �a − ln e−θt−1
e−θ−1

h i (−∞, +∞)\{0}

Clayton (u1
−θ+u2

−θ
− 1)−1/θ

2
θþ2

(t−θ − 1)/θ (0, +∞)

Gumbel‐Hougaard exp{−[(− ln u)θ+(− ln v)θ]1/θ} 1 − θ−1 (− ln t)θ [1, +∞)

aD1 is the first‐order Debye function, for any positive integer k, Dk xð Þ ¼ k
xk ∫

k

0
tk

et−1 dt.
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According to the general definition of the conditional density and the joint density in equation (6), the con-
ditional density is derived by

f xnjx2;…; xn−1ð Þ ¼ f x1; x2;…; xnð Þ
f x1; x2;…; xn−1ð Þ ¼ f n xnð Þ c F1 x1ð Þ; F2 x2ð Þ;…;Fn xnð Þð Þ

c F1 x1ð Þ; F2 x2ð Þ;…;Fn xn−1ð Þð Þ (8)

In the case of three‐variable situation, as in our study, the precipitation of observation and two RCMs are
used as random variables: Under the assumption that there exist complex correlations among the variables,
possible decomposition of the probability density function f(x1, x2, x3) and the conditional density functions
can be expressed as equations (9)–(11),

f x1; x2; x3ð Þ ¼ f 1 x1ð Þf x2jx1ð Þf x3jx1; x2ð Þ (9)

f x2jx1ð Þ ¼ f x1; x2ð Þ
f x1ð Þ ¼ f 2 x2ð Þc F1 x1ð Þ; F2 x2ð Þð Þ (10)

f x3jx1; x2ð Þ ¼ f x2; x3jx1ð Þ
f x2jx1ð Þ

c2;3∣1 F x2jx1ð Þ;F x3jx1ð Þð Þf x2jx1ð Þf x3jx1ð Þ
f x2jx1ð Þ

¼ c2;3∣1 F x2jx1ð Þ;F x3jx1ð Þð Þf x3jx1ð Þ
¼ c2;3∣1 F x2jx1ð Þ;F x3jx1ð Þð Þc F1 x1ð Þ; F3 x3ð Þð Þf x3ð Þ

(11)

In practical calculation, the calculation process can be simplified by using conditional independence, which
means when X2 and X3 are assumed to be conditionally independent given X1. This assumption may reduce
the number of levels of the pair‐copula decomposition, and hence simplify the construction (see Aas et al.,
2009). This would be particular meaningful when a large number of RCMs are used. Based on the probability
integral transform (Rosenblatt, 2011), dependent variables can be converted into a new set of variables that
are independent and uniform. If we assume that X = (X1, X2,…, Xn) is a random vector with marginal distri-
butions Fi (xi) and Fi ∣ 1,2, … ,i − 1(xi| x1, … , xi − 1) (i= 1,2,…, n) denotes the conditional distributions, according
to the probability integral transform theory,

w1 ¼ F1 x1ð Þ ¼ u1

w2 ¼ F2∣1 x2jx1ð Þ ¼ C2∣1 u2ju1ð Þ;
w3 ¼ F3∣1;2 x3jx1; x2ð Þ ¼ C3∣1;2 u3ju1;u2ð Þ;
⋯ ¼ ⋯
wn ¼ Fn∣1;2;…; n−1ð Þ xnjx1;⋯; xn−1ð Þ ¼ Cn∣1;2…; n−1ð Þ unju1;u2;…; un−1ð Þ

8>>>>>><
>>>>>>:

(12)

where w1, w2, …, wn are independent and uniform over [0, 1]. When applying an inverse Rosenblatt trans-
form, Tc, to the uniform sample, it can be formulated as

u1 ¼ w1

u2 ¼ C−1
2∣1 w2ju1ð Þ;

u3 ¼ C−1
3∣1;2 w3ju1; u2ð Þ;

⋯ ¼ ⋯
un ¼ C−1

n∣1;2;…; n−1ð Þ wnju1;⋯;un−1ð Þ

8>>>>>>><
>>>>>>>:

: (13)

According to the marginal distribution of Xi, the values of xi corresponding to simulation values of ui can
then be obtained.

3.3. Univariate and Joint Return Periods

Once the marginal distributions of SPI and TX90p are characterized, the univariate return periods of
droughts and high temperature regarding only one variable are also derived under the baseline and two
RCP scenarios. Return periods of droughts are defined based on the nonexceedance probabilities of certain
SPI values. While the return period of high temperature at a certain level is defined based on the exceedance
probabilities of a certain TX90p (Li et al., 2015). The relevant calculation formulas are as follows:
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TSPI ¼ 1
FSPI x1ð Þ (14)

TTX90p ¼ 1
1−FTX90p x2ð Þ (15)

where TSPI represent the return periods for a SPI smaller than or equal to a
certain value, x1, while TTX90p represents return periods for a TX90p
greater than or equal to certain values of x2. In addition, FSPI and FTX90p
are the cumulative probability distribution functions of SPI and TX90p,
respectively. If appropriate copulas are specified to reflect the joint prob-
abilistic characteristics between SPI and TX90p, the joint return periods
which defined as the frequency of simultaneous occurrence of two events
can be formulated as

TAND
X1 ;X2

¼ E Lð Þ
P X1≤ x1;X2 > x2ð Þ ¼

E Lð Þ
P X1≤ xð Þ−P X1≤ x1;X2≤ x2ð Þ

¼ E Lð Þ
FX1 x1ð Þ−C FX1 x1ð Þ;FX2 x2ð Þð Þ

(16)

where TAND
X1 ;X2

denotes the return period when X1 ≤ x1 and X2 ≥ x2, and in the present study, X1 and X2 repre-
sent SPI and TX90p, respectively. E(L) denotes the average interarrival time between recorded events, the
annual index values of SPI and TX90p are used in this paper, so E(L) equals 1 here.

4. Analysis of Results
4.1. Case Study of Various Distributions

Taiyuan station (37°22′N and 112°21′E) in the eastern LP is used as a case to illustrate the computation pro-
cedure. It is necessary to consider a marginal distribution model during the process of precipitation bias cor-
rection and when establishing the bivariate distribution procedure for SPI and TX90p. In the fitting of
marginal distribution models and copulas for SPI and TX90p, entire data sets for both history (1971–2016)
and future (2036–2095) are used. The candidate marginal distribution models considered in this study are
the Gaussian mixture model (GMM), gamma, lognormal, Pearson type III, Log Pearson type III, generalized
extreme value, and Weibull distributions. These models are selected because they are widely used for fitting
the distributions of precipitation, drought, and high temperature indicators (Angelidis et al., 2012; Hao et al.,
2017; Wang et al., 2014; Yusof et al., 2013). The Expectation‐Maximization algorithm (EM; Sondergaard &
Lermusiaux, 2013) is applied to generate parameters for the GMM distribution, and the parameters for other
marginal distributions and copulas are obtained through a maximum likelihood estimation (Fan et al., 2015;
Shih & Louis, 1995). Furthermore, the root‐mean‐square error, AIC (Akaike, 1974), and Kolomogorov‐
Smirnov tests are used to test and select the most appropriate marginal distribution (Fan et al., 2015).

The distribution of precipitation is always complicated. Based on the goodness‐of‐fit statistics test, it is found
that with the exception of the GMM, candidate marginal distribution models are generally poor in fitting the
distribution of precipitation in this region (the p values obtained by the Kolomogorov‐Smirnov test at some
stations are less than 0.05). The finite GMM can theoretically be very close to any continuous distribution if a
sufficient number of components are properly given (Fan et al., 2016). Therefore, the GMM is used to model
precipitation in this area, and to evaluate its performance, goodness‐of‐fit tests results of the GMM are com-
pared with the best fitted ones of six other distributions at Taiyuan station. Table 3 shows the AIC, root‐
mean‐square error, and Kolomogorov‐Smirnov test values of the GMM and other selected distributions
for monthly precipitation at Taiyuan station. The p value for the GMM is larger than the other distributions,
which shows goodness of fit, and it can thus be concluded that the GMM is the most appropriate for model-
ing the distribution of observed monthly precipitation and simulations obtained from two RCMs. Figure 3
illustrates a comparison between the performances of the GMM and the other most suitable distributions
at Taiyuan station. The GMM‐based CDFs and probability density functions for the marginal distributions
of different precipitation data show better agreements with the empirical distributions than that of other
theoretical distributions.

Table 3
Comparison of Statistical Test Results for Marginal Distribution of
Precipitation at Taiyuan Station

Precipitation
Marginal

Distribution

K‐S Test

RMSE AICT P Value

Observation GMM 0.0957 0.2221 0.0332 −813.4
GEV 0.0963 0.2161 0.0496 −714.7

PRECIS GMM 0.0683 0.6291 0.0234 −896.7
LN 0.0768 0.4779 0.0388 −775.7

RegCM GMM 0.0539 0.8766 0.0206 −927.5
Weibull 0.0609 0.7652 0.0286 −848.6
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Although the GMM distribution is able to quantify the distributions of SPI and TX90p, it should be noticed
that the GMM is computationally expensive and has more parameters (which may bring more uncertainties)
than other marginal distribution models. When there exist other models that satisfy the goodness‐of‐fit tests,
we tend to choose other marginal distributions rather than the GMM. After calculating the marginal distri-
bution, it was found that the SPI values of all stations in the LP were more in line with Pearson type III or
extreme distribution, while the TX90p values were more consistent with the Gamma or Pearson type III dis-
tribution. When the marginal distributions of the two indicators for all stations were determined, the calcu-
lation of the copula functions could then be conducted. Using Taiyuan station as an example, the SPI and

Figure 3. Comparison of GMM and other probability density estimates with theoretical frequency at Taiyuan station.
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TX90p of historical and future simulation data were found to be nega-
tively correlated (Kendall's tau was negative); therefore, the copula func-
tion was selected and the Gumbel copula function was excluded.
Table 4 shows the parameters used when selected copulas and the corre-
sponding statistical test indexes for historical and two projected future sce-
narios, and Figure 4 illustrates the cumulative distributions of the best
fitted marginal distributions and bivariate probability distribution of SPI
and TX90p for the historical period.

4.2. Bias Correction Results

In this study, the quantile mapping method (Qmap; Piani, Haerter, &
Coppola, 2010, Piani, Weedon, et al., 2010) is used to correct the deviation of the daily maximum tempera-
ture of downscaled outputs from PRECIS and RegCM models. For the PRECIS model, the coefficient of
determination (R2) on a daily time scale for the validation period (1996–2004) range from 0.63 to 0.79 for
the 44 stations, with an average of 0.734, whereas those for the corrected RegCM outputs fluctuate from
0.55 to 0.81, with an average of 0.715. The correction results for all stations for both the PRECIS and
RegCM models on a monthly time scale have an averaged R2 value higher than 0.95; therefore, the correc-
tion results of the two models can meet the general needs of climate change analysis. In addition, according
to our research characteristics, the 0.9 quartile values of daily maximum temperature for each station were
also verified, and bias correction performances for daily maximum temperature at the 90th percentile
threshold for observations and RCMs simulations at 44 stations are shown in Figure 5. With a smaller
root‐mean‐square error value of 0.477 and a higher R2 value of 0.995, the PRECIS model was chosen to

Table 4
Performance of Different Copulas for Joint Distributions Between SPI and
TX90p at Taiyuan Station

Copulas Parameter Tau AIC CvMa P Value

History Gaussian −0.413 −0.27 −6.75 0.014 0.79
RCP4.5 Student t −0.49, 4.69 −0.32 −15.34 0.342 0.86
RCP8.5 Gaussian −0.231 −0.15 −1.28 0.006 0.75

aThe Cramér‐von Mises statistic proposed by Genest et al. (2009), with p
value larger than 0.05 indicating satisfactory performance.

Figure 4. Marginal CDFs and 3‐D surface plot of bivariate CDF for Taiyuan station. (a and b) Generatedmarginal CDFs of
SPI and TX90p compared with theoretical distributions. (c) Joint CDF of SPI and TX90p.
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analyze future daily maximum temperature changes of the LP. It is noteworthy that the predicted tempera-
ture is overall slightly lower than the observed temperature. This is because the Tmax in 1986–2005 is signif-
icantly higher than that in 1996–2004, and the RCM simulations have not fully captured this change.

Monthly precipitation projections from PRICIS and RegCM models were jointly corrected by the proposed
multidimensional copula model. Moreover, the model's performance was then compared to the Qmap

method, which is a commonly used bias correctionmethod. Figure 6a compares the correctedmonthlymean
precipitation averaged for all stations using the different methods (for selected six months), and it is evident

Figure 5. Comparisons of bias correction performance for daily maximum temperature from two RCMs at 44 stations.
Black points show daily maximum temperature at the 90th percentile threshold for observations and RCM simulations.

Figure 6. Comparisons between performances of different methods used for precipitation bias correction (for selected six
months). (a) Monthly mean precipitation averaged over all stations. (b) Total mean absolute error (MAE) and MAE for
specific probability intervals (MAE0.1, MAE0.2, …, MAE1.0) averaged over all stations. (c) Annual average rainfall from
different methods for all stations.
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that the corrected results obtained by the multidimensional copula model outperform those obtained by the
Qmap method. Based on the mean absolute error (MAE; Gudmundsson et al., 2012), a global quantitative
evaluation was conducted to further assess the methods' performances with respect to specific properties.
The total MAE, together with a set of MAE scores for uniformly spaced probability intervals (MAE0.1,
MAE0.2, …, MAE1.0) averaged over all stations were used to conduct more specific quantitative evaluations
(Figure 6b; also for selected six months). It is evident that the total MAE value obtained by the multidimen-
sional copula model is smaller than that from Qmap method. In addition, the values of MAEs for specific
probability intervals calculated from the proposed model are similar to or obviously smaller than (especially
for wetter months of MAE0.6–1.0) those obtained from the Qmap method. Verification results of mean preci-
pitation from May to October for all stations are shown in Figure 6c. It can be seen that the corrected preci-
pitation (by Qmap method) deviates significantly from observations at some stations, while it shows no
serious deviations between observations and corrected values obtained from the multidimensional copula
model. The performance of multidimensional copula model is slightly inferior to that of the Qmap method
at only a few stations. However, the combined results show that the performance of multidimensional
copula model is relatively more stable than that of the Qmap method.

After conducting the bias correction process, a simple statistical calculation was conducted to determine
changes in precipitation and daily maximum temperature (Tmax) made between historical and projected
future scenarios. The average daily mean maximum temperature from May to October at 44 meteorological
stations shows an increasing trend from 1.8 to 2.7 °C for the RCP 4.5 scenario and 2.7 to 3.6 °C for the RCP
8.5 scenario in relation to historical situations, and the average mean daily mean maximum temperature at
44 meteorological stations increases by 2.15 °C and 3.03 °C for the RCP 4.5 scenario and RCP 8.5 scenario,
respectively. The corresponding TX90p values show an average increase ranging from 19.7 to 36.3 for the
RCP 4.5 scenario and 33.6 to 48.2 for the RCP 8.5 scenario. Figure 7 shows changes in the mean daily max-
imum temperature and TX90p from May to October at each weather station under the two projected future
scenarios relative to historical situations.

For stations with the most precipitation reduction, annual mean precipitation from May to October would
decrease by 154 and 153 mm for the RCP 4.5 scenario and RCP 8.5 scenario, respectively. While the annual
average precipitation (from May to October) may increase by 297 mm for the RCP 4.5 scenario and 316 mm
for the RCP 8.5 scenario at stations with the most precipitation increment. Mean precipitation for the 44

Figure 7. Mean daily maximum temperature and TX90p changes of selected six months over 44 weather stations under
projected scenarios of RCP 4.5 and RCP 8.5 relative to historical situations.
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meteorological stations over the six months shows average increases of 61 and 75 mm for the RCP 4.5
scenario and RCP 8.5 scenario, respectively. The corresponding SPI values fluctuate from −2.8 to 2.8 for
the RCP 4.5 scenario and −2.9 to 2.9 for the RCP 8.5 scenario. Figure 8 shows the detailed changes in
precipitation and SPI for six months at each weather station under the two projected future scenarios
relative to historical situations. Precipitation for the whole LP shows an obvious increased trend in both
future scenarios, while there are severe precipitation decreases in some areas, and thus, the severity of
drought could be aggravated with the increase of temperature.

4.3. Spatial Distributions of Univariate and Joint Return Periods

Using the best fitted marginal distribution, the SPI and TX90p values for specific return periods can be
calculated according to equations (14) and (15), respectively. Spatial distributions of SPI and TX90p values
for historical and two RCP scenarios corresponding to a return period of 50 years (the most serious case)
in the LP are shown in Figure 9. The first row of Figure 9 presents a comparison of SPI between historical
and two RCP scenarios, while the second row shows the variation in TX90p. As can be seen from the fig-
ure, the spatial distributions of SPI in the two future scenarios are similar, and the values are larger than
those in the historical period in most parts of the LP. Severe drought events in future scenarios are mainly
detected in the southwest and in a small part of south‐central LP. The 50‐year return period of TX90p
values for the entire LP in the two future scenarios are obviously larger than the historical ones, especially
for the RCP 8.5 scenario. The average TX90p of the 44 meteorological stations for the RCP 4.5 scenario
and RCP 8.5 scenario increases by 32.3 and 55.7, respectively, compared to the corresponding historical
value of 63.3. The risk of long‐term high temperatures in the future may therefore increase significantly.
Considering the 50‐year return period values of SPI and TX90p under two future scenarios, it can be qua-
litatively judged that drought occurring with continuous high temperature will happen frequently in the
south‐central and southwest parts of the LP in future.. In order to quantitatively calculate the combined
risk of the two indicators at each station (see equation (16)), it is necessary to set different risk level com-
binations of the two indicators.

Two levels for TX90p and SPI indices are set, respectively, and joint return periods under four combina-
tion schemes are then calculated. According to the historical and future 50‐year return period of TX90p
in Figure 9, the levels of 60 and 90 days are set for TX90p. The drought severity is classified using SPI

Figure 8. Mean precipitation and SPI changes for selected six months over 44 weather stations under projected scenarios
of RCP 4.5 and RCP 8.5 relative to historical situations.
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index according to recommendations by National Climate Center of China (2017). We classify drought
conditions based on SPI using two thresholds of −0.5 and −1, which are used for distinguishing mild
drought from nondrought and moderate drought from mild drought, respectively. The precipitation cor-
responding to SPI = −0.5 is lower than almost 68% of the historical precipitation series in this area.
When SPI is equal to −1, the corresponding precipitation is lower than about 83% of the historical pre-
cipitation series. The average precipitation corresponding to SPI values of −0.5 and −1 for all stations in
May–October would be 306.7 and 267.8 mm, respectively. Four situations are then considered for the
analysis of joint return periods: (i) SPI is −0.5 with TX90p of 60 and considered to be mild drought with
mid‐long‐term high temperatures in this study, (ii) SPI is −1 with TX90p of 60 and is considered to be
moderate drought with mid‐long‐term high temperatures, (iii) SPI is −0.5 with TX90p of 90 and is con-
sidered to be mild drought with long‐term high temperatures, and (iv) SPI is −1 with TX90p of 90 and is
considered to be moderate drought with long‐term high temperatures. For the scenarios (i) and (ii), a
comparison between historical and future joint return periods is conducted. While for scenarios (iii)
and (iv), the joint return periods are analyzed only for future scenarios (TX90p = 90 can hardly happen
in history).

Figure 10 shows stations with joint return periods of less than 100 years (red bubbles) and their correspond-
ing return period values for the first two scenarios. The size of the red bubble corresponding to each station is
inversely proportional to themagnitude of the joint return period. From Figure 10, it is evident that the num-
ber of stations with joint return periods of less than 100 under the two future scenarios is less than the his-
torical situation, and the return periods are also significantly smaller (with bigger bubbles in Figures 10b,
10c, 10b*, and 10c*). This indicates that future drought conditions at the stations shown in the figure are
more severe for the first two scenarios. The return periods at some stations in the southwest and south‐
central regions are even less than 10 years, which means that there may be a higher frequency of drought
with mid‐long‐term high temperatures. The return periods of drought accompanied by long‐term high tem-
peratures (for the last two situations) are shown in Figure 11, which only shows stations with joint return
periods of less than 100 years. The number of stations likely to suffer from drought with long‐term high tem-
peratures is significantly lower than for the first two conditions, which are mainly located in the southern
part of the LP. There are more stations with joint return periods less than 100 years in the RCP 8.5 scenario
than in the RCP 4.5 scenario. The recurrence periods of RCP 8.5 scenario for the displayed stations are
mostly less than that of RCP4.5 scenario, whichmeans that these stationsmay experience a higher frequency
of the extreme cases.

Figure 9. Comparison of 50‐year return period values for SPI and TX90p between historical and two RCP scenarios.
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Figure 10. Stations with joint return periods of less than 100 years and corresponding return period values under different scenarios. (a–c) Joint return periods with
SPI = −0.5 and TX90p = 60 under historical, RCP4.5, and RCP8.5 scenarios, respectively. (a*–c*) Joint return periods with SPI = −1 and TX90p = 60 under
historical, RCP4.5, and RCP8.5 scenarios, respectively.

Figure 11. Stations with joint return periods of less than 100 years and corresponding return period values under different
scenarios. (a and b) Joint return periods with SPI =−0.5 and TX90p = 90 under RCP4.5 and RCP8.5 scenarios, respectively.
(c and d) Joint return periods with SPI = −1 and TX90p = 90 under RCP4.5 and RCP8.5 scenarios, respectively.
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5. Discussion and Conclusions

Drought is a major natural disaster occurring on the Loess Plateau, and a warming climate trend is antici-
pated to exacerbate drought events. It is important to analyze droughts that occur simultaneously with heat
waves to enable water resource planning and management. In this study, a HDPR system was developed to
investigate the potential future climate change impacts on droughts and hot extremes in the Loess Plateau.
The entire modeling system can be divided into four modules that function independently from each other
but are interconnected during the modeling process. In detail, the model system was applied to the Loess
Plateau using the following process: (i) daily maximum temperature and precipitation under RCP 4.5 and
RCP 8.5 scenarios from HadGEM2‐ES model were downscaled by the RCMs of PRECIS and RegCM; (ii)
high‐resolution downscaled Tmax and precipitation were bias corrected by Qmap and proposed multidimen-
sional copula model, respectively; (iii) TX90p and SPI were extracted from the historical and bias corrected
future (2036–2095) Tmax and precipitation for 44 stations, and a number of marginal distribution functions
and copulas were investigated to characterize the marginal and joint behavior of TX90p and SPI; and (iv)
according to the univariate probabilistic models and copula‐based models, the univariate and bivariate fre-
quency were calculated for both .historical and future scenarios.

The performance of multidimensional copula model was generally better than the commonly used Qmap

method for correcting monthly precipitation at different stations over the LP. After the bias correction pro-
cess, the spatial distributions of univariate and bivariate return periods for SPI and TX90p were then ana-
lyzed. The results indicated an inconsistency between identified drought accompanied by high
temperature for different stations in different regions and time periods. The spatial distributions of the 50‐
year return period for SPI and TX90p detected severe drought mainly in the southwest and south‐central
LP in future scenarios, while the TX90p values for the entire LP using the two future scenarios were drama-
tically larger than those of historical data. The joint return periods of SPI and TX90p were then investigated
considering four situations. A comparison of historical situation and two future scenarios showed that fewer
stations in the future may suffer from severe drought with long‐term hot extremes, but somemay experience
a higher frequency of drought with long‐term high temperatures, particularly some stations in the southwest
and south‐central regions of the LP, with an average recurrence period of less than 10 years. Under the com-
bined action of the two kinds of disaster in these areas where drought with long‐term hot extremes are likely
to occur more frequently, local industry, agricultural production, and even human health can be seriously
affected. It should be noticed that only two RCMs are used in this study; the reliance of projections may
be limited but would be enhanced when more accurate RCM projections are integrated into the proposed
modeling framework. From a planning perspective, the findings of this paper are also important to local
decision makers and practitioners.
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