Investigating the Communication of 4D Printing among Product Designers and Manufacturing Engineers

AZHAR. F.E¹ and PEI. E¹

¹Department of Design, College of Engineering, Design and Physical Sciences, Brunel University London, UK

Corresponding Author: FatenEzrin.Azhar@brunel.ac.uk

ABSTRACT

4D Printing involves the use of 3D Printed objects that can self-assemble or transform using smart materials. This research is to find out how marks on paper through the use of sketches are communicated to represent the process of 4D Printing. In this research, quantitative and qualitative methods through interviews and focus groups will be used to acquire data on how product designers and manufacturing engineers communicate the process of 4D Printing. The findings from the focus group activities showed that while there were a diverse range of 'sketches' produced, colours were used to indicate the parts and materials, while arrows were used to indicate the folding sequence, and symbols were used to indicate the process of time.

KEYWORDS: 4D Printing; Communication; Computer Aided Design; Product Designer; Manufacturing Engineer

1. INTRODUCTION

According to the Merriam - Webster Dictionary, a designer is a person who creates and executes plans for a project. When comparing products of the past with those of today the main difference is that the tools, machines, materials, processes and systems are now far more advanced and in particularly suited for mass production Morelli, (2002) highlighted that product designers traditionally sketches, models and Computer-Aided Design (CAD) to create the outcomes necessary for the final product. For these reasons, product designers have to acquire a broad range of skills and experience in order to communicate, relating and work with people in a multi-disciplinary setting to provide solutions. These sketches play an integral part of analytical computations, where they can be used to present and define the characteristic parameters of the product. Communication tools such as sketches and CAD are used to convey information with technical and non-technical individuals throughout the design process (Rose, 2005). Therefore, choosing the right and most effective medium for communication can be seen as a key element and a factor of successful product development for product designers and manufacturing engineers (Goodman and Truss, 2006; Barbarash, 2016). Today, the use of Additive Manufacturing (AM) which is also known as '3D Printing' or 'Rapid Prototyping' (Mueller, 2012) is seen as a popular tool which can be used to produce prototypes or end-use parts. AM is a process where tangible artefacts are produced based on a digital model through the process of material deposition layer by layer. Taking a step further, 4D Printing is a process in which 'time' is the fourth dimension where bi-stable Additive Manufactured structures can be programmed to transform into a secondary shape using 'stimuli' responsive materials' (Pei et al, 2017).

2. EMPIRICAL RESEARCH

The overall aim of this research is to understand how product designers and additive manufacturing engineers communicate in order to fully utilise the potential of 4D Printing. By doing so, researchers and practitioners will gain a better understanding of communicating

more complex forms of shape change behaviour. Before collecting the data from the participants, approval from the Brunel Research Ethics Online (BREO) was sought to receive endorsement before commencing the interviews and focus groups. The purpose of the ethical approval process is to ensure research integrity and so that the respondents understand the information given will be kept secure and confidential.

2.1 Interviews

The use of interviews have been recognised to be one of the best and most successful methods for collecting data from participants (Alshenqeeti, 2014). The sample size is typically small and respondents are selected to fulfil a given quota based on the amount of time and resources given. The targeted respondent should have an adequate knowledge to accurately provide sufficient feedback for the researcher. For this research, semi-structured interviews were chosen to allow the interviewer to gather more information. The interviewees were selected from those active in the field of design and engineering and familiar with the overall 4D Printing design process. In total, eight respondents were selected for the interview consisted of seven questions where respondents were guided through the questionnaire by the interviewer, and to clarify the questions of they were uncertain.

2.2 Focus Group Observation

In addition to interviews, three separate focus group sessions involving a total of six participants were recruited. This involved three design PhD students and three engineering PhD students studying at Brunel University London. Within each focus group, one participant acted as the designer and the other was the engineer. The designer was asked to communicate three separate tasks that involved the direction of folding, the timed sequence of folding, and the speed of the shape change behaviour. These were the three main elements in the 4D printing process which were critical for the shape change effect (Pei et al, 2017). The engineer was supplied with three 3D Printed parts which were used as props. The researcher acted as a silent observer and took note of the activity throughout the process. The entire activities were supported with the use of 3D Printed props as a representative of the 4D Printed effect as shown as figure 1a, 1b and 1c below. The direction of folding was being represented in Figure 1a, the speed of the shape change behaviour being represented in Figure 1b, and the timed sequence of folding being represented in Figure 1c.

Figure 1a: (Object 1)

Figure 1b: (Object 2)

Figure 1c: (Object 3)

2.3 Limitations of this study

For this study, there were several limitations that could have impacted on the findings. It is important to note that the interviewed participants had a diverse range of backgrounds (PhD students, experts, practitioners, designers and engineers) and they also had different levels of

knowledge and skills. Although over 80 potential subjects were contacted, unfortunately only 10 percent had agreed to be interviewed. In some instances, some interviewees initially agreed to participate, but later withdrew when they were asked to provide their signature for consent as part of the University research ethics concordat. They had reservations about providing their signature and one reason could be that they are not familiar with the system in the UK. Another limitation related to empirical data gathering was about finding suitable number participants who had 4D Printing expertise and were prepared to actively take part as subjects for the focus group activities the focus group activities. Although six participants were recruited, the initial observations showed that some participants had reservations and seemed to have hesitation about demonstrating their sketch skills.

3. ANALYSIS AND RESULTS

According to (Miles et. al. 2014) interview results become purposeful and have meaning only after the data has been analysed. Clustering and descriptive coding is a method that is used by researchers to annotate and assign labelling in order to summarize given information. At the same time, or focus group activities, observational methods may be characterized by their degree of formality, based on the level of structuring of the observations and recording methods, and their intended use. The first question asked, participants about "their professional background" and three subjects indicated that they had recently engaged in this 4D Printing research area. Five of them claimed that they were more familiar and had experience in this area of research for many years. For the second question, participants were asked to "further describe their experience in 4D Printing". Four of the participants mainly used SMPs (Shape Memory Polymer) in their work in order to experiment with different shape changing properties and their behavioural effects. Three more participants claimed that their work was focused on SMEs (Shape Memory Effect) using stimuli to generate the shape change through a series of heating and cooling experiments. The third question asked the participants about "how product designers and manufacturing engineers communicate the use of 4D Printing" Four respondents implied that they communicated using the context of the application; and the remaining four respondents implied that they communicated using the context of the choice of material when creating a product. The choice of material indicated how the 4D Printing effect would work as well as its intrinsic properties. The next question asked "how product designers and manufacturing engineers apply the use of 4D Printing to products". Three of the participants said that they did this by identifying a suitable framework to describe the product using relevant literature or by experimenting and analysing 'case studies. Five others considered the use of database 'applications' by building a knowledge repository of 4D Printing to assist product designers and additive manufacturing engineers in heuristic decision making.

When asked about "what are the existing barriers between product designers and manufacturing engineers when communicating about 4D Printing", two participants claimed that CAD software was the barrier; while three participants claimed that the understanding and selection of materials was the barrier; and the last three participants claimed that technologies involving a lot of trial and error was also a barrier. When asked about "what type of design representations or tools are the most effective to communicate aspects of 4D Printing", three respondents claimed that it was important to be able to evaluate the 'experiment' in relation to some type of conceptual understanding; and five others responded that CAD tools if correctly implemented, could greatly facilitate the design process. Finally, when asked about "how can the communication of 4D Printing be developed or /improved between product designers and manufacturing engineers", four of them claimed that technology development with new approaches, and three of them claimed that new methods

of communication, as well as one person citing at new forms of software could help enhance communication between product designers and manufacturing engineers. For focus groups, the designer (Participant A) had to follow the instructions given by the researcher and to sketch the intent on paper without speaking or any verbal means of communication. Participant B being acted by an engineer, was asked to view the sketches made by Participant A and to then use the props and act out how the object would fold in a particular direction, through timed sequence and speed. Figure 4a, 4b, 5a, 5b, 6a, and 6b showed evidence of the participants during the role play activities in the focus groups. Results from the observations showed that the marks made on paper could give unpredictable and spontaneous forms of communication.

Figure 2a : Participant A (1)

Figure 2b : Participant B (1)

Figure 3a : Participant A (2)

Figure 3b : Participant B (2)

Figure 3a : Participant A (3)

Figure 3b : Participant B (3)

Table 1 showed that all participants give instruction using 'arrows' to indicate the steps needed to fold the 3D Printed sample. In the second activity shown in table 2, it can be seen that participants A1 and A2 have both used 'numbers' to indicate the 'timed sequence' to represent the steps and process. However, participant A3 only used 'arrows' and 'colours. Lastly in table 3, the participants used 'colours' and 'shading' to differentiate the surface. Participant A1 used green colours to represent flat surfaces. Red lines were used for the folding action and blue lines for closing action. For Participant A, time was indicated using 'symbols' and splitting this into two separate sketches to define the differences in speed.

ACTIVITY 1 (DIRECTION)	NOTES		
(1) (2) (3) Then, you will get this stope. (3) Then, you will get this stope. (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4	 Participant A1 Step by step approach. Arrow to indicate direction and fold. Indication arrow to point. 		
	 Participant A2 Step by step No words Type of arrow Dash line arrow Thick black arrow Long arrow Show two views (top and side) 		
Harkford From the second	 <u>Participant A3</u> Arrows used commonly Wiggly line arrow Line weight for selection Symbol for view angle 		

Table 1 : Activity 1 required participant A to describe the **direction** of change.

ACTIVITY 2 (TIMED SEQUENCE)	PARTICIPANT		
	 Participant A1 Showed labelling of sides Showed step by step guide Used colour to represent sides Used number to indicate process Used arrows to indicate fold 		
Unit 2 227 Dah stags on Flat subject Dah stags	 <u>Participant A2</u> Tried to write words to explain steps No arrows Colour to indicate side 		
Fallow Arrow of the second sec	 Participant A3 Two types of arrows Colours to represent side Arrows to explain steps 		

Table 2: Activity 2 required participant A to describe the **timed sequence** of change.

Table 3: Activity 3 will require participant A to describe the **speed** of change.

4. CONCLUSIONS

The aim in this research was to focusing on how product designer and additive manufacturing engineer understand of reciprocal communicate with each other by using mark on paper. By conducting focus group activities, the experiments consisting of video observation and semi structured interviewed question were carried out with six doctoral degree students at Brunel University. The conclusion of this research paper will analyse what has been studied. Empirical studies on communicate using mark on paper need to be develop and suggest improvement. This research will give benefits to product designer and additive manufacturing engineer to communicate each other in applying 4D Printing on products.

5. **REFERENCES**

- Pei, E., Loh, G. H., Harrison, D., Almeida, H. D. A., Monzon Verona, M. D., & Paz, R. (2017). A study of 4D printing and functionally graded additive manufacturing. Assembly Automation, 37(2), 147-153.
- [2] Barbarash, D. (2016). Representation stigma: Perceptions of tools and processes for design graphics. Frontiers of Architectural Research, 5(4), 477-488.
- [3] Morelli, N. (2003). Product-service systems, a perspective shift for designers: A case study: the design of a telecentre. Design studies, 24(1), 73-99.
- [4] Alshenqeeti, H. (2014). Interviewing as a data collection method: A critical review. English Linguistics Research, 3(1), 39-45.
- [5] Mueller, B. (2012). Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing. Assembly Automation, 32(2).
- [6] Rose, A. T. (2005). Graphical communication using hand-drawn sketches in civil engineering. Journal of Professional Issues in Engineering Education and Practice, 131(4), 238-247.
- [7] Goodman, J. & Truss, C. (2004). The medium and the message: communicating effectively during a major change initiative. Journal of Change Management, 4(3), 217-228.
- [8] Miles, M. B., Huberman, A. M. & Saldana, J. (2014). Qualitative data analysis: A methods sourcebook. 3rd.

Appendix 1 – Responses from Interview Data

Respondent	Question No. 3	Question No. 4	Question No. 5	Question No. 6	Question No. 7
Participant	I believe product designers	The design of 4D printed	I think the main barriers are	Another issue is the limited	I believe 4D printing would
P-SL	and manufacturing engineers	products can be quite	integrating large crazy ideas	modeling and simulation for	require a strong team of
_ ~_	communicate the use of 4D	complex, especially if you	that can come from	4D printing and its shape	mechanical, materials,
	printing by emphasizing its	have multiple moving parts	designers with the	changing materials.	chemical, manufacturing,
	efficiency when creating	in a single product.	practicality of	Designers can create	and software engineers.
	products with moving parts.	Designers must think about	manufacturing. This	elaborate designs for shape	The teams should take
	Actuating parts and	the path of shape change for	depends on a large amount	changing products, but there	advantage of project
	automated actuating parts	each individual actuating	of communication between	is limited software that can	management tools and try
	require a lot of resources and	part: will this moving part	the designers and engineers.	predict the shape changing	to create parallel material
	components: power storage,	interfere with this moving	Communicating what does	patterns of those materials.	studies. Designers should
	hinges, pins, sensors, on-	part? How can I control the	not work and reiterating	Due to this, a lot of 4D	communicate the
	board processors, and	rate of shape change for this	those design changes. Also,	printing design might be trial	purpose/application of the
	motors. Smart materials and	part? How do I control the	the technology is very new	and error. Engineers should	4D printed product, its
	4D printing allow these	limit of a parts snape	to both designers and	take their time to study	final design, material, size,
	requirements to be	change? Other factors that	manufacturers. So, a lot of	many different snape	and manufacturing method.
	italf This would reduce the	must be accounted for are	However this is ear he said	material monortics that	should suggest shoppes in
	amount of parts reduce the	what material are being	for most product design and	affect shape shapes and the	should suggest changes in
	amount of parts, feduce the	method what is the size and	not just $3D/4D$ printing $3D$	anect shape change, and the	method the material used
	manufacturing costs and	weight of the part, the time it	printing can speed up the	method that affects the shape	activation methods and the
	simplify the design It also	takes for activation (seconds	princing can speed up the	change These properties	shape changing properties
	allows for the materials to	minutes hours) what is the	prototyping Designers can	should be included in the	to the designers and
	react to their environment	environment of the product	come up with ideas send	software so that users can	engineers for the most
	without the need for	and will it affect the shape	those designs to	select a shape changing	efficient 4D printed
	complex and expensive	change properties, and is the	manufacturers. 3D print	material for a 3D model and	product. Testing and design
	systems.	shape change process	those prototypes, and relay	simulate its shape change	protocols should be made
		reversible. Once these	the design changes to	before it's 3D printed.	for best repeatability
		factors have been addressed	designers in a short time.	Currently, the most common	results.
		then the designer can start		3D modelling software is	
		their design of the 4D		Solidworks and Creo	
		printed product. Next, for		parametric, but they do not	
		development and		have a shape change	
		manufacturing, engineers		simulation. Skylar Tibbits,	
		have to ensure that the static		MIT, used Autodesk Cyborg	
		materials and shape		that had the ability to input	

		changing materials are		material settings in order to	
		compatible and will not		predict the movement	
		delaminate after printing.		patterns of 4D printed	
		Engineers would also need		materials	
		to investigate the type of 3D			
		printing method (FDM			
		polyiet, stereolithography,			
		SLA etc.) and decide if they			
		are compatible with the			
		shape changing materials			
		Next engineers decide if the			
		4D printed product saves			
		time and resources during			
		the manufacturing process.			
		Reducing the number of			
		parts required to create			
		moving parts could save			
		money and resources, along			
		with time for assembly of			
		these parts.			
Particinant	Product designer use to	I really considered it. But I	Type of CAD tools have	Various CAD modeling and	I think it will be the hardest
D SWN	necessary skills such as	can't make answer because	limitations to express their	simple prototype directly	part of the time notion. It
I-3 WIN	sketches, 2D drawings, 3D	actually, 4D printing	requirements of product		will be difficult to deliver
	CAD modeling and material	technology is in its infancy, I	applied in 4DP technology		the movement of 4D
	renderings to communicate	think it is still difficult to	which will shape		printing objects that the
	with engineers. Currently,	develop 4D printing	deformation by external		designer thinks to the
	their communicate are	products yet. I just know that	stimuli. And also testing.		engineer because of the
	delivered via 3D modeling	few experiments of 4D			time difference that they
	tools such as CAD / CAM /	Printing to product for			imagine. Unlike
	CAD.	example, recent real			conventional motion
		applications are smart valve			implementations, motion
		(Bakarich et al, 2015) and			using material properties
		Shape-Shifting Pasta (Wang			instead of structures will be
		and Yao, 2017).			more difficult to predict.
P-HWM	As far as I can tell, at this	Right now, prototype is still	There are many new design	For 3D modelling par, there	Need both side to spend
	moment, 4D printing is still	the major role for 4D	concepts in 4D printing and	are a lot of commercial	time to find the right
	mostly in the cradle stage.	printing.	the technologies are	software. For shape	applications first and then
	Need more		different from conventional	switching, compliant	work out a way to realize
	time to become more mature		approaches and sometime	mechanism may be	

	and get ready for real applications.		difficult to use for product designers and manufacturing engineers. More R&D is required.	simulated by FEM for simple designs, but for shape memory based, it is still a challenge.	them. But need reliable and easy to access software. With reliable software for 4D printing, we can see some great applications in future.
Participant P-MM	Case Study	Application - Specific software	Challenge in the process. Engineers have knowledge of materials more than designers but limited option.	Experiment. Prediction of final product.	4D Printing still new. No tools actuated yet for final shape.
Participant P-RPH	Manufacturing	Reliability part, improve the material by make development of material, stimulation	When spreading about 4D Printing	Stimulation 3D Printing imitation shape.	4D Printing still new. No tools actuated yet for final shape.
Participant P-ZO	Real communication	Specific software. Journal and report 4D Printing.	By create framework as a guideline. Technical issues. Language. Lack of interest.	Real concept and clear needs	Capabilities in manufacturing and share new material.
Participant P-GLHH	By website or journal that designers and engineers can share and change knowledge about 4D Printing.	Specific software	Type of material used.	CAD Software such as Solidwork.	By technology development.