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Abstract—Clinicians predict disease and related complications
based on prior knowledge and each individual patient’s clinical
history. The prediction process is complex due to the existence
of unmeasured risk factors, the unexpected development of
complications and varying responses of patients to disease over
time. Exploiting these unmeasured risk factors (hidden variables)
can improve the modeling of disease progression and thus
enables clinicians to focus on early diagnosis and treatment of
unexpected conditions. However, the overuse of hidden variables
can lead to complex models that can overfit and are not
well understood (being ‘black box’ in nature). Identifying and
understanding groups of patients with similar disease profiles
(based on discovered hidden variables) makes it possible to
better understand disease progression in different patients while
improving prediction. We explore the use of a stepwise method
for incrementally identifying hidden variables based on the
Induction Causation (IC*) algorithm. We exploit Dynamic Time
Warping and hierarchical clustering to cluster patients based
upon these hidden variables to uncover their meaning with
respect to the complications of Type 2 Diabetes Mellitus patients.
Our results reveal that inferring a small number of targeted
hidden variables and using them to cluster patients not only
leads to an improvement in the prediction accuracy but also
assists the explanation of different discovered sub-groups.

Index Terms—Time-series clustering, hidden variable discov-
ery, Temporal Phenotype, Diabetic Patient Modeling, Dynamic
Bayesian Networks

I. INTRODUCTION

Type 2 Diabetes is traditionally known as Type 2 Diabetes
Mellitus (T2DM), and has been known for thousands of years.
According to the World Health Organization, the number of
people with T2DM has increased four-fold since 1980 [1]. In
addition, T2DM patients are at increased danger of vascular
comorbidities, such as nephropathy, neuropathy, liver disease,
and retinopathy. Early diagnosis and prevention techniques
are needed to reduce the associated mortality and morbidity
caused by these complications [2]. However, studies that en-
ables early predictions of diabetes using predictive models are
limited [3]. It can be challenging to determine from temporal
clinical data alone what is triggering the visible patterns to sep-
arate the underlying causes into meaningful causes, which help
patient stratification, predict complications and understand the
disease process. Hidden variable modelling [4] has a long

tradition in causal discovery. Moreover, it can improve classifi-
cation accuracy and boost user confidence in the classification
models [5]. Among these, Bayesian models suit disease pro-
gression analysis very well because of their ability in modeling
relationships and their ease of interpretation [6]. In particular,
in biomedical science and clinical decision support, Bayesian
Networks (BNs) have become a popular representation for
dealing with uncertainty domain knowledge [7]. The learning
of BNs is a critical research area, which depends on exploring
the space of models for those which can best capture a pattern
of data [8]. For investigating the prognosis of diabetes type
2 complications, some researchers used logistic regression
and Nave Bayes with diverse modelling strategies, including
methods for unbalanced data [9]–[11]. Ceccon and coauthors
[12] exploited a variation of the naive Bayes classifier, which
explored a hidden variable for segmenting patients into disease
subtypes while classifying Glacuoma patients based upon
visual field data. They used BNs inferred from cross-sectional
data with one hidden variable connected to all variables. An
extension of BNs for modeling temporal processes is often
used in medicine, the Dynamic Bayesian Network (DBNs)
[13]. DBNs represent clinical knowledge explicitly in terms
of conditional independencies over time. Here, we consider
time series data involving follow-up visits and an extended
version of DBNs that can encode non-stationarity DBNs [6].
Time series clustering is often problematic [14], especially
when we need to analyse risk-factors from matching patterns
across time. The literature on time series clustering and pattern
discovery has highlighted several studies. For instance, [15]
proposed an algorithm to cluster patients based on clinical
data whilst utilizing the clustering information for identifying
distinct patterns. There are some methods that uncover tempo-
ral patterns and relationships among clinical variables include
causal information [16], numeric time series analysis [17].

A. Data

The T2DM dataset was exploited in this work contains 13
clinical risk factors for a binary classification problem of 314
patients that have suffered from type 2 diabetes, aged 25 to
65 years inclusive, were recruited between 2009 and 2013
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TABLE I
MAIN CLINICAL RISK FACTORS OF T2DM AND CONTROL (MEAN ± SD)

IS SHOWN IN FIG 1.

Node risk factors Clinical feature Complication Hidden variable
1 HbA1c (%) 6.6 ± 1.2 YES NO NO
2 Retinopathy 0,1 NO YES NO
3 Neuropathy 0,1 NO YES NO
4 Nepropathy 0,1 NO YES NO
5 Liver Disease 0,1 NO YES NO
6 Hypertension 0,1 NO YES NO
7 BMI (kg/m2) 26.4 ± 2.4 YES NO NO
8 Creatinine (mg/dL) 0.9 ± 0.2 YES NO NO
9 Cholestrol (mg/dL) 0.9 ± 0.2 YES NO NO
10 HDL cholesterol (mmol/l) 1.1 ± 0.3 YES NO NO
11 Diastolic blood pressure(DBP) (mmHg) 91± 12 YES NO NO
12 Systolic blood pressure(SBP) (mmHg) 148 ± 19 YES NO NO
13 Smoking Habit 0,1,2 YES NO NO
H1 First Hidden variable [0,1] NO NO YES
H2 Second Hidden variable [0,1] NO NO YES
H3 Third Hidden variable [0,1] NO NO YES
H4 Fourth Hidden variable [0,1] NO NO YES
H5 Fifth Hidden variable [0,1] NO NO YES

from clinical follow-ups of diabetes patients at the IRCCS
Istituti Clinici Scientifici (ICS) Maugeri of Pavia, Italy [18].
Data mining and analysis were performed using MATLAB
and Bayes Net toolbox [19] and for visualization we used
Graphviz.

II. METHODOLOGY

A systematic understanding of how latent variables con-
tribute to T2DM complications is still lacking. To the best
of our knowledge, no previous work on prediction process of
Diabetes patients focused deeply on explaining the discovering
hidden variables, in a DBN framework, in terms of how they
capture the temporal phenotype for groups of patients. Thus,
we aim to show here how a systematic understanding of hidden
variables contribute to the modeling of the disease. Previously,
[20], we have developed methods to discover the relationship
between learned hidden variables and observed variables,
using a DBNs model [13] to predict T2DM complications
leading to a better understanding of the disease risk factors,
while balancing data based on our time-series bootstrapped
approach. In [18], we have made a start by developing an
intuitive stepwise method to learn these latent effects based
upon the IC* algorithm, using Pair-sampling for balancing
data. For enhancing our previous methodology in [18], instead
of using Pair-sampling, we balanced data simply by oversam-
pling the minority patient cases (Positives) up to the majority
patient cases (Negatives) (e.g., retinopathy has the imbalanced
ratio of 3.2, comparing Positives to Negatives). Then, we
exploited an enhanced version of a Stepwise approach in
discovering more hidden factors. we focused on models that
captured unmeasured effects in a more targeted manner so that
knowledge about disease processes can be extracted, while
accuracy is improved at the same time. To this end, we
employed the Stepwise IC* (Induction Causation) approach,
which incrementally adds hidden variables based on the IC*
algorithm in classifying T2DM data in a structure learning pro-
cess, an enhanced variation of our previous work in [18]. The
IC* is a constraint-based method which applies conditional
independence analyses to infer causal structures and learns a
partially-oriented directed acyclic graph (DAG) with hidden
variables [21]. The probability of a high state of any learned

hidden variables is then inferred using a standard Bayesian
network inference. The inferred probabilities of the hidden
variable are treated as observations which means that we can
then treat the hidden variable as an observed variable in the
subsequent step. In the next step, IC* is applied again to see if
the new observed variable uncovers any new hidden variables.
This is repeated until either no other hidden variables are
discovered or chain connections between hidden variables are
destroyed and classification performance is reduced. To find
more hidden variables, we need an informative DAG, [22]
representing the Markov equivalence class of our Bayesian
model. In this paper, we add extra steps to the IC* algorithm
(in [18]) with oversampling randomly positive patient cases
(minority class) and then apply IC* one more time to give
another chance for DAG to learn more hidden variables.
Furthermore, we utilised a better stopping point.

In this study, we have discretized risk factors (as variables)
and their parent in Bayesian learning models. Therefore,
their associated factor can be interpreted as a simple look-up
table or Conditional Probability Table (CPT), which indicates
the probability of being in one state given the states of
all correlated risk factors from relationship graphs. We used
these CPTs to complete the DBN using parameter estimation.
Our goal is to define similarity among patients by distance
over either hidden factors or correlated risk factors. Having
discovered the hidden variables, we built a DBN predictive
model. We perform parameter estimation using the Expecta-
tion Maximization (EM) algorithm. For learning the temporal
links of our DBNs, we used REVerse Engineering ALgorithm
(REVEAL) algorithm [19], following work in [20]. Further-
more, we assumed that patient status at time t depends on the
corresponding hidden variable at a previous time t-1. All time
series visits per patient has a different profile of 13 different
risk factors, which they are correlated to each other as well
as hidden variable. For identifying patient groups (clusters) in
the clinical time series data set, a vector of uneven length of
follow-up visits for each hidden variable should be considered
as a comparing pair of patients. However, manifesting a right
distance function for comparing the pair of patients would
be a challenge. Capturing these local and dynamic correlation
across the similar pattern among risk factors while calculation
an average for each patient time series risk factor would be an-
other challenge. On the other hand, discovery of such clusters
of patients is essential in revealing substantial correlations in
T2DM risk factors in response to the disease over time. Thus,
the concept of similarity in one cluster is based on distances
between two patients across their unequal follow-up visits. We
exploited Dynamic Time Warping (DTW) [23] as a distance
metric for the discovered hidden variables. We then used
discovered hidden variables probabilities to group patients into
clusters. DTW distance is a suitable measure to evaluate the
similarities and dissimilarities of time series with respect to
their shape. In our work, univariate DTW provides a warping
function that compares a hidden variable vector of a patient
time series to a hidden variable vector of another patient series,
where these two vectors do not necessarily need to be equal.



We need to keep one patient hidden variable vector constant
while stretching and shrinking the hidden variable vector to
fit. This is then fed into hierarchical clustering (complete) to
build sub-groups of patients based upon their hidden variables.
This is also known as complete linkage cluster analysis since
a cluster is formed when all the dissimilarities between pairs
of patient visits in the cluster are less than a particular level.
In order to characterize the profile of each discovered cluster,
we apply medoid analysis [24] to the DTW distance matrices
to extract the patient with the smallest inter-patient distance
from n clusters of sub-groups. Thus, any sub-group can be
represented by a hidden variable pattern, which can be thought
of as a temporal phenotype for the cluster of patients.

III. EXPERIMENTAL RESULTS

Each patient has a unique profile at each visit (time series).
In addition, the status of two T2DM patients’ risk factors
during their time series is subject to change, as their level may
rise and fall over time. Based on our clustering model, two pa-
tients are similar if they exhibit a similarity in their discovered
hidden variables. Interestingly, our results demonstrates at the
end of process, patients in a different sub-group share a similar
profile of observed risk factors, while these factors were not
taken into account in the cluster decision making process. This
will ease prediction process for clinicians.

In Figure 1, a DAG for each step of the Stepwise IC*
approach is learned. The initial hidden variable (H1) is closely
linked to a small number of clinical factors, notably 1,3,4,5,7,
and 8. However, as subsequent hidden variables are added, this
structure changes. The second hidden variable (H2) is linked
to more risk factors including H1 (see Figure 1).

Looking at how these differing structures perform within a
DBN for predicting the appearance of complications, Figure 2
illustrates that there is a general trend to improvement in
accuracy as more hidden variables are added but this improve-
ment levels out after the addition of the fifth hidden variable.
A precise estimate of the uncertainty related with parameter
estimation is essential to avoid misleading inference. This
uncertainty is typically outlined by a confidence interval,
which is professed to incorporate the true parameter value with
a predefined likelihood. We confine ourselves to confidence
intervals to manage the uncertainty in the prediction results
derived from a randomly selected subset of T2DM patients.

The effect of adding a hidden variable at each step of the
enhanced Stepwise is assessed on the randomly oversampled
T2DM patients data in predicting a common complication
of T2DM (retinopathy). Clustered column charts in Fig-
ure 2, compare the classification accuracy percentages average
among 250 times randomly oversampling, for five steps of
the enhanced Stepwise method. Additionally, error bars on
the top of bar charts is illustrated. These results in Figure 2,
reveal that classification accuracy of retinopathy in step 1 with
discovering the first hidden variable has been increased sharply
by adding a new hidden variable in step 2-4 and then dropped
slightly at step 5, while error bar in step 1 is bigger than others.
The error bar in step 2 is quite big due to a bigger confidence

Step 1:

Step 2:

Step 4:

.

.

.

Fig. 1. DAG of static relationships among T2DM risk factors by applying
Step 1, 2 and 4 of the Stepwise IC* approach. Conditional dependency for
the hidden variable observed in the first, second and fourth steps are plotted
in green, blue and cyan colors, respectively.

interval of others. Classification accuracy is a starting point for
evaluating prediction results, which is the proportion of correct



TABLE II
COMPARISON OF OUR NEW AND ENHANCED STEPWISE IC* APPROACH

WITH ITS PREVIOUS VERSION IN [18].

Accuracy Sensitivity Specificity Precision
No Hidden variable 0.40 0.50 0.40 0.40
Stepwise in [18](Step1) 0.60 0.40 0.80 0.70
Enhanced Stepwise(Step1) 0.82 0.30 1.00 0.99
Stepwise in [18](Step2) 0.80 1.00 0.60 0.70
Enhanced Stepwise(Step2) 0.97 0.82 0.98 0.88
Stepwise in [18](Step3) 0.80 1.00 0.60 0.70
Enhanced Stepwise(Step3) 0.97 0.83 0.98 0.84
Enhanced Stepwise(Step4) 0.98 0.83 0.99 0.94
Enhanced Stepwise(Step5) 0.97 0.84 0.99 0.87

predictions made divided by the total number of predictions
made. Overall, we are sure more than 95 percent that accuracy
in retinopathy prediction with leaning more than one hidden
variable in our step-wise IC* approach is bigger than learning
model with only one hidden variable.
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Accuracy Error Bar for Five Steps of Adding Hidden 
variables Using Step-Wise IC* in predicting retinopathy

Fig. 2. An error bar is obtained for calculating confidence interval for average
classification accuracy (for 250 times) of predicting retinopathy at 5 steps of
the enhanced Stepwise IC* approach.

In Table II, we compared our enhanced Stepwise approach
to the previous work in [18]. It is clear that the enhanced
Step-wise method, have achieved a better performance mea-
surements in predicting retinopathy. We now explore further
the meaning of the hidden variables beyond their structure
within the network. After the hidden variables are clustered
for all patients using hierarchical clustering (distance metrics
of DTW), we identify different Hidden Cluster ‘Profiles’;
dendogram of hierarchical clustering with temporal pheno-
types for step 1 and step 2 of our approach is shown in
Figure 3. For each sub-group of patient (each cluster), we
provide the medoid pattern for the first and second learned
hidden variables in Figure 3 (that is the hidden variable profile
of the patient at the ‘center’ of the cluster [25]). The medoid of
a cluster is a patient of that cluster whose average dissimilarity
with the other patients of the cluster is the smallest. These
can be thought of as ‘deep phenotypes’ that capture some
hidden dynamics between the clinical factors. It can be seen
in Figure 3 that these profiles capture quite different behaviors:
one is fluctuating between the higher state and lower state of
the hidden variable (Cluster 3 in step 1), involves a switch-

Medoid-Cluster 4

Medoid-Cluster 1

Medoid-Cluster 3

Medoid-Cluster 2

Medoid-Cluster 5

Medoid-Cluster 2

Medoid-Cluster 1

Medoid-Cluster 3

Medoid-Cluster 4

Medoid-Cluster 5Step 1:

Step 2:

Fig. 3. Temporal phenotypes (The First Hidden Clusters ”Profiles”) in
hierarchical clustering. Deprograms of Hierarchical clustering (complete) for
the first and second hidden variable with the DTW distance metric. The x-
axis represents is a measure of closeness of either individual data points or
clusters, while y-axis is representing patient IDs as data points.

like behavior, one involves a general decreasing trend (cluster4
in all two steps), and another is flat-lining (Cluster 3 in step
2). If we look at the associated mean values for the clinical
variables associated with each cluster, it is clear that the data
has generated clearly separated cohorts of patients. Figure 4-
C4 reveals interesting results for each T2DM risk factor in
terms of the type of patients in a cluster. For example, patients
with high BMI, low HDL, and low SBP in yellow (Cluster 1),
whilst patients in Cluster 3 (with the flat-lining hidden cluster



St
an

da
rd

iz
ed

 v
al

ue
s 

of
 T

2D
M

 r
is

k 
fa

ct
or

s
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Fourth Hidden variable cluster (C4)
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Fig. 4. Cluster Profile on mean values of patient risk factors and complica-
tions. Patients clustered using the fourth hidden variable obtained from the
fourth step of the enhanced Stepwise IC* algorithm (C4).

profile) have generally low BMI and high HDL. Cluster 4,
with the decreasing hidden cluster profile has much higher
BMI values amongst the patients and very low HDL and DBP.

IV. CONCLUSION AND FUTURE WORK

In this paper, we addressed three goals. Firstly, we identified
targeted locations of hidden variables within clinical data from
patients suffering DT2M using an enhanced version of step-
wise IC* approach with more robust stopping points, which
is able to learn more hidden factors. We then revealed how
these hidden variables can improve prediction with applying
confidence interval. Moreover, we clustered patients based
upon the hidden variables and used the Medoid hidden variable
profile of each cluster to characterize the ”deep temporal
phenotype” of that set of patients. We demonstrated how the
discovery and understanding of hidden variables results in an
improvement in the stratification of patients and aids in un-
derstanding interactions between risk factors and unmeasured
variables. Although some attempts have been taken to find
a meaningful temporal pattern, we believe this is the first
use of DTW and Hierarchical clustering to stratify patients
based on just one hidden variable, not other risk factors. We
will extend this work by exploring how the discovered hidden
variables interact amongst themselves and clinical variables
by using inference techniques on different complications. We
also would like to explore how the approach performs when
integrating other related data such as environmental data, as
well as on other longitudinal disease progression data. We will
seek more advice from clinicians in interpreting hidden factors
and their correlation toward other T2DM risk factors as well
as disease prediction process.
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