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Abstract: In today’s complex, constantly evolving and innovation-supporting manufacturing systems,
knowledge plays a vital role in sustainable manufacturing process planning and problem-solving,
especially in the case of Computer-Aided Process Innovation (CAPI). To obtain formalized and
promising process innovation knowledge under the open innovation paradigm, it is necessary to
evaluate candidate knowledge and encourage improvement suggestions based on actual innovation
situations. This paper proposes a process innovation-oriented knowledge evaluation approach using
Multi-Criteria Decision-Making (MCDM) and fuzzy linguistic computing. Firstly, a comprehensive
hierarchy evaluation index system for process innovation knowledge is designed. Secondly, by
combining an analytic hierarchy process with fuzzy linguistic computing, a comprehensive criteria
weighting determination method is applied to effectively aggregate the evaluation of criteria weights
for each criterion and corresponding sub-criteria. Furthermore, fuzzy linguistic evaluations of
performance ratings for each criterion and corresponding sub-criteria are calculated. Thus, a process
innovation knowledge comprehensive value can be determined. Finally, an illustrative example of
knowledge capture, evaluation and knowledge-inspired process problem solving for micro-turbine
machining is presented to demonstrate the applicability of the proposed approach. It is expected that
our model would lay the foundation for knowledge-driven CAPI in sustainable manufacturing.

Keywords: manufacturing process innovation; computer-aided innovation; CAPI; knowledge
management; open innovation; multi-criteria decision-making

1. Introduction

During the past decades, the structure of the world economy has undergone significant
changes with demand for energy saving and environmental protection becoming increasingly
urgent [1–3]. To cope with this situation, developing countries need to transform and upgrade
their manufacturing industries with process innovation to reduce energy consumption and achieve
sustainable development; developed countries, accordingly, are trying to guide and accelerate

Sustainability 2017, 9, 1630; doi:10.3390/su9091630 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-4607-6188
https://orcid.org/0000-0001-6367-0560
http://dx.doi.org/10.3390/su9091630
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 1630 2 of 19

the return of manufacturing industries for enhancing global competitive advantage by means
of process innovation [4–7]. Manufacturing process innovation, which includes the creation of
new technical principles, methods and production modes, is a basic guarantee for the ultimate
realization of product innovation and a fundamental means to achieve sustainable development
of the manufacturing industry [8,9]. In recent years, systematic innovation methodologies and
technologies for manufacturing processes have gained greater attention in academic research and
industry [10–12]. Nevertheless, process innovation typically relies on cross-industry collaboration
and potentially complex interdisciplinary system engineering [9]; thus, in addition to sophisticated
manufacturing environments, the delivery of innovation is more dependent on highly qualified
knowledge and knowledge-based systematic innovation methods [13–17]. Consequently, formalized
process innovation-oriented knowledge acquisition and its management are becoming increasingly
important and challenging for knowledge intensive manufacturing industries, such as aviation,
aerospace and automotive sector.

The latest Web 2.0 technologies provide a technical means for open knowledge management,
enabling large amounts of discrete knowledge to be shared in open environments [18,19], such as
social wiki platforms. From the perspective of knowledge application in Computer-Aided Process
Innovation (CAPI) [9], a formalized knowledge-oriented systematic design process is a prerequisite
and basis for innovation implementation. Therefore, it is necessary to establish an effective knowledge
evaluation method in open innovation environments. Process innovation knowledge evaluation is
needed to identify the validity and novelty of such knowledge and to further analyze and understand
the potential practicability and profitability in current manufacturing processes by considering
the knowledge characteristics and manufacturing capacity. To select process innovation-oriented
candidate knowledge, a reasonable evaluation index system is required. A quantitative index and
qualitative factors based on the evaluation criteria can be evaluated by multiple domain experts.
Accordingly, process innovation knowledge evaluation should be regarded as a group Multi-Criteria
Decision-Making (MCDM) problem [20,21], concerned with how to evaluate candidate knowledge
and how to raise improvement suggestions.

Due to the complexity and fuzziness of the above problems, it is difficult for decision makers
to evaluate given objects using exact values, but they can express preferences using fuzzy linguistic
values [22,23]. Experts devote themselves to judging knowledge comprehensive values by subjective
perception or experiential cognition during the decision-making process. However, there exists a
certain extent of fuzziness, uncertainty and heterogeneity [24,25]. In addition, there is a tendency
towards information loss during integration processes and this can cause the evaluation results of
knowledge performance levels to be inconsistent with the expectation of experts [26,27]. In this
event, there is a need to identify reasonable ways of calculating the performance ratings of process
innovation-oriented knowledge during the process of evaluation integration.

Therefore, the main objective of this research is to develop a comprehensive knowledge evaluation
approach for supporting knowledge-driven CAPI. Firstly, an evaluation index system for process
innovation knowledge is designed by domain experts, and necessary data from the expert committee
are gathered to determine criteria weightings and performance ratings of candidate knowledge. Then,
by combining an Analytic Hierarchy Process (AHP) with fuzzy linguistic computing, a comprehensive
criteria weighting determination method for the knowledge evaluation index system is explored.
What follows is the fuzzy linguistic evaluation of the performance ratings for each criterion and
the corresponding sub-criteria can be calculated. Furthermore, it is possible to compute the process
innovation-oriented knowledge comprehensive value and propose improvement suggestions based
on the evaluation results.



Sustainability 2017, 9, 1630 3 of 19

The rest of this paper is organized as follows. In Section 2, background research and related
work with definitions are introduced, while operations relating to 2-tuple fuzzy linguistic variable are
explored. In Section 3, we introduce the comprehensive evaluation index system for process innovation
knowledge, the model and procedure for process innovation-oriented knowledge evaluation, and
the determination of comprehensive fuzzy weights. Then, a real case study of process innovation
knowledge capture and evaluation for micro-cutting is illustrated in Section 4 and further studied,
with a process problem solving example of a micro-turbine manufacturing issue being given. Finally,
conclusions and future directions for research are discussed.

2. Related Work and Preliminaries

2.1. Knowledge-Driven Computer-Aided Process Innovation

The concept of process innovation was first proposed by Schumpeter [8] from the perspective
of economic development and, soon after, received attention in both academic research and industry,
especially in the context of energy saving and environmental protection [28,29]. In recent years, some
scholars have carried out useful explorations into specific types manufacturing process innovation
by using the Theory of Inventive Problem Solving (Russian acronym: TRIZ) and knowledge
engineering [11,30–32]. With the development of Computer-Aided Innovation (CAI) technology
and the requirements of manufacturing process problem-solving [33], the concept of computer-aided
process innovation was advanced, with some specific application cases being used to illustrate the
feasibility of structured/systematic process innovation design [9,12,34–36]. In fact, the traditional
computer aided methods of manufacturing process (e.g., Computer-Aided Process Planning (CAPP)
and Computer-Aided Manufacturing (CAM)) are mainly used for improving the efficiency and
standardization of process planning [37,38], while CAPI is more focused on solving manufacturing
process problems, improving process methodologies, fostering whole process innovation design cycles
and even enhancing the overall manufacturing innovation capability of enterprises.

As is commonly recognized, knowledge is an essential asset for organizations and plays a
crucial role in innovation; innovation can be regarded as the knowledge-based creation, and the
knowledge-based outcome [13,39,40]. Process innovation knowledge is used to support process
innovation activities correctly implemented and to produce new process knowledge. Obviously, the
knowledge acquisition and management of CAPI is crucial to innovative design, especially in the
context of open innovation. Hüsig and Kohn [18] introduced the “Open CAI 2.0” concept based
on analysis of open innovation strategy and Web 2.0 technologies. By combining the technical
characteristics of social networks with wiki technology, Wang et al. [9] proposed a novel process
innovation knowledge accumulation schema based on bilayer social wiki network for CAPI.

In social wiki networks for CAPI, process innovation knowledge could be accumulated in a public
knowledge space through participants’ social interactions and knowledge activities, however, this
generated knowledge may not be able to meet actual requirements—it still needs to be evaluated
and optimized through reasonable means to ensure the quality of knowledge and support for
knowledge-inspired innovation design, as shown in Figure 1. Hence, it is necessary to establish
an evaluation index system for process innovation knowledge and to provide evaluation results and
suggestions for improvement based on the evaluation information from expert groups. In this study,
we will focus on knowledge evaluation for CAPI in an open-innovation environment.
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2.2. Definition and Computing of the Fuzzy Linguistic Method

In group decision making for knowledge evaluation, decision makers usually apply fuzzy
linguistic evaluation based on subjective experiences due to the complexity of process innovation and
decision making. In fuzzy linguistic approach, two traditional computational models can be identified:
(1) a linguistic computing model based on membership functions [41]; and (2) a symbolic linguistic
computing model which produces loss of information due to approximation processes and hence
produces a lack of precision in results [42]. To avoid information loss and to improve computational
precision, Herrera and Martínez [26] proposed the 2-tuple fuzzy linguistic representation model.
It not only inherits the existing advantage of fuzzy linguistic computing, but also overcomes the
disadvantage of information loss experienced by other methods.

The 2-tuple linguistic computational model provides accurate and understandable results because
they are represented by means of a linguistic term and a numerical value. A 2-tuple linguistic variable
can be denoted as (si, αi), where si represents the central value of the ith linguistic term, and αi denotes
the distance to the central value of the ith linguistic term. A 2-tuple linguistic variable set typically
comprises three, five, seven or more terms. Usually, a five-term set has more practical applications [22].
Basic definitions and concepts of fuzzy linguistic variables are briefly given as follows.

Definition 1. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set, and β ∈ [0, 1] be a number value representing
the aggregation result of linguistic symbolic. Then, the generalized translation function (∆ ) applied to translate
β into a 2-tuple linguistic variable is defined as

∆ : [0, 1]→ S×
[
− 1

2g , 1
2g

)
,

∆(β) = (si, α) =

{
si, i = round(β · g)

α = β− i
g , α ∈

[
− 1

2g , 1
2g

) , (1)

where round(·) is the usual round operation, si has the closest attribute label to β, and α is the value of
the symbolic translation.

Definition 2. On the contrary, a reverse equation ∆−1 is necessary to convert the 2-tuple linguistic variable
into its equivalent value β ∈ [0, 1] , which can be computed by the following formula

∆−1(si, α) = β = α +
i
g

. (2)
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Definition 3. Let S = {(s1, α1), . . . , (sn, αn)} be a set of 2-tuple fuzzy linguistic variable, where their
arithmetic mean S is calculated as

S = ∆
(

1
n

n
∑

i=1
∆−1(si, αi)

)
= ∆

(
1
n

n
∑

i=1
βi

)
= (st, αt)

st ∈ S, αt ∈
[
− 1

2g , 1
2g

) . (3)

Definition 4. Let S = {(s1, α1), . . . , (sn, αn)} be a 2-tuple fuzzy linguistic variable set, and W =

{w1, . . . , wn} be the weight set of linguistic terms; their 2-tuple linguistic weighted average Sw is calculated as

Sw
= ∆

 n
∑

i=1
∆−1(si ,αi)·wi

n
∑

i=1
wi

 = ∆

 n
∑

i=1
∆−1(βi ·wi)

n
∑

i=1
wi

 = (sw, αw)

sw ∈ S, αw ∈
[
− 1

2g , 1
2g

) , (4)

Additionally, when W = {(w1, αw1), . . . , (wn, αwn)} is the linguistic weight set of each si, this linguistic
weighted average operator can be computed as

Sw
l = ∆


n
∑

i=1

[
∆−1(si, αi) · ∆−1(wi, αwi)

]
n
∑

i=1
∆−1(wi, αwi)

. (5)

Definition 5. Let (si, αi) and (sj, αj) be two 2-tuple fuzzy linguistic variables, where the comparison of both
linguistic variables can be shown as:

(a) If i < j, then (si, αi) is worse than (sj, αj).

(b) If i = j and αi = αj, then (si, αi) is equal to (sj, αj).

(c) If i = j and αi > αj, then (si, αi) is better than (sj, αj).

(d) If i = j and αi < αj, then (si, αi) is worse than (sj, αj).

3. The Proposed Approach

3.1. Proposed Comprehensive Evaluation Index System for Process Innovation Knowledge

Knowledge evaluation is an important part of process innovation knowledge acquisition, which
requires not only an effective evaluation method, but also a practical index system as the basis
for evaluation. The selection of a knowledge evaluation index depends on the specific application
environment and innovation objects, thus reasonable control of the size and flexibility of the index
system is necessary. In this research, through a review of literature and discussion with domain
experts, we present a comprehensive hierarchy evaluation index system for process innovation
knowledge, as illustrated in Figure 2. The evaluation index system is composed of three levels: the
first level is the overall goal; the second level comprises evaluation criteria; and the third level denotes
corresponding sub-criteria for each criterion. The goal layer represents the core value of knowledge
in the innovative application scenario, named Process Innovation Knowledge Comprehensive Value
(PIKCV). The PIKCV is then divided into four parts through analysis of the characteristics of
manufacturing process innovation: knowledge validity, knowledge novelty, potential practicability
and manufacturing profitability.
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3.2. Process Innovation-Oriented Knowledge Evaluation Model

In an open knowledge acquisition context, candidate innovation knowledge generally includes new
theories, new methods and/or practical examples. Due to the novelty of knowledge and the complexity
of process problems, it is difficult to fully evaluate the value of candidate process innovation knowledge
from multiple criteria using exact values. In this situation, fuzzy linguistic variables are considered
more reasonable for domain experts to evaluate the performance of PIKCV. Consequently, based on
analysis of the comprehensive evaluation index system, a suitable evaluation model, using fuzzy linguistic
computing, is proposed to measure the level of process innovation-oriented knowledge, as represented in
Figure 3. The specific procedures of this proposed evaluation model are summarized as follows.

Sustainability 2017, 9, 1630  6 of 19 

 
Figure 2. The proposed comprehensive evaluation index system for process innovation knowledge. 

3.2. Process Innovation-Oriented Knowledge Evaluation Model 

In an open knowledge acquisition context, candidate innovation knowledge generally includes 
new theories, new methods and/or practical examples. Due to the novelty of knowledge and the 
complexity of process problems, it is difficult to fully evaluate the value of candidate process 
innovation knowledge from multiple criteria using exact values. In this situation, fuzzy linguistic 
variables are considered more reasonable for domain experts to evaluate the performance of PIKCV. 
Consequently, based on analysis of the comprehensive evaluation index system, a suitable 
evaluation model, using fuzzy linguistic computing, is proposed to measure the level of process 
innovation-oriented knowledge, as represented in Figure 3. The specific procedures of this proposed 
evaluation model are summarized as follows. 

 
Figure 3. The procedure of manufacturing process innovation-oriented knowledge evaluation. Figure 3. The procedure of manufacturing process innovation-oriented knowledge evaluation.



Sustainability 2017, 9, 1630 7 of 19

Step 1. Form a suitable expert committee with members who are familiar with manufacturing
process innovation design and the structure of the evaluation index system for the corresponding
innovation knowledge. Let E = {E1, E2, . . . , EM} be the established expert committee and
K = {K1, K2, . . . , KN} be a set of candidate process innovation knowledge. Additionally,
assume that there are n criteria Bi(i = 1, 2, . . . , n), and each criterion includes several sub-criteria
Cij(i = 1, 2, . . . , n; j = 1, 2, . . . , t) in the evaluation index system for process innovation knowledge.

Step 2. Select appropriate granularity for the linguistic term set according to experience and
the preference of decision makers, and gather necessary data containing criteria weights and the
performance ratings from the expert committee. Transform these linguistic terms into 2-tuple linguistic
variables; for example, (sw

ijm, αw
ijm) can denote the 2-tuple fuzzy criteria weights of the jth sub-criteria

regarding the ith criteria of the mth expert.
Step 3. Aggregate the fuzzy linguistic evaluations of criteria weights generated by the expert

committee for each criterion and corresponding sub-criteria. According to the arithmetic mean Formula
(3), the aggregated criteria weighting values of M experts are calculated as follows:

Wij = ∆

(
M

∑
m=1

[
∆−1(sw

ijm, αw
ijm) · wE

m

])
= ∆

(
M

∑
m=1

[
βw

ijm · wE
m

])
=
(

sw
ij , αw

ij

)
, (6)

Wi = ∆

(
M

∑
m=1

[
∆−1(sw

im, αw
im) · wE

m

])
= ∆

(
M

∑
m=1

[
βw

im · wE
m

])
= (sw

i , αw
i ), (7)

where sw
ijm is the fuzzy importance of sub-criteria j with respect to Bi of the mth expert, sw

im is the

fuzzy importance of Bi of the mth expert, and wE
m ∈ [0, 1] is the expert weight of the mth expert in

determination of criteria importance,
M
∑

m=1
wE

m = 1.

In particular, when the expert weights are equal to each other, the aggregated criteria weighting
values can be obtained using Formula (3):

Wij = ∆

(
1
M

M

∑
m=1

∆−1(sw
ijm, αw

ijm)

)
= ∆

(
1
M

M

∑
m=1

βw
ijm

)
=
(

sw
ij , αw

ij

)
, (8)

Wi = ∆

(
1
M

M

∑
m=1

∆−1(sw
im, αw

im)

)
= ∆

(
1
M

M

∑
m=1

βw
im

)
= (sw

i , αw
i ), (9)

Step 4. Aggregate the fuzzy linguistic evaluations of performance rating for each sub-criterion
with respect to each criterion. Assuming that expert weights are the same in performance evaluation
of process innovation knowledge, we can obtain the aggregation of fuzzy linguistic evaluation values.

Sij = ∆

(
1
M

M

∑
m=1

∆−1(sijm, αijm)

)
= ∆

(
1
M

M

∑
m=1

βijm

)
=
(
sij, αij

)
, (10)

where sijm is the fuzzy rating of sub-criteria j with respect to Bi of the mth expert.
Step 5. Compute the fuzzy aggregated ratings of each criterion by applying Formula (4):

Si = ∆


ni
∑

j=1

[
∆−1(rij, αij) · βw

ij

]
ni
∑

j=1
βw

ij

 = ∆


ni
∑

j=1

[(
βij · βw

ij

)]
ni
∑

j=1
βw

ij

 = (si, αi), (11)

where

βij = ∆−1(rij, αij), βw
ij = ∆−1(wij, αw

ij ), si ∈ S, αi ∈
[
− 1

2g
,

1
2g

)
, (12)
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Step 6. Calculate the process innovation knowledge comprehensive value. The linguistic term so

can be used to represent the overall value level of process innovation knowledge in innovative design.

PIKCV = ∆


n
∑

i=1

(
∆−1(ri, αi) · βw

i

)
n
∑

i=1
βw

i

 = ∆


n
∑

i=1

(
βi · βw

i
)

n
∑

i=1
βw

i

 = (so, αo), (13)

where

βi = ∆−1(ri, αi), βw
i = ∆−1(wi, αwi ), so ∈ S, αo ∈

[
− 1

2g
,

1
2g

)
, (14)

Step 7. Rank the candidate knowledge based on PIKCV results, and propose improvement
suggestions, according to evaluation results in the corresponding criteria and sub-criteria.

3.3. Determination of Fuzzy Comprehensive Weights

The determination of weights is crucial to fuzzy comprehensive evaluation of process innovation
knowledge; however, due to the complexity of creative problem-solving and the ambiguity of human
thinking, it is difficult to give a clear standard weight. In general, experts are used to determine the
weights using two methods: fuzzy linguistic representation and AHP. Here, to meet the diversity
requirements of the expert group in weight determination, and to ensure the reliability of the weight
coefficient, we compute the comprehensive weight of the knowledge evaluation system by combining
AHP with fuzzy linguistic computing.

3.3.1. Weight Coefficient of AHP

The AHP method, developed by Saaty [43] in the 1970s, is widely used for dealing with MCDM
problems in practical production engineering [7,20,25,44–46]. It decomposes complex decision problems
into hierarchical structures, which can include goal layer, criterion layer and sub-criterion layer. Then,
a series of pairwise comparisons is conducted among the elements at the same level, so as to construct
the judgment matrix. The specific steps for determination of weight coefficient are as follows:

1. A numerical rating for judgment matrix of pairwise comparison is suggested. Furthermore,
a judgment matrix A is constructed according to pairwise comparisons.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

, (15)

where aij is the relative importance comparison value of element ui to element uj,
and aij > 0, aji = 1/aij.

2. Calculate the weighted weight set WA according to the judgment matrix by using the
following formula:

wi = n

√√√√ n

∏
j=1

aij

/
n

∑
i=1

n

√√√√ n

∏
j=1

aij , WA = {w1, w2, . . . , wn}, (16)

3. An index, called consistency index (CI), is then used to measure the amount of inconsistency
within the pairwise comparison matrix A.

CI = (λmax − n)/(n− 1), (17)
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where λmax is the largest eigenvalue of A, calculated as follows:

λmax =
1
n

n

∑
i=1

Awi
wi

, (18)

Accordingly, the Consistency Rate CR is used to measure the degree of CI by using the
following formula:

CR = CI/RI, (19)

where RI is the random consistency index, its value being dependent on the order of matrix (as listed
in Table 1).

Table 1. Random consistency index of judgment matrix.

Order of Matrix 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

When CR < 0.1, the judgment matrix and weights of elements are acceptable. Otherwise,
the comparison matrix must be adjusted and decision makers should be asked to re-judge.

3.3.2. Weight Coefficient of Fuzzy Linguistic Computing

The aggregated criteria weighting values for each criterion and corresponding sub-criteria can
be obtained using Formulae (6)–(9). Then, the following formulae are used to normalize these
aggregated weights:

wi = βw
i

/
n

∑
i=1

βw
i , (20)

where βw
i is the aggregated result of ith criterion in the criterion layer and n is the number of criteria.

wij = βw
ij

/
ni

∑
j=1

βw
ij , (21)

where βw
ij is the aggregated result of jth sub-criterion in the sub-criterion layer and n is the number of

sub-criteria for ith criterion.

3.3.3. Fuzzy Comprehensive Weights

By considering the weight information from the expert group of AHP and fuzzy linguistic
computing, we can obtain the fuzzy comprehensive weights.

WC =

(
∑
A

wE
m

)
WA +

(
∑
L

wE
m

)
WL, (22)

where WC is the fuzzy comprehensive weight set of knowledge evaluation; WA is the weighted weight
set of the AHP expert group; WL is the aggregated weight set of fuzzy linguistic computing; and
∑
A

wE
m and ∑

L
wE

m are the sums of expert weights from expert groups of AHP and fuzzy linguistic

computing, respectively;

∑
A

wE
m + ∑

L
wE

m = 1. (23)
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4. An Illustrative Example

To illustrate the applicability of the developed approach, a real case study of process innovation
knowledge capture and evaluation for micro-cutting is presented. A contrastive analysis and discussion
between the proposed method and traditional simple weight additive (SWA) method is performed.
Thereafter, knowledge-inspired process problem solving for micro-turbine manufacturing is illustrated.

4.1. Process Innovation Knowledge Capturing and Evaluating

Process innovation knowledge, which exists in the entire life cycle of CAPI, is used to support
process innovation activities and, if correctly implemented, produces new process knowledge.
According to Wang et al. [9] and Geng et al. [12], process innovation knowledge can be divided
into several types, including problem description template (PDT), process contradiction matrix (PCM),
manufacturing scientific effect (MSE), innovative scheme instance (ISI), manufacturing capability
description (MCD), etc. Through knowledge contributors’ social wiki activities in the context of open
innovation, multiple types of process innovation knowledge for micro-cutting technology have been
initially accumulated. Among this knowledge, there are six solving principles of PCM that need to
be evaluated for a specific innovation scenario: {K1, K2, K3, K4, K5, K6}. In the following section, we
take principle knowledge as an example to illustrate the concrete process of innovation knowledge
evaluation and selection.

4.1.1. Gathering of Evaluation Data

To gather necessary data, the researchers conducted in-depth interviews with an expert committee,
the members of which include a process designer, innovation expert and technical manager and who
were introduced to the linguistic variables and their semantics. The committee consisted of three
experts: {E1, E2, E3}. The Linguistic variables of the importance and rating are displayed in Table 2.

Table 2. Linguistic variable and its semantics for the importance and rating.

Linguistic Label
Linguistic Term Triangular Fuzzy

NumberImportance Rating

s0 Very unimportant (VU) Very poor (VP) (0, 0, 0.25)
s1 Unimportant (U) Poor (P) (0, 0.25, 0.5)
s2 Fair (F) Fair (F) (0.25, 0.5, 0.75)
s3 Important (I) Good (G) (0.5, 0.75, 1.0)
s4 Very important (VI) Very good (VG) (0.75, 1.0, 1.0)

In determining the weights of the evaluation system, two experts (E1, E2) used fuzzy linguistic
variables and one expert (E3) used AHP. Linguistic evaluation and weighting values from E1, E2 are
listed in Table 3, and the judgment matrices of criteria and sub-criteria from E3 are shown as follows.

A =


1 4 3 6

1/4 1 1/3 3
1/3 3 1 5
1/6 1/3 1/5 1

;

A1 =


1 5 3 5

1/5 1 1/3 3
1/3 3 1 5
1/5 1/3 1/5 1

, A2 =


1 6 6 4

1/6 1 1 1/3

1/6 1 1 1/3

1/4 3 3 1

,

A3 =


1 1/6 1 3
6 1 5 6
1 1/5 1 3

1/3 1/6 1/3 1

, A4 =

 1 3 4
1/3 1 3
1/4 1/3 1



(24)
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Table 3. Linguistic evaluation and weighting value of importance of each criterion and
corresponding sub-criteria.

Criteria Sub-Criteria
Importance Aggregated

Weighting ValueE1 E2

Knowledge validity
(B1)

I VI (s3, 0.125)
Reliability (C11) VI VI (s4, 0)
Accuracy (C12) I VI (s3, 0.125)
Integrity (C13) I I (s3, 0)

Normalization (C14) F VI (s3, 0)

Knowledge novelty
(B2)

I VI (s3, 0.125)
Technological innovation (C21) I VI (s3, 0.125)

Interdisciplinary application (C22) F I (s3,−0.125)
Knowledge redundancy (C23) I F (s3,−0.125)

Knowledge compatibility (C24) I VI (s3, 0.125)

Potential
practicability (B3)

VI I (s3, 0.125)
Technological advancement (C31) I VI (s3, 0.125)

Process feasibility (C32) VI VI (s4, 0)
Process complexity (C33) I I (s3, 0)

Environmental protection (C34) I VI (s3, 0.125)

Manufacturing
profitability (B4)

F I (s3,−0.125)
Manufacturing quality (C41) VI I (s3, 0.125)

Production costs (C42) I I (s3, 0)
Production efficiency (C43) I F (s3,−0.125)

The performance ratings of sub-criteria for candidate knowledge are given in Table 4.

Table 4. Performance ratings of sub-criteria for candidate knowledge.

Candidate
Knowledge

Performance Ratings of Sub-Criteria

C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 C41 C42 C43

K1

K1-D1 G F G F VG G F G F G G VG G F G
K1-D2 VG G G G G VG F F G VG G VG VG G G
K1-D3 VG G G G G VG G G G VG G G G G VG

K2

K2-D1 F F G F G P P F VG G G G G G F
K2-D2 P F F F G F P P G F G F F G F
K2-D3 F G P F P P P P G F G G G F G

K3

K3-D1 VG G VG G G VG VG VG G VG G VG VG VG G
K3-D2 VG G G VG F VG VG G VG G G VG VG G VG
K3-D3 G G VG VG G F G G G VG VG VG VG G VG

K4

K4-D1 F G G F G G F VG F VP F G G F G
K4-D2 G G F P G G F G F P F G VG F F
K4-D3 F F VG G F F G G F P P VG G F G

K5

K5-D1 VG VG VG G G G F G VG G G VG VG VG VG
K5-D2 G VG VG VG G VG G G VG G G G VG G VG
K5-D3 VG G G VG VG VG G G G VG G G G VG VG

K6

K6-D1 G G G F G G VG G VG F G F F G G
K6-D2 G VG F G F G G F G G F G G F G
K6-D3 G G VG G VG G G G G G F F G F G

4.1.2. Determination of Criteria Weights

In determining the criteria weights for this study, we assume that the vector of expert weight is
[0.3, 0.3, 0.4] according to the experts’ professional knowledge and innovation background. Thus, by
using Formulae (6)–(9), the aggregated criteria weights of each criterion and corresponding sub-criteria



Sustainability 2017, 9, 1630 12 of 19

are obtained, as shown in the rightmost column of Table 3. For example, the weights of “Reliability”
and “Knowledge validity” are calculated as

WL
11 = ∆

(
1
2 ∑
[
∆−1(s4, 0)

]
,
[
∆−1(s4, 0)

])
= ∆(1.0) = (s4, 0) ,

WL
1 = ∆

(
1
2 ∑
[
∆−1(s4, 0)

]
,
[
∆−1(s3, 0)

])
= ∆(0.875) = (s3, 0.125)

, (25)

After normalizing the aggregated weighting value in Table 3, we obtain fuzzy linguistic weights
for criterion layer and sub-criterion layer.

WL = {0.269, 0.269, 0.269, 0.193}
WL

1 = {0.296, 0.244, 0.230, 0.230}, WL
2 = {0.292, 0.208, 0.208, 0.292},

WL
3 = {0.250, 0.286, 0.214, 0.250}, WL

4 = {0.389, 0.333, 0.278}
(26)

Based on the judgment matrix from Expert E3 and Formulae (16)–(19), we can obtain the AHP
weight of criterion layer WA = {0.535, 0.130, 0.275, 0.060}, λmax = 4.148, CI = 0.049, RI = 0.89, and
CR = 0.055 < 0.1. Thus, this judgment matrix passes the consistency test. Similarly, the AHP weights
of sub-criterion layer are obtained.

WA
1 = {0.540, 0.123, 0.274, 0.063}, WA

2 = {0.612, 0.086, 0.086, 0.216},
WA

3 = {0.146, 0.637, 0.153, 0.064}, WA
4 = {0.614, 0.268, 0.118}

(27)

When the above steps are completed, the fuzzy comprehensive weight of the criterion layer can
be calculated according to Formula (22), namely WC = {0.375, 0.213, 0.271, 0.141}. Similarly, we can
obtain the fuzzy comprehensive weights of sub-criterion layer.

WC
1 = {0.393, 0.196, 0.248, 0.163}, WC

2 = {0.420, 0.160, 0.160, 0.260},
WC

3 = {0.208, 0.426, 0.190, 0.176}, WC
4 = {0.479, 0.307, 0.214}

(28)

4.1.3. Calculation of the PIKCV

In performance evaluation, we assume expert weights are equal and use Formula (10) to compute
the aggregation of fuzzy linguistic evaluation values of sub-criteria. For example, the evaluation value
of “Reliability” for K1 is calculated as

S11 = ∆
(

1
3∑ ∆−1(s3, 0), ∆−1(s4, 0), ∆−1(s4, 0)

)
= ∆(0.917) = (s4,−0.083), (29)

Similarly, the fuzzy aggregated ratings of each criterion of K1 can be calculated, as shown in
Table 5. For example, the aggregated rating value of “Knowledge validity” for K1 is obtained by using
Formula (11):

S1 = ∆
n1
∑

j=1

[
∆−1(r1j, α1j) ·W

C
1j

]
= ∆

(
∑
[
∆−1(s4,−0.083)× 0.393

]
,
[
∆−1(s3,−0.083)× 0.196

]
,[

∆−1(s3, 0)× 0.248
]
,
[
∆−1(s3,−0.083)× 0.163

])
= ∆(0.786) = (s3, 0.036)

(30)
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Table 5. The aggregated results of fuzzy comprehensive evaluation for K1.

Criteria and Sub-Criteria
Rating (K1) Fuzzy

Evaluation (K1)
Weighted

Rating (K1) PIKCV (K1)
D1 D2 D3

Knowledge validity (B1)

(s3, 0.036)

(s3, 0.043)

Reliability (C11) G VG VG (s4,−0.083)
Accuracy (C12) F G G (s3,−0.083)
Integrity (C13) G G G (s3, 0)

Normalization (C14) F G G (s3,−0.083)

Knowledge novelty (B2)

(s3, 0.013)
Technological innovation (C21) VG G G (s3, 0.083)

Interdisciplinary application (C22) G VG VG (s4,−0.083)
Knowledge redundancy (C23) F F G (s2, 0.083)

Knowledge compatibility (C24) G F G (s3,−0.083)

Potential practicability (B3)

(s3, 0.083)
Technological advancement (C31) F G G (s3,−0.083)

Process feasibility (C32) G VG VG (s4,−0.083)
Process complexity (C33) G G G (s3, 0)

Environmental protection (C34) VG VG G (s4,−0.083)

Manufacturing profitability (B4)

(s3, 0.032)
Manufacturing quality (C41) G VG G (s3, 0.083)

Production costs (C42) F G G (s3,−0.083)
Production efficiency (C43) G G VG (s3, 0.083)

Based on the above steps, we can compute the PIKCV of six candidates’ knowledge by using
Formula (13), as shown in Table 6. For example, the PIKCV of K1 is calculated as

PIKCV(K1) = ∆
n
∑

i=1

[
∆−1(ri, αi) ·W

C
i

]
= ∆

(
∑
[
∆−1(s3, 0.036)× 0.375

]
,
[
∆−1(s3, 0.013)× 0.213

]
,[

∆−1(s3, 0.083)× 0.271
]
,
[
∆−1(s3, 0.032)× 0.141

])
= ∆(0.793) = (s3, 0.043)

(31)

Table 6. The overall evaluation results and ranking of candidate knowledge.

K1 K2 K3 K4 K5 K6

PIKCV (s3, 0.043) (s2, 0.048) (s3, 0.120) (s2, 0.086) (s3, 0.122) (s3,−0.035)
Ranking 3 6 2 5 1 4

4.2. Comparison and Analysis of Knowledge Evaluation Results

It may be seen in Table 6 that the PIKCV of alternative K1, (s3, 0.043), represents slightly higher
than “Good”, and the alternative K1 is worse than K3, since K3 is closer to the linguistic term s4.
The overall ranking of the six principle knowledge candidates is K5 � K3 � K1 � K6 � K4 � K2. K5 is
the best knowledge candidate with K3 following thereafter. These aggregated results are consistent
with experts’ opinion. On the other hand, the overall evaluation result of K1 is 0.39, which was
calculated using the SWA method with the same data, as shown in Table 7. This translates into the
degree of membership, which is 0.56 and 0.44. In other words, the overall evaluation result of K1 is
worse than “Fair” when applying the SWA method. It is obvious that the evaluation results obtained by
the SWA method are not consistent with the opinions of the expert committee. Hence, to some extent,
it demonstrates that the proposed method in this study can effectively aggregate fuzzy linguistic
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evaluation data among criteria and sub-criteria, and obtain reasonable overall evaluation results, while
avoiding information loss.

Table 7. Evaluation results of K1 using SWA method.

Criteria and Sub-Criteria Sub-Criteria
Evaluation

Sub-Criteria
Weight

Weighted Results
in Criteria

Weights of
Criteria

Overall
Evaluation

Knowledge validity (B1)

0.52 0.81

0.39

Reliability (C11) 0.81 0.81
Accuracy (C12) 0.64 0.69
Integrity (C13) 0.71 0.76

Normalization (C14) 0.64 0.69

Knowledge novelty (B2)

0.49 0.76
Technological innovation (C21) 0.76 0.81

Interdisciplinary application (C22) 0.81 0.64
Knowledge redundancy (C23) 0.57 0.64

Knowledge compatibility (C24) 0.64 0.69

Potential practicability (B3)

0.56 0.76
Technological advancement (C31) 0.64 0.76

Process feasibility (C32) 0.81 0.81
Process complexity (C33) 0.71 0.76

Environmental protection (C34) 0.81 0.69

Manufacturing profitability (B4)

0.53 0.64
Manufacturing quality (C41) 0.76 0.81

Production costs (C42) 0.64 0.76
Production efficiency (C43) 0.76 0.64

From the perspective of 2-tuple linguistic expression, K5 and K3 have the same central value
s3 and their transitive values are close, so it may be determined that both offer superior knowledge
innovation. Thus, they are expected to effectively support process innovation design in the context
of particular application scenarios, yet other candidate knowledge should be improved based on the
evaluation results of criteria and the corresponding sub-criteria. To achieve this potential application,
the knowledge of these candidates could be further fused and refined on an open knowledge
management platform.

4.3. Knowledge-Inspired Manufacturing Process Problem-Solving

Based on the above knowledge evaluation approach, a total of 265 knowledge items have been
evaluated and improved for manufacturing process innovation of aerospace structures. In this section,
the specific procedure for micro-turbine process problem-solving using process innovation knowledge
will be briefly described.

The micro-turbine in this case is a core component of a micro turbojet engine and it has
the following characteristics: (1) a complex curved structure and poor rigidity; (2) a thin blade
prone to machining deformation; and (3) no through hole in the center of the turbine. Thus, it is
difficult to manufacture using current manufacturing resources, as the core shaft positioning and
clamping method, which is commonly used in general turbine machining, cannot be applied in
this instance. Hence, it is necessary to solve the process problem of turbine manufacturing through
innovation knowledge.

The process of innovative problem solving can be sub-divided into: process problem identification
and formal description, process contradiction extraction and resolution, innovation scheme design,
iterative solution and scheme optimization. The innovation process mainly involves several kinds of
formal knowledge, as illustrated in Figure 4. Specifically, the main procedures for the micro-turbine
process problem-solving are as follows:

(1) Process problem identification and formal description. With the help of PHS and PDT, the
problem can be formally expressed as the specific information of “expectation and avoidance”.
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(2) Process contradiction extraction and resolution. According to the problem description, the
innovation system can conveniently extract conflicting parameters, i.e., strengthening parameter
and weakening parameter. Then, the innovative solving principles will be presented based on
PCM, namely solving principles 1, 6, 7 and 9. These principles help to inspire the designer’s
creative thinking. Through a detailed analysis, two principle solutions (as shown in Figure 4)
are considered effective in the problem-solving. By associating with MSE, an initial solution for
thin-walled blade machining is obtained: Utilizing its cylindrical surface for clamping, but not
handling the ball surface during this step.

(3) Innovation scheme design. With the support of ISI and MCD, we can design the detailed scheme
in the existing manufacturing environment. After two iterations of conflict resolution, we get
the scheme for spherical convex processing: By means of the threaded connection (its own
structure/function) to realize positioning and clamping, and to ensure the dimensional precision
of blades.
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In this case, the innovative solutions of micro-turbine machining have been gradually revealed
through multiple types of knowledge application and design thinking inspiration. We can see that
quality evaluation and rational application of innovation knowledge are of great importance in
innovation realization and the proposed method in this research is applicable for open manufacturing
process innovation.
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5. Conclusions and Implications

5.1. Conclusions

As competition in global markets intensifies, process innovation has been recognized as a key
factor for enhancing sustainable competitive advantage in manufacturing organizations. However, in
the implementation of knowledge-driven CAPI, an important challenge that must be faced is how to
evaluate and select appropriate process innovation knowledge from an open knowledge acquisition
environment. In this paper, we have presented a manufacturing process innovation-oriented
knowledge evaluation approach using MCDM and fuzzy linguistic computing. Some of the key
contributions of this study are listed below:

• By considering process innovation knowledge characteristics and innovative applications,
a comprehensive hierarchy evaluation index system is designed to measure the PIKCV, which can
express the core value of knowledge in potential manufacturing innovation scenarios.

• A manufacturing process innovation-oriented knowledge evaluation model, based on AHP and
fuzzy linguistic computing, is applied to effectively aggregate the evaluation value into the expert
committee’s comprehensive evaluation information in criteria weights and performance ratings.
This model can meet the needs of rapid evaluation and selection of massive and multiple types of
candidate knowledge in open innovation environments.

• A comparative analysis shows that the proposed method could obtain reliable evaluation
results and avoid information loss during the processes of evaluation integration. Furthermore,
an integrated procedure of knowledge capture, evaluation and process problem-solving for
micro-turbine machining reflects the practicability of reliable and formalized knowledge in
manufacturing process innovation design.

5.2. Limitations and Future Research

With regard to application instances, this paper has confirmed that the combination of MCDM
and fuzzy linguistic computing can reasonably aggregate evaluation information from the expert
committee for process innovation knowledge. From the perspective of continuous application of
computer-aided innovation, a large amount of knowledge and data could be accumulated on the CAPI
platform. It is necessary, therefore, for further studies to be conducted to consider objective evaluation
and dynamic updating, based on knowledge application on the innovation system. In addition,
reconciling mechanisms of experts’ conflict evaluations should be further studied in practice.

The evaluation results in criteria and sub-criteria can provide a reference for knowledge
improvement and this may contribute to effective knowledge evolution. The results highlighted
in this paper can be broadly applied to open knowledge management practices of manufacturing
enterprises. Future research will expand and deepen these results more comprehensively, including
just-in-time knowledge recommendation for innovation design life cycle, integrated management of
product design knowledge and process knowledge, optimal selection of innovation knowledge in
cloud manufacturing environment, etc.
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Abbreviations

The following abbreviations are used in this manuscript:

CAPI Computer-Aided Process Innovation
MCDM Multi-Criteria Decision-Making
AHP Analytic Hierarchy Process
CAPP Computer-Aided Process Planning
CAM Computer-Aided Manufacturing
PIKCV Process Innovation Knowledge Comprehensive Value
SWA Simple Weight Additive
PDT Problem Description Template
PCM Process Contradiction Matrix
MSE Manufacturing Scientific Effect
ISI Innovative Scheme Instance
MCD Manufacturing Capability Description

Nomenclature

(si, αi) is a 2-tuple linguistic variable
S =

{
s0, s1, . . . , sg

}
is a predefined linguistic term set

si is the linguistic label from S
αi is the distance to the central value of the ith linguistic term
β is a number value representing the aggregation result
∆−1 represents a reverse equation of the generalized translation function
S represents a arithmetic mean of 2-tuple fuzzy linguistic variable set
E = {E1, E2, . . . , EM} is the established expert committee
K = {K1, K2, . . . , KN} is a set of candidate process innovation knowledge

(sw
ijm, αw

ijm)
represents the 2-tuple fuzzy criteria weights of the jth sub-criteria
regarding the ith criteria of the mth expert

A is a judgment matrix
λmax is the largest eigenvalue of A
CR is the consistency rate
WC is the fuzzy comprehensive weight set of knowledge evaluation
WA is the weighted weight set of the AHP expert group
WL is the aggregated weight set of fuzzy linguistic computing
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23. Liou, J.J.H.; Tamošaitienė, J.; Zavadskas, E.K.; Tzeng, G.H. New hybrid COPRAS-G MADM Model for
improving and selecting suppliers in green supply chain management. Int. J. Prod. Res. 2016, 54, 114–134.
[CrossRef]

24. Chen, S.J.J.; Hwang, C.L.; Beckmann, M.J.; Krelle, W. Fuzzy Multiple Attribute Decision Making: Methods and
Applications; Springer-Verlag Inc.: New York, NY, USA, 1992.

25. Kubler, S.; Robert, J.; Derigent, W.; Voisin, A.; Le Traon, Y. A state-of the-art survey & testbed of fuzzy AHP
(FAHP) applications. Expert Syst. Appl. 2016, 65, 398–422.

26. Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words.
IEEE Trans. Fuzzy Syst. 2000, 8, 746–752.

27. Ngan, S.C. Decision making with extended fuzzy linguistic computing, with applications to new product
development and survey analysis. Expert Syst. Appl. 2011, 38, 14052–14059. [CrossRef]

28. Kobayashi, H. A systematic approach to eco-innovative product design based on life cycle planning. Adv. Eng.
Inf. 2006, 20, 113–125. [CrossRef]

29. Ayhan, M.B.; Öztemel, E.; Aydin, M.E.; Yue, Y. A quantitative approach for measuring process innovation:
A case study in a manufacturing company. Int. J. Prod. Res. 2013, 51, 3463–3475. [CrossRef]

30. Du Plessis, M. The role of knowledge management in innovation. J. Knowl. Manag. 2007, 11, 20–29. [CrossRef]
31. Sheu, D.D.; Chen, C.H.; Yu, P.Y. Invention principles and contradiction matrix for semiconductor

manufacturing industry: Chemical mechanical polishing. J. Intell. Manuf. 2012, 23, 1637–1648. [CrossRef]
32. Chechurin, L.; Borgianni, Y. Understanding TRIZ through the review of top cited publications. Comput. Ind.

2016, 82, 119–134. [CrossRef]
33. Leon, N. The future of computer-aided innovation. Comput. Ind. 2009, 60, 539–550. [CrossRef]
34. Geng, J.; Tian, X. Knowledge-based computer aided process innovation method. Adv. Mater. Res. 2010,

97–101, 3299–3302. [CrossRef]

http://dx.doi.org/10.1080/00207543.2014.958591
http://dx.doi.org/10.1080/09511920701850002
http://dx.doi.org/10.1016/j.proeng.2011.03.139
http://dx.doi.org/10.1016/j.ijinfomgt.2011.11.013
http://dx.doi.org/10.1016/j.cirpj.2012.09.001
http://dx.doi.org/10.1016/j.eswa.2012.02.015
http://dx.doi.org/10.1080/00207540903280549
http://dx.doi.org/10.1007/s00170-017-0140-5
http://dx.doi.org/10.1016/j.technovation.2010.10.002
http://dx.doi.org/10.3390/su8070646
http://dx.doi.org/10.1016/j.eswa.2009.02.034
http://dx.doi.org/10.1080/00207543.2015.1010747
http://dx.doi.org/10.1016/j.eswa.2011.04.213
http://dx.doi.org/10.1016/j.aei.2005.11.002
http://dx.doi.org/10.1080/00207543.2013.774495
http://dx.doi.org/10.1108/13673270710762684
http://dx.doi.org/10.1007/s10845-010-0466-4
http://dx.doi.org/10.1016/j.compind.2016.06.002
http://dx.doi.org/10.1016/j.compind.2009.05.010
http://dx.doi.org/10.4028/www.scientific.net/AMR.97-101.3299


Sustainability 2017, 9, 1630 19 of 19

35. Guo, B.; Geng, J.; Wang, G. Knowledge fusion method of process contradiction units for process innovation.
Proc. Eng. 2015, 131, 816–822. [CrossRef]

36. Wang, G.; Tian, X.; Geng, J.; Evans, R.; Che, S. Extraction of principle knowledge from process patents for
manufacturing process innovation. Proc. CIRP 2016, 56, 193–198. [CrossRef]

37. Xu, X.; Wang, L.; Newman, S.T. Computer-aided process planning—A critical review of recent developments
and future trends. Int. J. Comput. Integr. Manuf. 2011, 24, 1–31. [CrossRef]

38. Yusof, Y.; Latif, K. Survey on computer-aided process planning. Int. J. Adv. Manuf. Technol. 2014, 75, 77–89.
[CrossRef]

39. Denkena, B.; Shpitalni, M.; Kowalski, P.; Molcho, G.; Zipori, Y. Knowledge management in process planning.
CIRP Ann. Manuf. Technol. 2007, 56, 175–180. [CrossRef]

40. Quintane, E.; Mitch Casselman, R.; Sebastian Reiche, B.; Nylund, P.A. Innovation as a knowledge-based
outcome. J. Knowl. Manag. 2011, 15, 928–947. [CrossRef]

41. Yager, R.R. On the retranslation process in Zadeh’s paradigm of computing with words. IEEE Trans. Syst.
Man Cybern. Part B Cybern. 2004, 34, 1184–1195. [CrossRef]

42. Rodríguez, R.M.; Martínez, L. An analysis of symbolic linguistic computing models in decision making.
Int. J. Gen. Syst. 2013, 42, 121–136. [CrossRef]

43. Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26.
[CrossRef]

44. Sudhagar, S.; Sakthivel, M.; Mathew, P.J.; Daniel, S.A.A. A multi criteria decision making approach for
process improvement in friction stir welding of aluminium alloy. Measurement 2017, 108, 1–8. [CrossRef]

45. Govindan, K.; Mangla, S.K.; Luthra, S. Prioritising indicators in improving supply chain performance using
fuzzy AHP: Insights from the case example of four Indian manufacturing companies. Prod. Plan. Control
2017, 28, 552–573. [CrossRef]

46. Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a
social network analysis. Int. J. Prod. Res. 2017. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2015.12.384
http://dx.doi.org/10.1016/j.procir.2016.10.053
http://dx.doi.org/10.1080/0951192X.2010.518632
http://dx.doi.org/10.1007/s00170-014-6073-3
http://dx.doi.org/10.1016/j.cirp.2007.05.042
http://dx.doi.org/10.1108/13673271111179299
http://dx.doi.org/10.1109/TSMCB.2003.821866
http://dx.doi.org/10.1080/03081079.2012.710442
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1016/j.measurement.2017.05.023
http://dx.doi.org/10.1080/09537287.2017.1309716
http://dx.doi.org/10.1080/00207543.2017.1334976
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work and Preliminaries 
	Knowledge-Driven Computer-Aided Process Innovation 
	Definition and Computing of the Fuzzy Linguistic Method 

	The Proposed Approach 
	Proposed Comprehensive Evaluation Index System for Process Innovation Knowledge 
	Process Innovation-Oriented Knowledge Evaluation Model 
	Determination of Fuzzy Comprehensive Weights 
	Weight Coefficient of AHP 
	Weight Coefficient of Fuzzy Linguistic Computing 
	Fuzzy Comprehensive Weights 


	An Illustrative Example 
	Process Innovation Knowledge Capturing and Evaluating 
	Gathering of Evaluation Data 
	Determination of Criteria Weights 
	Calculation of the PIKCV 

	Comparison and Analysis of Knowledge Evaluation Results 
	Knowledge-Inspired Manufacturing Process Problem-Solving 

	Conclusions and Implications 
	Conclusions 
	Limitations and Future Research 


