
A novel FPGA-based track reconstruction approach

for the Level-1 trigger of the CMS experiment at

CERN

R. Aggleton†, L. Ardila-Perez‖, F. A. Ball†, M. N. Balzer‖, J. Brooke†, L. Calligaris∗∗, M. Caselle‖,

D. Cieri∗∗, E. J. Clement†, G. Hall¶, K. Harder∗∗, P. R. Hobson‡, G. M. Iles¶, T. James¶, K. Manolopoulos∗∗,

T. Matsushita∗, A. D. Morton‡, D. Newbold†, S. Paramesvaran†, M. Pesaresi¶, I. D. Reid‡, A. W. Rose¶,

O. Sander‖, T. Schuh‖, C. Shepherd-Themistocleous∗∗, A. Shtipliyski¶, S. P. Summers¶,

A. Tapper¶, I. Tomalin∗∗, K. Uchida¶, P. Vichoudis§ and M. Weber‖

∗Austrian Academy of Science, †University of Bristol, ‡Brunel University London, §CERN
¶Imperial College, ‖KIT- Karlsruhe Institute of Technology, ∗∗STFC - Rutherford Appleton Laboratory

Email: konstantinos.manolopoulos@stfc.ac.uk

Abstract—The Compact Muon Solenoid (CMS) experiment at
CERN is scheduled for a major upgrade in the next decade in
order to meet the demands of the new High Luminosity Large
Hadron Collider. Amongst others, a new tracking system is under
development including an outer tracker capable of rejecting low
transverse momentum particles by looking at the coincidences
of hits (stubs) in two closely spaced sensor layers in the same
tracker module. Accepted stubs are transmitted off-detector for
further processing at 40 MHz. In order to maintain under the
increased luminosity the Level-1 trigger rate at 750 kHz, tracker
data need to be included in the decision making process. For
this purpose, a system architecture has to be developed that
will be able to identify particles with transverse momentum
above 3 GeV/c by building tracks out of stubs, while achieving
an overall processing latency of maximum 4us. Targeting these
requirements the current paper presents an FPGA-based track
finding architecture that identifies track candidates in real-time
and bases its functionality on a fully time-multiplexed approach.
As a proof of concept, a hardware system has been assembled
targeting the MP7 MicroTCA processing card that features a
Xilinx Virtex-7 FPGA, demonstrating a realistic slice of the track
finder. The paper discusses the algorithms’ implementation and
the efficient utilisation of the available FPGA resources, it outlines
the system architecture, and presents some of the hardware
demonstrator results.

I. INTRODUCTION

The Compact Muon Solenoid (CMS) [1] is a large-scale,

general purpose particle detector at the Large Hadron Collider

(LHC) [2] at CERN, designed to investigate a wide range

of physics phenomena and to improve our understanding of

the Standard Model. Currently in the LHC, proton bunches

collide together with a rate of 40 million times per second, at

centre of mass energy of 13 TeV. The High Luminosity LHC

(HL-LHC) [3] is an upgrade of the current collider, scheduled

to be completed by the year 2026. After this upgrade the

instantaneous luminosity will be increased from 1×10
34 cm−2

s−1 to 5−7×10
34 cm−2s−1, increasing the average number of

proton-proton collisions per bunch crossing (pile-up or PU) up

to 140-200. Due to the increasing integrated and instantaneous

luminosity an upgrade of the CMS detector is also necessary,

in order to meet the demands of the new collider and to further

improve the current level of performance. Part of this upgrade

is the complete replacement of the CMS silicon tracker [4],

[5]. The tracker is the innermost part of the detector and after

15 years of operation and exposure to radiation it is imperative

to be replaced with a new model that can withstand the higher

radiation levels expected by the HL-LHC.

The higher interaction rates of the HL-LHC will pose a sig-

nificant strain to the CMS Level-1 trigger. The L1 trigger is an

event selection system implemented in hardware that currently

uses coarse grain information in order to accept events that are

deemed as interesting for subsequent analysis and reject the

remaining ones. Under the existing LHC conditions the L1

trigger reduces the data rate from 40 MHz down to 100 KHz,

but with the higher interactions rate of the HL-LHC the L1

trigger is expected to reduce the rate down to 750 KHz, while

processing a significantly larger volume of data and without

suffering from any losses of potentially interesting events. The

proposed solution is to include at L1 charged particle track

information (L1 Track Trigger).

The proposed design for the outer tracker upgrade [6] is

based on utilising two types of double sensor pT modules

(called 2S and PS), capable of rejecting on detector hits

generated by particles with low transverse momentum (pT ).

This is achieved by looking at the correlation of hits in the

two sensors of a single module. Correlations compatible with

a high-pT (> 2-3 GeV) track are called stubs (Fig. 1).

The L1 track trigger, using these stubs as an input, will need

to identify and fully reconstruct all possible tracks, that will

be used in a following stage to discriminate the signal from

background events. The track identification process consists

of mainly three steps: data formatting, track reconstruction

and track fitting, with the prerequisite that all three steps are



Fig. 1. Cluster matching in pT -modules. Correlating closely spaced clusters
between two mm separated sensor layers allows discrimination of transverse
momentum based on the particle bend in the CMS magnetic field. Only tracks
with pT > 2 - 3 GeV/c are transferred to the L1 trigger.

completed within an overall latency of 4 us. Aiming at meeting

the above requirements and providing a feasible solution for

the L1 track trigger, using current FPGA technology, this paper

proposes an FPGA-based track finding solution that bases its

functionality on a fully time-multiplexed architecture, while

using a projective binning algorithm based on the Hough

Transform to identify the track candidates. The fitting stage

is performed by implementing a filter that identifies tracks

consistent with a straight line in the r-z plane, followed by

a linear regression technique that fits the track parameters

using independent straight lines in both r-z and r-φ planes.

Each step is implemented on a different MP7 processing card

(or cards) [7] that features a Virtex-7 FPGA. These cards

are interconnected in a daisy-chain fashion, and this chain is

further referred to as the Track Finding Processor (TFP).

II. TIME-MULTIPLEXED TRACK FINDING PROCESSOR

The Track Finding Processor (TFP) described in this paper

bases its functionality on a time-multiplexing approach. The

entire tracker is divided into φ octants, where φ is the azimuth

angle of the track. Data from each octant is read out by a

separate group of Data, Trigger and Control (DTC) boards.

The role of these boards is to calculate the global coordinates

of each stub, duplicate stubs in overlap regions between the

octants and send these stubs to the neighboring processing

octants. Each octant is processed by N identical TFPs, that

will reconstruct all tracks in that specific octant. Each TFP

processes only one event in N. For our demonstrator system

we choose a value of N = 36, based on the current electronics

and on the available I/O links. Hence, all data of the 1st event

will be sent to the first TFP, the 2nd event will de directed to

the second TFP etc, the Nth event will be processed by the last

TFP and the Nth+1 event will again be directed to the 1st TFP

and so on. In order to also parallelise the track finding process

within each octant we apply a divide-and-conquer approach:

each octant in φ is subdivided in two sub-sectors in φ and

18 in η, where η is the pseudo-rapidity, and track-finding is

performed in parallel in each sector.

III. TRACK FINDING ARCHITECTURE

Fig. 2 shows the block diagram of our Track Finding

Processor. The TFP consists of three steps: first, the Geometric

Processor handles the data formatting and distribution, next,

DTC

Source

DTC

Source

Track Finding Processor

GP

HT
SF+

LR

HT
SF+

LR

Sink

12 links

12 links

72 links

72 links

36 links

36 links
36 links

36 links

Detector octant 1 (right)

Detector octant 2 (left)

Fig. 2. The Track Finding Processor consists of the Source, Geometric
Processor (GP), Hough Transform (HT), Seed Filter & Linear Regression
(SF+LR) and the Sink.

Fig. 3. Illustration of the Hough Transform. On the left-hand side is a sketch
of one quarter of the tracker barrel in r− φ. The track of a single particle is
drawn and the stubs from six detector layers are shown as dots. In the middle
is the track parameter plane where the six corresponding Hough-transformed
stubs are drawn as lines and their intersection identifies the track and its
parameters. On the right-hand side is the track finding histogram in the Hough
transformed space.

based on a Hough Transform implementation the track build-

ing takes place, and finally, the fine Track Fitting is performed.

Each block in the fig.2 is implemented on a single MP7 board.

A. Geometric Processor

The Geometric Processor, converts the DTC stub coordi-

nates into the extended format that will be used by the TFP

and assigns each input stub to sub-sectors. Stubs which are

compatible with two or more sub-sectors (usually due to the

curvature of tracks in φ) are then duplicated. A routing block

realised as a three-stage, highly pipelined mesh is responsible

for assigning the stubs to the proper output. The first routing

stage implements a coarse sorting of the stubs based on their

η values, followed by a fine η sorting in the second stage,

and the final sorting in φ in the last stage. The router has

been designed to be highly reconfigurable and can be easily

adapted to any alternative sector definitions.

B. Hough Transform

The Hough Transform (HT) algorithm is a method widely

used to detect lines, circles or other parametric curves in

image processing [8]. It can easily be applied to our case

in order to identify tracks from stubs. We use the HT to

identify charged particles with transverse momentum (pT )

greater than 3 GeV/c in the r-φ plane. The trajectory of these

particles can be described as a linear equation between the

initial azimuthal angle of the track φ0 and its pT . Therefore,

every stub position can be described with a straight line in

the (q/pT , φ0) parameter space. According to the Hough

transform algorithm the point where several of these straight



lines intersect describes a circle in the r-φ plane. Fig. 3 depicts

the procedure of identifying a track produced by six stubs. A

circle is considered as identified, only if it is comprised by at

least one stub per layer and with hits in at least five layers out

of the six available.

In order to implement the HT algorithm we bin the track

parameter space into 1024 rows in φ and 32 columns in q/pT .

Based on simulation results this is the most efficient way

to ensure a sufficiently good granularity and precise track

candidate identification, while taking into account possible

misalignments due to the hit resolution of the tracker modules.

The method for finding tracks with the HT is the following:

i) For each stub position in the (r, φ) we calculate the corre-

sponding straight line using the equation described in [9]. ii)

A bend measurement embedded in stub data that corresponds

to the distance between hits of the upper and lower sensor

modules, is used as a rough estimate of the particle’s pT .

Based on this, each stub is binned in a specific subset of

columns in the track parameter array, that are consistent only

with this bend value. iii) Create a histogram that counts the

number of stubs in different tracker layers that cross its cells in

the track parameter space. Identify valid track candidates that

correspond to cells of the track parameter array containing

stubs from at least five different detector layers. A detailed

description of the Hough Transform architecture can be found

in [9].

C. Track Fitting

In the last stage of the TFP we perform the fine track

fitting that can be split into two steps: during the first step

we ensure that the stubs in a HT cell are compatible with a

straight line in the r-z plane (Seed Filter or SF) and then we

fit helix parameters using independent straight line fits in the

two planes, r-z/r-φ, with a linear regression technique (Linear

Regression or LR).

1) Seed Filter: The Seed Filter is implemented right after

the r-φ Hough Transform. The task of the SF is to reduce

the number of fake tracks that are produced by the HT, by

exploiting the third coordinate (z) in order to filter out the

fake tracks. Moreover, the algorithm removes spurious stubs

from the tracks which are not consistent in the r-z plane.

The fundamental idea of the Seed Filter is to check the

compatibility of the stubs in a cell with a line drawn from two

seeding stubs, where a seeding stub is a stub that originates

from a PS module in one of the innermost layers of the

tracker detector. The algorithm collects all the possible pairs

of seeding stubs, drawing a line passing through these stubs

(seed). Only seeds compatible with a track originated from the

beam spot and lying in the current pseudo-rapidity sector under

investigation are kept. Surviving seeds are extrapolated to all

other tracker layers, rejecting all stubs that are not compatible

with the computed line. Only the closest stub to the line is kept

for each layer. If there are less than 4 stubs on the seeding

line, the track will be discarded.

Fig. 4 shows the steps of the Seed Filter algorithm, which

can be described as follows: i) First, the SF forms pairs of

(a) (b) (c) (d)

Fig. 4. Illustration of the 4 steps of the Seed Filter Algorithm. PS modules
are depicted in blue colour and the 2S modules in red.

stubs which belong to different PS layers (Fig. 4b) and then

it computes the lines that pass through these stubs (seeds).

ii) Next, it discards the seeds that correspond to tracks that

lie outside of the beam-spot and sector definition (Fig. 4c).

iii) Following that, it extrapolates the surviving seeds to other

tracker layers, rejecting stubs that are not compatible with the

line (Fig. 4d). If there are multiple compatible stubs in a layer,

then the algorithm keeps only the stubs that are closest to the

seeding line. iv) Finally, only those tracks that still contain

stubs in at least four layers are kept. If however, more than

one seed satisfies the aforementioned condition, then the seed

with the most layers is kept.

2) Linear Regression: The output of the Seed Filter is

processed by the Linear Regression algorithm. Taking into

consideration the fact that tracks with sufficient pT should

form a straight line on both r-z and r-φ planes, the LR

algorithm performs two independent fits in the two planes in

order to calculate the helix parameters that describe the track.

The algorithm is divided in four steps: i) Helix parameters

are computed only in the r-φ plane using the full set of stubs.

ii) For each stub the residual is calculated. Stubs with the

largest residual are removed from the tracks, keeping only

four stubs in total, with at least two belonging to PS modules.

iii) Helix parameters are computed again using the full set on

the r-φ plane, and only the PS stubs on r-z. iv) Finally, the χ2

is calculation takes place to reject the bad tracks.

3) Track Fitting Architecture: In each Track Fitting board

24 SF+LR modules are implemented. Stubs from each HT

output channel enter the TF board and are stored in separate

FIFOs. Six identical Control Units, operating in parallel,

distribute HT track candidates from a set of six FIFOs to a

set of four SF+LR modules in a Round-Robin fashion.

Each SF+LR module receives in input one stub per clock

cycle. The filter processing has been implemented by means of

two state machines. The first one (SM0) is responsible for the

communication with the control unit, declaring if the SF+LR

block is ready to accept a new track or not. In this first stage,

stubs are sent to 15 Seed Finders blocks, which perform the

identification of the pair of seeding stubs (seeds) in parallel.

Seeds are stored in a Seed FIFO and read-out in the second

state machine. Here, utilising a DSP chain, the consistency of

the seeds with the beam-spot length and the η sector definition

is verified. Once all the seeds have been read-out from the



FIFO, SM0 marks the SF+LR module as free to receive new

data. Meanwhile seeds that have passed the DSP check are

sent to a different Seed Checker module, for a maximum of

10 good seeds. Each Seed Checker contains a copy of the

input stubs and verifies the compatibility of each stub with

the analysed seed. Checkers with stubs in enough layers send

the stub addresses to a comparator module, in order to keep the

stubs relative to the seed with the most layers. Finally, these

stubs are used by the Linear Regression Module to compute

the helix parameters.

IV. IMPLEMENTATION ANALYSIS AND RESULTS

The presented track finding system has been designed and

implemented in VHDL. A set of five MP7 boards [7] has been

utilised to accommodate the entire Track Finding Processor,

operating at 240 MHz. Each board features a Xilinx Virtex-7

XC7VX690T FPGA, and 12 Avago Technologies MiniPOD

optical transmitters/receivers, each providing 12 optical links

able to operate up to 10.3 Gbps, thus providing a total optical

bandwidth of 0.74 Tbps in each direction.

Apart from the five MP7-XE boards that form the Track

Finding Processor three more boards are used to complete

the testing chain. The first two, named Source, contain large

buffers that can store up to 30 events of stub data for a single

detector octant. The Source boards represent data from a set of

up to 72 DTCs. The stub data from the DTCs are injected into

the large buffers of the Source boards via IPBus [10]. Each

source provides a stream of data to the downstream board

on 36 links, equivalent to the DTCs that make up adjacent

detector octants. Input data from two adjacent octants are

required, to be able to handle tracks that traverse the regional

boundary. The last board is the Sink and it is used to buffer

the final output of the TFP, before being read-out via IPBus.

Table I depicts the resources utilization for the different

firmware blocks. The latency for each block is the following:

GP=310 ns, HT=1025 ns, SF+LR=1400 ns and Infrastructure

Latency=545 ns. Hence, the total latency of the system is

3280 ns. These measurements have been made for each block

independently, but also for the full chain, and they include

optical link traversal time and serialisation/de-serialisation

(SERDES). The entire system maintains a fixed latency, inde-

pendently of the type or the number of event it has to process.

The design functionality has been verified through simula-

tion analysis and then extensive data taking tests. The latter

involved running through hardware simulated physics events

up to a pileup of 200 interactions per bunch crossing. The

software framework that was used allows for simulated physics

samples that were generated in the official CMS Software

(CMSSW) to be converted into text files which are then

injected into the hardware chain via IPBus. The output of the

hardware is then converted back into a CMSSW format, and

is compared with the results of emulation software running on

the same simulated physics event. Hence, it is possible to com-

pare the results of the hardware and the emulation software,

validating any simulation results of track finder performance.

TABLE I
RESOURCE UTILIZATION OF THE TFP

LUTS (K) FF (K) BRAM (36Kb) DSP

GP 121 205 222 1056

HT 244 299 1776 2304

SF+LR 7800 277 17 110

Excellent matching between hardware and software of 99.32%

has been measured, at a pileup of 0, 140 and 200.

V. CONCLUSION

The current paper presented a track finding architecture for

Phase-2 L1 trigger upgrade of the CMS detector at CERN.

The design follows a time-multiplexing approach, where track

candidates are identified and reconstructed using the Hough

Transform algorithm and the track fitting is performed by

combining a Seed Filter with a linear regression technique.

The presented system is implemented on a chain of MP7-XE

FPGA boards and has been validated in both simulation and

hardware. The efficient algorithms implementation provides to

the system an increased flexibility, allowing us to easily adapt

to any changes of the detector’s specifications.

ACKNOWLEDGMENT

This work was supported in part by the UK Science and

Technology Facilities Council. We gratefully acknowledge

their support. The research leading to these results has received

funding from the People Programme (Marie Curie Actions)

of the European Unions Seventh Frame- work Programme

FP7/2007-2013/ under REA grant agreement nr. 317446 IN-

FIERI INtelligent Fast Interconnected and Efficient Devices

for Frontier Exploitation in Research and Industry.

REFERENCES

[1] CMS Collaboration, The CMS experiment at the CERN LHC, JINST
3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[2] THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND
EXPERIMENTS, LHC Machine, JINST 3 (2008) S08001, doi:
10.1088/1748-0221/3/08/S08001.

[3] THE CERN LARGE HADRON COLLIDER: ACCELERATOR AND
EXPERIMENTS CollaborationG. Apollinari, et al., High-Luminosity

Large Hadron Collider (HL-LHC): Preliminary Design Report, CERN,
Geneva, 2015, doi: 10.5170/CERN-2015-005.

[4] CMS Collaboration, Technical Proposal for the Phase-II Upgrade of the

CMS Detector, Technical Report CERN-LHCC-2015-010. LHCC-P-
008. CMS-TDR-15-02, Geneva, Jun, 2015.

[5] M. Pesaresi, Development of a new Silicon Tracker at CMS for Super-
LHC, PhD thesis, Imperial College London, 2010.

[6] S. Mersi, CMS Collaboration, Phase-2 Upgrade of the CMS Tracker,
Nuclear and Particle Physics Proc., Vol. 273275, pp. 1034-1041, 2016.

[7] K. Compton et al., The MP7 and CTP-6: multi-hundred Gbps processing

boards for calorimeter trigger upgrades at CMS, JINST 7 (2012)
C12024, doi: 10.1088/1748-0221/7/12/C12024.

[8] P. V. C. Hough, Method and means for recognizing complex patterns,
December 18th 1962 US Patent 3,069,654.

[9] C. Amstutz et al., An FPGA-based track finder for the L1 trigger of the

CMS experiment at the high luminosity LHC, Real Time Conference
(RT), IEEE-NPSS, June, 2016.

[10] C. G. Larrea, et al., IPbus: a flexible Ethernet-based control system

for xTCA hardware, JINST 10 (2015) C02019, doi: 10.1088/1748-
0221/10/02/C02019.


