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Abstract 

Investigating the Effects of Bisphenol A on the Human Placenta 

de Aguiar Greca, SC., Silva, E., Karteris, E. 

Introduction: Endocrine disrupting chemicals are environmental toxicants that 
humans are exposed to. Bisphenol A is classified as an endocrine disrupting chemical 
with xenoestrogenic capacity. The placenta is one of the least researched human 
organs, although it is crucial for the development of the embryo and fetus, and 
abnormal placental physiology can cause gestational complications that can lead to 
pregnancy determination. As such, we have elucidated the effects of bisphenol A in 
physiologically relevant doses on placental cell lines as well as human placental cells 
Methods: qPCR, Western blot, immunofluorescence, image stream, ELISA, 
microarray, 3D cell culture. Results: In placental cell lines BeWo and JEG-3, estrogen 
receptor a was the predominant receptor (p>0.001) in both non-syncytialised BeWo 
cells and in JEG-3 cells. 3 nM BPA treatment significantly increased cell proliferation 
in BeWo cells compared to controls (p<0.05), and this increase in cell proliferation was 
most likely due upregulation of estrogen receptor a (p<0.001) via a pathway involving 
p-p38 or p-AKT. Using microarray, pathways involving development of metabolic 
diseases such as type II diabetes, obesity and hypertension were significantly 
enriched in both the BeWo cell line and human placental cells after bisphenol A 
treatment. Finally, 3D models for placental culture were tested, showing that the 3D 
environment produces more physiologically relevant models of the human placenta, 
and methods prolonging the life of placental explants to up to 16 days were 
successfully developed. Conclusion: Bisphenol A in physiologically relevant doses 
changes the physiology of the human placenta via an upregulation of estrogen 
receptor a, causing an increase of cell proliferation and upregulating pathways that 
may result in the development of metabolic diseases, possibly exerting effects as early 
as fetal development. 3D models of human placenta should be used as a more 
physiologically relevant model of the human placenta when investigating these issues 
further. 
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Chapter 1 
1.1 Introduction 
 

Endocrine disrupting chemicals (EDCs) are chemicals found in the environment, 

including chemicals in manufacturing and packaging materials, with the potential of 

disrupting the endocrine system of humans and wildlife. EDCs are widespread in the 

environment, and can accumulate all throughout the food chain, often due to long half-

lives that are commonly found in these lipophilic chemicals and an inability of these 

compounds to be metabolized by the body (Montes-Grajales, Fennix-Agudelo, & 

Miranda-Castro, 2017). However, even if EDCs are metabolised, the resulting 

metabolites can be even more toxic than the original chemical itself (Diamanti-

Kandarakis et al., 2009) for endocrine target organs. The endocrine system is vital for 

a multitude of necessary processes of the body, such as sexual differentiation in utero, 

sexual reproduction and growth, and every day processes such as metabolism, energy 

balance, homeostasis, and functioning of the cardiovascular system (Witorsch, 2002). 

 

Long-term effects on development due to EDCs are associated with alterations in the 

epigenome, a phenomenon that confirms theories that adult onset diseases can be 

pre-defined through fetal exposure during development (Barker, 1997; Skinner, 

Manikkam, & Guerrero-Bosagna, 2011). The constant exposure of humans to these 

chemicals can cause metabolic dysfunction, disorders of the reproductive system, 

endocrine-related cancers and neurodevelopmental diseases (Koch & Diamanti-

Kandarakis, 2015). The group of chemicals categorized as EDCs includes molecules 

that are used as industrial solvents or lubricants and also their by-products, pesticides 

and fungicides, chemicals found in plastics such as bisphenol A (BPA), phthalates 

used as plasticizers and agents used for pharmaceutical purposes. Natural chemicals 

found in food such as phytoestrogens can also be classified as endocrine disruptors 

(Diamanti-Kandarakis et al., 2009). According to the WHO-State of the science of 

endocrine disrupting chemicals-2012, around 800 chemicals are now known to have 

the potential of interfering with hormone receptors, the synthesis or conversion of 

hormones, although most of these chemicals have not been sufficiently investigated 

(Bergman, Heindel, Jobling, Kidd, & Zoeller, 2012). Although most studies have 
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focused on steroidal pathways, there is growing evidence that other hormonal and 

metabolic systems can be affected, leading to metabolic syndrome (Casals-Casas & 

Desvergne, 2011). In fact, EDCs can act through a multitude of pathways and binding 

partners, including nuclear and membrane-bound steroid hormone receptors, and can 

act by affecting enzymatic pathways necessary for steroid synthesis and metabolism, 

among others (Diamanti-Kandarakis et al., 2009). 

 

Unlike hormones and other peptides, EDCs do not always follow a standard dose-

effect curve. Therefore, there may not exist a minimal dose at which EDCs are 

ineffective (Crews, Willingham, & Skipper, 2000). Due to their probable accumulative 

nature, and for reasons yet unknown, EDCs exhibit a latency in their effect, showing 

symptoms years after initial exposure in humans. Furthermore, EDCs are rarely found 

alone in nature, and compounds combining EDCs may work additively or cumulatively, 

leading to a multitude of possible outcomes and effects, possibly having an additive 

effect if they work at the same target (Crews et al., 2000). It is therefore important to 

understand how EDCs interact in order to correctly postulate their effects on the 

human body. The main route of human exposure to EDCs is thought to be through 

dietary exposure, as EDCs such as organochlorine pesticides can be found in animal 

products used as foods (Acerini & Hughes, 2006). Other routes of exposure include 

air, drinking water, and household and cosmetic products that come into contact with 

skin. Newborns and fetuses can also be exposed via the lactational or transplacental 

route in utero respectively (Acerini & Hughes, 2006), and, later on, may also come in 

to contact with EDCs through ingestion of formula and via plastic baby bottles. 

 

Understanding the effects of environmental chemicals during gestation is crucial, as 

normal fetal development paves the way for healthy development and growth in the 

child and adult. Although EDCs may have an effect in adulthood, the marked 

difference between exposure during development and exposure during adulthood is 

the irreversibility of an EDCs effect during a critical stage of development (Bigsby et 

al., 1999), especially in utero. EDCs have shown to have a multitude of effects on the 

fetus and infant, as hormonal regulation is the cornerstone of in utero sexual 

differentiation and development. The central nervous system (CNS) and immune 

system are also affected by sex steroids (Bigsby et al., 1999), and as most EDCs 

mimic estrogens or androgens in some way, these systems can be affected also. 
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Reproductive abnormalities are most commonly associated with xenoestrogens. 

These chemicals include BPA, polychlorinated biphenyls (PCBs) and phthalates which 

act as antiandrogens and therefore can be considered in this group. As these 

compounds all show steroid-like properties and can bind to corresponding receptors, 

any point in reproductive development along the axis of the hypothalamus to the gonad 

can be affected (Robins, Marsit, Padbury, & Sharma, 2011). Furthermore, BPA 

accumulates in the amniotic fluid, at levels 5 times higher than in maternal sera 

(Ikezuki, Tsutsumi, Takai, Kamei, & Taketani, 2002), probably due to the active 

transport of BPA across the placental membrane (Robins et al., 2011) a phenomenon 

that further highlights the harmful effects of EDCs during pregnancy. 

 

1.2 Literature Review 
 

1.2.1. Placental Physiology 
 

1.2.1.1. Overview 
 

The placenta is the most crucial organ when it comes to maintaining pregnancy and 

the development of the fetus and is the first organ that develops after the blastocyst 

attaches to the wall of the uterus (Aplin, Haigh, Vicovac, Church, & Jones, 1998; 

Davies et al., 2016). Not only do nutrients pass from the mother to the fetus and toxins 

get filtered through the placenta, but the placenta itself is an endocrine organ, highly 

sensitive to external signals and vital in regulation of the pregnancy, the feto-placental 

unit and maternal physiology, to adapt to the dynamic demands of pregnancy (Costa, 

2016; Davies et al., 2016). For this reason, changes in the development of the placenta 

can cause adverse effects on the pregnancy and the way the fetus copes with the 

intrauterine environment (Gude, Roberts, Kalionis, & King, 2004). The main functions 

of the placenta include providing the fetus with water, oxygen, nourishment in the form 

of carbohydrates, lipids, amino acids vitamins and minerals, and removing waste 

products such as carbon dioxide. It also metabolises compounds, releasing 

metabolites into the maternal and/or fetal blood stream (Carter, Moores, & Battaglia, 

1991; Costa, 2016). The trophoblast is the main unit of placental transport, with a 

maternal “brush-border” side and a basal side, which faces the fetal circulation 
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(Yudilevich & Barros, 1990). It also acts as a transient endocrine organ, releasing 

hormones that affect the pregnancy, growth, parturition and metabolism among other 

functions (Gude et al., 2004). 

 

1.2.1.2 Early placental development 
 

The placenta begins to form in a process called placentation, in which the outer part 

of the cell mass, or trophoblastic cells, differentiate and divide into the cytotrophoblast, 

which forms the connection between the embryo and the placenta, and the 

syncytiotrophoblast, which is a mass of differentiated cells that form large, 

multinucleated trophoblastic cells through a process called syncytialisation. The 

trophoblasts can take one of two pathways; the extravillous or the intravillous pathway, 

the syncytiotrophoblast being intervillous while the cytotrophoblast remains 

extravillous.  

 

 
Figure 1.1 Different cells of the placenta and the structural subunits and mechanisms 
of invasion (Red-Horse et al., 2005). Invasive cytotrophoblasts invade into the uterine 
wall and spiral arterioles of the uterus, restructuring the vessels and creating a 
connection between maternal and fetal circulation. Other extravillous cytotropholasts 
invade the decidua and play a role in imunity, among other roles. The 
syncytiotrophoblast lines the chorionic villi as the main cell/structure regulating 
exchange between mother and fetus. 
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Figure 1.2 Cell types of the placenta, origins and differentiation. All cells of the 
placenta originate from the blastocyst. The outer wall of the blastocyst, or 
trophoectoderm, gives rise to the main functional component of the placenta, the 
cytotrophoblast. The extravillous cytotrophoblast can be categorised into the interstitial 
and intervascular component. The interstitial cells invade the maternal decidua, with 
a vast array of functions including regulation of immune-response. The endovascular 
cytotrophoblast invades maternal spiral arteries, remodelling them to connect to the 
fetal circulation. The villous syncytiotrophoblast is a multinucleate structure made up 
of fused cytotrophoblast cells surrounding the fetal villous tree, and are the main 
component regulating exchange between mother and fetus, as well as the main 
endocrine cell of the placenta.  
 

The syncytiotrophoblast is the part of the placenta which carries the responsibility of 

forming the connection between fetal and maternal blood supplies by covering the 

chorionic villi and the entire surface of the growing placenta, and also the production 

of most of the placental hormones, such as b-hCG, estrogen and progesterone 

(Davies et al., 2016). The syncytiotrophoblast forms villi by forming invaginations that 

have a cytotrophoblast core, which the fetal mesenchyme will grow into forming 

secondary and finally tertiary villi composed of fetal capillaries (Gude et al., 2004). 

Meanwhile, the extravillous cytotrophoblasts form cell columns at the tips of chorionic 

villi between the fetal and maternal interface (Davies et al., 2016). Distally, these 

cytotrophoblasts cease to proliferate and penetrate the uterine wall into the maternal 

myometrium, anchoring the placenta to the myometrium and modifying maternal spiral 

arterioles to resist maternal vasomotor control (Davies et al., 2016; Winn et al., 2007). 

Extravillous cytotrophoblasts not only invade the maternal circulatory system of the 

myometrium, but invade interstitially as well (interstitial trophoblasts). By initiating and 
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promoting the expansion of the invaded area and by recruiting maternal arterioles, 

they allow the expansion of the underlying villous placenta (Gude et al., 2004). Tertiary 

villi differentiate from mesenchymal villi into immature intermediate villi (IIV), which 

branch into the stroma forming the villous tree of the mature placenta. The distal parts 

of the sprouting villi are mesenchymal villi, while their bases differentiate into IIV, which 

in turn differentiate into stem villi. In this way, 10 +/- 16 generations of stem villi form 

the villous tree found in the mature placenta (Kingdom et al., 2000). 

 

1.2.1.3 Placental Vascularisation 

 

During the first trimester of pregnancy, the placenta grows and differentiates in an 

hypoxic environment. The reason for this is that the spiral arterioles of the uterus are 

still partially blocked by the endovascular cytotrophoblast (Jauniaux, Gulbis, & Burton, 

2003). At about 10-12 weeks of gestation, maternal blood finally begins to flow from 

the spiral arterioles into the intervillous space of the placenta (Gude et al., 2004; Jaffe, 

Jauniaux, & Hustin, 1997). The low oxygen environment is likely to be  important for 

growth in the first trimester of development, since women who had premature blood 

flow into the intervillous space during the first trimester had a higher risk of miscarriage 

(Gude et al., 2004; Jauniaux et al., 2003). Blood vessel formation and vascularization 

of the human placenta begin at about 21 days, and the final growth phase of villous 

blood vessels takes place at the start of the third trimester at around 24 to 26 weeks, 

characterized by the capillaries growing longitudinally, coiling of capillaries and finally 

the formation of terminal villi (Gude et al., 2004). The fetoplacental capillaries are 

found within these terminal villi, and they are separated from maternal blood only by a 

thin layer of the vasculo-syncytial membrane, which is a thin layer of 

syncytiotrophoblasts (Kingdom et al., 2000).  Subsequently, formation of terminal villi, 

dramatically increases the surface area to volume ratio for gas and nutrient exchange 

whereas the formation and growth of the vascular bed and blood vessels leads to an 

increase in fetal growth. 
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1.2.1.4 Placental transport 
 

Although passive diffusion from the maternal blood stream to the fetus does take 

place, permeability of the placenta is quite low, so that the placenta must contain a 

multitude of specific transport systems in order to meet the growth and development 

needs of the fetus and resembles more the intestinal mucosa or renal epithelium than 

blood vessels (Stulc, 1997). The main substrate for fetal and placental metabolism is 

glucose, which crosses the placenta via facilitated diffusion (Burton & Fowden, 2015). 

It is probable that placental transport differs in early pregnancy and term pregnancy. 

This change may be regulated by oxygen tension and intervillous space blood flow 

(Glazier & Jansson, 2004; Gude et al., 2004). Any compound that crosses the 

maternal-fetal circulation must pass through the villous trophoblast, two membranes 

consisting of the microvillous maternal layer and the basal layer which faces the fetal 

blood (Haggarty, 2002). Respiratory gases can easily permeate the placental 

membrane, with the only rate-limiting factor being blood flow (Gude et al., 2004). 

Therefore, impairment of fetal or maternal blood flow can cause major changes in 

growth and development of the fetus (Burton & Fowden, 2015). Other compounds that 

pass through the placenta to the fetus do not simply permeate the placental 

membrane. The primary source of energy for the fetus, glucose, must come from the 

maternal circulation, and transport from mother to fetus is facilitated via protein-

mediated diffusion and glucose transporters (GLUTs), mainly, GLUT3, GLUT4, 

GLUT8 and GLUT12 (Gude et al., 2004). 

 

Amino acids, which can be metabolized by the fetal liver and are also required for 

protein synthesis, are transported via the microvillous membranes and 

syncytiotrophoblast. Since the ratio of amino acids between fetus and mother is 

greater than 1, it is probable that amino acids are transported via an active transport, 

energy consuming mechanism (Gude et al., 2004; Yudilevich & Barros, 1990). 

Because amino acids vary immensely in terms of structure, transporters of amino 

acids have relative specificity for different groups of substrates. 
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Figure 1.3 Placental transport across the placenta and the different types of 
transporters. MVM: Microvillous membrane; BM: basal membrane; GLUT: glucose 
transporter; LAT: large neutral amino acid transport; FAT/CD36: fatty acid translocase; 
LPL: lipoprotein lipase; EL: endothelial lipase; FATP: fatty acid transport protein; FFA: 
fatty acid; TG: triglycerides; FABP: fatty acid binding protein; FABPpm: plasma 
membrane fatty acid binding protein; X: exchangers. (Brett, Ferraro, Yockell-Lelievre, 
Gruslin, & Adamo, 2014). 
 

Lipids are a heterogeneous group of compounds including phospholipids, glycolipids, 

triacylglycerols, free fatty acids, sphingolipids, cholesterol and fat-soluble vitamins, 

among others (Gude et al., 2004). Many lipids do not circulate freely, but are bound to 

plasma proteins, such as albumin and lipoprotein complexes. The maternal facing 

surface of the placenta therefore contains lipoprotein lipase, an enzyme that can 

release fatty acids from the lipoprotein complexes (Gude et al., 2004). Some lipids, 

such as free fatty acids and glycerol can cross the membranes of the 

syncytiotrophoblast via simple diffusion, which is important as fatty acids are needed 

by the fetus to develop and maintain membranes and as precursors of biologically 

active prostacyclins, prostaglandins, leukotrienes an thromboxanes, as well as using 

fatty acids as an energy source (Haggarty, 2002). Although fatty acids can permeate 

the membranes freely, fatty acid binding proteins have been identified, which probably 

facilitate and channel the uptake of free fatty acids (Haggarty, 2002). The placenta 

preferentially transports long chain polyunsaturated fatty acids, which are enriched in 

the fetal blood compared to maternal blood (Dutta-Roy, 2000; Gude et al., 2004) , as 
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they are required for structural lipid synthesis and essential for fetal development and 

cell function (Mennitti et al., 2015). 

 

Water transfer and ion transfer across the placenta are closely linked, as transport of 

water depends on hydrostatic and osmotic gradients. Although water travels across 

the placenta passively, its transfer may be enhanced by water channel proteins 

expressed in the placenta (Gude et al., 2004; Stulc, 1997). The main extracellular 

cation is sodium (Na+). Because of very steep electrochemical gradients across 

membranes, there is a strong driving force for substances to be transferred in co-

transport with or in exchange for Na such as the Na+/H+ exchanger and trophoblast 

plasma membranes contain a multitude of systems that aid in transfer of nutrients to 

the fetus while also maintaining the right homeostasis in the cytosol of the trophoblast 

(Stulc, 1997). Chloride, being the main extracellular anion, can also enter cells via co-

transport or specific chloride channels. Levels of phosphate, potassium and calcium 

are higher in the fetal blood. These ions permeate the placental membranes to the 

fetus via active transport, whereas sodium and chloride may also permeate via 

diffusion (Gude et al., 2004). 

 

1.2.1.5 Placental hormones 

 

One of the major functions of the placenta is to synthesise hormones and mediators, 

which are crucial for the successful outcome of pregnancy. These hormone expression 

levels change according to the stage of pregnancy, playing a role in the maintenance 

of pregnancy, the development of the fetus and finally the process of labour. (Costa, 

2016). The main cell for hormone synthesis in the placenta is the syncytiotrophoblast, 

although other trophoblast phenotypes also produce some placental hormones (M. A. 

Costa, 2016; Lunghi, Ferretti, Medici, Biondi, & Vesce, 2007). One of the most 

important hormones produced in pregnancy is human chorionic gonadotropin (hCG). 

This hormone is produced mainly in the syncytiotrophoblast, though extra-villous 

trophoblasts may also synthesize hCG (Cole, 2012; M. A. Costa, 2016). hCG is 

measurable in maternal serum at 8 days post fertilization and is at its peak at 10 weeks 

of gestation (Cole, 2012; M. A. Costa, 2016) with another rise in late pregnancy (Gude 

et al., 2004). One of the main roles of hCG is to maintain early pregnancy by 

stimulating progesterone synthesis in the corpus luteum (Cole, 2012; Kelly et al., 
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1991). Evidence also supports a role of HCG as a modulator of angiogenesis in the 

endometrium and placenta, also decreasing resistance in uterine arteries by 

increasing vasodilatatory and decreasing vasoconstrictive eicosanoids  (Costa, 2016; 

Toth et al., 1994). 

 

Progesterone is the hormone that maintains pregnancy and prevents early 

miscarriage, and studies have shown that up to 83% of all abortions have to do with 

low progesterone levels (Hahlin, Wallin, Sjöblom, & Lindblom, 1990; Tuckey, 2005). 

Once the syncytial layer is formed, progesterone is produced by the placenta, at 

around 6-8 weeks of pregnancy and increases until term when placental function is 

lost (Tuckey, 2005). Progesterone is a steroid hormone, and therefore produced from 

maternal cholesterol (Costa, 2016). In the placenta, progesterone is synthesized in a 

two-step process taking place in the mitochondria of the syncytiotrophobast (Costa, 

2016). Progesterone exerts its effects in a non-genomic and genomic manner. Nuclear 

progesterone receptors modulate transcriptional events and are ubiquitously 

expressed in the placenta and female reproductive tract, while the non-genomic 

actions of progesterone are mediated via membrane progesterone receptors that 

rapidly activate pathways such as MAPK and genomic actions of progesterone enable 

implantation and attachment of the embryo (Costa, 2016; Zachariades et al., 2012). It 

also plays a role in immunotolerance, by enhancing profertility Th2 cytokines and 

promoting the differentiation of Th2 lymphocytes, as well as relaxation of the uterus 

(Costa, 2016; Raghupathy, Al Mutawa, Makhseed, Azizieh, & Szekeres-Bartho, 2005). 

 

There are different types of placental estrogens, with the most abundant being 17ß-

estradiol (Costa, 2016). 17ß-estradiol is produced exclusively in the corpus luteum 

during the first 5-6 weeks of pregnancy, with the placenta becoming the main source 

of the hormone after the first trimester (Tal, Taylor, Burney, Mooney, & Giudice, 2000). 

Concentrations of 17ß-estradiol increase gradually until term (Tal et al., 2000). Lacking 

enzymes to convert progestogens to estrogens, the placenta relies largely on 

dihydroepiandrostenediene sulfate (DHEAS) to produce estrogens (Costa, 2016; Tal 

et al., 2000). The effects of estrogens are mediated by activating nuclear receptors 

ERα and ERß, which dimerize and alter gene expression (Björnström & Sjöberg, 2005; 

Costa, 2016), as mentioned below. Estrogens can however also activate GPCRs such 

as GPR30, which activate non-genomic pathways such as increasing cAMP levels and 
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activation of the MAPK pathway (Björnström & Sjöberg, 2005; Costa, 2016). One of 

the main functions of estrogens during pregnancy is an increase of arterial blood flow 

(Resnik, Killam, Battaglia, Makowski, & Meschia, 1974; Tal et al., 2000). Other 

functions include regulating fetal progesterone production and secretion as well as the 

biosynthesis of placental progesterone, and also influencing the function of the 

mammary fetal adrenal gland (Tal et al., 2000).  

 

1.2.2 Endocrine disrupting chemicals 
 

1.2.2.1 Overview 
 

Endocrine disrupting chemicals (EDCs) are a heterogeneous group of compounds 

found in the environment. They have the capacity to disrupt the physiological function 

of wildlife and humans and have recently taken centre stage as their effects are 

becoming more widely known. The U.S Environmental Protection Agency (EPA) 

defines an EDC as “an exogenous agent that interferes with synthesis, secretion, 

transport, metabolism, binding action, or elimination of natural blood-borne hormones 

that are present in the body and are responsible for homeostasis, reproduction, and 

developmental process.” With the focus on industry and production in the 20th century, 

these synthetic chemicals were developed in order to advance science and 

agriculture, as well as industry and are now widely distributed throughout the 

environment via different routes such as chemical run-off. In 2012, the World Health 

Organization (WHO) stated in their State of the Science of Endocrine Disrupting 

Chemicals paper that three major concerns have highlighted reasons to investigate 

EDCs further (Bergman et al., 2013). Firstly, the paper states that there is a high 

incidence of endocrine disorders in humans as well as an increasing trend of these 

disorders. Secondly, these effects or similar have been identified in wildlife. Lastly, 

there have been increasing findings of endocrine disrupting chemicals linked to 

outcomes of disease in studies conducted in the lab (Bergman et al., 2013). With 

statements such as these, there has been an increased effort to elucidate ways in 

which EDCs affect the human body in early development, childhood, and adulthood. 
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1.2.2.2 Types of EDCs 
 
There are hundreds of thousands of synthetic chemicals, and about 1000 of these 

have been identified as possibly having endocrine active properties (Gore et al., 2014).   

These chemicals can usually be organized into distinct groups, depending on their 

chemical structure and function, and also the role they play in industry. Polychlorinated 

biphenyls (PCBs) as well as polybrominated biphenyls (PBBs) are usually used as 

industrial solvents or lubricants, some, such as bisphenol A (BPA) and phthalates are 

used as plasticizers, others are used in agriculture such as the pesticides 

methoxychlor, dichlorodiphenyltrichloroethane (DDT) and chlorpiryfos. 

Pharmaceutical agents such as the xenoestrogen dietholstilbestrol (DES), which was 

previously prescribed as an anti-abortive agent until it was found to cause vaginal 

clear-cell adenocarcinoma in female offspring of women who had taken DES during 

pregnancy, among many other health risks, have been  used in the past and now 

(Diamanti-Kandarakis et al., 2009; Giusti, Iwamoto, & Hatch, 1995). Even some 

naturally occurring chemicals have the capacity to disrupt the endocrine system, 

especially when consumed in large amounts and during crucial windows of 

development. Phytoestrogens, which include chemicals such as genistein and 

dadzain, are widely found in soy milk and used in infant formula (Diamanti-Kandarakis 

et al., 2009; Harlid et al., 2017). 

 

 

 

 

 

 
 
 
 
Table 1.1 Types of EDCs and their sources. Adapted from: Dodson et al. (2012). 
EDCs. EDCs have a multitude of man-made sources such as incineration and landfill, 
runoff from agriculture, effluents from industry, harbours, municipal effluents, effluents 
from pulp mills, as well as consumer products such as cosmetics, personal care 
products, cleaners, plastics and medication. They can be categorised into 
polychlorinated compounds, organochlorine pesticides, other pesticides, organotins, 
alkylphenols, phthalates, natural hormones, synthetic steroids and phytoestrogens. 
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1.2.2.3 Polychlorinated biphenyls 
 

Polychlorinated biphenyls (PCBs) were historically used in industry as coolants or in 

electrical transformers, as well as microscope immersion oils, copy paper, or in 

pesticides, and in many other industrial applications involving heat transfer, as 

plasticizers, rubber products, pigments and dyes among others, as they had 

favourable properties such as non-flammability and chemical stability (Crinnion, 2011; 

Faroon & Ruiz, 2015). Although PCBs are no longer produced in most countries  due 

to their known toxicity (Quinete, Esser, Kraus, & Schettgen, 2017), PCBs are still 

released into the environment from hazardous waste sites, improper dumping of waste 

that contains PCBs, leaks from products such as transformers still containing PCBs, 

and wrongful disposal of PCB-containing products (Agency for Toxic Substances and 

Disease Registry (ATSDR), 2000). 
 

Furthermore, PCBs bioaccumulate in the food chain, preferentially in fatty tissues due 

to their lipophilicity and can therefore persist (Faroon & Ruiz, 2015; Ivanciuc, Ivanciuc, 

& Klein, 2006). A study from 2001 estimated mean daily intake of dioxin and dioxin-

like compounds, which include PCBs, to be 2.4 pg/kg/boy weight in male adults and 

2.2 pg/kg/body weight in female adults (Schecter et al., 2001). 

 

PCBs have been linked to a multitude of pathologies in humans and wildlife, ranging 

from developmental pathologies, endocrine pathologies, systemic effects, 

immunological, neurological and reproductive effects, as well as being linked to some 

cancers. In rats, PCB treatment was linked to higher cholesterol levels, increased 

blood pressure, as well as an increase in myocardial mass (Lind, Örberg, Edlund, 

Sjöblom, & Lind, 2004). In keeping with these findings, PCBs were found to be 

associated with hypertension  in humans (Peters, Fabian, & Levy, 2014; Yorita 

Christensen & White, 2011). Often found in combination with hypertension, type 2 

diabetes was also found to be associated with PCB exposure in humans (Airaksinen 

et al., 2011; Codru et al., 2007; Everett et al., 2007; Kim et al., 2014). As well as 

affecting the body systemically, PCBs have been shown to affect neurological 

development and behaviour in rats (Coburn, Gillard, & Currás-Collazo, 2005; 

Cromwell et al., 2007; Dziennis et al., 2008; Pruitt, Meserve, & Bingman, 1999; 
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Simmons, Cummings, Clemens, & Nunez, 2004) and on neurodegenerative disease 

such as Parkinson’s disease, dementia and amytrophic lateral sclerosis (ALS) in 

women (Steenland et al., 2006). 

 

Importantly, PCBs have been found to play a role in human development in different 

phases of life as well as having an effect on human reproduction. Developmentally, 

PCB exposure has been associated with cryptorchidism in males when exosed in 

utero (Brucker-Davis et al., 2008), as well as impaired visual evoked potentials (VEPs) 

in 15 month old children who had higher exposures to PCB congeners during 

breastfeeding (Riva et al., 2004). Furthermore, increased PCB ingestion in girls was 

associated with earlier onset of menarche, with a median age of 12.2 years (Denham 

et al., 2005) and higher serum levels of PCBs were associated with polycystic ovarian 

syndrome in Chinese women (Yang et al., 2015) . In males, PCBs negatively affected 

sperm motility (Jiang et al., 2017) and was associated with lower androgen levels 

(Vitku et al., 2016). 
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1.2.2.4 Phthalates 
 

Phthalates include phthalic acid and all phthalic acid diesters and are a group of 

chemicals that are mainly produced for the manufacturing of polyvinyl chloride plastics 

(PVC) (Benjamin et al., 2017) but they can also be found in tablecloths, tiles, 

upholstery, walls, shower curtains, carpets, garden hoses, pesticides, toys and 

cosmetic products (Biomonitoring Phthalates, Americas Children and the 

Environment, USEPA, 2017). As phthalates are still being commonly used in all 

aspects of industry, despite evident concerns about their safety, exposure to 

phthalates is ubiquitous. Phthalates have been measured in many human tissues and 

fluids including blood, urine, breastmilk, semen and placenta (Berger et al., 2018; 

Chang, Wu, Pan, Guo, & Lee, 2017; Duan et al., 2017; Fromme et al., 2011; 

Machtinger et al., 2018). The most common route of exposure in humans is oral 

ingestion, with inhalation and skin exposure also being important (Kimber & Dearman, 

2010). There have been a multitude of studies concerned with the health effects of all 

different kinds of phthalates, ranging from exposure during pregnancy, infancy, 

childhood, adolescence and adulthood. As with most EDCs, a large amount of 

associations between phthalate exposure and disease have been found in every stage 

of life. 

 

In pregnancy, higher concentrations of phthalates were associated with higher BMI 

and lower birth weight (Bellavia et al., 2017), and in utero exposure to phthalates in 

the 3rd trimester was associated to earlier pubertal onset in girls, indicative of acting 

on the gonadal axis (Watkins et al., 2017). There is also a relationship between 

elevated phthalate levels in the urine of pregnant women and occurrence of preterm 

birth (Ferguson, Mcelrath, Ko, Mukherjee, & Meeker, 2014). Prenatal exposure to 

phthalates also has been shown to be associated with adverse outcomes in cognition 

and behaviour in children including attention deficits, hyperactivity, lower IQ and 

poorer communication skills (Ejaredar, Nyanza, Eycke, & Dewey, 2015; Engel et al., 

2010; Kim et al., 2009; Kim et al., 2011; Miodovnik et al., 2010; Swan et al., 2010; 

Téllez-Rojo et al., 2013; Whyatt et al., 2011; Yolton et al., 2011). 

 

Pre-pubertal exposure to phthalates has also been associated with altered pubertal 

timing in girls (Kasper-Sonnenberg, Wittsiepe, Wald, Koch, & Wilhelm, 2017). 
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Furthermore, increased urinary phthalates were associated to both higher insulin 

resistance and higher body weight in children (Benjamin et al., 2017; Teitelbaum et 

al., 2012; Trasande, Spanier, Sathyanarayana, Attina, & Blustein, 2013; Trasande, 

Attina, Sathyanarayana, Spanier, & Blustein, 2013). In adults, increased phthalate 

levels were associate with cardiovascular effects such as heart-rate variability, obesity, 

type 2 diabetes, hypertension, upregulation of low grade inflammatory biomarkers and 

altered circulatory thyroid hormone levels (Bai et al., 2017; Dong et al., 2017; Jaimes 

et al., 2017; Park et al., 2017). 

 

1.2.2.5 Dichlorodiphenyltrichloroethane (DDT) 
 

DDT is the most widely known organochlorine insecticide and was developed in the 

1930s. It was used all throughout the 20th century as a pesticide and also to eradicate 

malaria, and it was banned in the U.S in the 1970s and in the U.K in 1986, due to its 

neurotoxic properties (Costa, 2015). Although the use of DDT has been discontinued 

in most countries, the bioaccumulation of the lipophilic compound and biomagnification 

in the food chain has caused the pesticide to still be relevant today, as humans are 

still commonly exposed to it mainly via their diets, although respiratory and dermal 

intake also play a minor role (Mansouri et al., 2017). It has been therefore classified 

as a persistent organic pollutant (POP). DDT and its derivates are stored in adipose 

tissue, and are excreted via the bile, urine and breast milk (Costa, 2015; Pirsaheb, 

Limoee, Namdari, & Khamutian, 2015) and have also been detected in the placenta 

(Toichuev et al., 2017). The neurotoxic effects of DDT have been known since at least 

the 1970s, and acute exposure to high doses of the substance can cause motor unrest 

and increase of spontaneous movements, increased susceptibility to fear and external 

stimuli, tremors progressing to tonic-clonic seizures, as well as death due to 

respiratory failure (Costa, 2015). 

 

A multitude of studies in recent years have shown that neurotoxicity is not the only 

adverse effect DDT is related to. As with other EDCs, DDT can have in utero effects 

that manifest later in life. This is supported by a study that related obesity in 12 year 

old boys with DDT exposure in utero (Warner et al., 2017) as well as a study that found 

changes in sex hormone levels of 12 year old boys (Eskenazi et al., 2017) after being 

exposed to DDT in utero. A study also found that DDT exposure in utero was related 
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to higher body weight in girls aged 1-2 years (Coker et al., 2018)  Furthermore, higher 

levels of cord blood DDT in newborns were associated with smaller head 

circumference (Arrebola, Cuellar, Bonde, González-Alzaga, & Mercado, 2016). 

 

In adults, DDT exposure has also been associated to various diseases. In men, 

exposure to DDT was associated with lower sperm quality, motility, concentration and 

altered morphology (Aneck-Hahn, Schulenburg, Bornman, Farias, & De Jager, 2006; 

Messaros et al., 2009). DDT was also associated with an increased rate of metabolic 

syndrome among adults including higher rates of hypertension, central obesity, 

dysglycemia and dyslipidemia (Rosenbaum, Weinstock, Silverstone, Sjödin, & Pavuk, 

2017) and type 2 diabetes (Evangelou et al., 2016) as well as impaired lung function 

(Ye, Beach, Martin, & Senthilselvan, 2016). In women, DDT has been associated with 

hypertensive disorders in pregnancy (Murray et al., 2018)  as well as polycystic ovarian 

syndrome (Guo et al., 2017). 

 

1.2.2.6 Phytoestrogens 
 

Phytoestrogens, classified into isoflavones, coumestans and lignans, are a group of 

nonsteroidal xenoestrogen found throughout the plant kingdom that have the potential 

to exert effects via their estrogenic function and therefore can be classified as EDCs. 

Although generally phytoestrogens have been studied for their health benefits, such 

as possible protective functions against cancer, atherosclerosis and osteoporosis 

(Patisaul & Jefferson, 2010) recent studies have been emerging that highlight less 

beneficial and possibly harmful effects of phytoestrogens such as younger age of 

menarche and a slower waning of infantile breast tissue in girls (Marks et al., 2017; 

Zung, Glaser, Kerem, & Zadik, 2008), uterine fibroids (D’Aloisio, Baird, DeRoo, & 

Sandler, 2010), Kawasaki disease (Portman, Navarro, Bruce, & Lampe, 2016), 

cardiovascular disease (Reger, Zollinger, Liu, Jones, & Zhang, 2016), and a reduction 

in chemotherapy sensitivity (Belcher et al., 2017) . Although the data on these 

compounds is often conflicting, it is important to note that any compounds that mimic 

hormones can have negative effects on the human body, although this is largely 

influenced by amount ingested, stage of human development, gender, and exposure 

to other EDCs which could potentiate this effect. Phytoestrogens are found in various 

plants such as berries, seeds, legumes fruits and nuts, but are most highly 
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concentrated as isoflavones genistein and dadzain in soy beans and soy products 

(Patisaul & Jefferson, 2010). 

 

1.2.2.7 Bisphenol A (BPA) 
 

Bisphenol A (BPA) is a compound first synthesized in 1891 (Tyl, 2014) which is now 

used in a variety of products such as plastics, the lining of aluminum cans and thermal 

receipts (Peretz et al., 2014) and is one of the emerging pollutants most frequently 

detected in the environment (Muhamad, Salim, Lau, & Yusop, 2016). BPA is an EDC 

and a xenoestrogen which interacts with estrogen receptors ERα and ERß, membrane 

bound estrogen receptors such as GPR30 and other receptors such as the thyroid 

hormone receptor (Peretz et al., 2014; Richter et al., 2007). 

 

Although BPA clearly shows estrogen-mimicking activity, BPA can also act as a 

selective estrogen receptor modulator (SERM) in the mouse uterus, and can inhibit 

androgen activity as well as having an anti-thyroid hormone effect, though these 

inhibitory effects at androgen and thyroid receptors occur at higher doses than 

estrogenic and anti-estrogenic effects (Lee, Chattopadhyay, Gong, Ahn, & Lee, 2003; 

Nagel, Hagelbarger, & McDonnell, 2001; Richter et al., 2007; Welshons, Nagel, & Vom 

Saal, 2006). Structurally, BPA consists of a phenolic and hydroxyl group bound to an 

aromatic ring, which can bind to other compounds to form polymers when used in the 

manufacturing process (Erler & Novak, 2010; Michałowicz, 2014; Muhamad et al., 

2016). Conditions such as heat or acidic or basic environments can cause leaching of 

BPA into its surroundings, leading to potential environmental and human exposure 

and health risks, with exposure to BPA being predominantly oral (Richter et al., 2007; 

Srivastava, Gupta, Chandolia, & Alam, 2015). Infants aged 0-6 months exclusively fed 

with canned liquid formula and using polycarbonate bottles have been estimated to 

have highest BPA exposures (Srivastava et al., 2015). 
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Figure 1.4 Similarity between BPA and E2. Estradiol is a type of estrogen and is an 
estrane steroid with 2 hydroxyl groups. BPA is a diphenylmethane derivative with two 
hydroxyphenyl groups. 
 
1.2.2.7 Windows of exposure to EDCs 
 

The idea that adult diseases can be caused by defects in development occurring in 

utero was developed in the late 1980s and throughout the 1990s (Barker Hypothesis) 

(Barker, 1992; Barker, 1997). Although EDCs can be harmful to human health when 

humans are acutely exposed to the chemical, and large quantities of EDCs can be 

immediately harmful, concerns have been raised about the delayed effects of EDCs, 

especially when the exposure takes place during a developmentally vulnerable time, 

i.e. during development in utero or in infancy. These early developmental windows are 

particularly vulnerable to harmful effects of EDCs because they occur when 

organogenesis and the development of tissues occur, and these events are controlled 

by finely regulated molecular and biochemical processes (Prusinski, Al-Hendy, & 

Yang, 2016).  
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Figure 1.5 EDC exposure in utero can lead to diseases and developmental problems 
later in life, such as in childhood, puberty or adulthood. Fetal EDC exposure has been 
shown to lead to altered onset of puberty in offspring, as well as ovarian pathologies 
such as PCOS which can lead to fertility later in life. Furthermore, EDC exposure can 
be linked to the development of obesity in childhood and/or adulthood, further 
exacerbating  diseases such as type 2 diabetes, and increasing proneness to certain 
cancers, whereas studies have found direct causal links between certain EDCs and 
the development of sometimes rare cancers in adulthood.  
 

Historically, it was found that the prescription of DES to pregnant women led to their 

daughters developing rare reproductive cancers and higher rates of breast cancer, as 

well as complications during pregnancy or even spontaneous abortion (Reed & 

Fenton, 2013). Because it is difficult to retrospectively identify exposures in utero, most 

studies concerning exposures in the womb and development of health problems later 

in life have been conducted on animals.  

 

Studies in rats have found that exposure to EDCs while pregnant can disturb follicle 

generation in the offspring as well as altering ovarian gene expression, factors which 

can lead to infertility later in life (Lawson et al., 2011; Santamaría, Durando, Muñoz 

De Toro, Luque, & Rodriguez, 2016; H.-Q. Zhang et al., 2012). Mixtures of EDCs given 

in utero were found to decrease rat follicle reserves and to accelerate reproductive 

ageing (Johansson et al., 2016). In keeping with EDCs potentially causing aberrant 
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development of the ovaries, the exposure in utero of different species to androgens 

has been linked to polycystic ovarian syndrome (PCOS). In humans, increased 

maternal testosterone levels at 18 weeks pregnancy have been linked to increases of 

anti-Mullerian hormone (AMH) levels in female offspring of those mothers during 

adolescence, which increases the risk of developing PCOS later in life (Hart et al., 

2010; Hewlett, Chow, Aschengrau, & Mahalingaiah, 2017). In rodents, phthalate 

exposure in utero was linked to the development of phenotypes related to PCOS later 

in life (Manikkam, Tracey, Guerrero-Bosagna, & Skinner, 2013).  Finally, fetal 

exposure to DDT predicted an increased risk of breast cancer in adulthood when 

controlling for maternal lipids, rage, age weight and breast cancer history (Cohn et al., 

2015; Mallozzi, Bordi, Garo, & Caserta, 2016).   

 

1.2.3 Estrogen receptor structure and function 
 

1.2.3.1 Overview 
 

Estrogens are crucial hormones in the human body, regulating many vital processes 

such as cell growth, cell reproduction, and development and differentiation. Estrogen 

is an important sex hormone, which regulates aspects such as growth, physiology and 

development of the human reproductive system, and also plays a role in the 

development and function of the cardiovascular, skeletal and neuroendocrine system 

(Lee, Kim, & Choi, 2012). Moreover, it regulates sympathetic activation, inflammation, 

glucose metabolism, and lipid metabolism (Barton, 2016). The predominant estrogen 

found in the body, 17ß-estradiol (E2) is primarily synthesized in the ovary of 

premenopausal women, whereas in postmenopausal women and in men, E2 is 

synthesized in extragonadal tissues such as the brain and adipose tissue (M. Jia, 

Dahlman-Wright, & Gustafsson, 2015). Estrogen receptors α and b (ERα and ERb) 

can act as transcription factors that are activated through the binding of estrogen, after 

which they bind to DNA within target gene promoters via their Estrogen Response 

Elements (EREs). ERα and ERb have different and overlapping functions and are 

often found in different tissues(Lee et al., 2012). 
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1.2.3.2 Estrogen receptor structure 

 

Like most other nuclear receptors (NRs), ERs contain distinct domains that are 

structurally and functionally conserved (Heldring et al., 2007). ERs consist of the DNA 

binding domain (DBD), the COOH- terminal ligand-binding domain (LBD) and the NH2- 

terminal domain which is the most variable domain. Activation functions (AF) are 

located at the DBD and LBD and recruit coregulatory proteins to the receptor when 

bound to DNA (Heldring et al., 2007). The two ERs have a similar affinity to E2 and 

also bind to the same DNA elements, though they are coded by different genes which 

are located on separate chromosomes (Heldring et al., 2007).  

 

 
Figure 1.6 Structure of estrogen receptors. Each contain the domains A-F. A/B: 
transactivation mediation in the absence of ligand. C: Binding sites of EREs. D: hinge 
region. E and F: estrogen and estrogenic compound binding sites (Karimian, Chagin, 
& Sävendahl, 2011). 
 

1.2.3.3 Estrogen receptor signaling  
 

There is a high order of complexity of ER signaling. Upon ligand binding, ERs dimerise, 

translocate to the nucleus and bind to specific estrogen response elements (ERE) on 

DNA promoter regions, where they can also interact with other transcription 

complexes, thereby influencing the transcription of genes unspecific for the binding of 

ligand bound ERs (Heldring et al., 2007). ERs can also be phosphorylated by activated 

kinases -in a ligand independent fashion-, dimerise and regulate gene transcription as 

well, which can be seen in certain hormone independent tumours (Kampa, Pelekanou, 

Notas, Stathopoulos, & Castanas, 2013). 

 

ERs can also exert effects via different pathways, apart from the canonical nuclear 

signaling (Kampa et al., 2013). E2 can bind to membrane-bound ERα stimulating G-

proteins and processes such as inositol phosphate generation, Ca2+ influx in to the 

cell, activation of phospholipase C, the ERK/MAPK pathway and activation of the 
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P13K/AKT pathway within minutes or even seconds of binding (Marino, Ascenzi, & 

Acconcia, 2006). ERα and ERß can become membrane bound through a process 

called palmitoylation and other lipid modification mechanisms, where they can exert 

the previously mentioned non-genomic functions (Meitzen et al., 2013). 

 

Furthermore, non-genomic pathways activated by estrogens can also be mediated via 

the membrane-bound g-protein coupled receptor GPR30, or GPER. GPR30 is a 

GPCR discovered in 1996 (Owman, Blay, Nilsson, & Lolait, 1996; Revankar, Cimino, 

Sklar, Arterburn, & Prossnitz, 2005) and binds estrogen with an affinity 10x higher than 

ERa  (Filardo, Quinn, Bland, & Frackelton, 2000) . GPR30 plays a role in the 

physiology of the reproductive system, endocrine metabolism, and adipocyte function, 

as well as being involved in reproductive cancers, male fertility, osteoporosis, obesity, 

hypertension, auto-immune diseases and ageing. It is also responsible for abnormal 

estrogen mediated vasoconstriction and elevated blood pressure in female mice 

(Barton, 2016). Importantly, numerous endocrine disrupting chemicals, including 

atrazine, BPA, chlorinated hydrocarbons and nonylphenol have been found to activate 

GPR30 due to their xenoestrogenic characteristics (Barton, 2016; Prossnitz & 

Arterburn, 2015). In the case of BPA, it has been shown to bind to GPR30 with a 

similar affinity as E2 (Alonso-Magdalena et al., 2005; Nadal et al., 2000). 
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Figure 1.7 Interplay of estrogen receptor nuclear and non-nuclear receptor signaling 
(Björnström & Sjöberg, 2005). Classically, ERs are nuclear receptors that bind to 
estrogen response elements (EREs), in order to affect cellular physiology via gene 
regulation. More recently, estrogenic compounds have been found to also bind to 
membrane-bound receptors, such as GPR30 or membrane bound ERa or ERb. 
Mechanisms of action are mediated via intracellular pathways activating intracellular 
targets such as P13K, MAPK and AKT.  
 

1.2.4 Bisphenol A and its effects on pregnancy, development, and 
female reproduction 
 

1.2.4.1 Health risks associated with BPA 
 

A multitude of health risks have been implied in relation to BPA exposure in humans, 

from cancers to developmental abnormalities, fertility problems and metabolic 

diseases to name a few. Studies have shown that BPA has neurobehavioral, 

neurotoxic, and neuroendocrine effects (Srivastava et al., 2015). In both males and 

females, changes in hypothalamus-pituitary-gonadal axis were induced by BPA and 

prolonged estrous cycles were observed in mice (Rubin, Murray, Damassa, King, & 

Soto, 2001; Srivastava et al., 2015). Furthermore, BPA exposures during development 

affect brain structure and function as well as behavior in mice (Richter et al., 2007). 

BPA has the capacity to contribute to metabolic diseases such as diabetes mellitus 

and obesity, with BPA accumulating in adipose tissue and increasing the number and 
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size of adipocytes, thereby contributing to weight gain (Srivastava et al., 2015). 

Furthermore, BPA exposure has been linked to carcinogenicity, especially of the 

prostate and mammary gland (Cheong et al., 2016; Marchese & Silva, 2012). Prenatal 

BPA exposure may influence the development of prostate cancer in later life and also 

may increase the frequency of mammary tumours through either alteration of fetal 

glands or by mediating estrogen-dependent growth of tumour cells (Srivastava et al., 

2015). In terms of male and female fertility, BPA has been linked to various effects on 

the reproductive system. In men, high concentrations of BPA lowered sperm motility 

and kinematics as well as causing poor fertilization (Rahman et al., 2015). 

Furthermore, men with higher urinary BPA concentrations due to work exposure 

reported more sexual dysfunction, reduced sex drive and erectile dysfunction than 

unexposed men (Cantonwine, Hauser, & Meeker, 2013; D. Li et al., 2010). In females, 

studies have shown an increase in infertility due to BPA exposure caused by disruption 

of oocyte maturation and E2 production in the ovary, as well as early pregnancy loss 

(Cantonwine et al., 2013). In a population of women undergoing IVF, a positive 

correlation between BPA concentrations in urine and odds of implantation failure was 

described (Cantonwine et al., 2013; Ehrlich et al., 2012). Takeuchi et al found a strong 

relationship between serum BPA and androgen concentrations, possibly providing a 

link to ovarian dysfunction such as PCOS (Takeuchi, Tsutsumi, Ikezuki, Takai, & 

Taketani, 2004). 

 

1.2.4.2 BPA metabolism and concentrations 
 

In the human body, BPA has been detected in fluids such as fetal and maternal 

plasma, amniotic fluid and follicular fluid. It has also been detected in the placenta 

(Balakrishnan, Henare, Thorstensen, Ponnampalam, & Mitchell, 2010). Variable 

concentrations have been found in these compartments, ranging from 0.3 to 18.9 

ng/mL in the maternal plasma and 0.2 to 9.2 ng/mL in the fetal plasma, as well as 1.0 

to 104.9 ng/g in term placenta in humans (Balakrishnan et al., 2010; Schönfelder et 

al., 2002). The major part of 14C-BPA (14C-labeled BPA) is excreted in feces and urine, 

with the major urine metabolite was determined to be 14C-BPA-monoglucuronide 

(Pottenger et al., 2000; Schönfelder et al., 2002). BPA-monoglucuronide is the 

biologically inactive form of BPA (Trdan Lušin, Roškar, & Mrhar, 2012), and rapid 

conversion to this form after oral administration results in low BPA bioavailability. 
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However, studies have shown that very low levels of BPA can alter the development 

of reproductive organs, such as the mammary gland and the vagina in mice 

(Schönfelder et al., 2002). After administering a single oral dose of BPA, conjugation 

is rapid and almost complete after administration, with less than 1% of total BPA being 

unconjugated and that elimination of these conjugates in the urine occurs largely within 

24 hours (Thayer et al., 2015). However, biovailability in rats depends on the 

administration route, with the lowest bioavailibilty resulting from oral administration, 

while subcutaneous or intraperitoneal doses resulted in higher bioavailibilities 

(Pottenger et al., 2000). Interestingly, in models of placental perfusion, there was a 

gradual decline of BPA in the maternal compartment and a simultaneous increase in 

BPA concentrations in the fetal compartment, showing that BPA can cross the 

placenta, even at low levels (Balakrishnan et al., 2010). Confirming this, Ikezuki et al 

found BPA to be present in the amniotic fluid at levels that are five-fold higher than 

those found in the corresponding maternal sera (Ikezuki et al., 2002), indicating a 

possible active transport of BPA across the placenta. 

 

1.2.4.3 BPA and its effects on pregnancy, development and the placenta 
 

Studies have shown that BPA has effects on human pregnancy and the placenta, 

resulting in conditions that could be harmful to both mother and child and potentially 

influencing the development of the fetus and causing problems later in life. There is a 

correlation between BPA exposure in utero and implantation problems, as well as 

pathological pregnancies, pre-term births and low birth weight. Furthermore, BPA 

exposure has been linked to changes in fetal development concerning a vast variety 

of organs and systems in utero. Not only does BPA have the potential to disrupt or 

alter development of the fetus, but -as mentioned previously- exposure to BPA during 

development inside the womb can also lead to health issues in later life. Furthermore, 

structure and function of vital organs during pregnancy such as the placenta can be 

altered, adding to or causing effects that may result in pathological pregnancies, IUGR 

and even early and late miscarriage. 

 

One pregnancy related complication BPA has been linked to is preeclampsia. 

Preeclampsia (PE) is a pregnancy disorder that is defined by a newly diagnosed 

hypertension and proteinuria or, in the absence of proteinuria thrombocytopenia, renal 
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insufficiency, impaired liver function, pulmonary oedema or visual or cerebral problems 

(Gathiram & Moodley, 2016). PE is one of the principal causes of maternal mortality, 

and is associated with health risks that develop later in life such as obesity and type II 

diabetes (Gathiram & Moodley, 2016; O’Tierney-Ginn & Lash, 2014).  Because the 

main characteristic of (early-onset) PE is inadequate spiral artery transformation, 

resulting in placental hypoperfusion and therefore inadequate supply of nutrients to 

the fetus, fetal growth restriction(FGR) or IUGR is often the result (Gathiram & 

Moodley, 2016). Urinary concentrations of BPA measured in pregnant women were 

significantly associated with an increased risk of preeclampsia, thus demonstrating a 

positive correlation between elevated levels of PBA and PE  (Cantonwine et al., 2016). 

Moreover, normotensive women had significantly lower BPA levels in the placenta 

than women with preeclampsia (Leclerc, Dubois, & Aris, 2014). BPA was also 

associated with an increased fms-like tyrosine kinase-1 (sFlt-1, or VEGFR-1) to 

placental growth factor (PlGF) ratio, and that lower levels of circulating PlGF and 

higher levels of sFlt-1 in pregnancy are associated with a higher risk of the 

development of diseases related to altered trophoblast function, such as PE 

(Ferguson, McElrath, Cantonwine, Mukherjee, & Meeker, 2015; Widmer et al., 2007). 

Detrimental effects on cytotrophoblasts such as apoptosis and necrosis due to low 

doses of BPA were observed by Benachour and Aris, and the authors postulated an 

outcome in vivo leading to pathologies such as PE, adverse pregnancy outcomes, 

preterm birth, IUGR and pregnancy loss (Benachour & Aris, 2009). 

 

Not only does BPA increase the risk of adverse effects in pregnancy, but studies have 

shown that BPA is linked to various effects inhibiting the onset of pregnancy all 

together. Firstly, there may be a correlation between BPA exposure and infertility. 

Brieño-Enriquez et al showed that BPA exposure in early stages of meiosis can result 

in higher incidences of crossing-over and an increase of oocyte degeneration (Brieño-

Enríquez et al., 2011). In late meiosis, BPA exposure can result in an increase of 

meiotic abnormalities and aneuploidy in oocytes (Hodges et al., 2002; Machtinger & 

Orvieto, 2014). Another study reported meiotic spindle alterations, chromosomal 

malalignment, an increase in meiotic arrest and aneuploidy were all associated with 

exposure to BPA in the final stages of meiosis (Hunt et al., 2003; Machtinger & Orvieto, 

2014). BPA exposure has been linked with impairment of follicular development 

(Machtinger & Orvieto, 2014; Peretz, Gupta, Singh, Hernández-Ochoa, & Flaws, 
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2011), as well as epigenetic changes such as alterations in DNA-methylation and 

histone modification, leading to meiotic errors, which could inhibit pregnancy 

(Machtinger & Orvieto, 2014; Trapphoff, Heiligentag, El Hajj, Haaf, & Eichenlaub-

Ritter, 2013) . 

 

Besides infertility inhibiting the onset or development of pregnancy, another major 

factor that regulates development of a viable pregnancy is implantation. Improper 

implantation of the embryo leads to insufficient development of the fetal-maternal 

interface, making the further development of pregnancy impossible. Treating mice with 

BPA lead to “improper endometrial epithelial and stromal functions,” thereby being 

detrimental to embryo implantation and subsequent establishment of gestation. This 

effect was brought on through BPA affecting the PGR-HAND2 pathway (Li et al., 

2016). A series of studies produced by Berger et al found that administration of BPA 

disrupted normal implantation in mice and resulted in a decrease of implantation sites. 

Furthermore, exposure to BPA in the first four days of pregnancy reduced litter size 

significantly and was associated with a significant reduction of pregnancies (Berger, 

Foster, & deCatanzaro, 2010; Berger, Hancock, & deCatanzaro, 2007; Berger, Shaw, 

& deCatanzaro, 2008; Machtinger & Orvieto, 2014). BPA treatment of pregnant mice 

resulted in a complete absence of implantation sites, delayed implantation and 

increased perinatal mortality, possibly due to the direct disruption of uterine receptivity 

towards blastocyst implantation due to the estrogenic properties of BPA (Machtinger 

& Orvieto, 2014; Xiao, Diao, Smith, Song, & Ye, 2011). More recently, it has been 

shown that high doses of BPA significantly decreased expression of the adhesion 

proteins ß3 and trophinin in the endometrium and in blastocysts, resulting in adhesion 

failure of the blastocyst and thereby failure of implantation in mice (Pan et al., 2015). 

 

The development of the fetus during pregnancy or of the offspring at birth or in later 

developmental stages in life has also been studied in the context of BPA exposure. 

There is a potential relationship between BPA exposure and low birth weight of infants, 

especially female (Huo et al., 2015). Besides affecting birth weight, high doses of BPA 

can affect growth of offspring in the first years of life (Guida et al., 2015; Morrissey et 

al., 1987). Low dose exposure to BPA, more representative of actual human 

exposures can also induce behavioral and neuronal alterations and cognitive deficits 

(Guida et al., 2015). In general, fetal malformation was higher in offspring from 
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mothers with higher levels of free circulating BPA (Guida et al., 2015). BPA exposure 

in utero can also cause disruptions of normal “sexually dimorphic behaviours” later in 

life, such as exploration, social interactions, and sexual and parental behaviour, 

affecting males and females and different species differently (Palanza, Nagel, 

Parmigiani, & Vom Saal, 2016). Furthermore, pregnant mice that were exposed to 

BPA in the range of human exposure showed increases in prostate volume and a 

decrease in sperm production of adult male offspring (vom Saal et al., 1997; Vom Saal 

et al., 1998; Witorsch, 2002). Another study showed a relationship between low-dose 

in utero BPA exposure with an increased body weight of prepubertal male and female 

mice (Howdeshell, vom Saal, Hotchkiss, Thayer, & Vandenbergh, 1999; Witorsch, 

2002). Prenatal exposure to BPA is associated with disruptions in organ development 

in mice such as lung (Hijazi, Guan, Cernea, & Yang, 2015), liver (DeBenedictis, Guan, 

& Yang, 2016) and mammary gland (Grassi et al., 2016) alterations. Several studies, 

such as a study by Hoepner et al, have found that BPA exposure might be associated 

with adiposity in childhood (Hoepner et al., 2016) and later in life. Furthermore, a 

relationship between low dose BPA exposure during critical developmental periods 

including fetal development and the development of metabolic diseases including type 

II diabetes has been documented (Alonso-Magdalena, Quesada, & Nadal, 2015). 

 

1.2.5 Placental modeling using animal models, 2D human tissue 
culture and 3D human tissue culture 
 

1.2.5.1 Overview 
 

Understanding placental physiology in humans is crucial in order to develop reliable 

models to test placental function under a multitude of different conditions. As the 

placenta is the least understood yet one of the most vital organs, not only for the 

viability of the pregnancy but also for the health of the offspring in years to come 

(Guttmacher, Maddox, & Spong, 2014), new reliable models for testing are 

desperately needed. As gestation and placental function and anatomy vary vastly 

among different species, models that come as close as possible to human in vivo 

physiology are necessary in order to make specific and sensitive predictions. Many 

studies of placental physiology and pathology have focused on animal models and 
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placental ex vivo explants. Although studies on these models are valuable to acquire 

new knowledge, the question remains whether they can provide information 

physiologically relevant to human in vivo placental physiology. 

 

1.2.5.2 Animal models 
 

Animal models have been proven not to be ideal for the study of human placental 

physiology, as many aspects, such as the high level of invasiveness of the trophoblast, 

are unique to humans (Carter, 2007; Orendi et al., 2011). Although studies on 

placental explants from humans benefit from investigating the exact tissues and cells 

needed to understand human placental physiology, these term placentas have often 

already reached the maximum stage of development, or have even begun to 

degenerate, possibly not accurately mimicking physiology in earlier stages of 

development, which are often crucial in development of gestational pathologies or fetal 

development. It is evident that the best models today for human organ physiology in 

cell culture, especially in the fields of cancer and toxicology, use 3-dimensional (3D) 

conditions, as extracellular parameters are more physiologically relevant, allowing 

cells to grow into organoid structures (Lelièvre, Kwok, & Chittiboyina, 2017). Some 

studies have shown that growing placental cells in 3D as opposed to 2D monolayers 

leads to a change in cell structure and physiology (James, Carter, & Chamley, 2012; 

McConkey et al., 2016; Muoth et al., 2016). Most of these studies, however, express 

a need for further research into 3D placental models to validate findings, as there is 

still a paucity of information regarding placental cell physiology within 3D conditions. 

 

1.2.5.3 Villous explants 
 

Different types of ex vivo and in vitro models for the study of placental physiology exist. 

To study actual placental tissue, studies have used placental (villous) explants. Most 

commonly, villous explants are used to describe effects on placental differentiation, 

proliferation, syncytial fusion and apoptosis (Orendi et al., 2011). The availability of 

fresh placental tissue is hard to come by, and experiments must be done immediately 

after placental delivery. Another method of human placental testing is using primary 

trophoblasts in culture. Placental tissue is trypsinized and various other steps which 

have been validated over the years are used to purify villous trophoblasts to use in cell 
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culture. Studies have used early placental cells from chorionic villus sampling (Seeho, 

Park, Rowe, Morris, & Gallery, 2008), but most studies use term placental tissue to 

extract primary trophoblasts (Orendi et al., 2011; Seeho et al., 2008).  

 

1.2.5.4 Placental cell lines 
 

Although the study of primary trophoblasts is an ideal model when considering that 

cells are directly harvested from human placentae and do not need to be immediately 

used as they can be cryopreserved, a substantial disadvantage to primary 

trophoblasts is their inability to proliferate in culture, resulting in a culture time of only 

a couple of days, making long-term experiments unfeasible (Orendi et al., 2011). In 

order to circumvent small culture windows, most studies employ trophoblastic cell lines 

for cell culture, which have been immortalized and can be passaged multiple times. 

Cell lines that have been derived from primary trophoblasts and transfected with the 

SV40 virus such as the SGHPL group and the HTR-8/SVneo cell line benefit from their 

primary trophoblast origin, however, these cells are HLA and sometimes vimentin 

positive, whereas the primary trophoblast does not express HLA or vimentin and 

therefore should not be considered when searching for a surrogate (King, Thomas, & 

Bischof, 2000; Orendi et al., 2011). Cell lines derived from choriocarcinoma, such as 

BeWo, JEG-3 and Jar, although not derived from primary trophoblasts, show similar 

characteristics of primary trophoblasts, such as the expression of hCG, hpl, estradiol, 

estrone and progesterone as well as being vimentin and HLA negative in the case of 

BeWo and JEG-3 cell lines (Wolfe, 2006). Additionally, BeWo cells retain the ability to 

form syncytia when being treated with forskolin or 8-Br-cAMP (Orendi et al., 2011; 

Wice, Menton, Geuze, & Schwartz, 1990; Wolfe, 2006), one of the reasons this cell 

line is highly valued in the study of placental physiology (Wolfe, 2006). In this study, 

two different cell lines derived from choriocarcinoma, BeWo and JEG-3 are used to 

model the human placenta. 
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1.3 Aims and objectives 
 

1.3.1 General hypothesis 
 

To date, there is a paucity of research focusing on the effects of BPA on the human 

placenta. As placental function is crucial to fetal development and pregnancy outcome, 

the general aim of this project is to elucidate how BPA affects placental function. As 

there is need for relevant placental models that accurately represent the human 

placenta, we have developed a 3D placental model using the BeWo placental cell line. 

 

1.3.2 Aims 

 

1. To validate the cell-lines BeWo and JEG-3 as in vitro placental models by 

determining expression of estrogen receptors and validate the syncytialisation process 

of the BeWo cell line. 

 

2. To determine the effects of BPA on the placental cell lines BeWo and JEG-3, by 

studying effects on: cell proliferation, regulation of ERs, and changes in the 

phosphorylation status of key MAPK. 

 

3. To establish a comprehensive map of genes that are altered in vitro, following 

treatment with BPA using a non-biased screen (microarray analysis). 

 

4. To validate a 3D placental model using BeWo cells and placental explants.  

 

5. To compare results with term placental villous explants that have been treated with 

BPA for receptor regulation, gene upregulation, hormone expression and 

syncytialisation. 
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Chapter 2 
Methodology 

2.1 Tissue Culture 
 

2.1.1 Cell Lines 
 

BeWo:  
Choriocarcinoma derived cell line with human trophoblastic qualities able to cellularly 

differentiate in vitro to syncyciotrophoblast cells using 8-bromo-cAMP or forskolin 

(Kristina Orendi, Gauster, Moser, Meiri, & Huppertz, 2010; Pattillo & Gey, 1968; Wice 

et al., 1990). 

 

Karyotype Cellular product 

Modal number =86; 

range=71 to 78 

Stemline number is 

hypotetraploid 

hormones: progesterone; 

human chorionic 

gonadotropin (hCG); human 

chorionic sommatotropin 

(placental lactogen); 

estrogen; estrone; estriol; 

estradiol. Keratin. 

Figure 2.1 Characteristics of the BeWo cell line (ATCCÒ CCL-98Ô), adapted from 
www.lgcstandards-atcc.org, copyright 2016. 
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JEG-3:  

Human placental choriocarcinoma cell line derived from serial cloning of 

BeWo (Pattillo & Gey, 1968).  

 

Figure 2.2 Characteristics of the JEG-3 cell line (ATCCÒ HTB-36Ô), adapted from 
www.lgcstandards-atcc.org, copyright 2016. 
 

2.1.2 Tissue culture practice 
 

Maintenance of an aseptic environment was assured by using a HERAsafe laminar 

flow cabinet (Heraeus). Equipment and surfaces were disinfected with continued 

applications of 70% industrial methylated spirits (IMS) dissolved in dH2O. Sterilised 

flasks and plasticware were used or sterilized by autoclaving, all non-sterile. 

 

2.1.3 Maintenance of cell lines 
 

BeWo cells were grown in Ham F12 Medium (GibcoÔ) supplemented with 10% fetal 

bovine serum (FBS) (GibcoÔ) and 0.1% of Penicillin/Streptomycin to avoid cross-

contamination. The cells were maintained in 75cm2 non-treated culture flasks (NuncÔ) 

under standard culture conditions in a humidified atmosphere containing 5% CO2 at 

37°C. The cells were confluent after 48 to 72 hours and subculturing of BeWo cells 

consisted in splitting the cells 1:3 or 1:5 into 19ml of complete Ham F12 medium per 

culture flask. The cells were detached by incubating in 2.5 ml of TrypLEÔ Express 

(GibcoÔ) for a few minutes and by tapping the culture flask gently. Fresh media was 

added and cells were split 1:3 or 1:5. Media was changed every 24-48 hours according 

to supplier’s suggestions to prevent glucose exhaustion in the culture.  

Karyotype Cellular product 

Hypertriploid. Modal number =71 Human chorionic gonadotropin (hCG), 

human chorionic somatomammotropin 

(human placental lactogen), 

progesterone 
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JEG-3 cells were maintained in Minimum Essential Medium (MEM) (1X) + GlutaMAX 

(GibcoÔ) supplemented with 0.1% Penicillin/Streptomycin to avoid cross-

contamination (GibcoÔ) and 10% (v/v) heat-inactivated fetal bovine serum (FBS) 

(GibcoÔ). The same procedure for subculturing BeWo cells was used for JEG-3 cells 

and cells were kept in standard culture conditions. 

 

2.1.4 Seeding of JEG-3 cell line and BeWo cell line for treatment 
 

Cells were plated on 6-well plates (NuncÔ) at a specific seeding density with 2 ml of 

the appropriate media. Cells were grown and allowed to attach for 24 hours and 

incubated at standard culture conditions. After 24 hours, cells were treated depending 

on the experiment. 

 

2.1.5 Thawing cells  
 

Before removing frozen cells from liquid nitrogen, a 752 cm flask containing 19ml of 

fresh media was incubated under standard culture conditions for 2 hours, for the media 

to equilibrate. Next, a cryovial (Nalgene) of frozen cells was removed from liquid 

nitrogen and thawed carefully in the water bath at 37°C. When the cell suspension 

was completely defrosted, the solution was transferred into the flask with a pipette and 

then moved into the incubator overnight to allow the cells to adhere. The next morning, 

media was replaced with fresh media in order to remove the excess of DMSO that was 

used to freeze the cells down. 

 

2.1.6 Cryopreserving cells  
 

In order to make stocks of cells, several flasks of cells were grown under standard 

culture conditions. First, the media was aspirated and the cells were incubated with 

2.5ml TrypLEÔ Express for a few minutes in order for the cells to detach from the flask 

surface. Cells were diluted in 5ml of media and then centrifuged at 12,000rpm for 5 

minutes. Supernatant was discarded and the cell pellet was resuspended in cold, fresh 

media containing 10% FBS, 1% penicillin/streptomycin and 10%  dimethyl sulfoxise 

(DMSO) (Fisher BioreagentsÔ). 1 ml of this solution was pipetted into each cryovial. 
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The cryovials were frozen gradually in a container (Nalgene), prior to being moved to 

liquid nitrogen after 24 hours.  

 

2.2 Syncytialisation of BeWo cell line 
 

2.2.1 Syncytialisation using forskolin 
 

BeWo cells grown in 75cm2 flasks were seeded onto 6 well plates and left to grow in 

the incubator at standard culture conditions with 2 ml of media. Forskolin (Fisher 

BioreagentsÔ) was dissolved in DMSO at a concentration of 0.1M. BeWo cells were 

treated with 50μM and 100μM forskolin over a total period of 72 hours. Forskolin 

treatment was renewed every 24 hours. 

 

2.2.2 Syncytialisation using 8-Bromo-cAMP 
 

BeWo cells were seeded onto 6 well plates and left to grow for 24 hours in an incubator 

at standard culture conditions with 2 ml of media. Media was changed and cells were 

treated with 50μM 8-Bromo-cAMP (Tocris BioscienceÔ) dissolved in sterile H2O for 

72 hours. 

 

2.3 Treatment of BeWo Cell line with Bisphenol A (BPA) 
 

Cells were plated on 6-well plates at a specific seeding density with 2 ml of the 

appropriate media. Cells were grown for 24 hours and incubated at standard culture 

conditions. After 24 hours, media was changed and cells were treated for 24 hours 

with 3 nM Bisphenol A (BPA) (Sigma-AldrichÒ) dissolved in ethanol, 10 nM BPA, 30 

nM b-estradiol (E2), or pure ethanol as a control. After 24 hours, cells were processed 

for further experiments. 

 

 

 

 



 

53 
 

2.4 3D Cell Culture 
 

2.4.1 3D cell culture using MatrigelÒ 
 

A Millicell 8-well EZslide was used to grow cells in 3D. Matrigel Matrix (Corning) was 

thawed and kept cold. 50 μl MatrigelÒ was pipetted into each well avoiding bubbles 

and the slide was placed in the incubator at 5% CO2 and 37°C for 15 minutes to solidify. 

In the meantime, BeWo cells grown in 75cm2 flasks were grown in 3D. First, media 

from flasks was removed and cells were incubated for a couple of minutes with 2.5 ml 

of TrypLE. The flask was given a tap to dislodge cells and 5ml of media were added 

to the flask. After some resuspension, cells were transferred to a 15ml tube. Cells were 

counted using FastRead 102 disposable counting chambers (Immune Systems). Cells 

were diluted with media to yield 10,000, 15,0000, 20,000 and 25,000 cells/ml 

depending on experiment. Equation used: 

 

Each counting chamber consists of ten 4x4 grids.  The volume above each 4x4 grid is 

10-4ml (0.1ml). The concentration (counts/ml) is given by: 

 
 
counts/ml =                      total counts                        x 104 x sample dilution 

(if any)  number of complete 4x4 grids counted 

 

 

1800 μl of media containing 2% MatrigelÒ was prepared, and 1800 μl diluted single 

cell suspension was added to this. 400 μl of media plus MatrigelÒ was added to each 

well, and slides were left in an incubator at 5% CO2 and 37°. Media was changed 

adding 400 μl of media with 2% MatrigelÒ to each well every four days. 

 

2.4.2 Concentration optimisation of BeWo 3D culture 
 

Concentration of seeded BeWo cells/ml was optimised for 3D cell culture by seeding 

four different concentrations on one slide and imaging cell growth every day. Wells 1 

and 2 were seeded at a density of 5,000 cells/ml, wells 2 and 3 were seeded at a 
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density of 7,500 cells/ml, wells 4 and 5 were seeded at a density of 10,000 cells/ml 

and wells 7 and 8 were seeded at a density of 12,500 cells/ml. Optimal seeding density 

was determined by confluence of cells after 12 days of growth.  

 

2.4.3 Time point optimisation of BeWo 3D culture 
 

Optimal growth time of BeWo cells in 3D was determined by seeding cells at 10,000 

cells/ml at different time points. Wells 1 and 2 were seeded at day zero, wells 3 and 4 

were seeded at day four, wells 5 and 6 were seeded at day eight, and wells 7 and 8 

were seeded at day 12. Optimal growth time of BeWo cells was determined by 

confluence of cells after 4, 8, 12, and 16 days. 

 

2.4.4 3D cell culture using GrowDexÒ hydrogel 
 

Cells were first grown in 75cm² flasks until confluent (NuncÔ). GrowdexÒ hydrogel 

was diluted with the appropriate media. 100 µl of hydrogel was added to each well of 

a MillicellÒ 8-well EZslide (Merck Millipore). Cells were incubated for a couple of 

minutes with 2.5 ml of TrypLE ExpressÔ. The flask was given a tap to dislodge the 

cells and 5 ml of media were added to the flask. After some resuspension, cells were 

counted using the FastRead 102 disposable counting chamber system as previously 

described. Cells were diluted to the appropriate concentration and 200 µl of cell 

suspension were added to the top of the hydrogel. After 7 days, 100µl was added and 

100µl removed as to not disrupt the cells and this process was repeated every 7 days. 

 

2.4.5 Concentration and time point optimization of 3D cell culture 
 

Cells were seeded in concentrations of 40,000, 60,000 and 80,000 cells/ml and 

imaged every 5-7 days in order to determine optimal seeding density. Different 

concentrations of hydrogel were used: 0.5%, 0.8% and 1%. Cells were grown for 21 

days. Imaging was used to determine the optimal time points of growth, optimal 

seeding density and optimal hydrogel concentrations.  
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2.5 Total RNA extraction from cells 
 

2.5.1 Sigma-Aldrich GenElute Mammalian Total miniprep kit 
 

Cells were grown in 6-well plates and treated as mentioned above. RNA was extracted 

using the GenElute Mammalian Total RNA miniprep kit (Sigma-Aldrich), following the 

manufacturer’s instructions. Cells were lysed directly in the wells using Lysis solution 

complemented with an appropriate amount of β-mercaptoethanol (2-ME) per RNA 

preparation (10μl of 2-ME for each 1ml). The side of the wells was tapped so that the 

solution would cover the surface of the well. The culture vessel was let to sit for 

approximately 2 minutes and then tilted on the side to allow collection of the cell lysate. 

To allow the removal of cellular debris and DNA, the lysed cells were pipetted into a 

filtration column and then centrifuged at 13,000 x g for 2 minutes. The filtration column 

was discarded and an equal amount of 70% ethanol solution was added to the filtered 

lysate. After a brief vortex, approximately 700μl of solution was pipetted into the 

binding column and centrifuged at maximum speed for 15 seconds. The flow-through 

was discarded and this step was repeated. The column was then washed and 

centrifuged at maximum speed for 15 seconds. The flow-through was again discarded 

and the column was washed again with a wash solution diluted with ethanol. The 

column was centrifuged again at maximum speed for 15 seconds. The above step was 

repeated though this time the column was centrifuged at maximum speed for 2 

minutes to dry the binding column. 50μl of elution solution was added to the column, 

which was centrifuged for 1 minute. RNA was stored at -70°C. 

 

2.5.2 Qiagen RNeasy Mini Kit 
 

Cells were grown in 6-well plates and treated as mentioned above. RNA was extracted 

using the Qiagen RNeasy Mini Kit following the manufacturer’s instructions. Media 

from cells was removed and wells were washed with PBS. 500 μl of Lysis solution 

containing 5 μl ß-mercaptoethanol was added to each well. The wells were tapped to 

dislodge cells and left for 2 minutes. The vessel was tilted to the side and the cell 

lysate was collected into one tube per well. Tubes were vortexed for homogenization. 

One volume of 70% ethanol was added to each tube. Up to 700 μl of each sample 



 

56 
 

were transferred to an RNeasy spin column and placed in a collection tube. The lysate 

was centrifuged at 8000 x g for 15 s. The flow through was discarded. The collection 

tube was reused and 700 μl buffer RW1 was added to the spin column. The spin 

column was centrifuged at 8000 x g for 15 s and the flow-through was discarded. The 

collection tube was reused and 500 μl buffer RPE was added to the spin column. The 

spin column was centrifuged at 8000 x g and the flow-through discarded. This step 

was repeated and the spin column was centrifuged for two minutes. The spin column 

was placed in a new 2 ml collection tube and centrifuged at full speed for 1 min. The 

spin column was placed into a new 1.5 ml collection tube and 40 μl RNAse-free water 

was added to the membrane. The column was centrifuged for 1 min at 8000 x g. RNA 

was stored at -70°C. 

 

2.5.3 RNA Quantification 
 

Every sample was measured using the NanoDrop 2000C (Thermo Fisher Scientific) 

spectrophotometer. Concentration was calculated at 280 nM and purity was assessed 

by A260/A280 ratio, a range of 1.7-2.0 classified as acceptable. 

 

2.6 cDNA synthesis 
 

2.6.1 Precision NanoScriptÔ 2 Reverse Transcription Kit 
 

cDNA synthesis was performed using the Precision NanoScriptÔ 2 Reverse 

Transcription Kit (Primerdesign). Following the manufacturer’s protocol, RNA samples 

were diluted in water to normalise the concentration across all samples and reach a 

final volume of 9μl and incubated with 1μl of random nonamer primer at 65°C for 5 

minutes. Samples were transferred directly from 65°C to ice. 10μl of mastermix 

(nanoScript2 4x buffer, dNTP mix 10mM, RNAse free water and nanoScript2 enzyme) 

was added to the existing 10μl of the samples on ice. Samples were briefly vortexed, 

spun and incubated at 25°C for 5 minutes and then at 42°C for 20 minutes. The 

reaction was heat inactivated by incubating at 75°C for 10 minutes. cDNA samples 

were stored at -20°C until use.  
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Figure 2.3 Components in one reaction for cDNA synthesis composed of the RNA 
template, random primers and nuclease free water (adapted from Precision 
NanoScriptÔ 2 Reverse Transcription Kit handbook, version HB05.5.03, published 
29.01.2016). 
 

2.6.2 High Capacity cDNA Reverse Transcription Kit 
 

cDNA synthesis was performed using the High Capacity Reverse Transcription Kit 

(Applied Biosystems). First, the 2X-RT mastermix for a 20µl reaction was prepared. 

 

 
Figure 2.4 Components in the 2X-RT mastermix for each reaction for a 20µl reaction 
when using the High Capacity cDNA Reverse Transcription Kit (adapted from the High 
Capacity cDNA Reverse Transcription Kit handbook, Ó2006,2007,2010).  
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10µl of mastermix was pipetted into a 0.2 µl tube for each sample and kept on ice. 10 

µl of RNA sample was pipetted into each tube and tubes were briefly centrifuged. 

Tubes were placed into the thermal cycler at 25°C for 10 minutes, 37°C for 120 

minutes, and 85°C for 5 minutes. cDNA samples were stored at -20°C until use. 

 

2.7 Real Time Polymerase chain reaction (qPCR) 
 

2.7.1 PrecisionPlus mastermix and QuantstudioÔ 7 Flex Real-Time PCR System 
 

PrecisionPlus mastermix premixed with SYBR green (Primerdesign) was used for 

qPCR. A QuantStudioÔ 7 Flex System Real-Time PCR System machine (Applied 

Biosystems) was used for the experiment. Samples were loaded on a 96-well plate 

containing cDNA (5µl), mastermix, water and primers specific for each gene, following 

the manufacturer’s instructions. 

 

 

Figure 2.5 Components of each reaction in a 20µl reaction using PrecisionPlus 
mastermix (Primerdesign) (adapted from the PrecisionÔ 2X qPCR Mastermix 
handbook). 
 

A relative quantification was performed and all values were normalised to the 

housekeeping gene. The relative quantification produces an amplification curve which 

shows the number of cycles versus the intensity of fluorescence. As the cycles 
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increase, more double-stranded DNA is produced and binds to SYBR green, which is 

then detected by the machine. The cycle in which this happens is called the ‘cycle 

threshold’ (Ct). In order to distinguish between specific binding and unspecific binding 

to other DNA products or primer dimer complexes, a dissociation curve is acquired. 

This shows the melting curve of the primer products which are specific and previously 

known and other, if any, by-products. So to evaluate the quality of the results both 

curves need to be obtained and checked. The control RQ value is set to 1.  

 

For cell culture samples the following equation was used:  

ΔCt= Ct (gene of interest) – Ct (housekeeping gene)  

Relative Quantity (RQ) = 2- ΔCt  

 

This equation quantifies relative fold change in gene expression when comparing the 

gene of interest to the housekeeping gene. 

 

2.7.2 Primers 
 

Primer sequences were taken from various scientific publications found by searching 

for primer sequences at www.ncbi.nlm.gov. All primers were created with the Sigma-

AldrichÒ custom DNA oligo synthesis programme and showed no evidence of 

dimerization. 
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Figure 2.6 Primer sequences of all primers used for qPCR experiments and the 
sources used to create the primers. Sequences were either taken from published 
papers or created using the primer-blast tool on ncbi.nlm.nih.gov. 

Gene Sequence Source 
CPEB1 F: 

5’TTTCAAGCCTTCGCATTTCCC3’ 

(Galardi et al., 2016) 

R: 5’GGACCCAACGCCATCTTTA3’ 

CAV1 F: 
5’ACCCACTCTTTGAAGCTGTTG3’ 

(Deb et al., 2014) 

R: 
5’GAACTTGAAATTGGCACCAGG3’ 

R: 5’TGCACTCTGACCATGAACCA3’ 

ITGA1 F: 
5’CAGCAAGAAAGGAGGCATTC3’ 

(Xiaoqin Liu et al., 2017) 

R: 5’TTTCCTCGGTTATAGCTGCC3’ 

Leptin F: 
5’CCTGACTGGTGCTATAGGCTGG

A3’ 

(Y. Pan et al., 2017) 

R: 
5’GTGAGTGCGGTTTGACCACTG3’ 

hPLAC

8 

F: 
5’GGGTGTCAAGTTGCAGCTGAT3’ 

(Kaistha et al., 2016) 

R: 
5’TAGATCCAGGGATGCCATATCG3

’ 

GABBR F: 5’GGAAGAGGTCACCATGCAG3’ (Plummer et al., 2011) 

R: 5’AGTTTCCCAGGTTGAGGATG3’ 

ERa F: 5’GCCCTCCCTCCCTGAAC3’ (Silva et al., 2010) 

R: 
5’TCAACTACCATTTACCCTCATC3’ 

ERb F: 5’TCCTCCCAGCAGCAATCC3’ (Silva et al., 2010) 

R: 5’CCAGCAGCAGGTCATACAC3’ 

GPR30 F: 5’GTTCCTCTCGTGCCTCTAC3’ (Silva et al., 2010) 

R: 5’ACCGCCAGGTTGATGAAG3’ 

TOP1 F: 5’CCTTCCCTCTCTCCCATTTC3’ https://www.ncbi.nlm.nih.gov/tools/prim

er-blast/ R: 5’AGCCACGACTGCTTCAAGTT3’ 
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2.7.3 geNORM™ analysis for qPCR: 
 

Ideal housekeeping gene for qPCR analysis was established using the geNORM™ kit 

and qBase+ software (Biogazelle). Data from qPCR was uploaded to the software and 

values for expressional stability were calculated to determine the optimum reference 

gene. Six housekeeping genes were used using the 6-gene geNORMÔ kit (ACTB, 

SDHA, RPL13A, UBC, TOP1, GAPDH). 96-well plates were set up for qPCR as 

previously described using 2x PrecisionPLUSÔ qPCR Mastermix, using all cDNA 

samples and all 6 housekeeping genes. After this, targets were defined within the 

qBase+ software and data from the qPCR machine was uploaded to the software. 

Then, data was analysed to produce an “M” value for each gene which defines the 

expression stability of the gene within the sample, and shows which gene is most 

stably expressed among all samples.  

 

2.8 Immunofluorescence 
 

2.8.1 Immunoflourescence of cells grown in monolayer 
 

Cells were grown and seeded at a specific density in a 6-well plate that contained 

coverslips. Cells were allowed to adhere for 24 hours and then fixed with 4% PFA 

(Sigma-Aldrich) for 10 minutes at room temperature. Cells were then permeabilised 

with 0.5% Triton X-100 (Sigma- Aldrich) on ice for 5 minutes. Cells were blocked in 

5% FBS-PBS (v/v) for 45 minutes and then incubated for 45 minutes with monoclonal 

antibodies or which were diluted in 5% FBS-PBS (v/v). Cells were washed and then 

incubated with a staining buffer that contained Alexafluor 568 secondary anti-rabbit or 

anti-mouse antibody (1:1000) and phalloidin 488 (50µg/ml) (Sigma-AldrichÒ) (to stain 

f-actin, cytoskeleton) depending on the experiment. This incubation was done in the 

dark for 45 minutes. After another wash with 5% FBS-PBS (v/v), the coverslips were 

mounted on slides with Vectashield Hard SetÔ Mounting Medium with DAPI (Vector 

laboratories) and visualised on a HF14 Leica DM4000 microscope. 

 

 



 

62 
 

2.8.2 Immunofluorescence of phospho-targets of cells grown in monolayer  
 

BeWo cells were grown and seeded at a specific density in a 6-well plate that 

contained coverslips as above. After 24 hours, media was changed to 0.5% FBS 

starved media and left to incubate for an hour. Then, cells were treated with BPA (3 

nM, 10 nM) and E2 (30 nM) for 24 hr, 1 hr, 30 min, 15 min and 5 min. Cells were fixed 

with cold 4% PFA as mentioned above. Cells were stained as previously mentioned 

using appropriate antibodies. 
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Figure 2.7 Antibodies used in all immunofluorescence staining and Western blots 
including dilutions. IF: Immunofluorescence. WB: Western blot. 
 

  

Antibody Company Dilution 

ER-a (F-10) SC8002 Santa CruzÒ Biotechnology IF: 1:100 

ER-b (B-3) SC373853 Santa CruzÒ Biotechnology IF: 1:100 

GPR30 (N-15)-R SC48525-R Santa CruzÒ Biotechnology IF: 1:100 

Phospho-Akt (Ser473) (D9E) 

XPÒ Rabbit mAb #4060 

Cell Signaling TechnologyÒ WB: 1:2000 

IF: 1:400 

Akt (pan) (11E7) Rabbit mAb 

#4685  
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:100 

Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) Antibody #9101 
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:250 

P44/42 MAPK (Erk1/2) (137F5) 

Rabbit mAb #4695 
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:100 

p38 MAPK Antibody #9212 Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:50 

Phospho-p38 MAPK 

(Thr180/Tyr182) Antibody #9211 
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:800 

E-Cadherin (4A2) Mouse mAb 

#14472 
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:50 

E-Cadherin (4A2) Mouse mAb 

(Alexa FluorÒ 488 Conjugate) 

#86770 

Cell Signaling TechnologyÒ IF: 1:50 

Pan-Keratin (C11) Mouse mAb 

#4545 
Cell Signaling TechnologyÒ WB: 1:1000 

IF: 1:400 

Anti-mouse IgG, HRP-linked 

Antibody #7076 
Cell Signaling TechnologyÒ WB: 1:1000 

 

Anti-rabbit IgG, HRP-linked 

Antibody #7074 
Cell Signaling TechnologyÒ WB: 1:1000 

 

Anti-mouse IgG (H+L) F(ab’)2 

Fragment (Alexa FlourÒ647 

Conjugate) #4410 

Cell Signaling TechnologyÒ IF: 1:1000 

GAPDH (D4C6R) Mouse mAb 

#97166 
Cell Signaling TechnologyÒ WB: 1:1000 

Ob Antibody (A-20): sc-842 Santa CruzÒ Biotechnology IF: 1:100 

Caveolin-1 Antibody (7C8) sc-

53565 Alexa FluorÒ 488 

Santa CruzÒ Biotechnology IF: 1:100 

Anti-SIM2 Antibody 

(HPA029295) 

Atlas Antibodies IF: 1:100 

CLASP2 Antibody (F-3) sc-

376496 
Santa CruzÒ Biotechnology IF: 1:100 
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2.8.3 Immunofluorescence of BeWo cells grown in 3D 
 

2.8.3.1 Cells in MatrigelÒ (CorningÒ) 
 

Media was aspirated from each well and cells were fixed with 400µl of 2% PFA in 1% 

PBS (1:1 dilution) for 20 minutes at room temperature on a rocker. To permeabilize, 

200 µl/well of PBS containing 0.5% Triton was added for 10 minutes at 4°C. Each well 

was rinsed 3 times with 200µl PBS + 10% glycine solution and left for 10 minutes on 

the rocker for each rinse. To block, cells were incubated with 200µl/well IF buffer + 

10% FBS for 1 hour at room temperature on the rocker. For secondary block, primary 

block was aspirated and 100 µl/well of secondary block solution was added and left 

for 30 minutes at room temperature on the rocker. The secondary block was aspirated 

and 100 µl/well of secondary block + primary antibody (1:100) was added and left 

overnight at 4°C. The primary antibody was aspirated and the wells were rinsed 3 

times with IF buffer and left on the rocker for 20 minutes each time. 100 µl/well of 

secondary antibody (1:200) + IF buffer + 10% FBS was added to each well and left for 

40 minutes on the rocker. Wells were rinsed 3 times with 200 µl/well IF buffer and left 

on the rocker for 20 minutes each time. Cells were mounted with Vectashield Hard 

SetÔ Mounting Medium with DAPI (Vector laboratories) using the coverslip and 

removing bubbles. Slide was left to dry overnight at room temperature in the dark. 

 

2.8.3.2 Membrane Staining of 3D BeWos in GrowDexÒ 
 

Cell membranes of BeWo cells seeded onto GrowDexÒ  (UPM Biochemicals) were 

stained using the PKH7 Fluorescent Cell Labelling Mini Kit (Sigma-AldrichÒ). A 

suspension containing 2x107 cells/ml in a conical tube was washed with serum-free 

medium. This was then centrifuged at 400 x g for 5 minutes. The supernatant was 

aspirated and a 2x cell suspension was prepared by adding 1ml of diluent C to the 

pellet and resuspending. 4 µl of PKH7 ethanolic dye solution were added to 1ml of 

diluent C in a separate tube. The cell suspension with dye was added to the 1ml of 2X 

dye solution and mixed by pipetting. The solution was incubated for 1-5 minutes with 

periodic mixing. The staining was stopped by adding an equal volume (2ml) of FBS 

and incubating for 1 minute. The mixture was centrifuged at 400 x g for 10 minutes at 
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20-25˚C. the supernatant was removed and the pellet resuspended in a fresh tube 

with 10 ml of complete medium. The suspension was centrifuged for 5 min at 400 x g 

at 20-25˚C. The suspension was washed 2 more times with 10ml of complete medium 

and resuspended in complete medium and used to set up 3D cell cultures using 

GrowDexÒ (UPM Biochemicals) as described above. 

 

2.9 ImageStream 
 

Protein expression and localization were investigated using ImageStreamÒ MKII 

(AmnisÒ) high resolution flow cytometry. 

 

2.9.1 Fixing Cells  
 

Expression and cellular location of ERα and ERß was assessed using ImageStreamÒ 

MKII (AmnisÒ) imaging flow cytometry. Cells were cultured in T-75 tissue culture 

flasks (Nuncä) until 80-90% confluent. Media was aspirated and the cells were 

incubated with 2.5mL of TrypLE Express (Invitrogen) per ~75c2 growth surface area 

and the flask was manually disturbed to detach adherent cells which were 

resuspended in the appropriate media. Cells were then transferred to a 15 ml tube and 

centrifuged for 5 minutes at 1200 RPM. The supernatant was removed and the cells 

were resuspended in ice cold 4% PFA (Sigma-AldrichÒ) for 5 minutes to crosslink 

cellular proteins. The cell suspension was centrifuged for 2 minutes at 1200 RPM and 

the PFA removed. The cells were permeabilized with 0.5% Tritonä X100 (Sigma-

AldrichÒ) in PBS on ice for 5-10 minutes. The cells were transferred equally to 

eppendorf tubes and centrifuged in a microcentrifuge. 

 

2.9.2 Staining Cells  
 

The cells were incubated in blocking buffer (5% bovine serum in PBS) for 30 minutes 

with gentle agitation. Cells were centrifuged for 3 minutes at 2000 RPM and the 

blocking buffer was removed. The cells were then incubated in the appropriate primary 

antibody (ERα, ERb, GPR30, Cell Signaling TechnologyÒ) diluted 1:100 in blocking 

buffer overnight at 4°C with gentle agitation. Following primary antibody incubation, 
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cells were centrifuged for 3 minutes at 2000 RPM and the antibody removed. The cells 

were resuspended in PBS to remove any remaining antibody and centrifuged again 

for 3 minutes at 2000 RPM. From this step onwards the cell were protected from light 

as the fluorophore conjugated to the secondary antibody is light sensitive. The PBS 

was removed and the cells incubated in secondary antibody (Alexa Flour 568 

secondary anti-mouse antibody, 1:1000, Cell Signaling TechnologyÒ) diluted in 

blocking buffer for 1 hour with gentle agitation. After secondary antibody incubation 

the cells were centrifuged for 3 minutes at 2000 RPM and the secondary antibody 

removed. The cells were resuspended in PBS to remove any remaining antibody and 

centrifuged for 3 minutes at 2000 RPM. PBS was removed and the cells were 

resuspended in 30μL Accumax (Innovative Cell Technologies) to dissociate any 

cellular aggregates. 1μL of Draq5 nuclear stain (Thermo Fisher Scientific) was added 

before visualisation on ImageStreamÒ. 

 

2.10 Western Blot 
 

2.10.1 Treatments 
 

BeWo and JEG-3 cells were grown on 6-well plates for 24 hours, media was changed 

to starved media (0.05% FBS) and cells were treated with BPA (3 nM, 10 nM) and b-

estradiol (E2, 30 nM) as a positive control for 5, 15, 30 and 60 minutes as well as 24 

hours. Media was aspirated and cells were washed with PBS. PBS was aspirated and 

cells were kept cold and 200µl Laemmli buffer (Sigma-AldrichÒ) was added. Lysates 

were homogenized using a cell scraper and transferred to eppendorf tubes. Samples 

were boiled for 5 minutes at 90˚C and stored at -80˚C. 

 

2.10.2 Coomassie Staining 
 

Gel electrophoresis was performed with samples by preparing a 10% resolving gel 

and a 5% stacking gel (see table and exact procedure below). Samples were loaded 

into the gels and run at 40mA per gel and 300V with a 10% SDS page running buffer 

(see table below). Gels were stained with coomassie blue staining buffer (0.1% 

Coomassie Brilliant Blue R-250, 50% methanol, 10% glacial acetic acid) for 1 hour at 
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room temperature. Gels were then destained with destainer (40% methanol, 10% 

glacial acetic acid) for 20 minutes 3-5 times and then stored in water at 4˚C. This was 

done to visualize evenness of band formation. 

 

2.10.3 Western Blotting 
 

For Western blots, 10% resolving gels and 5% stacking gels were prepared (see table 

below). The resolving gel was pipetted between two glass plates and 100% methanol 

was poured on top and the gel was left to set for 20 minutes. The methanol was 

removed and the stacking gel pipetted on top of the resolving gel and a comb was 

inserted to create wells for the sample. The gel was left to set for another 15 minutes.  

 

 

Figure 2.8 Components and amounts for preparing a 10% resolving gel (2 gels). Tris 
= tris(hydroxymethyl)aminomethane; SDS = sodium dodecyl sulfate; TEMED = 
Tetramethylethylenediamine. 
 

 

 

Figure 2.9 Components and amounts for preparing a 5% stacking gel (2 gels). Tris = 
tris(hydroxymethyl)aminomethane; SDS = sodium dodecyl sulfate; TEMED = 
Tetramethylethylenediamine. 

 

Component Amount 
H2O 7.9 ml 
30% acrylamide mix 6.7 ml 
1.5 M Tris (pH 8.8) 5.0 ml 
10% SDS 0.2 ml 
10% ammonium persulfate 0.2 ml 
TEMED 0.008 ml 

Component Amount 
H2O 2.7 ml 
30% acrylamide mix 0.67 ml 
1.5 M Tris (pH 8.8) 0.5 ml 
10% SDS 0.04 ml 
10% ammonium persulfate 0.04 ml 
TEMED 0.004 ml 
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The gels were loaded into a basin filled with 10% SDS-page running buffer (see table 

below). The samples and the ladder (PageRulerÔ - Prestained Protein Ladder (Life 

Technologies)) were loaded into the gels (5-7µl) after warming to 90°C and 

centrifuging. Gel electrophoresis was run at 40mA per gel and at 300V with a 10% 

SDS-page running buffer for about 45 minutes until the proteins were separated and 

bands were seen near the bottom of the glass. To transfer gels onto the membrane, 

gels were stacked with filter paper, sponges and the nitrocellulose membrane (Thermo 

Scientific) in transfer buffer (see table below) and transferred at 300V and 400mA in 

transfer buffer on ice.  

 

 

 
 
Figure 2.10 Components to prepare 10X SDS page running buffer. 1X was prepared 
by diluting 100 ml of 10X running buffer with 900 ml of H2O. Tris = 
tris(hydroxymethyl)aminomethane; SDS = sodium dodecyl sulfate.  
 
 

 

 

 
 
Figure 2.11 Components to prepare 10X transfer buffer. Transfer buffer was diluted 
to 1x using 100 ml of the buffer, 800 ml of H2O and 100 ml of cold methanol. Tris = 
tris(hydroxymethyl)aminomethane. 
 

 

 

 

 

 

Component Amount 
Tris base 30g 
glycine 144g 
SDS 10g 
H2O 1000ml 

Component Amount 
Tris base 30.3 g 
glycine 144.1 g 
H2O 1000ml 
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Figure 2.12 Components to prepare “solution A” for developing Western blot films 
(amount per membrane). Tris = tris(hydroxymethyl)aminomethane. 
 

 

 

Figure 2.13 Components to prepare “solution B” for developing Western blot films 
(amount per membrane). Tris = tris(hydroxymethyl)aminomethane. 
 

After transfer, membranes were cut and blocked in 5% milk powder in 1x TBS Tween 

for an hour. Membranes were treated with primary antibody in 5% BSA at a dilution of 

1:1000 and incubated at 4˚C overnight. Membranes were washed 3 times for 15 

minutes with 1x TBS Tween. Secondary antibody diluted in 5% BSA at a dilution of 

1:2000 was added to membranes and membranes were incubated at room 

temperature for 1 hour. Membranes were washed 3 times for 15 minutes with 1x TBS 

Tween. After adding developer solutions (solution A and B, see table below) to the 

membranes in the dark for 2 minutes, membranes were developed on film in the dark 

using a developer (Curix60, AGFA). 

 

2.11 Microarray 
 

Two-colour microarray-based gene expression (low input Quick Amp labelling) was 

measured using Agilent Gene Expression oligo microarrays using a Sure Scan 

microarray scanner (Agilent). RNA was extracted from samples treated with 3 nM and 

10 nM BPA as previously described. A Low Input Quick Amp Labelling Kit, Two-Colour 

(Agilent) was used to generate fluorescent cRNA using 100 ng of RNA as input. cRNA 

was quantified using a NanoDropÔ (ThermoScientificÔ) Spectrophotometer. For 

Component Amount 
100 mM Tris pH 8 5ml 
30% hydrogen peroxide 3µl 

Component Amount 
100 mM Tris pH 8 5ml 

Coumaric acid 22 µl 

luminol 50 µl 
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Hybridisation, the hybridisation samples were prepared by adding the cRNA, 10x 

Gene Expression Blocking agent, nuclease free water and 25x Fragmentation buffer 

into a nuclease-free centrifuge tube. The samples were incubated at 60˚C for 30 

minutes to fragment RNA and then cooled on ice for 1 minute. 2x hi-RPM Hybridisation 

Buffer was added to stop the fragmentation reaction. The samples were mixed and 

centrifuged at 13000 rpm and then loaded onto the array. The samples were 

hybridized at 65˚C for 17 hours. The microarray slides were washed twice with 100% 

isopropyl alcohol for 5 minutes and rinsed 5 times with Milli-Q water before washing 

with Agilent Gene Expression Wash buffer 1 and Gene Expression Wash buffer 2 

according to the protocol. The slides were then put into slides holders in order to scan.  

Scanning and feature extraction were performed on a SureScan microarray scanner 

(Agilent) using feature extraction programme 12.0. 
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Figure 2.14 Overview of workflow for Agilent Technologies Microarray manufactured 
with Agilent SurePrint Technology (from Two-Color Micorarray-based Gene 
Expression Analysis Protocol, version 6.9.1, August 2015). 
 

2.11.1 Bioinformatic analysis of microarray data 
 

Results were organized by amount of fold change and significance (P<0.05) and top 

relevant differentially regulated genes were selected within each condition (3 nM BPA, 

10 nM BPA, syncytialised 3 nM BPA and syncytialised 10 nM BPA in BeWo cells, as 

well as 3 nM BPA, 10 nM BPA and 30 nM E2 in placental explants). Results were 

analysed using FunRich (Functional Enrichment Analysis Tool) (www.funrich.org) 

bioinformatics software as well as Enrichr (Chen et al., 2013) in order to assess 

significant pathways upregulated genes were involved in and to assess overlap of 
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upregulated genes within different conditions. Upregulated genes were validated using 

qPCR analysis. 

 

2.11.1.1 FunRich Functional Enrichment Analysis Tool 
 

Official gene symbols of differentially regulated genes of interest were inserted into the 

FunRich input list. Enrichment analysis was performed by selecting different database 

options within FunRich. FunRich has the option of assessing cellular process, 

biological process, molecular function, protein domains, site of expression, biological 

pathways, transcription factors and clinical phenotypes. All options were selected in 

order to maximize output and understand associations between genes and processes. 

By selecting the “interaction network analysis” function, gene interactions were 

enriched using the FunRich database. Enrichment analysis was achieved by 

uploading selected database and analyzing against the FunRich database. By clicking 

on the “chart” icon and selecting the database to be analyzed, a column graph 

depicting cellular processes, organized by p-value is generated. This chart can be 

generated for the enrichment of molecular function, biological process, biological 

pathway, protein domain, site of expression, transcription factor and clinical phenotype 

as well by clicking on the respective tabs. These functions can be used to compare 

datasets with each other by clicking on the “compare” icon. Interaction networks 

between genes were generated by clicking on the “interaction” icon. Venn diagrams 

were generated using the Venn diagram function in FunRich, by uploading separate 

datasets which were then analyzed for overlapping genes. Datasets used were non-

syncytialised 3 nM BPA, non-syncytialised 10 nM BPA, syncytialised 3 nM BPA, 

syncytialised 10 nM as well as 3 nM BPA, 10 nM BPA, and 30 nM E2 in placental 

explants. 

 

2.11.1.2 Enrichr Analysis Tool 
 

Official gene symbols of differentially regulated genes of interest were inserted into the 

input list. Enrichr uses databases such as NCI Nature and Go Molecular Function in 

order to assess gene enrichment in terms of molecular function, biological processes, 

biological pathways, transcription factors, diseases, and other gene enrichment 

groups. After inputting relevant genes, Enrichr creates groups according to different 
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databases as well as different processes/functions. Datasets used were as described 

above. 

 

2.12 Placental explants from term human placentae 
 

2.12.1 Term 2D placental explant culture 
 

The study was performed under the supervision of Dr Manu Vatish at John Radcliffe 

Hospital, University of Oxford. Placentae were obtained from normal vaginal births at 

term at John Radcliffe Hospital Women’s Centre, from patients who previously gave 

informed consent and experiments were approved by the Central Oxfordshire 

Research Ethics Committee as previously described (Motta-Mejia et al., 2017). The 

placenta was placed into Dulbecco’s Phosphate Buffered Saline solution (DPBS) and 

used within an hour of birth. Using antiseptic methods, the amnion and any blood clots 

were removed inside a tissue culture hood. 6 different areas of placenta were removed 

by cutting with sterile scissors, keeping the pieces about 10mm in diameter. These 

pieces were placed into 6 different sterile conical 50ml tubes containing DPBS and 

washed by inverting the tubes. The DPBS was removed and fresh DPBS added and 

the pieces were washed once more. This process was repeated until the DPBS looked 

clear or about 5 times. The pieces were placed into 6 sterile petri dishes containing 

DPBS. Pieces were pulled apart inside the petri dish with fine sterile tweezers into 

equal pieces measuring about 2mm in diameter and making sure that all connective 

tissue was removed. One piece from each petri dish was placed into each Costar® 

Netwell™ (Corning) well containing 2.5 ml Human Large Vessel Endothelial Cell 

Growth Medium (Cellworks) that was preincubated for at least one hour at 8% oxygen 

and 5% CO2. Explants were left overnight and then treated for 24 hours with 3 nM 

BPA, 10 nM BPA and 30 nM E2 as previously described. Explants were kept in 

RNAlaterÒ (Thermo Fisher Scientific) for RNA extraction at a later time. Media from 

day 0, day 2 and day 3 was kept for evaluation of cell viability and growth. 

 

 

 



 

74 
 

2.12.2 Term 3D placental explant culture 
 

For 3D term placental explant culture, explants were obtained as above. 1% 

GrowDex® was made up with medium as mentioned previously. 50µl of GrowDex® 

was seeded into each of the wells in use on a 96-well plate and incubated at 37˚C and 

5% CO2 for 30 min. Using sterile forceps, one 2mm biopsy was placed into each well 

and 50µl GrowDex® added on top. The plate was incubated for 30 min and 100 µl 

Human Large Vessel Endothelial Cell Growth Medium (Cellworks) was added on top. 

Media was replaced every 5 days without disturbing the GrowDex® and was kept for 

analysis. Explants were kept for 24 days. Explants were kept in formalin or RNAlater® 

for future immunohistochemical analysis or RNA extraction. 

 

2.12.3 RNA extraction from term placental explants 
 

Tissue disruption was achieved by adding 0.5 ml of lysis buffer (Qiagen) to eppendorf 

tubes after removing RNAlater®. A sterile metal bead was added to each tube and the 

tubes were inserted into a Tissue Lyser II (Qiagen). Tissue was disrupted for one 

minute. Samples were centrifuged and the supernatant used for RNA extraction. RNA 

extraction was achieved as mentioned previously using the RNeasy Mini Kit (Qiagen).  

 

2.13 Hormone Analysis 
 

The amount of secreted hCG or E2 was determined by the Department of 

Biochemistry (University Hospitals Coventry and Warwickshire NHS Trust) using the 

ElecsysÒ electrochemiluminescence immunoassay (ECLIA) and the fully automated 

modular analytics E170 testing system from Roche Diagnostics (Mannheim, 

Germany). Results were expressed as IU/ml.  

 

2.14 Statistical Analysis 
 

All data from experiments were analyzed using the f-test determining whether data is 

equal or unequal in variance. A student t-test or ANOVA test was performed on data 

of equal variance in order to compare data sets and determine significance between 



 

75 
 

them. In unequal variance data, the Mann-Whitney U test was used to determine 

significance. Values were siginifcant at p<0.05 (*), p<0.01 (**) and p<0.001 (***). 
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Chapter 3 
Validation of a placental in vitro model in 2D 

3.1 Introduction 
 

In order to develop an in vitro model for placental testing, it is important to determine 

baseline parameters in models that already exist. As previously described, the best 

model for our studies in 2D are well-established cell lines derived from trophoblastic 

tumours, such as BeWo and JEG-3, which express same markers of differentiation 

and express the same hormones as primary trophoblasts (Orendi et al., 2011; Wolfe, 

2006). With the placenta being a transient endocrine organ sensitive to a multitude of 

hormones and secreting hormones such as hCG, hPL, estradiol, estrone and 

progesterone, studies on hormone receptor levels in a 2D cell culture system are 

crucial, as hormone receptor levels are determining factors in the physiological 

outcome of hormonal exposure. With hormone receptors having the potential to be 

down or upregulated affecting hormone binding, and since different types of receptors 

for the same hormone can activate multiple signalling pathways (Jia et al., 2015), it is 

important to understand the expression profiles of estrogen receptors in the relevant 

tissue. As one of the main aims of this study focuses on determining the effects of 

BPA, a xenoestrogen, on the placenta; this chapter aims to measure the levels of 

estrogen receptors in our trophoblastic cell lines, as well as compare estrogen receptor 

level expression and proliferation level between syncytialised and non-syncytialised 

BeWo cells. Syncytialisation is a process of maturation and differentiation by which 

cytotrophoblasts transform into syncytiotrophoblasts, becoming amorphous, 

multinucleated, fused cells that lose the cell membrane, stop proliferating and become 

more endocrine active (Chang et al., 2014; Cross, Werb, & Fisher, 1994). Although 

both cell types are present in the placenta throughout most of the pregnancy, there 

are generally more syncytiotrophoblasts in the 2nd and 3rd trimesters (Lakshmi Devi & 

Raghupathy, 2013). In order to create a model which resembles the human placenta 

in vivo, we have syncytialised the BeWo cell line and validated this syncytialisation. 

As mentioned previously, mapping estrogen receptor expression in placental cells is 

crucial for understanding the effects of xenoestrogens. In 1993, Krishnan et al found 

that BPA has estrogenic activity, as it binds to estrogen receptors and induces 
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progesterone receptors among other determinants in MCF-7 cells (Ben-Jonathan & 

Steinmetz, 1998; Krishnan, Stathis, Permuth, Tokes, & Feldman, 1993). Studies have 

shown that estrogens such as the most commonly found 17ß-estradiol can both up- 

and downregulate estrogen receptor α and β (Castles, Oesterreich, Hansen, & Fuqua, 

1997; Cimarosti et al., 2006; Donaghue, Westley, & May, 1999; Nephew et al., 2000; 

Costa et al., 2014; Robertson, Farnell, Lindahl, & Ing, 2002) depending on the cell type 

and conditions. Estrogen-dependent regulation of estrogen receptors in the placenta 

is not a well-documented subject. One study suggests that high levels of ERα in 

placentae of patients with pre-eclampsia when compared to normal placentae could 

be a compensatory mechanism due to the fact that these patients exhibit significantly 

lower levels of estrogen in the placenta (Yin et al., 2013), suggesting a role of ERs in 

the development of the disease. 

 

Furthermore, as there is a difference between dominant cell types when comparing 1st 

to 3rd trimester placenta, it is also necessary to elucidate how estrogen receptor 

profiles shift during placental development. In the placenta, levels of ER expression 

are not well documented, however a few studies have shown that ERα significantly 

dominates over ERβ in early developmental stages, with ERβ increasing in expression 

over time (Bukovsky et al., 2003; Schiessl et al., 2006; Yin et al., 2013), indicating a 

profile shift between non-syncytialised and syncytialised trophoblasts. The G-protein 

coupled estrogen receptor GPR30 (membrane bound ER) has also been 

demonstrated to be present in first-trimester and third-trimester placental cells 

(Owman et al., 1996) Taking the overall paucity of data with regards to placental 

estrogen receptor expression throughout different stages of placental development 

into account, the main aim of this chapter was to define estrogen receptor expression 

on the transcriptional and protein level in syncytialised and non-syncytialised placental 

cell lines. This chapter has therefore been structured into two main aims: 

 

1. To assess ER levels in non-syncytialised BeWo cells in the context of gene 

expression as well as protein expression 

 

2. To validate a method of syncytialisation of BeWo cells and assess gene 

expression and protein expression of ERs in syncytialised BeWo cells. 



 

78 
 

3.2 Results 
 

3.2.1 Gene Expression of Estrogen Receptor Genes in BeWo and JEG-3 Cell 
Lines 
 

In order to quantify ERα, ERß and GPR30 gene expression in BeWo and JEG-3 

placental cell lines, qPCR was performed on these cell lines investigating gene 

expression of these receptors. After Ct values were obtained from the Quant Studio 

Flex qPCR machine, the equation (above) was used to calculate RQ values 

demonstrating relative fold change compared to the housekeeping gene (TOP1, 

validated by GeNorm, see materials and methods).  

 

 
Figure 3.1 ERa is the predominant receptor in non-syncytialised BeWo cells. ERa and 
GPR30 genes are significantly more expressed than ERb (p<0.001). Relative 
quantities (RQs) signify relative amount of gene expression when compared to the 
housekeeping gene, TOP1. RQ of ERa is 0.0175, RQ of GPR30 is 0.016, RQ of ERb 
is approaching 0. Error bars depict standard error in the dataset.  
 

In non-syncytialised BeWo cells, we have found that ERa and GPR30 genes are 

significantly more highly expressed (p<0.001) than gene expression of ERb. The 

relative quantity of gene expression of ERa, meaning the expression when compared 

to the housekeeping gene, is 0.0175, whereas the relative gene expression of ERb is 

approaching 0. Similarly, the relative gene expression of GPR30 is 0.016. 
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Figure 3.2 ERa gene expression is highest in JEG-3 cells. ERa expression is 
significantly higher than ERb expression (p<0.001) and significantly higher than 
GPR30 expression (p<0.01). Similarly, GPR30 expression is significantly higher than 
ERb expression (p<0.05). RQ of ERa is 0.035, RQ of GPR30 is 0.012, RQ of ERb is 
approaching 0.  
 

In JEG-3 cells, gene expression profiles were found to be similar to BeWo cells. ERa 

was the predominant receptor being significantly more expressed than ERb (p<0.001) 

and GPR30 (p<0.01). GPR30 was the second-most highly expressed receptor and 

was significantly more highly expressed then ERb (p<0.05). The relative quantity of 

ERa when compared to the housekeeping gene was 0.035, the relative quantity of 

GPR30 was 0.012 whereas the relative quantity of ERb gene expression was 

approaching 0. 
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Figure 3.3 Estrogen receptor expression in syncytialised BeWo cells. ERa is the 
predominant receptor, followed by GPR30. There is no significant gene expression 
when comparing ERa or GPR30 to ERb. RQ of ERa is 0.043, RQ of GPR30 is 0.038, 
RQ of ERb is approaching 0.  
 

In syncytialised BeWo cells, ERa was the most highly expressed estrogen receptor 

with an RQ value of 0.043, followed by GPR30 with an RQ value of 0.038. The RQ 

value of ERb was approaching 0. There was no significant expression of any ER when 

compared to each other in syncytialised BeWo cells although a similar pattern of 

expression to non-syncytialised BeWo cells and JEG-3 cells was seen.  

 
Our data regarding the gene expression of the three estrogen receptors ERa, ERb 

and GPR30 in non syncytialised BeWo cells as well as JEG-3 cells has shown that the 

dominant receptor expressed in these cells is ERa. The gene expression of this 

receptor is significantly higher than the gene expression of both other receptors in both 

cell lines. Furthermore, GPR30 was also expressed in both cell lines and expression 

was significantly higher in both cell lines when compared to ERb. These differences in 

gene expression were also apparent in syncytialised BeWo cells, although not as 

markedly, as there was no significant difference in expression between ERs. 
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3.2.2 Quantification of ERα, ERß and GPR30 at protein level in BeWo and JEG-3 
cell lines in monolayer 
 

Quantification of Estrogen Receptors ERα, ERß and GPR30 in BeWo and JEG-3 cell 

lines ERα and ERß expressions were quantified by immunostaining and imaging with 

the Amnis Imaging Flow Cytometer (ImageStreamÒ). Using ImagestreamÒ, the A549 

cell line was used as a positive control, as these cells are known to express all three 

estrogen receptors (Fan et al., 2017a; Niikawa et al., 2008; Zhu, Huang, Wu, Wei, & 

Shi, 2016). 

 

3.2.2.1 ImageStreamÒ 
 

 
Figure 3.4 Estrogen receptor staining of BeWo cells using ImageStreamÒ. Grey 
panel: brightfield image. Red: DRAQ5 nuclear stain. Green: Alexa FlourÒ secondary 
antibody stain. ERa and ERb receptors show a more nuclear staining pattern, whereas 
GPR30 can be found surrounding the nucleus and on the cell membrane. There 
appears to be less ERb than ERa.  
 

When using image stream as a method for detecting ERs, we were able to find all 

three receptors present in BeWo cells. As with gene expression levels, there was more 

ERa and GPR30 than ERb on the protein level. In BeWo cells there was a more 

nuclear staining pattern to the nuclear ERs ERa and ERb, whereas the membrane 

receptor GPR30 showed a more peripheral staining pattern. 
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Figure 3.5 Estrogen receptor staining of JEG-3 cells for estrogen receptors. Grey 
panel: Brightfield. Red: DRAQ5 nuclear stain. Green: Alexa FluorÒ secondary 
antibody stain. ERa shows a more nuclear staining pattern, whereas GPR30 and ERb 
can be found surrounding the nucleus and on the cell membrane. There appears to 
be less ERb than ERa. 
 

In JEG-3 cells, all three receptors were present. Staining with Alexa FluorÒ showed 

that the most dominant receptor seemed to be ERa, which was in line with previous 

gene expression studies. This receptor showed a more nuclear staining pattern, 

whereas ERb and GPR30 showed more staining on the cell membrane. This ER 

staining pattern was slightly different than in BeWo cells, where both ERa and ERb 

were found within the nucleus, and only GPR30 was found on the cell membrane. 
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Figure 3.6 Estrogen receptor staining of A549 cells for estrogen receptors. Cells were 
chosen as a positive control. Grey panel: Brightfield. Red: DRAQ5 nuclear stain. 
Green: Alexa FluorÒ secondary antibody stain. ERa shows a more nuclear staining 
pattern, whereas GPR30 can be found surrounding the nucleus and on the cell 
membrane. There is a lack of ERb staining.  
 

The A549 cell line was chosen as a positive control for ER staining, as presence of all 

three ERs in the cell line has been documented (Fan et al., 2017; Ivanova, 

Mazhawidza, Dougherty, & Klinge, 2010; Zhu et al., 2016). In this cell line, ERa 

appears to be localized more within the nucleus, whereas GPR30 has more of a 

staining pattern on the cell membrane. There appears to be a lack of ERb staining.  

 

3.2.2.2 Immunofluorescent detection of estrogen receptors in BeWo and JEG-                                 
3 cell lines 
 

In order to further assess the presence and cellular distributions of estrogen receptors 

in BeWo and JEG-3 cell lines, immunofluorescent staining was employed and cells 

were imaged.  
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Figure 3.7 Immunostaining of BeWo cell line for estrogen receptors, merged images. 
Green: receptor, blue: DAPI nuclear stain. Presence of ERα and ERβ is noted and 
these receptors appear to be evenly distributed throughout the cell as well as being 
seen in the nucleus. GPR30 is a membrane-bound receptor and therefore staining is 
seen to be most prominent along the outside of the cell, and not in the nucleus.  
 

Immunofluorescent staining of BeWo cells showed the presence of all three ERs within 

the cell line. There appeared to be a similar staining intensity of ERa and ERb as well 

as GPR30 staining. ERa and ERb have a more nuclear distribution whereas GPR30 

appears to be localized more to the cellular membrane.  

 

 
Figure 3.8 Immunostaining of JEG-3 cell line for estrogen receptors, merged images. 
Green: receptor, blue: DAPI nuclear stain. Presence of ERα and ERβ is noted and 
these receptors appear to be evenly distributed throughout the cell as well as being 
seen in the nucleus. GPR30 is a membrane-bound receptor and therefore staining is 
seen to be most prominent along the outside of the cell, and not in the nucleus. 
 

Immunofluorescent staining of the JEG-3 cell line also showed the presence of all 

three ERs. As with BeWo cells, there seemd to be a similar staining intensity of all 

three receptors, and ERa and ERb showed a nuclear distribution whereas GPR30 was 

mostly localized along the cellular membrane.  
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These data show the protein expression of estrogen levels in both the BeWo and JEG-

3 cell line. All three receptors are expressed in both cell lines, with a more nuclear 

distribution in ERα and ERβ, and a more membrane bound pattern of expression for 

GPR30.  

 

3.2.3 Validation of Syncytialisation of BeWo cell line 

 

BeWo cells were treated with 8-bromo-cAMP for 72 hours in order for them to fuse 

and form syncytia, making these cells more representative of 2nd and 3rd trimester 

placental cells. E-cadherin was visualized through immunofluorescence as a marker 

of cell membrane borders. As trophoblasts fuse to become syncytiotrophoblasts, giant 

cells containing multiple nuclei and one surrounding cell membrane develop, and E-

cadherin around cells is lost (Rebut-Bonneton, Boutemy-Roulier, & Evain-Brion, 

1993). With immunofluorescence we have shown that cells lose E-cadherin after 

treatment with 8-Br-cAMP when compared to controls (Figure 3.11). To compare 

proliferation rates between syncytialised and unsyncytialised BeWo cells, proliferation 

rates were measured using the Countess™ automated cell counter system. Cells were 

grown for 72 hours in the absence or with the addition of 8-Br-cAMP. It is known that 

after differentiation from cytotrophoblast to syncytiotrophoblast, the 

syncytiotrophoblast does not divide or proliferate. Therefore, we would expect a lower 

proliferation rate in syncytialised BeWo cells when compared to non-syncytialised 

BeWo cells as well as lower viability due to a decrease in growth. Furthermore, 

syncytiotrophoblasts are more fully endocrine active than cytotrophoblasts. We 

therefore assessed the expression of β-HCG and estrogen by these cells, and 

compared them to their unsyncytialised state. Furthermore, we assessed gene 

expression of syncytin-2 in both non-syncytialised and syncytialised BeWo cells, 

expression of which correlates with differentiation into syncytia (Vargas et al., 2009). 

Lastly, the gene expression and protein levels of ERs was assessed in syncytialised 

cells, as studies have shown an increase in ERa and ERb in syncytiotrophoblast and 

closer to term (Kim, Park, Lee, Joo, & An, 2016). 
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3.2.3.1 Immunofluorescent staining of E-Cadherin in syncytialised BeWo cells 
 

E-Cadherin staining in BeWo cells after treatment with 8-Br-cAMP shows that BeWo 

cells have syncytialised, as when compared to controls, cell membranes have broken 

down in order for cells to fuse and form large, multinucleated syncytia, the more 

endocrine active component of the placenta (Cole, 2012; Costa, 2016). 

 

 
Figure 3.9 Immunofluorescent staining of E-Cadherin in BeWo cells treated with 8-Br-
cAMP in order to syncytialise. Green: E-Cadherin. Blue: DAPI nuclear stain. Cells 
depicted in the bottom row have been treated with 8-Br-cAMP for 72 hours, cells 
depicted in the top row have not. As cells treated with 8-Br-cAMP fuse to become 
syncytia (amorphous and multinucleated cells), cell walls break down and lose E-
Cadherin.  
 
3.2.3.2 Proliferation 
 

In order to further investigate whether cells treated with 8-Br-cAMP had syncytialised, 

it was necessary to compare proliferation between non-syncytialised and syncytialised 

BeWo cells, as syncytialised cells are differentiated and proliferation decreases. 

(Huppertz, Frank, Kingdom, Reister, & Kaufmann, 1998). Non-syncytialised and 

syncytialised BeWo cells were grown for 24 hours and cell numbers as well as dead 

cells were compared using the CountessÒ system. Our data showed a higher number 

of non-syncytialised BeWo cells after 24 hours, with 86% of cells being live compared 
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to 70% of cells being lived in non-syncytialised cells, indicating more growth in non-

syncytialised cells. 

 

 
 

Figure 3.10 Comparison of proliferation between non-syncytialised and syncytialised 
BeWo cells after 24 hours. Syncytialised cells were treated with 8-Br-cAMP for 72 
hours prior to proliferation being assessed. After 24 hours, syncytialised BeWo cells 
showed slightly less total cells than non-syncytialised BeWo cells, with 70% of cells 
being live compared to 86% of cells being live in non-syncytialised BeWo cells.  
 

3.2.3.3 Hormone Secretion 
 

As previously mentioned, syncytiotrophoblast is the more endocrine active cell type 

when compared to cytotrophoblast. Therefore, we measured hormone (b-hCG and 

E2) levels in conditioned media of non-syncytialised and syncytialised BeWo cells 

grown for 24 hours. Our findings of significantly increased hormone secretion (β-hCG 

p=0.0108; E2 p=0.0042) in cells treated with 8-Br-cAMP confirms successful 

syncytialisation of BeWo cells.  
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Figure 3.11 Secretion of estrogen (E2) and β-HCG in conditioned media of non-
syncytialised and syncytialised BeWo cells grown for 24 hours. Expression of β-hCG 
was significantly upregulated (p=0.0108) in syncytialised BeWo cells and expression 
of E2 was also significantly upregulated (p=0.0042) in syncytialised BeWo cells 
compared to non-syncytialised BeWo cells.  
 

3.2.3.4 Expression of Syncytin 
 

Syncytin-2 is an envelope protein derived from human endogenous retroviruses 

(HERVs) and plays an important role in trophoblast syncytialisation (Vargas et al., 

2009) and can therefore be seen as a marker of syncytialisation in BeWo cells. In 

order to asses whether syncytialisation had taken place in BeWo cells treated with 8-

br-cAMP, we measured gene expression of syncytin-2 in BeWo cells treated with 8-

br-cAMP for 72 hours compared to non-treated cells. Syncytin-2 showed a more than 

2-fold upregulation in syncytialised cells. Taking into account that one study found that 

on average, the syncytialisation rate of BeWo cells treated with forskolin is 10% (Kudo 

et al., 2003), the level of upregulation is an indicator of syncytialisation having taken 

place.  
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Figure 3.12 Expression of syncytin-2, a marker of syncytialisation, in non-syncytialised 
and syncytialised BeWo cells. There is a more than 2-fold increase in syncytin-2 in 
cells treated with 8-Br-cAMP. Relative quantities are levels of gene of interest in 
relation to quantities of housekeeping gene (TOP1).  
 

3.2.3.5 Estrogen receptor expression in syncytialised cells 
 

As before, ER gene expression levels were measured in syncytialised BeWo cells 

and compared to levels in non-syncytialised cells to assess whether ER gene 

expression changed. After syncytialisation, there was an upregulation in gene 

expression of all ERs, however this was not significant. 
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Figure 3.13 All receptors are upregulated in syncytialised BeWo cells compared to 
non-syncytialised BeWo cells. There was an increase in RQ of ERa from 0.02 to 0.05, 
an increase in ERb from 0 to 0.005 and an increase in GPR30 from 0.019 to 0.04. RQ 
was measured as relative quantity of gene expression compared to housekeeping 
gene (TOP1).  
 

In order to asses the amount of ER protein present in syncytialised BeWo cells, 

Immunofluorescent staining was used. As we had previously seen an upregulation of 

ER gene expression in syncytialised cells compared to non-syncytialised BeWo cells 

(Figure 3.13), we were expecting upregulation of all three receptors on the protein 

levels as well. Figure 3.14 shows immunostaining of ERa, ERb and GPR30, where 

there appears to be an increase in staining intensity, when compared to non-

syncytialised BeWo cells (Figure 3.7). 

 
 
ERa     ERb       GPR30 

 
Figure 3.14 Immunostaining of syncytialised BeWo cell line for estrogen receptors, 
merged images. Green: receptor, blue: DAPI nuclear stain. When compared to 
Immunostaining of non-syncytialised cells (Figure 3.7), there appears to be an 
increase in receptor density. As before, ERa and ERb show a more nuclear staining 
pattern, whereas GPR30 stining is more focused around the cell membrane.  
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In terms of syncytialisation, we have shown that E-cadherin, a cell surface marker, is 

decreased markedly in BeWo cells treated with 8-Br-cAMP for 72 hours, providing 

evidence for cell fusion, which is typical for syncytium. Furthermore, cells treated with 

8-Br-cAMP showed less proliferation than untreated cells, which is expected in cells 

that are terminally differentiated. We have also shown that there is a significant 

increase in both E2 and b-hCG in treated cells indicating a switch from cytotrophoblast 

to syncytiotrophoblast, the more endocrine active cell. Syncytin-2, a marker of 

syncytialisation, was also more highly expressed in treated BeWo cells. Lastly, qPCR 

and immunostaining showed an upregulation of all ERs on the gene transcription as 

well as the protein level.  

 

3.3 Discussion 
 

With the demonstration that our receptors are present in the cell lines tested, and with 

the finding that ERa is the most abundant receptor, our results are partly in line with 

studies that report ERα as the primary estrogen receptor in the placenta (Bukovsky et 

al., 2003; Schiessl et al., 2006; Yin et al., 2013) with an increase in ERβ expression in 

the later stages of placental development. By showing that there is an upregulation of 

ERs in syncytialised cells, which reflect placenta closer to term, our data is in 

agreement with studies that have found that translational levels of ERa and ERb were 

higher in later stages of gestation in humans (Fujimoto et al., 2005; Kim et al., 2016), 

and since syncytialised BeWo cells are reflective of more mature placenta, our findings 

point to successful syncytialisation after treatment with 8-Br-cAMP. Furthermore, we 

have demonstrated the differentiation of BeWo cytrotrophoblast cells into BeWo 

syncytiotrophoblasts using 8-Br-cAMP.  

 

As cytotrophoblasts fuse to become syncytiotrophoblasts, their individual cell 

membranes degrade and expression of cell membrane bound proteins that mediate 

cell-to-cell interaction such as E-cadherin, decreases  (Candelier et al., 2013; Rebut-

Bonneton et al., 1993). Using E-cadherin as a marker for cell fusion and loss of cell 

membrane, we have demonstrated a decrease in staining intensity of E-cadherin when 

comparing non-syncytialised to syncytialised BeWo cell lines using 

immunofluorescence. Furthermore, we have shown that BeWo cells treated with 8-Br-
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cAMP lose the capacity to proliferate, and therefore become less viable than untreated 

cells, another indicator that cells have indeed fused and become syncytia. We have 

also shown that syncytialised cells significantly expressed more estrogen and b-hCG 

than non-syncytialised cells. Studies have shown that syncytiotrophoblast is the main 

endocrine cell when compared to cytotrophoblast (Lunghi et al., 2007), and that it is 

the main cellular component in term placenta (Jiang et al., 2018). From pregnancy 

towards term, the hormonal function of the placenta gradually increases towards a 

production of chorionic somatomammotropic hormone (hCS) of 1-3g/day at the end of 

pregnancy, due to the gradual increase of syncytiotrophoblast mass (Evain-Brion & 

Malassine, 2003). 

 

To further validate the differentiation of BeWo cells from cytotrophoblasts to 

syncytiotrophoblasts, gene expression of syncytin-2, a marker of differentiation that is 

placenta-specific and crucial for cell fusion to take place (Vargas et al., 2009), was 

measured in both 8-Br-cAMP treated and non-treated BeWo cells. Our studies showed 

a 2-fold upregulation of syncytin-2 in 8-Br-cAMP treated cells. Although this fold 

change might not be significant, it must be taken into account that syncytialisation after 

8-Br-cAMP treatment only syncytialises a fraction of cells. In cells treated with forskolin 

for 48 hours, 10% of cells were shown to be fused (Kudo et al., 2003b), and similar 

rates could be assumed with 8-Br-cAMP treatment. 

 

Overall, our data suggest that both BeWo and JEG-3 cell lines can be used as a valid 

model to study the effects of BPA at placental level, as receptors by which this 

compound has the potential to act are present in these cell lines to an extent which is 

reflective of human placenta in vivo. Furthermore, transforming BeWo non-

syncytialised cells into syncytialised cells has given the opportunity to test compounds 

in cells representative of earlier stages of placental development and the differentiated 

(syncytialised) cells that make up most of the organ closer to the end of pregnancy. 

Not only do cells show that they have been syncytialised morphologically, but behave 

in a similar way to in vitro placental tissue regarding hormone secretion, receptor 

expression, and proliferation. Taking these factors into account, experiments 

performed on the cell line will accurately reflect placental physiology when it comes to 

effects that are mediated by estrogen receptors. We have therefore chosen BeWo 
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cells for future experiments in this study, in order to test the effects of BPA on both 

cells that have been syncytialised and non-syncytialised cells. 
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Chapter 4 
Role of BPA in human placental cells in vitro 
4.1 Introduction 
 

As mentioned, BPA is an endocrine disruptor known to exert its function via estrogenic 

activity using estrogen receptors. Depending on the tissue, the mechanism of binding 

and the receptor, BPA has the potential to exert a multitude of varying effects, ranging 

from estrogen mimicking activity to anti-estrogenic activity. BPA has been shown to 

have an estrogenic effect in the breast cancer cell line MCF-7 (Krishnan et al., 1993) 

as well as rat vagina and uterus (Kurosawa et al., 2002; Steinmetz et al., 1998). 

Although BPA binds to classical nuclear estrogen receptors with much lower affinity 

than E2, estrogen-mimicking effects have been demonstrated even with low levels of 

BPA (Alonso-Magdalena et al., 2012; Fang et al., 2000). Other studies have shown 

that higher levels can cause an anti-estrogenic effect in tissues. Because of the 

varying mechanism of action of BPA, depending on metabolism, exposure, tissue 

environment and receptor expression, there is no cohesive answer to the question of 

the effect of BPA in human cells. In this chapter, we aim to elucidate the effects and 

mechanisms of action of BPA in human placental cells, by studying intra-cellular 

(phospho-) targets affected by BPA-treatment of cell lines. 

 

Nuclear ERs mediate DNA transcription, whereas the receptors themselves are 

ligand-dependent transcription factors, which recruit either coactivating or 

corepressing factors, thereby either silencing or inducing genes (Huang et al, 2010, 

Mattison et al, 2014). Nuclear ERs are found in varying tissues in the human body, 

mainly in female reproductive tissues such as the mammary gland, ovary and uterus, 

bone, testis, prostate, bladder, colon, immune system and adipose tissue (Farzaneh 

& Zarghi, 2016), with different distributions of ERα and ERβ. 

 

Besides the classic nuclear receptors ERα and ERβ, a more recently discovered G-

protein-coupled ER, known as GPR30 or GPER, has been shown to bind BPA. 

GPCRs mediate fast intracellular responses, such as activation of second 

messengers, phosphorylation of kinases and ion mobilization (Prossnitz & Arterburn, 
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2015). Estrogenic activation of GPR30 results in a multitude of intracellular effects, 

such as activation of ERK1/2 and the PI3K/AKT pathway, vascular dilation via 

production of eNOS, the regulation of potassium channels and the mobilization of Ca2+ 

(Filardo et al, 2000; Revankar et al, 2005; Meyer et al, 2012; Lindsey et al, 2014). 

These cellular changes have the potential to affect tissue physiology, and play a role 

in the functionality of the organ. 

 

The mechanism of action of BPA in placental tissue specifically is not well 

documented, and studies about its primary binding partner and effect have been 

conflicted. Studies have shown that BPA binds weakly to ERα and ERβ with similar 

affinities for both receptors (Prossnitz & Arterburn, 2015; Blair et al, 2000; Kuiper et al, 

1998), but also that BPA signals primarily through mediation by ERα as opposed to 

ERβ (Hewitt & Korach, 2011). Numerous studies have demonstrated that effects of 

BPA are mediated at least in part by GPR30 or GPER (Prossnitz & Arterburn, 2015) 

and that the binding affinity to GPR30 is 8-50 times higher than for the nuclear 

receptors ERα and ERβ (Thomas & Dong, 2006; Blair et al, 2000).  In many cases, 

BPA was shown to stimulate proliferation of cells in low doses via the GPR30 receptor 

in different types of tissues, via phosphorylation of ERK1/2 (Chevalier et al, 2012; 

Sheng et al, 2014; Li et al, 2017; Sauer et al, 2017), however studies with higher levels 

of BPA exposure ranging in the micromolar region have shown opposite effects (Kidani 

et al, 2017). None of these studies, however, have examined the non-genomic effects 

of BPA on trophoblastic cell lines and how these effects are mediated. 

 

As mentioned before, there is little data delineating the non-genomic effects of BPA 

on trophoblastic cell lines used as models of the human placenta, as well as mapping 

in detail the expression of all ERs at gene and protein level. It is however crucial to 

understand how BPA alone and in combination with other factors can work to change 

placental physiology, which in turn has the potential to affect pregnancy, fetal survival 

and placental viability. 

 

The main aim of this chapter is to elucidate how treatment of the placental cell line 

BeWo with low levels of BPA affects changes in intracellular target phosphorylation on 

the protein level, the mechanism of action of BPA in terms of receptor binding, and 
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whether ER expression is affected by BPA treatment. Therefore, this chapter has been 

structured into three aims: 

 

1. Elucidate the effect of 3 nM and 10 nM BPA on the phosphorylation status 

of ERK1/2, p38 and AKT in vitro at the protein level. These specific phospho-

targets have been chosen as effectors of Estrogen signaling. 

 

2. Determine the mechanism of action by which BPA influences the 

phosphorylation of certain intracellular targets, by employing the use of 

estrogen receptor antagonists as well as MAPK and AKT inhibitors. 

 

3. Study the gene expression level of estrogen receptors ERa, ERb and 

GPR30 before and after treatment with 3 nM and 10 nM BPA to determine 

whether BPA has an effect on the expression of estrogen receptors. 

 

4.2. Results 
 

4.2.1 Effect of BPA on the phosphorylation status of p38, AKT and ERK1/2 in 
vitro 
 

In order to assess the short-term effect of BPA on BeWo cell lines, cells were treated 

with BPA in physiologically relevant concentrations of 3 nM and 10 nM for 5, 15, 30 

and 60 minutes. After this, expression of specific phospho-targets was measured. 

These were chosen due to their relevance in estrogen signaling. 

 

When BeWo cells were treated with 10 nM BPA for 5 minutes, levels of phosphorylated 

p38 (p-p38) were significantly increased compared to non-treated samples (p<0.05) 

(Figure 4.1). This significance was not seen in cells treated with 3 nM treated samples. 

In Western blot images, it can be seen that levels of housekeeping gene (GAPDH) as 

well as levels of total p38 (phosphorylated and non-phosphorylated) have remained 

constant, while band intensity of p-p38 in 10 nM BPA treated samples has increased. 

Interestingly, when BeWo cells were treated with BPA for 15 minutes, we saw a non-

significant decrease in p-p38 which was most marked in 10 nM treated cells. There 
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was a significant increase (p<0.05) in p-p38 protein expression after treatment with 10 

nM BPA for 30 minutes (Figure 4.3) but not when treated with 3 nM BPA. This increase 

was seen in bands whereby GAPDH levels remained constant as well as total p-38 

levels. After 60 minutes of 3 nM and 10 nM BPA treatment (Figure 4.4), p-p38 levels 

were significantly increased in both 3 nM treated cells (p<0.05) as well as 10 nM 

treated cells (p<0.01). Bands showed a constant level of GAPDH expression as well 

as total p38 expression with a marked increase in band thickness in 3 nM and 10 nM 

treated cells. 

 

p-AKT expression was also measured in BeWo cells treated with 3 nM and 10 nM 

BPA over the same time points as previously discussed. Figure 4.5, 4.6 and 4.7 show 

that treatment 3 nM and 10 nM BPA for 5, 15 and 30 minutes, respectively, did not 

result in a significant increase in p-AKT expression. After 60 minutes of BPA treatment 

(Figure 4.8), there was a significant increase in p-AKT expression (p<0.05) in 10 nM 

treated BeWo cells, which is also shown in the increased thickness of the 10 nM 

treated bands, when compared to controls. GAPDH and total AKT levels remained the 

same with treatment. 

 

p-ERK1/2 expression was also measured at the same treatment levels and time 

points, however figures 4.9, 4.10, 4.11 and 4.12 show that there was no significant 

upreglation of expression of p-ERK1/2 in BeWo cells treated with either 3 nM or 10 nM 

BPA. 
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4.2.1.1 p-p38 expression 
 

 

 

 

 

 

 

 

 

 

Figure 4.1. relative amount of p-p38 (phosphorylated p38) after 5 minutes of BPA 
treatment. NS = no supplement. OD units = optical density units. Graph and images 
show that the treatment of BeWo cells with 10 nM BPA significantly increased the 
protein expression of p-p38 after 5 minutes (p<0.05). Both protein expression of 
housekeeping gene GAPDH as well as the expression of total p38 have remained 
constant. 

 

 

Figure 4.2. relative amount of p-p38 after 15 minutes of BPA treatment. There was no 
significant increase in the expression of p-p38 after 15 minutes of BPA treatment. 

 

*  
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Figure 4.3. relative amount of p-p38 after 30 minutes of BPA treatment. Graph and 
images show that the treatment of BeWo cells with 10 nM BPA significantly increased 
the protein expression of p-p38 after 30 minutes (P<0.05). Both protein expression of 
housekeeping gene GAPDH as well as the expression of total p38 have remained 
constant.  

 

 

Figure 4.4. relative amount of p-p38 after 60 minutes of BPA treatment. Graph and 
images show that the treatment of BeWo cells with 3 nM and 10 nM significantly 
increased the protein expression of p-p38 after 60 minutes (p<0.05 for 3 nM and 
p<0.01 for 10 nM). Both protein expression of housekeeping gene GAPDH as well as 
the expression of total p38 have remained constant.  
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4.2.1.2 p-AKT expression 

 

 

Figure 4.5. relative amount of p-AKT after 5 minutes of BPA treatment. There was no 
significant increase in the expression of p-AKT after 5 minutes of BPA treatment. 

 

 

Figure 4.6. relative amount of p-AKT after 15 minutes of BPA treatment. There was 
no significant increase in the expression of p-AKT after 5 minutes of BPA treatment. 
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Figure 4.7. relative amount of p-AKT after 30 minutes of BPA treatment. There was 
no significant increase in the expression of p-AKT after 30 minutes of BPA treatment. 

 

 

Figure 4.8. relative amount of p-AKT after 60 minutes of BPA treatment. Graph and 
images show that the treatment of BeWo cells with 10 nM significantly increased the 
protein expression of p-AKT after 60 minutes (p<0.05). Both protein expression of 
housekeeping gene GAPDH as well as the expression of total AKT have remained 
constant.  
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4.2.1.3 p-ERK1/2 expression 
 

 

Figure 4.9. relative amount of p-ERK1/2 after 5 minutes of BPA treatment. There was 
no significant increase in the expression of p-ERK1/2 after 5 minutes of BPA 
treatment. 

 

 

Figure 4.10. relative amount of p-ERK1/2 after 15 minutes of BPA treatment. There 
was no significant increase in the expression of p-ERK1/2 after 15 minutes of BPA 
treatment. 
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Figure 4.11. relative amount of p-ERK1/2 after 30 minutes of BPA treatment. There 
was no significant increase in the expression of p-ERK1/2 after 30 minutes of BPA 
treatment. 

 

 

Figure 4.12. relative amount of p-ERK1/2 after 60 minutes of BPA treatment. There 
was no significant increase in the expression of p-ERK1/2 after 60 minutes of BPA 
treatment. 
 

4.2.1.4 Immunofluorescent staining 
 

Immunofluorescent staining was performed in order to validate whether protein levels 

of phosphotargets were upregulated after short-term BPA treatments as previously 

identified with Western blots. As with Western blots, immunofluorescent staining 

showed an upregulation of p-p38 (Figure 4.13) when compared to controls after 

treatment with 10 nM BPA for 60 minutes. Immunostaining of BeWo cells also showed 

an upregulation of p-AKT (Figure 4.14) after 60 minutes of 10 nM BPA treatment. 
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Again, similar to Western blot treatment, there was no upregulation of p-ERK1/2 seen 

after 60 minutes of 10 nM BPA treatment (Figure 4.15).  

 

 
Figure 4.13. Immunostaining of BeWo cells treated with 10 nM BPA for 60 minutes 
and controls. Immunofluorescent signal shows an upregulation of p-p38 in treated cells 
compared to controls. P-p38 is located within the cytosol of the cell (green). DAPI = 
4′,6-diamidino-2-phenylindole nuclear stain. 

 

 
Figure 4.14. Immunostaining of BeWo cells treated with 10 nM BPA for 60 minutes. 
Immunofluorescent signal shows an upregulation of p-AKT in treated cells compared 
to controls. P-AKT is located within the cytosol of the cell (green). 
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Figure 4.15. Immunostaining of BeWo cells treated with 10 nM BPA for 60 minutes. 
Immunofluorescent signal shows no upregulation of p-ERK1/2 in treated cells 
compared to controls. P-ERK1/2 is located within the cytosol of the cell (green).  
 

 

4.2.2 Dissecting the signalling pathways induced by BPA using receptor 
antagonists and intracellular signalling inhibitors: effects on cell proliferation 
 

BeWo cells were treated with BPA in order to assess effects of BPA on proliferation of 

these cells. Furthermore, functional studies were used to investigate the mechanisms 

of action by which BPA exerts it functions. Cells were treated with 3 nM BPA in the 

presence or absence inhibitors of AKT (LY294002) and ERK1/2 (UO126) and 

inhibitors of estrogen receptors (ICI, G-15). LY294002 is a P13K inhibitor which 

thereby inhibits downstream effectors including AKT (Hu, Zaloudek, Mills, Gray, & 

Jaffe, 2000; Vlahos, Matter, Hui, & Brown, 1994). U0126 inhibits MAP kinases such 

as ERK via the direct inhibition of the mitogen-activated protein kinase kinases MEK-

1 and MEK-2 (Favata et al., 1998). ICI is a universal estrogen receptor α and β 

antagonist (Wakeling & Bowler, 1992) and G-15 is an inhibitor of GPR30 (Dennis et 

al., 2009). Cells were either treated with BPA alone, or in combination with the relevant 

inhibitor or antagonist, in order to assess how BPA was affecting cell proliferation in 

BeWo cells. 
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4.2.2.1 Proliferation of BeWo cells after BPA treatment 
 

When BeWo cells were treated with 3 nM and 10 nM BPA, as well as 30 nM E2 as a 

positive control, we found that there was a significant (p<0.05) increase in proliferation 

of BeWo cells over 24 hours of 3 nM BPA treatment (Figure 4.16). 10 nM treated BeWo 

cells and 30 nM E2 treated cells also demonstrated an increase in proliferation but did 

not reach significance. 

 

 

 

 
Figure 4.16 Proliferation of BeWo cells treated with 3 nM BPA, 10 nM BPA and 30 nM 
E2. 3 nM BPA treatment significantly increased cell proliferation compared to controls 
(p<0.05). There was a notable -but no significant- increase in proliferation when cells 
were treated with 10 nM BPA or 30 nM E2. 
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4.2.2.2 Proliferation studies using phospho-target inhibitors and estrogen 
receptor antagonists  
 

As proliferation of BeWo cells was significantly increased after treatment with 3 nM 

BPA, it was necessary to elucidate by which mechanism this increase of proliferation 

is mediated. In order to determine mechanisms of action of BPA, the AKT-inhibitor 

LY294002 as well as the MAPK-inhibitor UO126 and estrogen receptor antagonists 

ICI and G15 were used with and without BPA treatment. We found that there was a 

significant decrease in proliferation over 24 hours when treated with 3 nM BPA plus 

the AKT inhibitor (p<0.001), and the AKT inhibitor alone (p<0.001) (Figure 4.17), 

however there was no significant change in proliferation when cells were treated with 

the MAPK inhibitor (Figure 4.18). When treating BeWo cells with ER antagonists, 

(Figure 4.19), there was a significant decrease in proliferation over 24 hours when 

cells were treated with G15+BPA (p<0.05). BPA treatment in presence of ICI led to a 

decrease in cell proliferation but did not reach significance. 
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Figure 4.17 BeWo cells were treated with 3 nM BPA in the presence of AKT-inhibitor 
LY294002, 3 nM BPA, or a combination of both for 24 hours. There was a significant 
decrease in cell proliferation when cells were treated with LY294002 as well as 
treatment with BPA + LY294002 when compared to controls and treatment with only 
BPA (p<0.01). 
 

 
Figure 4.18 BeWo cells were treated with 3 nM BPA in the presence of MAPK-inhibitor 
U0126, 3 nM BPA, or a combination of both for 24 hours. There was no significant 
decrease in cell proliferation when cells were treated with U0126 or BPA + U0126 
when compared to controls and treatment with only BPA. 
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Figure 4.19 Proliferation of BeWo cells treated with 3 nM BPA and/or estrogen 
receptor antagonists. ICI: ERa and ERb inhibitor, G15: GPR30 inhibitor. Proliferation 
compared to BPA treated cells was significantly decreased when treated with G15 
(p<0.05).  
 

 

4.2.3 Regulation of placental estrogen receptors following treatment with BPA 
 

Next, we assessed the effects of BPA on the expression of ERs in non-syncytialised 

and syncytialised BeWo cells using 3 nM BPA and 10 nM BPA. In non-syncytialised 

BeWo cells (Figure 4.20), there appears to be an upregulaion of all three ERs after 24 

hour treatment with 3 nM BPA. There was a significant upregulation of ERa (p<0.001) 

and ERb (p<0.05). In syncytialised BeWo cells (Figure 4.21) there also appeared to 

be an upregulation of all three receptors after 24 hour 3 nM BPA treatment, however 

this was not significant. 
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Figure 4.20 Relative levels of estrogen receptor gene expression in non-syncytialised 
BeWo cells. When treated with low levels (3 nM) of BPA for 24 hours, there was a 
highly significant increase in ERα expression in non-syncytialised BeWo cells 
(p<0.001). There was also a significant increase in ERβ when non-syncytialised BeWo 
cells were treated with low levels (3 nM) of BPA (p=0.0243). There was also an 
increase in GPR30 gene expression, however this was not significant.  
 

 
Figure 4.21 Relative levels of estrogen receptor gene expression in syncytialised 
BeWo cells. When cells were treated with low levels of BPA (3 nM and 10 nM) there 
was no significant increase or decrease in estrogen receptor expression levels.  
 
 
 

Syncytialised BeWo cells treated with BPA 

ERβ in non-syncytialised cells treated with BPA 

Non-syncytialised BeWo cells treated with BPA 

* 
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4.3. Discussion 
 

In this chapter we have investigated the effects of exposure to BPA on the BeWo cell 

line in terms of estrogen receptor regulation, mechanisms of action of BPA regarding 

receptor binding and intracellular signaling, as well as activation of key kinases. In 

doing so, we have shed light on the subject of BPA exposure and its effects on the 

human placenta using the BeWo cell line as an in vitro model. 

 

Our data show that ERa gene expression is significantly upregulated in non-

syncytialised BeWo cells. It is therefore possible that BPA can directly upregulate ERa. 

Studies have shown that E2 has the capacity to upregulate or downregulate gene 

expression of the ERa receptor, depending on the type of tissue, cell and conditions 

(Castles et al., 1997). For example, estradiol has been shown to downregulate the 

estrogen receptor in MCF7 breast cancer cell lines (Saceda et al., 1988). Another 

study showed that ERa, but not ERb expression was upregulated in male Bombina 

orientalis (Boulenger) liver cells (Park & Gye, 2014). To date, there is no data 

regarding how activation of ERa by BPA regulates its own gene expression at 

placental level. Upregulation of ERa could lead to a potentiating effect of BPA, as well 

as a stronger response towards E2 and other activators of the estrogen receptor. This 

could lead to a stronger response to BPA, even at low levels. BPA can be a weak 

estrogen, being 10,000-100,000 times less potent than E2, or can be equally potent, 

eliciting cellular changes at a level of as low as 1 pM (Snyder et al., 2000; Welshons, 

Nagel, & Vom Saal, 2006; Welshons et al., 2003; Wozniak, Bulayeva, & Watson, 

2005).  The biphasic effect of BPA, meaning that lower doses of BPA have different 

effects than higher doses, rather than higher doses potentiating the effect, has been 

shown in different tissues in rats in vivo, as well as in the BeWo cell line (Chen et al., 

2017; Jeong et al., 2017; Takai et al., 2000; Z.-Y. Wang et al., 2015). As we have 

shown that 3 nM BPA has led to a significant upregulation of ERa gene expression 

which was absent after treatment with 10 nM BPA, this could be one mechanism that 

would explain why lower levels could have different effects than higher levels of BPA. 

These effects could be specific to BeWo cells, as different cell types have been shown 

to have varied effects on proliferation, after exposure to BPA.  
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In our studies of proliferation of the BeWo cell line after BPA treatment, we found that 

low levels of BPA (3 nM) significantly increase BeWo cell proliferation, which is in line 

with in vivo studies in mice and rats, cultured rat epithelial prostate cells, and ovarian 

cell lines showing that low levels of BPA increased cell proliferation via different 

mechanisms (García-Arévalo et al., 2016; Huang et al., 2018; Huang, Wu, Su, Yan, & 

Sun, 2017; Jeong et al., 2017; Sheng, Huang, Liu, & Zhu, 2013; Shi et al., 2017). For 

example, proliferation of ovarian cancer cell line OVCA3 was significantly increased in 

cells treated with 10-9 Mol/L BPA for 24 hours and not when treated with 10-7 Mol/L 

BPA (Shi et al., 2017) and proliferation of rat prostate epithelial cells in culture was 

significantly increased after treatment with 0.1 and 1 nM BPA, as opposed to showing 

decreased proliferation after treatment with 10-1000nM BPA (Huang et al., 2017). In 

BeWo cells, higher levels of BPA (10 nM) did not have a significant effect on cell 

proliferation, highlighting once again the fact that lower levels of BPA have different 

effects on cells than higher levels do. As we have seen this pattern with ERa 

upregulation as well, it is possible that the proliferation of BeWo cells after 3 nM BPA 

treatment is an effect likely mediated via binding of BPA to ERa, although it could also 

be mediated by GPR30.To further investigate this hypothesis, and whether BPA acts 

via other mechanisms in BeWo cells, i.e. the membrane-bound receptor GPR30, 

further studies were conducted to investigate proliferation of BeWo cells in the 

presence of estrogen receptor antagonists and/or BPA. It is evident that G15 inhibited 

the effect of BPA, whereas cell proliferation was partially inhibited by ICI. This points 

to a proliferative effect of 3 nM BPA in BeWo cells involving both GPR30 and ERa or 

ERb.  

 

It is known that E2 promotes growth in different cells via both genomic receptors, 

through genomic mechanisms such as an increase in insulin-like growth factor (IGF) 

(Kumar et al., 2018; Oesterreich et al., 2001; Yashwanth, Rama, Anbalagan, & Rao, 

2006), and so it is feasible that BPA would also exert this effect. Proliferation was also 

decreased with G15 treatment when compared to BPA treatment, implying that the 

proliferative effect of BPA is partly mediated via the membrane bound GPR30 

estrogen receptor.  
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To elucidate intracellular signaling cascades influenced by the binding of BPA to 

estrogen receptors and whether these mechanisms play a role in BeWo cell 

proliferation through BPA, BeWo cells were treated with 3 nM BPA, 3 nM BPA + 

LY294002, BPA + U0126 and both inhibitors separately. These targets were 

investigated due to their role in estrogen signaling and therefore a similar effect of BPA 

was postulated. In our studies of proliferation, we found a significant decrease of 

BeWo cell proliferation after inhibition of AKT, in the presence or absence of 3 nM 

BPA. These results point to a non-genomic proliferative effect of BPA on BeWo cells 

that is mediated through some way via a signaling pathway that is regulated by AKT. 

One way this could be achieved is via the AKT/PTEN pathway, which has been shown 

to respond to estrogen as a stimulus with increased proliferation in different types of 

tissues, such as primordial germ cells in vitro (Moe-Behrens et al., 2003). Another 

pathway involving AKT which results in an increase of proliferation due to estrogen is 

the PI3K/AKT pathway, which stimulates proliferation in breast cancer cells via ERα 

(Lee et al., 2005). Studies have shown that non-genomic effects of estrogen can be 

achieved by either the membrane bound G-protein-coupled receptor GPR30 or 

membrane bound classical estrogen receptors (Kumar et al., 2018) and that estrogen 

has a proliferative effect on certain cancer cells via non-genomic intracellular signaling 

mediated by ERa stimulation, one of these pathways being the P13K/AKT pathway, 

as well as pathways involving ERK signaling (Acconcia & Marino, 2011). 

Furthermore, BPA specifically has been shown to have varying effects on intracellular 

target phosphorylation, depending on the type of cell. Both p-AKT and p-ERK1/2 have 

been shown to be upregulated by BPA in rat mammary gland (Betancourt, Mobley, 

Russo, & Lamartiniere, 2010; Lamartiniere, Jenkins, Betancourt, Wang, & Russo, 

2011) as well as AKT1 being upregulated in human breast epithelial cells after low 

levels of BPA treatment (Goodson et al., 2011). On the other hand, p-AKT has been 

shown to be downregulated after BPA treatment in rat sertoli cells (Wang et al., 2015) 

as well as rat hippocampi (Wang et al., 2016). As BPA has shown contradictory effects 

on regulation of intracellular targets, information about the regulation of these targets 

in BeWo cells was needed. 

 

Our data has shown an effect of BPA on the proliferation of BeWo cells. We have also 

explored the mechanisms behind the proliferation of BeWo cells after BPA treatment 
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and have been able to determine key targets as well as receptors by which BPA likely 

mediates its action.  Taken together, our data suggests that proliferative BPA function 

in BeWo cells is most likely mediated by ERα, as we have shown that this receptor is 

upregulated by 3 nM concentrations of BPA, and also that the inhibition of ERα in 

combination with BPA clearly resulted in a loss of proliferation in BeWo cells, which 

was less than when cells were treated with the antagonist alone. Furthermore, we 

have seen that the inhibition of AKT via LY294002 significantly decreased proliferation 

in BeWo cells with and without 3 nM BPA treatment. As we have seen an increase in 

AKT phosphorylation on a protein level after treatment with 10 nM BPA for 60 mins, 

this further suggests that this intracellular target plays a role in BPA signaling. Given 

that AKT signaling plays a major role in effects mediated by estrogen, and that ERα 

has often been implicated in triggering AKT signaling, for example in endometrial 

cancer cells (Haque et al., 2018), human breast cancer, and human kidney cells (Das, 

Datta, Chatterjee, & Ghosh, 2016) it is plausible that BPA, as a xenoestrogen, would 

exert these effects in BeWo cells. 
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Chapter 5 

Use of non-biased gene microarray analyses to assess the effects of BPA in 
vitro 

5.1. Introduction 
 

In order to assess the effects of BPA on the placenta, it is essential to examine how 

BPA affects the whole genome via a non-biased screen. This way, an overview of 

main genes and pathways affected by BPA is presented and it is possible to examine 

which aspects of the cell, be it proliferation, invasion, or differentiation, to name just a 

few, are primarily altered. In this chapter, we assessed the effects BPA has on the 

BeWo placental cell lines in both non-syncytialised and syncytialised states, using a 

gene microarray. In order to elucidate which genes and pathways were most affected 

by the compound, the most significantly upregulated and downregulated genes after 

BPA treatment were found, and, using bioinformatics analysis, the most differentially 

regulated pathways analysed. 

 

To our knowledge, microarray analysis has not been performed on BeWo placental 

cell lines treated with BPA to date. In fact, there are only a handful of studies that use 

microarray analysis when using the BeWo cell line as a placental model. As there is 

still a paucity of data regarding the effects of BPA on the placenta, it seemed vital to 

use this method in order to gain understanding of how human pregnancies might be 

affected by this compound. Studies have shown a link between a multitude of 

pathologies in pregnancy and BPA levels, but information on whether these 

pathologies are caused by effects of BPA on the human placenta, or what processes 

within the cell are disrupted, is lacking. 

 

Although the effects of BPA have not extensively been evaluated using the BeWo cell 

line, some studies have outlined various effects of BPA on other placental models, 

such as the HTR-8/SVneo cell line (Spagnolotti et al, 2015; Lan et al, 2017), JEG-3 

cell line (Pérez-Albaladejo et al, 2017) villous explant cultures (Lan et al, 2017), animal 

models (Tait et al, 2015; Lee et al, 2016; Lan et al, 2017) and term placental explants 

(Rajakumar et al, 2015; Xu et al, 2015; Sieppi et al, 2016). Although these studies 
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have added valuable information to the literature, it is necessary to study the whole 

genome with a non-biased screen in order to get a fuller picture of the effects of BPA 

on the placenta. 

 

In order to assess genes, cell functions and pathways affected by the treatment of 

syncytialised and non-syncytialised BeWo cells with BPA (3 nM, 10 nM), cells were 

treated with BPA for 24 hours using starved mediaCells were then lysed and RNA was 

extracted. After RNA quality screening, RNA was used for microarray analysis to 

asses up- or downregulation of gene expression in the entire genome after BPA 

treatment. Read-outs were assessed by sorting genes from highest to lowest p-value 

and highest to lowest fold change and analysing differentially expressed genes using 

the bioinformatics analysis software FunRich. This programme performs functional 

enrichment as well as gene and protein interaction network analysis. FunRich 

analyses biological processes, cellular components, protein domains and molecular 

functions, expression sites, biological pathways, transcription factors and provides a 

clinical synopsis of phenotypic terms. In order to further analyse data, differentially 

expressed gene lists were uploaded to the online bioinformatics application Enrichr 

(Chen et al., 2013). This platform uses a vast array of different genetic databases in 

order to establish differentially regulated signaling pathways, transcription factors, and 

diseases, among other analyses. Read-outs of the two different bioinformatic 

platforms were compared in order to assess reliability. 

 

The main aim of this chapter is to assess gene expression changes in BeWo cells as 

well as human placental explants after treatment with 3 nM and 10 nM BPA for 24 

hours and to analyse the outputs in the context of bioinformatic analysis and thereby 

identify common pathways and diseases affected by BPA, as well as identifying 

relevant upregulated genes. Therefore, this chapter has been structured into 3 main 

aims. 

 

1. Determine differentially expressed genes in non-syncytialised BeWo cells 

treated with 3 nM and 10 nM BPA for 24 hours using microarray and perform 

bioinformatic analysis on outputs. Validate significantly upregulated genes 

of interest with qPCR and immunostaining.  
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2. Determine differentially expressed genes in syncytialised BeWo cells 

treated with 3 nM and 10 nM BPA for 24 hours using microarray and perform 

bioinformatic analysis on outputs. Validate significantly upregulated genes 

of interest with immunostaining.  

 

3. Determine differentially expressed genes in placental explants from term 

placenta treated with 3 nM and 10 nM BPA for 24 hours using microarray 

and perform bioinformatic analysis on outputs. Assess overlap between 

explants and BeWo cells.  
 

5.2 Results 
 

5.2.1. Bioinformatic analysis of BeWo microarray results 
 

Outputs from microarray analysis were analysed using the bioinformatics gene 

enrichment tool Funrich. Significantly up- and downregulated genes were uploaded to 

the software in order to assess biological processes, cellular components, protein 

domains and molecular functions, expression sites, biological pathways, transcription 

factors and clinical phenotypes. Outputs from microarray were also analysed via the 

gene enrichment tool Enrichr, which uses different databases and shows all results 

from different databases. Furthermore, overlap of differentially regulated genes 

between groups was analysed using Venn diagrams created with the Funrich tool. 

 

5.2.1.1 Bioinformatic analysis of non-syncytialised BeWo cells treated with BPA 
 

A Venn diagram showing differentially expressed gene overlap in non-syncytialised 3 

nM and 10 nM treated BeWo cells (figure 5.1) showed that 194 genes were 

differentially expressed in both cells (gene names shown in appendix, table 1.) The 

Venn diagram also shows a large difference between the two sets, with 1195 genes 

being differentially regulated in 3 nM treated BeWo cells, whereas to nM treated BeWo 

cells only showed differential regulation in 477 genes.  
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Figure 5.1 Venn diagram showing differentially expressed gene overlap between 10 
nM non-syncytialised and 3 nM non-syncytialised BeWo cells. In total, 194 genes were 
differentially expressed in both gene sets. The total set of differentially expressed 
genes was much larger in 3 nM non-syncytialised BeWo cells with a total number of 
1195 genes, compared to 477 genes. Shared differentially upregulated genes: see 
Appendix Table 1. 
 

Top upregulated genes in 3 nM treated non-syncytialised cells are shown below (table 

5.1). They have been organised by highest to lowest significance (p-value) and their 

functions are described. The most significantly upregulated gene in this set is 

cytoplasmatic polyadenylation element-binding protein 1 (CPEB1). This protein is vital 

for cell cycle progression, particularly prophase entry.  
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Table 5.1. Top 10 upregulated genes in 3 nM BPA treated non-syncytialised BeWo 
cells including protein functions and p-values of upregulation. Where not cited, 
functions have been summarised from the UniProt protein database 
(https://www.uniprot.org). The most significantly upregulated gene is CPEB1, followed 
by RAPGEF1, MYL3, CAV1, CLSTN3, HCAR3, SERPINB9, AGXT2, TMEM45B and 
EIF4E2, respectively.  
 

GENE FUNCTION P-VALUE 

Cytoplasmic 
polyadenylation element-
binding protein 1 (CPEB1) 

Sequence-specific RNA-binding protein regulating mRNA cytoplasmic polyadenylation 
and initiation of translation. Cell cycle progression, particularly prophase entry.  

 

2.6 x 10-4 

Rap guanine nucleotide 
exchange factor 1 

(RAPGEF1) 

Guanine nucleotide-releasing protein that transduces signals from CRK to activate 
RAS. involved in establishment of basal endothelial barrier function.  

5.56 x 10-4 

 

Myosin light chain 3 (MYL3) Regulatory light chain of the muscular protein myosin that does not bind calcium.  9.21 x 10-4 

Caveolin-1 (CAV1) Possible function as a scaffolding protein in caveolae. Can regulate G-protein alpha 
subunits and their activity. Recruits proteins to caveolar membranes.  

0.001 

Calsyntenin-3 (CLSTN3) Possible role in calcium-mediated postsynaptic signals. Plays a role in APP 
metabolism and maturation. 

 

0.002 

Hydroxycarboxylic acid 
receptor 3 

(HCAR3) 

G-protein coupled receptor involved in regulation of adipocyte lipolysis as negative 
feedback to counteract prolipolytic influences. Receptor for 3-OH-octanoid acid.  

0.002 

Serpin B9 (SERPINB9) Inhibitor of Granzyme B, anti-apoptotic, response to estrogen stimulus 0.003 

Alanine--glyoxylate 
aminotransferase 2 
(AGXT2) 

Metabolises asymmetric dimethylarginine (ADMA) to dimethylguanidino valeric acid 
(DMGV) thereby increasing NOS activity leading to vascular dilation.  

0.003 

Transmembrane protein 
45B (TMEM45B) 

Promotes proliferation and inhibits apoptosis in pancreatic cancer cells (Zhao et al., 
2016), promotes proliferation in gastric cancer cells (Shen, Yu, Yu, Liu, & Cui, 2018), 
upregulated in human lung cancer cells (R. Hu et al., 2016), promotes proliferation in  
osteosarcoma cells (Y. Li et al., 2017) 

0.003 

Eukaryotic translation 
initiation factor 4E type 2 
(EIF4E2) 

Repressor of initiation of translation by binding to mRNA cap 0.003 
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Top upregulated genes in 10 nM treated non-syncytialised cells are shown below 

(table 5.2). They have been organised by highest to lowest significance (p-value) and 

their functions are described. The most significantly upregulated gene in this set is 

caveolin-1 (CAV1). This protein is a scaffolding protein in membrane caveolae, as well 

as being able to regulate g-protein alpha subunits and recruiting other proteins to 

caveolar membranes.  

 

 

Table 5.2. Top 10 upregulated genes in 10 nM BPA treated non-syncytialised BeWo 
cells including protein functions and p-values of upregulation. Where not cited, 
functions have been summarised from the UniProt protein database 
(https://www.uniprot.org). The most significantly upregulated gene is CAV1, followed 
by MYL3, CBLN1, ANK3, TPMT, LEP, HAPLN3, SPEF1, PLAC8, and EIF4E2, 
respectively.  
 

Next, gene enrichment analysis in non-syncytialised BeWo cells treated with 3 nM and 

10 nM BPA was performed using the FunRich and Enrichr databases. Gene sets were 

analysed in terms of their common pathways, molecular functions, common gene 

GENE FUNCTION P-VALUE 

Caveolin-1 (CAV1) Possible function as a scaffolding protein in caveolae. Can regulate G-protein alpha 
subunits and their activity. Recruits proteins to caveolar membranes. 

4.66 x 10-4 

Myosin light chain 3 
(MYL3) 

Regulatory light chain of the muscular protein myosin that does not bind calcium. 0.004 

Cerebellin-1 (CBLN1) Required for development of the nervous system; synaptic plasticity 0.005 

Ankyrin-3 ANK3 Links membrane and cytoskeleton as well as regulating cell adhesion molecules and renal 
Mg2+  absorption 

0.007 

Thiopurine S-
methyltransferase (TPMT) 

Modulates thiopurine drug toxicity 

 

0.009 

Leptin (LEP) Regulation of energy homeostasis and body weight control. Appetite modulating, pro-
angiogenic, inhibitor of glucose absorption in the bowel, pro-inflammatory 

0.01 

Hyaluronan and 
proteoglycan link protein 
3 (HAPLN3) 

Hyaluronic acid binding 0.01 

Sperm flagellar 1 
(SPEF1) 

Microtubule associated protein that promotes establishment of axis of microtubules 0.01 

Placenta-specific 8 
(PLAC8) 

Enriched protein in the placenta, promotes cell proliferation and tumour progression (W.-L. 
Chang et al., 2018; Y. Jia et al., 2018; Kolluru et al., 2017; C. Li et al., 2014; R. Yang et al., 
2018; Zou et al., 2016)  

0.01 

Eukaryotic translation 
initiation factor 4E type 2 
(EIF4E2) 

Repressor of initiation of translation by binding to mRNA cap 0.01 
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transcription factors and clinical phenotypes. Tables and graphs showing most 

significant gene enrichment are shown below. Figure 5.2 shows enriched molecular 

functions of genes from BeWo cells treated with 3 nM BPA. Using this database, it 

was shown that guanyl-nucleotide exchange factor (GEF) activity was significantly 

enriched (p=0.049). Using the database Enrichr (Table 5.3) showed that the top 10 

significantly regulated molecular functions also included Rac GEF (p=0.00009) and 

Rho GEF (p=0.0002) activity, among others, showing that both platforms yielded 

similar results. 

 

Next, we investigated biological pathway gene enrichment in 3 nM treated BeWo cells 

using both platforms. Funrich data (figure 5.3) showed that regulation of RAC1 activity 

and RAC1 signaling pathway were significantly enriched (p=0.007), and that regulation 

of RhoA activity and RhoA signaling were significantly enriched (p=0.007). Enrichr 

data using the NCI Nature database 2016 for pathway gene enrichment (table 5.4) 

showed that the top significant differentially regulated biological pathway was “insulin 

resistance” (p=0.01). Using the KEGG 2016 database via Enrichr for biological 

pathways (table 5.5), the most significantly regulated pathway was regulation of RhoA 

activity (p=0.0003) and the 9th most significantly regulated pathway was the RhoA 

signaling pathway (p=0.05). The WikiPathways 2016 database via Enrichr (table 5.6) 

showed an upregulation of Leptin Insulin Overlap pathways (p=0.0014), differentiation 

of white and brown adipose tissue pathways (p=0.015), insulin signaling pathway 

(p=0.03), and leptin signaling pathway (p=0.034). 

 

When looking at gene enrichment and transcription factors, when using the FunRich 

database (figure 5.4), the most differentially regulated transcription factor was RREB1 

(p=0.004). Using Enrichr (table 5.7), the most regulated transcription factor was 

ZFHX3 (p=0.001). 
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Figure 5.2 Funrich top 5 enriched molecular functions of genes from BeWo cells 
treated with 3 nM BPA. Guanyl-nucleotide exchange factor (GEF) activity was 
significantly enriched (p=0.049). Percentages show percentage of genes involved in 
the molecular function. The orange line indicates cut off for significance (p<0.05) and 
the yellow line indicates -log10 p-values.  
 

 

Table 5.3 Top 10 significant GO-terms of molecular function associated with 
differentially expressed genes after 3 nM BPA treatment of BeWo cells using GO 
molecular function 2017b database via Enrichr. Terms are ordered from most 
significant to least significant. Rac GEF exchange factor activity is the most 
significantly regulated GO-term. 
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Figure 5.3 Funrich top 5 enriched biological pathways of genes from BeWo cells 
treated with 3 nM BPA. Regulation of RAC1 activity and RAC1 signaling pathway were 
significantly enriched (p=0.007), regulation of RhoA activity and RhoA signaling 
pathway were also significantly enriched (p=0.007). 
 

 

Table 5.4 Top 10 terms of biological pathways associated with differentially expressed 
genes after 3 nM BPA treatment of BeWo cells using NCI Nature 2016 database via 
Enrichr. The most significantly regulated pathway is insulin resistance (p=0.013). 
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Table 5.5 Top 10 terms of biological pathways associated with differentially expressed 
genes after 3 nM BPA treatment of BeWo cells using KEGG 2016 database via 
Enrichr. The most significantly regulated pathway is regulation of RhoA activity 
(p=0.0003). The 9th most regulated pathway is the RhoA signaling pathway (p=0.05). 
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Table 5.6 Top 10 significant GO-terms of biological pathways associated with 
differentially expressed genes after 3 nM BPA treatment of BeWo cells using 
WikiPathways 2016 database via Enrichr. Leptin Insulin Overlap (p=0.001), 
differentiation of white and brown adipose tissue (p=0.015), insulin signaling (p=0.03), 
and leptin signaling pathway (p=0.034) were all significantly regulated. 
 

 

Figure 5.4 Funrich enriched transcription factors of genes from BeWo cells treated 
with 3 nM BPA. RREB1 transcription factor is significantly enriched (p=0.004).  
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Table 5.7. Top 10 significant transcription factors associated with differentially 
expressed genes after 3 nM BPA treatment of BeWo cells using ARCHS4 TFs Coexp 
database via Enrichr. 
 

In non-syncytialised BeWo cells treated with 10 nM BPA, the Funrich database did not 

show any significantly differentially expressed molecular functions. Using the GO 

molecular function 2017b database via Enrichr, Rac guanyl nucleotide exchange 

factor activity was differentially expressed (p=0.01). When looking at differentially 

expressed biological processes, there was no significant change when analysing the 

data with Funrich, although there was a high number of differentially expressed 

apoptotic processes when using the GO biological processes database via Enrichr, 

including positive regulation of apoptotic processes in development (p=0.002). When 

looking at biological pathways, there were no significantly enriched pathways when 

using the Funrich platform, the KEGG 2016 database via Enrichr however showed 

significant enrichment of the insulin resistance pathway (p=0.005), among other 

significantly regulated pathways. Via Enrichr, the Wikipathways 2016 database for 

biological pathways showed a significant regulation of differentiation of white and 

brown adipose tissues pathways (p=0.003) and using the NCI Nature 2016 database 

for biological pathways via Enrichr, regulation of RAC1 activity was significantly 

regulated (p=0.012).  
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Figure 5.5. Funrich enriched molecular function of genes from BeWo cells treated with 
10 nM BPA.  

 

 
Table 5.8. Top 10 significant molecular functions associated with differentially 
expressed genes after 10 nM BPA treatment of BeWo cells using GO molecular 
function 2017b database via Enrichr. Rac guanyl-nucleotide exchange factor activity 
is differentially expressed (p=0.01) 
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Figure 5.6. Funrich enriched biological processes of genes from BeWo cells treated 
with 10 nM BPA. 
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Table 5.9. Top 10 significant biological processes associated with differentially 
expressed genes after 10 nM BPA treatment of BeWo cells using GO biological 
process 2017b database via Enrichr. There was a significantly regulated gene 
expression of positive regulation of apoptotic processes involved in development 
(p=0.002), among other differentially expressed biological processes relating to 
apoptosis. 
  



 

130 
 

 

 
Figure 5.7. Funrich enriched biological pathways of genes from BeWo cells treated 
with 10 nM BPA. 

 

 
Table 5.10. Top 10 biological pathways associated with differentially expressed genes 
after 10 nM BPA treatment of BeWo cells using KEGG 2016 database via Enrichr. The 
insulin resistance pathway is significantly differentially regulated (p=0.005). 
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Table 5.11. Top 10 biological pathways associated with differentially expressed genes 
after 10 nM BPA treatment of BeWo cells using WikiPathways 2016 database via 
Enrichr. Differentiation of white and brown adipocyte pathways were siginificantly 
regulated (p=0.003). 
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Table 5.12. Top 10 biological pathways associated with differentially expressed genes 
after 10 nM BPA treatment of BeWo cells using NCI-Nature 2016 database via Enrichr. 
Regulation of RAC1activity is significantly regulated (p=0.012).  
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Figure 5.8. Funrich enriched transcription factors of genes from BeWo cells treated 
with 10 nM BPA. 
 

 

5.2.1.2 Gene expression validation of microarray in non-syncytialised cells 
 

In order to validate the outcome of the microarray, genes of interest were picked from 

the upregulated gene cohort, and upregulated gene expression was further assessed 

using qPCR. Genes that were chosen for validation were chosen due to their possible 

relation to placental function or cell function and were all significantly upregulated. Of 

the top upregulated genes in each cohort, 3 genes were chosen for validation. The 

genes chosen were: caveolin1 (CAV1), Leptin, and human placenta specific 8 

(hPLAC8). These three genes were significantly upregulated in both 3 nM and 10 nM 

BPA treated non-syncytialised BeWo cells. Furthermore, immunofluorescent staining 

was performed on these three proteins in order to assess protein expression. 
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Figure 5.9. Panel a: there was a relative increase in leptin gene expression when 
compared to controls after 10 nM BPA treatment. This is in accordance with the fold-
change difference (2.22) found between untreated BeWo cells and 10 nM BPA treated 
BeWo cells found in microarray analysis. Panel b: immunostaining shows an increase 
in Leptin levels after treatment with BPA.  

 

 
Figure 5.10. There was a relative increase in PLAC8 gene expression when compared 
to controls after 3 nM and 10 nM BPA treatment. This is in accordance with the fold-
change difference found between untreated BeWo cells and 3 nM BPA treated BeWo 
cells (1.75) as well as untreated BeWo cells and 10 nM treated BeWo cells (2.14). No 
immunostaining available as no commercial antibodies available. 
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Figure 5.11. Panel a: there was a relative increase in CAV1 gene expression when 
compared to controls after 3 nM and 10 nM BPA treatment. There is a significant 
increase in CAV1 when comparing controls to 10 nM treated BeWo cells (P<0.01). 
This is in accordance with the fold-change difference found between untreated BeWo 
cells and 3 nM BPA treated BeWo cells (2.35) as well as untreated BeWo cells and 10 
nM treated BeWo cells (3.55). Panel b: immunostaining shows an increase in CAV1 
levels after treatment with BPA.  
 

5.2.1.3 Bioinformatic analysis of syncytialised BeWo cells treated with BPA 
 

Syncytialised BeWo cells were analysed separately in order to asses significantly 

differentially regulated genes and their functions as well as involvement in cell 

signaling pathways and diseases. Similarly, as in non-syncytialised BeWo cells, Venn 

diagrams were created to show overlap in differentially regulated genes. Figure 5.12 

shows that in 3 nM syncytialised BeWo cells, 309 genes were differentially regulated, 

and in 10 nM syncytialised BeWo cells, 158 genes were differentially regulated, with 

only on gene, FABP5 being shared. 

 

 

DAPI      CAV1      Merge 
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Figure 5.12. Venn diagram showing differentially expressed gene overlap between 10 
nM syncytialised and syncytialised BeWo cells. In total, 1 gene was differentially 
expressed in both gene sets. The total set of differentially expressed genes was much 
larger in 3 nM non-syncytialised BeWo cells with a total number of 309 genes, 
compared to 158 genes. FABP5: shared differentially regulated gene. 

 

Top upregulated genes in 3 nM treated syncytialised cells are shown below (table 

5.13). They have been organised by highest to lowest signifciance (p-value) and their 

functions are described. The most significantly upregulated gene in this set is Growth 

hormone releasing hormone (GHRH). This protein stimulates growth hormone 

secretion. 
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Table 5.13. Top 10 upregulated genes in 3 nM BPA treated syncytialised BeWo cells 
including protein functions and p-values of upregulation. Where not cited, functions 
have been summarised from the UniProt protein database (https://www.uniprot.org). 
The most significantly upregulated gene is GHRH, followed by UGT2B10, CA11, 
SLC11A1, CHM, OTUD7A, EVPLL, SLFNL1, SLC1A7 and SULT1C4, respectively. 
 

Top upregulated genes in 10 nM treated syncytialised cells are shown below (table 

5.14). They have been organised by highest to lowest significance (p-value) and their 

functions are described. The most significantly upregulated gene in this set is Sodium-

dependent phosphate transporter 2 (SLC20A2). This protein plays a role in phosphate 

housekeeping, signal transduction and cellular metabolism. 

 

GENE FUNCTION P-VALUE 

Growth hormone releasing hormone (GHRH) Stimulates growth hormone secretion 5.69 10-4 

 

UDP-glucuronosyltransferase 2B10 (UGT2B10) Essential for conjugation and elimination of toxic 
xenobiotics and endogenous compounds 

 

0.005 

Carbonic anhydrase-related protein 11 (CA11) 

 

unknown 0.005 

Natural resistance-associated macrophage protein 1 
(SLC11A1) 

Metal transporter involved in iron metabolism. 
Controls infection due to macrophage-specific 
transport function. 

 

0.01 

Rab proteins geranylgeranyltransferase component A 1 
(CHM) 

Involved Rab protein geranylgeranylation 

 

0.023 

OTU domain-containing protein 7A (OTUD7A) Deubiquinates polyubiquitin chains 0.023 

Envoplakin-like protein (EVPLL) Involved in intramedial filament binding and 
epidermis development 

0.027 

Schlafen-like protein 1 (SLFNL1) unknown 0.038 

Excitatory amino acid transporter 5 (SLC1A7) Voltage-dependent transport of L-glutamate  0.038 

Sulfotransferase 1C4 (SULT1C4) catalyses sulfate conjugation of drugs, xenobiotic 
compounds, hormones, and neurotransmitters 

 

0.042 
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Table 5.14. Top 10 upregulated genes in 10 nM BPA treated syncytialised BeWo cells 
including protein functions and p-values of upregulation. Where not cited, functions 
have been summarised from the UniProt protein database (https://www.uniprot.org). 
The most significantly upregulated gene is SLC20A2, followed by TTLL9, ATE1, 
GPR124, GLIPR2, FAS, MINPP1, SEC61G, SPRED1 and CEACAM3, respectively.  
 

Next, gene enrichment analysis was performed in non-syncytialised BeWo cells 

treated with 3 nM and 10 nM BPA. In cells treated with 3 nM BPA, the Funrich 

molecular function database did not show any significant gene enrichment (figure 

5.13), however using the Go Molecular Function 2017b database via Enrichr did yield 

GENE FUNCTION P-VALUE 

Sodium-dependent 
phosphate transporter 2 
(SLC20A2) 

 

Sodium-phosphate symporter. Plays role in phosphate housekeeping, 
signal transduction and cellular metabolism. 

0.007 

Probable tubulin 
polyglutamylase TTLL9 
(TTLL9) 

Likely to be a tubulin polyglutamylase forming polyglutamate side chains on 
tubulin. 

 

0.007 

Arginyl-tRNA--protein 
transferase 1 (ATE1) 

 

Posttranslational conjugation of arginine in order to degrade via ubiquitine 
pathway. 

 

0.008 

Adhesion G protein-
coupled receptor A2 
(GPR124) 

 

G-protein receptor of endothelium. Activates canonical Wnt signaling. Plays 
a major role in blood-brain barrier formation.  

0.010 

Golgi-associated plant 
pathogenesis-related 
protein 1 (GLIPR2) 

Regulates type 1 Interferon signaling activity (Q. Zhou, Hao, Huang, & Cai, 
2016). 

0.012 

Tumor necrosis factor 
receptor superfamily 
member 6 (FAS) 

TNFSF6/FASLG complex receptor recruiting caspase-8. Resulting cell 
death-inducing complex results in series of caspase activations leading to 
apoptosis. 

0.012 

Multiple inositol 
polyphosphate 
phosphatase 1 (MINPP1) 

Acts as a phosphoinositide 5- and phosphoinositide 6-phosphatase. Plays a 
role in bone development.  

0.015 

Protein transport protein 
Sec61 subunit gamma 
(SEC61G) 

Plays a role in endoplasmic reticulum protein translocation 0.015 

Sprouty-related, EVH1 
domain-containing protein 
1 (SPRED1) 

Inhibits the activation of MAP kinase by growth factors. Inhibits 
hematopoiesis in bone marrow.  

0.017 

Carcinoembryonic antigen-
related cell adhesion 
molecule 3 (CEACAM3) 

Granulocyte receptor. Mediates phagocytosis of microorganisms, playing a 
role in innate immune system. Stimulates RAC1. 

0.017 
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significant results (table 5.15). Funrich analysis for biological processes (figure 5.14) 

did not yield any significant results, but Enrichr data using the Go Biological Process 

2017b database (table 5.16) did show significant gene enrichment. Biological pathway 

enrichment analysis also did not show significance when using the Funrich database 

(figure 5.15), however the Biocarta 2016 database via Enrichr showed significant gene 

enrichment pathways, including apoptotic pathways (table 5.17). Funrich analysis for 

transcription factors (figure 5.16) also did not show any significant gene enrichment. 

 

In syncytialised cells treated with 10 nM BPA, molecular functions analysed via 

Funrich did not show any significant gene enrichment (figure 5.17), but molecular 

functions analysed with the GO molecular function 2017b database via Enrichr 

showed several significantly enriched molecular functions (table 5.18). When 

analysing biological processes in 10 nM treated syncytialised cells, the Funrich 

database did not yield significant results (figure 5.18), however the analysis with 

Enrichr showed significant results via the GO biological process 2017b database (table 

5.19), with a focus on DNA repair processes being three of the top 4 differentially 

regulated biological processes. When analysing biological pathways via Funrich 

(figure 5.19), no significant gene enrichment was found, however biological pathway 

analysis using the NCI Nature 2016 database via Enrichr (table showed significantly 

regulated gene enrichment in biological processes, with a focus on pathways 

stimulating apoptosis such as direct p53 effectors and FAS signaling pathway. There 

were no significantly enriched transcription factors via the Funrich database (figure 

5.20).   
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Figure 5.13.  Funrich enriched molecular functions of genes from syncytialised BeWo 
cells treated with 3 nM BPA. 

 

 
Table 5.15. Top 10 significant molecular functions associated with differentially 
expressed genes after 3 nM BPA treatment of syncytialised BeWo cells using Go 
Molecular Function 2017b database via Enrichr. 
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Figure 5.14. Funrich enriched biological processes of genes from syncytialised BeWo 
cells treated with 3 nM BPA. 

 

 
Table 5.16. Top 10 significant molecular functions associated with differentially 
expressed genes after 3 nM BPA treatment of syncytialised BeWo cells using Go 
Biological Process 2017b database via Enrichr. 
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Figure 5.15. Funrich enriched biological pathways of genes from syncytialised BeWo 
cells treated with 3 nM BPA. 
 

 

Table 5.17. Top 10 significant biological pathways associated with differentially 
expressed genes after 3 nM BPA treatment of syncytialised BeWo cells using Biocarta 
2016 database via Enrichr. The top two significant pathways involve apoptosis 
signaling (p=0.017, p=0.019 respectively).  
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Figure 5.16. Funrich enriched transcription factors of genes from syncytialised BeWo 
cells treated with 3 nM BPA. 

 

 
Figure 5.17. Funrich enriched molecular functions of genes from syncytialised BeWo 
cells treated with 10 nM BPA. 
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Table 5.18. Top 10 significant molecular functions with differentially expressed genes 
after 10 nM BPA treatment of syncytialised BeWo cells using GO Molecular Function 
2017b database via Enrichr. 
 

 

Figure 5.18. Funrich enriched biological processes of genes from syncytialised BeWo 
cells treated with 10 nM BPA. 
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Table 5.19. Top 10 significant biological processes with differentially expressed genes 
after 10 nM BPA treatment of syncytialised BeWo cells using GO Biological Process 
2017b database via Enrichr. Three of the most significant biological processes have 
to do with DNA repair: index 1 (p=0.002), index 2 (p=0.005), and index 4 (p=0.005). 

 

 
Figure 5.19. Funrich enriched biological pathways of genes from syncytialised BeWo 
cells treated with 10 nM BPA. 
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Table 5.20.  Top 10 significant biological pathways with differentially expressed genes 
after 10 nM BPA treatment of syncytialised BeWo cells using NCI Nature 2016 
database via Enrichr. Apoptosis related signaling pathways are the top two 
significantly enriched pathways: index 1, direct p53 effectors (p=0.023); index 2, FAS 
signaling pathway (p=0.036).  
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Figure 5.20. Funrich enriched transcription factors of genes from syncytialised BeWo 
cells treated with 10 nM BPA. 

 

5.2.1.4 Gene expression validation of microarray in syncytialised cells 
 

Immunostaining was performed on genes that were upregulated in both 3 nM BPA 

treated and 10 nM BPA treated BeWo cells in order to validate expression on the 

protein level. 2 genes, cytoplasmatic-linker associated protein 2 (CLASP2) and single-

minded homolog 2 (SIM2) were chosen due to their relevance to placental physiology 

and/or developmental relevance. Figure 5.21 shows images of immunofluorescent 

staining of 10 nM treated syncytialised BeWo cells with CLASP2. After 24 hours, there 

does not appear to be an upregulation of CLASP2 on the protein level. Figure 5.22 

shows images of immunofluorescent staining of 10 nM treated syncytialised BeWo 

cells with SIM2. After 24 hours, there appears to be an upregulation of SIM2 on the 

protein level.  
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Figure 5.21. Immunostaining of CLASP2 protein in syncytialised BeWo cells treated 
with 10 nM BPA. There does not appear to be an upregulation of CLASP-2 on protein 
levels after 24 hour treatment with BPA.  
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Figure 5.22. Immunostaining of SIM2 protein in syncytialised BeWo cells treated with 
10 nM BPA. There appears to be an upregulation of SIM2 on protein levels after 24 
hour treatment with BPA.  

 

Pathways and diseases that were significantly upregulated were found throughout all 

treatments, but were most significantly found in 3 nM non-syncytialised BPA treated 

BeWo cells. Guanyl-nucleotide exchange factor activity was the most significantly 

altered molecular function according to Funrich (adjusted p-value= 0.049). When 

further analysing molecular function using the Enrichr tool, Rac-guanyl nucleotide 

exchange factor and Rho-guanyl nucleotide exchange factor activity were the top 

enriched Go-terms associated with 3 nM BPA treatment in non-syncytialised BeWo 

cells (p= 0.00009435 and 0.0002070 respectively, GO molecular function 2017b). 

Similarly, regulation of Rac1 and regulation of RhoA, as well as Rac1 signaling and 

RhoA signalling were significantly enriched within the category of biological pathways 

(adjusted p-value= 0.007). Using the Enrichr tool for further bioinformatics analysis 

yielded gene enrichment within the insulin resistance pathway (p= 0.01312, NCI 

Nature 2016 database), as well as regulation of RhoA activity (p= 0.0003159, KEGG 

2015 database) and RhoA signalling pathway (p= 0.05999, KEGG 2015 database) 

and differentiation of white and brown adipocyte (p= 0.001369, WikiPathways 2016), 

insulin signalling (p= 0.03006, WikiPathways 2016) and leptin signalling pathway (p= 

0.03426, WikiPathways 2016). Within the 3 nM non-syncytialised BeWo group, 

DAPI                                 SIM2                                  MERGE 

control 
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RREB1 was the most enriched transcription factor using the Funrich tool (adjusted p-

value 0.004). This transcription factor was also found to be enriched using the Enrichr 

tool for (p= 0.007083, ARCHS4 TFs Coexp database). Within the group of 10 nM BPA 

treated non-syncytialised BeWo cells Funrich showed no significant enrichment, 

however Enrichr showed that insulin resistance biological pathways were enriched 

(p=0.0054, KEGG 2016 database) as well as differentiation of white and brown 

adipocyte (p= 0.002715, WikiPathways 2016 database) and regulation of RAC1 

activity (p=0.01243, NCI-Nature 2016 database), similar to 3 nM BPA treated non-

syncytialised cells. Within syncytialised BeWo cells, both 3 nM treatments and 10 nM 

treatments showed no significant enriched terms for any function in Funrich, however 

10 nM syncytialised cells showed a strong trend towards FasL/CD95L signalling 

pathway function in Funrich, which was confirmed using Enrichr. Using Enrichr, direct 

p53 effectors as well as the FasL/CDC9L signalling pathway were significantly 

enriched according to the NCI Nature 2016 database. These findings indicate that 

higher levels of BPA may have a toxic and pro-apoptotic effect on syncytialised, but 

not on non-syncytialised BeWo cells. 

 

5.2.2. Bioinformatic analysis of placental microarray results 
 

To test whether BPA treatment resulted in similar gene expression changes in human 

placental cells, human placental explants were treated with 3 nM and 10 nM BPA for 

24 hours, after which RNA was extracted, and cDNA prepared to analyse using 

microarray as previously described. Placenta was retrieved from a natural term birth 

with no gestational complications. 

 

As with BeWo cells, it was important to use a non-biased screen such as microarray 

analysis, in order to evaluate gene expression changes after BPA treatment in the 

entire human placental genome. It was important to assess which significant changes 

were present after BPA treatment, and whether these changes echoed the findings in 

BeWo cells treated with BPA, as these cells are a model of the human placenta. 

 

When analysing biological pathways in 10 nM BPA treated placental explants 

compared to controls (Figure 5.23), Funrich data showed a significant enrichment in 

AlphaE beta7 integrin cell surface interactions (p<0.001). When using the CORUM 
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database via Enrichr (table 5.21), pathways such as caveolar macromolecular 

signaling complex (p=0.005) were differentially regulated, which is significant as CAV1 

was a significantly upregulated protein in BPA treated BeWo cells. Clinical phenotypes 

analysed using the Funrich database (figure 5.24) did not show any significance, 

however analysis using the MGI mammalian phenotype via Enrichr (table 5.22) 

showed significantly regulated enriched phenotypes including increased percent body 

fat/body weight (p=0.39) and increased circulating LDL cholesterol level (p=0.029), 

pathways and7or phenotypes which were found in BeWo cells treated with BPA. When 

using the dbGAP database via Enrichr for the analysis of phenotype (table 5.23), one 

of the significantly enriched phenotypes was diabetes mellitus (p=0.042), a 

differentially regulated disease in BPA treated BeWo cells. 

 

When comparing 10 nM to 3 nM treatment in placental explants, Funrich data did not 

show any level of significance (figure 5.25 and 5.26). When using the KEGG 2016 

database via Enrichr (table 5.24), there was a significant regulation in the insulin 

secretion pathway (p=0.009), which was differentially regulated in BPA treated BeWo 

cells as well. Tables 5.25, 5.26 and 5.27 show significantly regulated mammalian 

phenotypes using the MGI mammalian phenotype database via Enrichr. Table 5.25 

shows a significant regulation of decreased insulin secretion (p=0.009), table 5.26 

shows significant regulation of (abnormal) gluconeogenesis (p=0.017) and 

hyperglycemia (p=0.025) and table 5.27 shows significant regulation of (impaired) 

glucose tolerance (p=0.031). These phenotypes are related to diabetes, which was a 

differentially regulated pathway and/or phenotype in BPA treated BeWo cells. Lastly, 

table 5.28 shows differentially regulated diseases when comparing 10 nM and 3 nM 

BPA treated placental explants and shows that insulin resistance was differentially 

regulated (p=0.015), also being linked to diabetes. 
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Figure 5.23 Funrich enriched biological pathways of genes from human placental 
explants treated with 10 nM BPA. AlphaE beta7 integrin cell surface interactions are 
significantly regulated (p<0.001). 
 

 

 

Table 5.21. Top 10 significant pathways with differentially expressed genes after 10 
nM BPA treatment of placental explants using CORUM database via Enrichr. One of 
the top upregulated pathways (index number 4) was caveolar macromolecular 
signaling. Caveolar macromolecular signaling complex is differentially regulated 
(Index 4), and caveolin-1 was upregulated in BPA treated BeWo cells. 
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Figure 5.24 Funrich enriched clinical phenotypes of genes from human placental 
explants treated with 10 nM BPA.  
 

 
Table 5.22. Top 11-20 mammalian phenotypes with differentially expressed genes 
after 10 nM BPA treatment of placental explants using MGI Mammalian Phenotype 
database via Enrichr. Index number 12: increased percent body fat/body weight. Index 
number 14: increased circulating LDL cholesterol level. Similar phenotypes and/or 
pathways were found in BeWo cells treated with BPA. 
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Table 5.23. Top 10 diseases with differentially expressed genes after 10 nM BPA 
treatment of placental explants using dbGAP database via Enrichr. Index number 2: 
Diabetes Mellitus. Diabetes was a differentially regulated disease in BPA treated 
BeWo cells. 
 

 

Figure 5.25 Funrich enriched biological pathways of genes from human placental 
explants comparing 10 nM BPA treatment to 3 nM BPA treatment.   
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Table 5.24. Top 10 pathways with differentially expressed genes comparing 10 nM 
BPA treatment to 3 nM treatment in placental explants using KEGG 2016 database 
via Enrichr. Index number 3: Insulin secretion. This pathway was differentially 
regulated in BPA treated BeWo cells. 
 

 

Figure 5.26 Funrich enriched clinical phenotypes of genes from human placental 
explants comparing 10 nM BPA treatment to 3 nM BPA treatment.   
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Table 5.25. Top 10 mammalian phenotypes with differentially expressed genes 
comparing 10 nM BPA treatment to 3 nM treatment in placental explants using MGI 
Mammalian Phenotype database via Enrichr. Index number 9: decreased insulin 
secretion. Insulin signaling was differentially regulated in BPA treated BeWo cells. 

 

 
Table 5.26. Top 21-30 mammalian phenotypes with differentially expressed genes 
comparing 10 nM BPA treatment to 3 nM treatment in placental explants using MGI 
Mammalian Phenotype database via Enrichr. Index number 22: abnormal 
gluconeogenesis. Index number 25: hyperglycemia. Glucose metabolism was 
differentially regulated in BPA treated BeWo cells. 

 

 
 

Table 5.27. Top 31-40 mammalian phenotypes with differentially expressed genes 
comparing 10 nM BPA treatment to 3 nM treatment in placental explants using MGI 
Mammalian Phenotype database via Enrichr. Index number 33: impaired glucose 
tolerance. Glucose metabolism and diabetes were differentially regulated 
phenotypes/diseases in BPA treated BeWo cells. 
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Table 5.28. Top 10 diseases with differentially expressed genes comparing 10 nM 
BPA treatment to 3 nM treatment in placental explants using dbGAP database via 
Enrichr. Index number 2: insulin resistance. Insulin resistance was differentially 
regulated in BPA treated BeWo cells. 
 

There were little similarities between BeWo cells and placental explants treated with 

3 nM BPA. However, tables 5.17-5.19 show that placental cells treated with 10 nM 

BPA showed similarities in gene expression to BeWo cells treated with 3 nM and/or 

10 nM BPA, such as caveolin signaling, genes related to body fat and circulating LDL 

levels, as well as diabetes. Interestingly, when 3 nM BPA treated placental explants 

were compared to 10 nM placental explants, there was a distinct difference in 

expression of genes involved in the pathogenesis of diabetes and related to body fat 

across multiple databases and ontologies.  

 
5.3. Discussion 
 

This chapter aimed to examine transcriptional changes in BeWo cells after treatment 

with BPA. The most significantly enriched terms were found within the 3 nM BPA non-

syncytialised BeWo gene set. This data highlights the fact that lower levels of BPA 

may be more potent in affecting gene expression than higher levels of BPA. One of 

the possible mechanisms by which this effect may occur is via receptor upregulation 

at low doses of BPA, which has been documented in our studies as well as in the 

literature ( Liu et al., 2010; Piccart, Parker, & Pritchard, 2003; Vandenberg et al., 2012). 

As rapid signaling events via membrane-bound estrogen receptors are well-

documented in the literature (Marczell et al., 2018; Vandenberg et al., 2012), it is 

possible that the effects seen in low levels of BPA treated BeWo cells are mediated 

via an upregulation of ERa.  
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One of the most significantly upregulated genes in this cohort was CAV1, which is a 

gene known to be involved in the palmitoylation of ERa, as the protein Caveolin-1 

which it transcribes binds to the estrogen receptor and secures it to caveolae/lipid rafts 

on the cell membrane (Adlanmerini et al., 2014; Chambliss et al., 2000; Levin, 2005), 

also pointing to the fact that membrane-bound ERa may be at least in part eliciting the 

response to lower doses of BPA not seen in higher doses. As rapid intracellular 

responses to receptor signaling may also elicit genomic responses, this is one 

mechanism of action that could be postulated. However, CAV1 was more significantly 

upregulated in 10 nM BPA treated BeWo cells than in 3 nM BPA treated cells, therefore 

more research into this hypothesis is needed. 

 

One of the significantly upregulated genes after treatment with 3 nM BPA was 

Placenta-specific 1 (PLAC1). PLAC1 is a gene which was first discovered in the 

placenta, but is also expressed in testes and different types of cancers (Chang et al., 

2014; Cocchia et al., 2000; Silva et al., 2007). Although its specific functions are not 

completely known, it is associated with processes that relate to placental and fetal 

development (Jackman, Kong, & Fant, 2012) although some studies have been 

contradictory. For example, Singh et al. found that downregulation of PLAC1 was 

associated with hyperplastic placentae (Singh et al., 2004), findings which were 

corroborated (Jackman et al., 2012). However, Suemizu et al. found an association 

between PLAC1 overexpression and hyperplastic placentae in mice (Suemizu et al., 

2003). Other findings which delineate PLAC1 as a gene important for regulating 

placental development focus on mapping PLAC1 in close proximity to the hybrid 

placental dysplasia (lhpd) locus, located on the X chromosome, and a paucity of genes 

in this region suggests a high likelihood of involvement of PLAC1 in placental dysplasia 

(Hemberger et al., 1999; Massabbal et al., 2005). 

 

In terms of fetal development, the role of PLAC1 has been demonstrated in the 

literature. PLAC1 downregulation has been associated with fetal large for gestational 

age (LGA) pregnancies and upregulation of PLAC1 has been associated with less 

observed frequencies of both LGA and small for gestational age (SGA) pregnancies 

(Deyssenroth et al., 2017). The regulation of growth during pregnancy not only applies 

to the fetus, but also to the placenta. PLAC1 has been implicated in placentomegaly 
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in mice (Suemizu et al., 2003) a condition which has implications in various fetal and 

placental disorders such as Beckwith-Wiedemann Syndrome (Tunster, Van de Pette, 

Creeth, Lefebvre, & John, 2018) non-immune hydrops fetalis (Berger et al., 2018) 

Kagami-Ogata Syndrome (Kagami et al., 2015) and placental mesenchymal dysplasia 

(Pawoo & Heller, 2014). 

 

The important role of PLAC1 in placental function has been highlighted by studies 

focusing on other aspects of placental development. One study has found an 

involvement of PLAC1 in trophoblast differentiation, where knockdown of PLAC1 in 

mice resulted in the impaired differentiation of trophoblast stem cells into most 

subpopulations of trophoblast (Gu, Wan, Yao, Peng, & Chang, 2017). In humans, 

expression of PLAC1 was found to be associated with differentiation of the villous 

trophoblast, whereby PLAC1 was upregulated during trophoblast differentiation and 

regulated by growth factors which also play a role during differentiation, such as FGF-

7 and EGF (Massabbal et al., 2005). Similarly, downregulation of PLAC1 in primary 

cytotrophoblasts resulted in less syncytialisation (Chang et al., 2016) again 

highlighting the role of PLAC1 as a regulator for trophoblast differentiation. 

 

It has now been shown that PLAC1 is upregulated in many different types of cancer, 

including breast cancer, ovarian cancer, gastric cancer, lung cancer, colorectal and 

liver cancer (Dong et al., 2008; Koslowski et al., 2009; F. Liu et al., 2014; F. Liu, Shen, 

Kang, Zhang, & Song, 2015; W. Liu et al., 2012; Xia Wang, Baddoo, & Yin, 2014). As 

tumours arise due to an increase in cell proliferation, it is important to consider that 

PLAC1 upregulation might cause an increase in cell proliferation. Studies have found 

that PLAC1 upregulation causes an increase in phosphorylated AKT (p-AKT), 

suggesting that downstream effects of PLAC1 are at least in part due to AKT 

phosphorylation (Koslowski et al., 2009; Wagner et al., 2013; L. Yang et al., 2018). 

These findings suggest that PLAC1 upregulation could have similar effects in the 

placenta, causing an upregulation of p-AKT and thereby promoting cell proliferation. 

 

Another upregulated gene after BPA treatment was Leptin. Leptin is an adipokine 

which is secreted mainly by white adipose tissue in the body and is also expressed in 

other tissues such as brown adipose tissue, muscle and the placenta (D’souza et al, 

2017; Wang et al, 1998; Masuzaki et al, 1997). Leptin levels in humans and rodents 
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positively correlate with body fat mass, as most of the leptin is secreted by adipose 

tissue, and 50% of leptin in the circulating blood is correlated with the degree of obesity 

(Ahren et al, 1997). The main function of leptin is regulation of food intake, whereby 

leptin functions as an important mediator between adipose tissue and the brain, 

enabling the regulation of appetite and food intake homeostasis (Zhou & Rui, 2013). 

Leptin binds to the leptin receptor (LRb), where it leads to the activation of the 

Jak/STAT and MAPK pathways (Buettner et al, 2013). 

 

The exact function of leptin in the placenta, where it is also secreted, is less well 

established than it’s effects on weight and appetite homeostasis, although recent 

literature has provided a more detailed picture of placental leptin physiology (Gambino 

et al, 2012).  The expression and secretion of leptin by trophoblasts was demonstrated 

as early as 1997 (Masuzaki et al, 1997). It has been shown that leptin is a modulator 

of the endocrine function of the placenta (Coya et al, 2006) due to its various effects 

on hormones secreted by the placenta such as the increase of basal leptin production 

by estrogen and increase of HCG production through leptin (Chardonnens et al, 1999), 

as well as inhibition of progesterone secretion (Cameo et al, 2002) and the inhibition 

of leptin secretion through human placental lactogen (Coya et al, 2005). Different 

cytokines, such as IL-1a, IL-1b, IFN-g and IL-6 also play a role in placental regulation 

of leptin as well as glucocorticoids, insulin, hypoxia and cAMP (Gambino et al, 2012; 

Henson & Castracane, 2006; Maymó et al, 2011; Meißner et al, 2003; Fontana et al, 

2011; Fontana et al, 2010).  Furthermore, leptin is involved in the implantation process 

of the embryo, by increasing trophoblast matrix metalloproteinase expression, 

allowing for better cell invasion (Castellucci et al, 2000; Gambino et al, 2011; Chrelias 

et al, 2016), a mechanism which has been associated with the STAT-3 signalling 

pathway (Corvinus et al, 2003). Moreover, leptin has been implicated in placental 

development in terms of angiogenesis and immunomodulation (Gambino et al, 2012; 

Henson & Castracane, 2006). 

 

Leptin has also been implicated in many pathologies throughout pregnancy and during 

the later life of the fetus. Numerous studies have shown, for example, that there is a 

correlation with maternal plasma leptin levels and the development of gestational 

diabetes (GD) (Fatima, Alam, Chaudhry, & Khan, 2017; Jeon, Hong, & Lee, 2017; 
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Lobo et al., 2018; Popova et al., 2018; Sweeting et al., 2018). GD is diagnosed with 

any new-onset glucose intolerance or first manifestation of glucose intolerance during 

pregnancy (Brink et al, 2016). Because leptin is elevated in obese women, and also 

during pregnancy, it is difficult to assess the direct correlation between leptin and GD, 

as obesity itself is a predictor of GD. Studies on the direct correlation between leptin 

levels and GD have been in disagreement, however one study found that leptin levels 

were raised in the GD group of pregnant women, even when adjusting for confounders 

(Fatima et al, 2016). 

 

Because both leptin and obesity in general play a role in inflammatory response and 

immunomodulation, it is often difficult to assess whether pathologies that are at least 

partly due to varying immune responses during pregnancy are caused by an increase 

in leptin levels, an increase in fat mass, or both. Pre-eclampsia is another multifactorial 

disease which is linked to immune response, obesity, and elevated leptin levels. Pre-

eclampsia is defined by a new-onset hypertension and proteinuria during pregnancy 

(Güngör et al, 2017). Some studies have shown higher serum leptin levels in pregnant 

women with pre-eclampsia (Güngör et al, 2017; Song et al, 2016, El Shahat et al, 

2013; Taylor et al, 2016; Salimi et al, 2014) and most of these studies control for 

confounders such as BMI. It is however, unknown whether leptin elevation is a 

consequence of PE or vice-versa, or whether there are other factors causing this 

correlation. 

 

Another common complication in pregnancy is intrauterine growth restriction (IUGR). 

IUGR is known as a condition where babies are small for gestational age (SGA), 

meaning below the 10th percentile at gestational age, a condition usually caused by 

placental insufficiency (Krishna & Bhat, 2017). Perinatal mortality of fetuses with IUGR 

is 12 times higher than that of normal gestational weight babies (Monk & Moore, 2014), 

and it can programme fetuses to develop future metabolic diseases such as early-

onset insulin resistance (Dessı et al, 2015).  There is an association between higher 

leptin expression and IUGR (Krishna & Bhat; Nezar et al, 2009). One possible 

mechanism of action is an increase in TGF-beta via the activation of the JAK-STAT 

pathway (Krishna & Bhat), possibly triggering apoptosis. Another mechanism by which 

leptin could act as a mediator towards IUGR is by upregulating endothelin-1 (ET-1) in 

endothelial cells, as higher ET-1 levels have been related to hypertension and 
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atherosclerosis (Quehenberger et al, 2002), processes that confirm vascular changes, 

which can cause placental dysfunction, leading to PE and ultimately IUGR. 

 

Another upregulated gene after BPA treatment was Hif-1α. Hif-1α is a protein 

associated with hypoxia and regulation of angiogenesis, two factors that play vital roles 

in the development and physiological functioning of the placenta. When hypoxia 

reaches less than 5% oxygen, dimerization of Hif-1α and Hif-1β occurs, resulting in 

the heterodimer HIF-1 which binds to the hypoxia response element (HRE), 

(Dunwoodie, 2009) and induces expression of genes involved in cell proliferation, 

angiogenesis, glucose metabolism and apoptosis, among others (Highet et al., 2015; 

Rocha, 2007). One of the genes upregulated by HIF-1 is vascular endothelial growth 

factor (VEGF) (Depoix, de Selliers, Hubinont, & Debieve, 2017; G. L. Wang, Jiang, 

Rue, & Semenza, 1995), a crucial gene regulating angiogenesis of the fetal-placental 

unit during pregnancy. VEGF binding to its receptor initiates signaling pathways that 

relate to factors such as cell survival, vascular permeability and the initiation of further 

signaling pathways such as the MAPK pathway regulating endothelial cell proliferation 

(Olsson, Dimberg, Kreuger, & Claesson-Welsh, 2006; Sahay et al., 2017). As proteins 

and signaling pathways related to angiogenesis such as VEGF play a role in common 

pregnancy complications such as preeclampsia, it is likely that there is a correlation 

between Hif-1α expression and the development of preeclampsia during pregnancy, 

and Rajakumar et al. have shown an upregulation of Hif-1α expression in preeclamptic 

placentae (Rajakumar, Brandon, Daftary, Ness, & Conrad, 2004). It was also shown 

that Hif-1α regulates TGFβ expression, and a decrease of these factors resulted in 

increased trophoblast invasion and differentiaton (Caniggia et al., 2000) Another 

relevant pregnancy complication related to preeclampsia, intrauterine growth 

restricition (IUGR) (Ness & Sibai, 2006) has been shown by several studies to involve 

the expression of Hif-1α. In rats, aberrant inflammation was linked to inadequate 

perfusion of the uterus and placenta, which in turn lead to a decrease in oxygen and 

accumulation of Hif-1α in IUGR pregnancies (Robb, Cotechini, Allaire, Sperou, & 

Graham, 2017). In growth restricted-twins, Hif-1α was upregulated compared to non 

growth-restricted twins suggesting a role of hypoxia in IUGR (G. L. Zhang et al., 2015). 

 

Another significantly upregulated gene in both 3 nM and 10 nM BPA treated non-

syncytialised BeWo cells was placenta-specific protein 8 (PLAC8), which was first 
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discovered as a placenta-enriched gene in a placenta specific microarray screen 

(Galaviz-Hernandez et al., 2003; Maria Jimenez-Preitner et al., 2011). Since its initial 

discovery, PLAC8 has been implicated in a multitude of different functions depending 

on the type of tissue. In hepatocellular carcinoma, downregulation of Plac8 was found 

to enhance cell proliferation via PI3K/Akt/GSK3β and Wnt/β-catenin signaling (Lei Zou 

et al., 2016). This pathway was also activated after knockout of PLAC8 in 

nasopharyngeal carcinoma cells (Yang et al., 2018). 

 

On the other hand, PLAC8 was found to have highly proliferative functions in other 

tissues. In mouse pancreatic ductal carcinoma (PDAC), PLAC8 was found to be highly 

upregulated, and inhibition of PLAC8 inhibited cell growth by modifying cyclin D1 

(Kaistha et al., 2016). Similarly, the overexpression of PLAC8 lead to increased 

growth, resistance to apoptosis as well as tumourigenic differentiation and higher 

levels of phosphorylated Akt1 in fibroblasts (Rogulski et al., 2005) as well as being 

positively correlated with metastasis and tumour size in clear cell renal cell carcinoma 

(L. Shi et al., 2017). PLAC8 has been implicated in epithelial-to-mesenchymal 

transition (EMT) in colon cancer cells, by increasing cell motility and invasiveness (C. 

Li et al., 2014). Similarly, although the function of PLAC8 in the placenta is still not well 

elucidated, a recent study has found that PLAC8 is expressed on the fetomaternal 

interface, where it plays a role in promoting trophoblast invasion and migration. PLAC8 

also activates Cdc42 and Rac1 and is significantly upregulated under hypoxic 

conditions and in preeclamptic placentae (Chang et al., 2018). 

 

Interestingly, PLAC8 has recently been implicated in diseases such as obesity, type 2 

diabetes and gestational diabetes. A recent study found that PLAC8 was a strong 

candidate for playing a role in the onset of type 2 diabetes when associated with 

obesity, using an obese type 2 diabetic rat model that displays diabetes-related 

pathologies similar to humans (Sasaki, Kotoh, Watadani, & Matsumoto, 2015). 

Furthermore, PLAC8 was found to be highly expressed in neonatal cells exposed to 

GD and expression of PLAC8 was correlated with maternal hyperglycemia (Blue et 

al., 2015). PLAC8 also plays a role in adipogenesis, brown fat differentiation, and body 

weight control by controlling C/EBPβ expression (Jimenez-Preitner, Berney, & 

Thorens, 2012; Jimenez-Preitner et al., 2011). 
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Another significantly upregulated gene in both 3 nM and 10 nM non-syncytialised 

BeWo cells was caveolin-1 (CAV1). CAV1 is a protein that is found in caveolae, which 

are 50 to 100 nm wide invaginations of the cell lipid bilayer. The function of CAV1in 

the placenta has not been fully elucidated, but it has been implicated in the transport 

of lipids, glucose homeostasis control, regulation of cell signalling, and membrane 

trafficking (Asterholm, Mundy, Weng, Anderson, & Scherer, 2012; Ding et al., 2017; 

Fernández-Rojo et al., 2013; M. Li et al., 2017; Parton & Simons, 2007; Smart et al., 

1999). 

 

CAV1 has been implicated in the regulation of actin remodelling and cell migration, as 

well as cell invasion via stimulation of the Caveolin-1/p85α/Rab5/Tiam1/Rac1 

signaling axis in 3 different metastatic cell lines in mouse and human (Díaz, Mendoza, 

Silva, Quest, & Torres, 2014). CAV1 also has been found to play a role in cell 

proliferation, as it is upregulated after stimulation with E2 in breast cancer cells, where 

it inhibits apoptosis and promotes autophagy (Nah et al., 2017; Panepistēmio tēs 

Krētēs. et al., 2014). CAV1 Was also reported to increase proliferation in osteoblasts 

via activation through leptin and subsequent Akt phosphorylation, resulting in a 

decrease of apoptosis in these cells as well as an increased proportion of cells in S-

phase (Lin Zou et al., 2016). On the other hand, CAV1 has been reported to decrease 

growth in breast cancer cells and have tumour-suppressor properties (Shi et al., 2016). 

Another function of CAV1 is to regulate water and salt absorption, as CAV1 in renal 

cells promoted the reabsorption of water and salts and is involved in the upregulation 

of aquaporin 4 in astrocytes (Bi et al., 2017; Willière et al., 2018). 

 

In pregnancy, CAV1 has been found to decrease but not disappear with formation of 

syncytium (Levi et al., 2016; Linton, Rodriguez-Linares, Rashid-Doubell, Ferguson, & 

Redman, 2003). CAV1 has been shown to be associated with glucose and fatty acid 

transport in the placenta by inducing AMPK and reducing the GLUT1 signaling 

pathway, involved in reversing macrosomia due to gestational diabetes (Yao et al., 

2017). Furthermore, CAV1 has been implicated in the mechanism of edema in pre-

eclampsia following hypoxia of trophoblasts through the HMGB1/TLR4/CAV-1 

pathway (Jiang et al., 2014). 
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In both 3 nM and 10 nM BPA treated syncytialised cells, SIM2 was significantly 

upregulated. SIM2 encodes for a protein that was discovered to be vital for CNS 

midline development in Drosophila (Crews, Thomas, & Goodman, 1988; Fan et al., 

1996; Muenke et al., 1995) as well as murine SIM2 playing a role in directional 

development of other organs such as the gut and of muscle development (Crews et 

al., 1988; Fan et al., 1996; Lewis & Crews, 1994). As a basic-helix-loop-helix (bHLH) 

protein, it belongs to a group of transcription factors which play an important role in 

cell fates as well as differentiation and proliferation in embryo development (Fan et al., 

1996; Jan & Jan, 1993). 

 

As a gene that is found on chromosome 21 q22.2-q22.3, SIM2 was discovered to be 

in the “Down syndrome critical region” (Muenke et al., 1995; Peterson et al., 1994) and 

to play a role in Down syndrome development, with overexpression of SIM2 potentially 

being a causal factor in the pathogenesis of  Down syndrome in humans (Chrast et 

al., 1997; Fan et al., 1996; Muenke et al., 1995; Rachidi et al., 2005; Vialard et al., 

2000). Furthermore, SIM2 has been shown to be upregulated in certain types of 

tumours such as pancreatic cancer (DeYoung, Tress, & Narayanan, 2003; Farrall & 

Whitelaw, 2009) and prostate cancer (Arredouani et al., 2009; Farrall & Whitelaw, 

2009; Lu, Asara, Sanda, & Arredouani, 2011), and to have anti-apoptotic effects via 

an inhibitive effect on Hif1-a (Farrall & Whitelaw, 2009; Nakamura et al., 2017). 

Interestingly, SIM2 plays a role in mediating the neurotoxic effects of hyperglycaemia 

in the diabetic rat (Xiaolan Wang et al., 2013), although these findings have not been 

tested in other tissues or organs. 

 

Another upregulated gene in 3 nM and 10 nM BPA treated syncytialised BeWo cells 

is cytoplasmic linker-associated protein 2 (CLASP2), which is a gene belonging to the 

CLASP family of microtubule associated proteins that bind to microtubules and are 

involved in the stabilization of microtubules (Akhmanova et al., 2001) and regulates 

the function of the spindle and kinetochore during mitosis (Pereira et al., 2006). It has 

also recently been found to be a protein involved in epithelial-to-mesenchymal 

transition (EMT) as well as bladder cancer progression (Zhu et al., 2017) as well as 

being important for cytoskeletal arrangement during neocortical development (Dillon 

et al., 2017). Interestingly, a recent study has found a role for CLASP2 in the direction 
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of GLUT4 to the cell surface after phosphorylation as a response to an increase in 

insulin (Langlais et al., 2012), making CLASP2 another gene which is upregulated by 

BPA which plays a role in insulin signaling. 

 

The most enriched molecular function within this gene set was guanyl-nucleotide 

exchange factor (GEF) activity, and the most enriched biological pathways were Rac1-

signaling and RhoA signaling. RhoA and Rac1 are types of GTPase, which are a family 

of signaling proteins belonging to the Ras GTPase superfamily (Zandvakili, Lin, Morris, 

& Zheng, 2017). These molecular switches are either bound to GTP (active state) or 

GDP (inactive state) and when active, generate a cellular response until GTP is 

hydrolysed to GDP (Etienne-Manneville & Hall, 2002). Guanine nucleotide exchange 

factors (GEFs) catalyse loading of GTP onto GTPases and thereby activate GTPase 

signaling (Zandvakili et al., 2017). 

 

Rho GTPase and Rac have a multitude of functions within the cell, one of which is 

contributing to the regulation of G1 cell cycle progression, by promoting G1 entry and 

progression into S phase (Etienne-Manneville & Hall, 2002; Olson, Ashworth, & Hall, 

1995). Rho inhibits expression of the expression of p21, which in turn inhibits 

cyclin/Cdk as well as inducing cyclin D1 expression during mid-G1 via activation of 

extracellular-signal-regulated kinase (ERK/MAPK) thereby promoting proliferation 

(Etienne-Manneville & Hall, 2002; Olson et al., 1995; Olson, Paterson, & Marshall, 

1998) whereas Rac stimulates the c-Jun kinase JNK/SAPK (Olson et al., 1995). One 

of the main ways that RhoA is activated is through G protein-coupled receptors 

(GPCRs), and it has been well established that GPCR ligands such as thrombin, 

lysophosphatidic acid and sphingosine-1 phosphate activate RhoA (Ishii et al., 2001; 

Moers et al., 2003; Nobes, Hawkins, Stephens, & Hall, 1995; Post et al., 1996; Walsh 

et al., 2008; Yu & Brown, 2015). Rac1 is activated by different stimuli, such as growth 

factors, tyrosine-kinase receptors, as well as ligands that bind to G-protein-coupled 

receptors such as the ER GPR30 (Li et al., 2016; Wertheimer et al., 2012). A study 

has also found that treatment of hippocampal cells with BPA for 24 hours upregulated 

the expression of Rac1/Cdc42, demonstrating the involvement of BPA in regulating 

this pathway after 24 hours of exposure (Xu et al., 2014). 
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In 3 nM BPA treated non-syncytialised BeWo cells, the NCI Nature 2016 database 

showed that insulin resistance was a highly enriched pathway (p= 0.01312). Insulin 

signaling was also highly enriched using the WikiPathways 2016 database (p= 

0.03006), as well as leptin insulin overlap in the mouse, differentiation of white and 

brown adipose tissue (p= 0.01474) and leptin signaling pathway (p= 0.03426). 

Regulation of RhoA activity was also highly significantly enriched using the KEGG 

2016 database (p=0.0003159). Interestingly, these significantly enriched pathways 

have shown to be linked in a multitude of studies. Insulin has been shown to affect 

ROCK1 signaling (Kong et al., 2014) and insulin resistance has been found to be 

mediated via modulation of the RhoA signaling pathway in mice (Tao et al., 2015) and 

pancreatic b-cells grown in 3D (Liu et al., 2014). Furthermore, patients with metabolic 

syndrome have been found to show higher levels of RhoA/Rho-kinase activity 

(Leguina-Ruzzi et al., 2015). 

 

Leptin is an adipokine which is secreted by fat cells as well as the placenta (Masuzaki 

et al., 1997), and among its other functions, increases insulin secretion of pancreatic 

β-cells and contributes to insulin resistance (Lee et al., 2001; Spiegelman & Flier, 

2001). Together, insulin and leptin control glucose metabolism, and play a role during 

pregnancy by regulating fetal growth and development, with leptin levels in umbilical 

cord blood positively correlating with neonate fat mass and body weight (Guzmán-

Bárcenas et al., 2016). Studies have shown that increased RhoA/Rho kinase signaling 

mediates skeletal muscle insulin resistance (Chun et al., 2011; Tao et al., 2015) and 

that the RhoA/ROCK pathway is involved in insulin release in mouse pancreatic β-

cells (Liu et al., 2014). Furthermore, multiple studies have shown that leptin can 

activate the RhoA pathway or its effector ROCK1 to induce different processes such 

as cell invasion, reorganization of the actin cytoskeleton, homeostasis of feeding 

behaviour and increasing colonic tight junction permeability (Ghasemi, Hashemy, 

Aghaei, & Panjehpour, 2017; Huang et al., 2012; Le Dréan et al., 2014) and that RhoA 

signaling is involved in the processes by which leptin promotes hypertension, ROS 

generation and atherosclerosis (Ghantous et al., 2015). 

 

Rac1 has also been implicated in insulin signaling. It has been well established that 

insulin and the insulin receptor activate Rac1 in skeletal muscle, thereby increasing 
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traffic of the glucose transport protein GLUT4 and that Rac activation is impaired in 

insulin resistance (Chiu, Jensen, Sylow, Richter, & Klip, 2011; JeBailey et al., 2007; 

Ueda et al., 2010; Ueda, Kataoka, & Satoh, 2008). It has also been shown that Rac1 

is activated by insulin in mouse adipose tissue (Takenaka, Nihata, Ueda, & Satoh, 

2017). Furthermore, Rac1 has been implicated in excess ROS accumulation under 

diabetic conditions (Sidarala & Kowluru, 2017), implying a role for Rac1 in chronic low 

levels of inflammation, one of the hallmarks of obesity related disorders and metabolic 

syndrome in general, which includes type 2 diabetes (Zhou et al., 2015). 

 

Finally, we used microarray to analyse differentially expressed genes in placental 

explants, in order to discern effects of 3 nM and 10 nM BPA on these tissues and 

elucidate whether gene expression results were similar when compared to BeWo cell, 

both syncytialised and non-syncytialised. Three siginificantly upregulated genes in this 

tissue in both 3 nM and 10 nM treated explants were interleukin 17F (IL-17F), epithelial 

cadherin (e-cadherin) and resistin, which play a role in placental physiology. 

 

IL-17F is a pro-inflammatory cytokine that is primarily expressed by T-cells and also 

produced by other immune cells such as monocytes and neutrophils (Pongcharoen et 

al., 2007). Recently, the gene and protein expression of IL-17F has been found in 

human normal term placenta trophoblast (Pongcharoen et al., 2007). IL-17F is 

produced by Th17 T-cells that play a major role in inflammation, and IL-17F secreted 

by these cells is involved in the pathogenesis of a multitude of inflammatory diseases 

(Sandquist & Kolls, 2018), such as rheumatoid arthritis (Chabaud et al., 1999), 

psoriasis (Krueger et al., 2007), and asthma (Bullens et al., 2006). IL-17F binds to the 

IL-17 receptor (IL-17R) which is expressed on most cells in the human body (Miossec 

& Kolls, 2012). One of the main pathways by which the binding of IL-17 to IL-17R 

mediates its effects is by activation of the NF-κB pathway (Miossec & Kolls, 2012) and 

thereby provokes an immune response and inflammation by mediation of a multitude 

of different factors (Sun, 2011). 

 

Studies have investigated the effects of IL-17 on the placenta. As IL-17 is a pro-

inflammatory cytokine, these effects can be destructive on the placental level and 

therefore cause placental pathologies that influence the pregnancy. One such 

pathology is pre-eclampsia (PE). Studies have found that increased levels of IL-17 in 
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the placenta are linked to fetal growth restriction and PE in the human placenta 

(Cornelius & Lamarca, 2014; Darmochwal-Kolarz et al., 2017) as well as low fetal 

weight in mice with malaria (Fitri et al., 2015). Placental oxidative stress mediated by 

IL-17 was linked to hypertension in pregnancy (Dhillion et al., 2012), another 

determinant of pre-eclampsia. Furthermore, another study found that diabetic mothers 

had increased levels of IL-17 in the placenta, speaking for a role of IL-17 in the 

inflammatory environment produced by hyperglycemia (Hara et al., 2016). 

 

E-Cadherin is a type of cadherin. Cadherins are proteins that mediate cell-cell 

adhesion and play a role in other biological processes such as cellular signaling, cell 

division, inhibition of apoptosis, embryo implantation, differentiation, migration, and 

suppression of tumour invasion (Alahari, Reddig, & Juliano, 2002; Christofori & Semb, 

1999; Kokkinos, Murthi, Wafai, Thompson, & Newgreen, 2010; Perez-Moreno, 

Jamora, & Fuchs, 2003; Ranscht, 1994; Yap & Kovacs, 2003). In the placenta and in 

BeWo cells, E-Cadherin is a marker of syncytialisation, as syncytialised cells lose E-

Cadherin as the cell membrane breaks down to from a syncytium (Coutifaris et al., 

1991). 

 

E-Cadherin has been implicated in the pathogenesis of PE, where it was found to be 

upregulated in human syncytiotrophoblast in patients with PE (Li et al., 2014). Other 

studies found that E-cadherin upregulation led to a decrease in trophoblast invasion, 

therefore leading to shallow placentation in PE (Zhang et al., 2013), and that non-

fused E-cadherin positive cells were more common in PE placentae and placentae in 

patients with gestational hypertension, (Al-Nasiry, Vercruysse, Hanssens, Luyten, & 

Pijnenborg, 2009; Brown, Lacey, Baker, & Crocker, 2005; Li, Cheung, Tsao, Cheung, 

& O, 2003) another risk factor for the development of PE. 

 

Another upregulated gene in placental explants treated with BPA for 24 hours was 

resistin. Resistin is a protein secreted from white adipose tissue in rodents, and 

macrophages in humans (Schwartz & Lazar, 2011; Steppan et al., 2001), that was 

found to also be expressed by the placenta (Yura et al., 2003). Resistin (‘resistance to 

insulin’) gets its name from the fact that it has the ability to interfere with insulin 

metabolism and is linked to obesity and diabetes (Mostafazadeh, Haiaty, Rastqar, & 

Keshvari, 2018; Steppan et al., 2001). The release of resistin is stimulated by 
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inflammatory agents such as TNF-a (Schwartz & Lazar, 2011), and is itself pro-

inflammatory (Mostafazadeh et al., 2018). 

 

In the placenta, resistin expression has been found to be upregulated in the human 

placenta in mothers with PE (Erol et al., 2016), and serum resistin levels were also 

found to be higher in mothers with PE (Seol et al., 2010). Resistin has also been linked 

to gestational diabetes in pregnancy. Resistin was found to increase placental glucose 

intake (Di Simone et al., 2009), and resistin protein levels were associated with insulin 

levels, BMI, and glucose levels in pregnancy (Zhou et al., 2006). Furthermore, 

umbilical serum resistin levels and maternal serum resistin levels were found to be 

negatively correlated with neonatal birth weight (Cho et al., 2006). 

 

Taken together, these findings highlight the capacity of BPA to affect the BeWo cell 

genome. The most significant changes were seen in cells that appeared to be most 

susceptible to BPA treatment, i.e. 3 nM treated non-syncytialised BeWo cells. These 

changes imply a role of BPA in influencing the metabolism as well as proliferation of 

placental cells, factors that could significantly affect fetal and placental development 

as well as determine the outcome of the pregnancy itself. Insulin signaling is a pathway 

which has been demonstrated to play a major role during pregnancy, as GD, for 

example, is a disease which can have severe effects on the fetus, pregnancy, and 

long-term effects on both mother and child, including fetal macrosomia, maternal 

preeclampsia, neonatal hyperglycemia and respiratory distress syndrome, the 

development of type 2 diabetes of the mother after pregnancy, as well as an increased 

risk of the development of obesity and abnormal glucose metabolism of the offspring 

whether in childhood, adolescence or adulthood (Gilmartin, Ural, & Repke, 2008; 

Petry, 2018; Schmidt et al., 2001) . As obesity is one of the risk factors of pregnant 

women for developing gestational diabetes, high leptin levels may also be a 

contributing factor when it comes to the aetiology of GD. In fact, recent studies have 

shown the relationship between higher placental leptin and the development of insulin 

resistance and GD, as well as showing that levels of leptin in the placenta were higher 

in macrosomic offspring than in normal weight offspring (Shang, Dong, & Hou, 2018; 

Tsiotra et al., 2018). 
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When comparing placental explant data to BeWo data, there were vast differences in 

gene expression. These differences were to be expected, as placental explants do not 

contain solely trophoblasts, but other cells such as immune cells and vascular cells. 

Interestingly, however, there were distinct patterns to be seen in differential gene 

expression when comparing these two different platforms. Especially in the case of 

diabetes, and factors that could be considered risk factors for the development of 

diabetes, such as hyperglycemia, both placental explants as well as BeWo cells 

treated with BPA showed profound gene expression changes in association to the 

disease, both in single gene expression levels as well as over databases that analyse 

gene sets. These “pro-diabetogenic” effects of BPA on placental explants were seen 

solely in explants treated with 10 nM BPA, suggesting that higher levels of BPA, 

although still relatively low, are needed to affect actual human placenta when 

compared to BeWo cells, where these effects were seen in both 3 nM and 10 nM 

treated samples. In conclusion, there is evidence to support the hypothesis that BPA 

plays a role in the development of metabolic diseases, especially diabetes, during 

pregnancy mediated through the placenta, which can have profound effects on the 

mother and the fetus, as well as potentially influencing the future health and 

development of both. 
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Chapter 6 
From 2Ds to 3Ds and placental explants 

6.1 Introduction 
 

As mentioned, the human placenta is vital to the viability of the pregnancy for almost 

9 months, controls flow of nutrients and waste products from mother to fetus, and is 

an endocrine organ which takes part in regulating hormonal homeostasis of both the 

mother and the fetus. As such, in vivo experiments on human placenta are ethically 

and logistically difficult, and cell lines have played a major role in compensating for 

lack of tissue availability. Not only are they easier to access than placental tissue, but 

cell lines can be cultured for weeks, making longer experiments possible, whereas 

tissue from human placenta typically starts to degrade after 48 hours (Di Santo, Malek, 

Sager, Andres, & Schneider, 2003). Although cell lines are essential in providing a 

medium for various placental experiments, more physiologically representative long-

term platforms for the testing of placental function are needed, especially as the 

placenta is one of the least understood -in an endocrine sense-, yet most vital organs 

(Guttmacher et al., 2014). 

 

Emerging studies suggest that 3D cell cultures can be superior when it comes to 

accurately representing in vivo tissue and organ physiology, as 3D cultures have the 

capacity to regain intrinsic qualities and mimic the in vivo environment, as well as 

retaining more physiological tissue architecture and cell contacts (Dolznig et al., 2011; 

Fischbach et al., 2009; Pickl & Ries, 2009; Riedl et al., 2017). Studies have also shown 

gene expression profiles resemble the actual tissue more in 3D cultured cells when 

compared to 2D cultured cells, such as colon cancer cell lines (Riedl et al., 2017; 

Takagi et al., 2007). Using 3D cell culture as an alternative to 2D cell culture might 

also partially replace animal models, especially when considering the placenta. Animal 

models never fully mimic any human in vivo organ, however the placenta is especially 

heterogeneous among different types of species, with many aspects, such as high 

level of invasiveness of the human trophoblast as well as duration of placentation 

being unique to humans (Carter, 2007; Orendi et al., 2011). Furthermore, there is an 

ethical rationale behind trying to replace animal models with human-derived models 
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of the placenta, and therefore it is always necessary to try and devise new methods 

that find a way around animal laboratory testing and towards techniques that 

incorporate both high ethical and scientific standards. 

 

As explants from placental tissue are difficult to culture in vitro over longer periods of 

time, one of the goals of this chapter was to find a method which combines the benefit 

of using actual human tissue as a testing platform as well as the long-term viability 

characteristics of cell lines. In order to gain further insights into the field of placenta 

research, especially with the focus on EDC testing, robust models that are human 

specific, tissue specific and viable for extended periods of time as opposed to 48 hours 

are needed. To date, placental tissue is often cultured in plastic wells surrounded in 

media for a couple of days (Douglas, VandeVoort, Kumar, Chang, & Golos, 2009; 

Sato, Ward, Astern, Kendal-Wright, & Collier, 2015; Steinberg & Robins, 2016). To our 

knowledge, there are no studies that have investigated the effects on viability on term 

placental tissue when tissue is cultured in a 3D environment, exposed to low levels 

(8%) of oxygen as opposed to environmental levels, and surrounded in a hydrogel. 

 

The main aim of this chapter is to initiate the development of tissue culture platforms 

that represent in vivo placenta more accurately as more physiologically relevant 

models are needed. We have tested methods using BeWo cell grown in 3D as well as 

placental explants, therefore this chapter has been structured into 2 main aims: 

 

1. Grow BeWo cells on a 3D scaffold and elucidate cellular changes occurring 

on a morphological, ER expression and hormone expression level.  

 

2. Grow placental explants on a hydrogel scaffold in an attempt to prolong 

viability for more than the normal 72 hours and test viability by observing 

morphology and b-hCG levels. 
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6.2 Results  
 
6.2.1 Platforms for growing BeWo cells in 3D 
 

In order to grow cells on a 3D scaffold, different platforms were tested, as it was 

necessary to investigate whether BeWo cells grow in a 3D environment, and whether 

they form physiological structures resembling organoids. Matrigelä is a common 

scaffold for 3D cell culture and was therefore employed. 

 

Initially, MatrigelÔ was used as a scaffold for cell growth. It is an extracellular matrix-

like protein mixture that is secreted by Engelbreth-Holm-Swarm (EHS) mouse 

sarcoma cells (Hughes, Postovit, & Lajoie, 2010) and has been used successfully to 

grow cell lines in 3D. Due to its nature and dependancy on mouse sarcoma cell 

production, there was a vast batch variation within different batches. Furthermore, 

BeWo cells grew in an erratic fashion, with projections that did not resemble placental 

tissue (Figure 6.1 and 6.2). Due to these concerns, we used a different platform called 

GrowdexÒ (Figure 6.3-6.7.), which does not have batch variation and is composed of 

nanofibrillar cellulose derived from birch trees (Bhattacharya et al., 2012). 

 
6.2.1.1 Matrigelä 

 

 
Figure 6.1. Brightfield images of 3D BeWo cells grown in Matrigelä at different stages 
of growth. Cells were seeded at 20,000 cells/ml. Row of cells imaged at 5 (a), 8(b), 
11(c) and 14(d) days respectively. 
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Figure 6.2. Immunofluorescent images of 3D BeWo cells grown on Matrigelä. Blue: 
DAPI nuclear stain (a), green: e-cadherin (b), red: phalloidin (c), merge (d).  
 
6.1.1.2 GrowdexÒ 
 

GrowdexÒ was used as an alternative to MatrigelÔ due to there being no batch 

variation as well as the fact that the scaffold itself only contains cellulose, thereby 

having less intrinsic protein function that could interfere with cellular function. Cells 

were seeded at 80,000 cells/ml and initially grown for a length of 21 days (Figure 6.3). 

With this scaffold, cells appeared to grow in a more physiological fashion, without the 

projections that were seen when grown on MatrigelÔ. Furthermore, cells appeared to 

grow in clusters and formed round, multinucleated structures (Figure 6.4 and 6.5). 

These structures physiologically resembled syncytiotrophoblast, the endocrine active 

differentiated cytotrophoblasts. 

 

 
Figure 6.3. Brightfield images of 3D BeWo cells grown in Growdex at different stages 
of growth. Cells were seeded at 80,000 cells/ml. Row of cells imaged at 6(a) 12(b) and 
21(c) days respectively. Cells appear to grow in clusters and have a different, more 
rounded shape than when grown in MatrigelÔ.  
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Figure 6.4. BeWo cells grown in GrowdexÒ for 7 days. Cells form rounded 
multinucleated structures that resemble placental tissue in vivo compared to cells 
grown in 2D (blue circles).  
 

 
Figure 6.5 Immunofluorescent images of BeWo cells grown in GrowdexÒ for 7 days. 
Blue: DAPI nuclear stain, green: e-cadherin, red: phalloidin, last panel: merged image. 
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6.2.2. Gene expression of BeWo cells grown in GrowdexÒ in comparison to cells 
grown in 2D 
 

In order to assess whether BeWo cells grown in 3D showed different gene expression 

than cells grown planar tissue culture (2D), we compared ER expression between non-

syncytialised BeWo cells grown in 2D and grown in GrowdexÒ (Figure 6.6). Due to 

previous data suggesting that ERb expression in BeWo cells was very low, expression 

levels of ERa and GPR30 only were measured. There was a marked increase in gene 

expression of ERa in cells grown in 3D (RQ = 0.3) compared to 2D cells (RQ = 0.03). 

Gene expression of GPR30 also showed an increase in cells grown in 3D (RQ = 0.22) 

compared to cells grown in 2D (RQ = 0.08).  

Due to the impression that BeWo cells grown in GrowdexÒ formed round, 

multinucleated structures similar to syncytiotrophoblast (Figure 6.4), we compared 

gene expression levels of the marker of syncytialisation syncytin-2 in BeWo cells 

grown in GrowdexÔ and in 2D (Figure 6.7). Cells grown in GrowdexÔ showed an 

increase in gene expression of syncytin 2 (RQ = 0.35) compared to cells grown in 2D 

(RQ = 0.03). 

 

Figure 6.6. Relative expression of estrogen receptors in non-syncytialised BeWo cells 
grown in 3D (GrowdexÒ) versus non-syncytialised BeWo cells grown in 2D. There is 
a marked increase in ERa expression in BeWo cells grown in 3D (RQ = 0.3) compared 
to expression in cells grown in 3D (RQ = 0.03). There is also an increase GPR30 gene 
expression in cells grown in 3D (RQ = 0.22) compared to cells grown in 2D (RQ = 
0.08). ERb not measured due to lack of ERb in 2D BeWo cells. 
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Figure 6.7. Relative expression of syncytin-2 in non-syncytialised BeWo cells grown 
for 7 days in 3D (GrowdexÒ) versus non-syncytialised BeWo cells grown in 2D. There 
is a marked increase in syncytin-2 expression in BeWo cells grown in GrowdexÔ (RQ 
= 0.35) compared to cells grown in 2D (RQ = 0.03). 
 

 

6.2.3. Hormone secretion of BeWo cells grown in 3D (GrowdexÒ) in comparison 
to cells grown in 2D 
 

In order to further assess whether there is a functional change in BeWo cells grown 

on the 3D platform GrowdexÔ, b-hCG and E2 secretion in these cells was measured 

(Figure 6.8) and compared to expression profiles of the same hormones during human 

pregnancy. When measured over 20 days, hormone expression of BeWo cells grown 

in 3D showed a similar expression profile of b-hCG and E2 over three trimesters of 

pregnancy.  
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Figure 6.8. Hormone secretion of 3D BeWo cells grown in Growdex® for 20 days 
compared to hormone expression during pregnancy. Expression profiles of b-hCG and 
E2 are similar in these cells to expression progiles in blood during human pregnancy. 
D1-d20: days.  
 

6.2.4. Placental explants grown in GrowDex® 
 

In this part of the study, we have attempted to prolong placental tissue viability and 

minimize tissue degradation by setting up term placental explant cultures in a novel 

system. Using GrowDexÒ hydrogel, a plant-based hydrogel matrix containing 

cellulose, we have embedded placental explant pieces of 2mm in size between the 

hydrogel in 96-well plates and covered these cultures in media. Doing this, we have 

provided an environment for the tissue that structurally is more similar to the 

extracellular matrix found in vivo when compared to the plastic and media which 

usually surrounds the placental explant, as well as attempting to keep the explants in 

a low oxygen environment, being embedded within the hydrogel, a characteristic which 

has been shown to be crucial for placental tissue viability, as atmospheric oxygen 

levels can affect placental explants and increase apoptosis and inflammation (Brew & 

Sullivan, 2017). 

 

In order to achieve placental tissue culture lasting over more than 48 hours, placental 

tissue was embedded into GrowDex® hydrogel with media changed every 5 days. 

2mm biopsies were placed in between 2 layers of GrowDex® as previously described. 
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Tissues were imaged at 9 days and 16 days. Viability of tissues was evaluated by 

measurement of β-hCG.  

 

Placental explants were grown for 16 days in GrowdexÔ and imaged at 9 days (Figure 

6.9) and at 16 days (Figure 6.10). At 9 days, some images showed intact placental 

brush-border, an indicator that the tissue is still viable as there is no breakdown of this 

fragile placental structure. Figure 6.10 shows that at 16 days of growth some explants 

have also still ratined this brush border, showing potential for explants to be grown for 

over 2 weeks. There were no other major structural changes between explants at 9 

days and explants at 16 days. 

 

To further affirm that explants grown for 16 days embedded in hydrogel were viable, 

measurements of b-hCG, a hormonal marker of functioning placental tissue were 

measured at day 6 and day 16 (Figure 6.11). The data shows a 20-fold increase from 

day 1 to day 6 of 1050 mmol/µl from 55.42 mmol/µl, and a 1-fold decrease to 504.8 

mmol/µl on day 16, indicating some loss of viable sample by this time.  

 

 

Figure 6.9. Placental explants grown in GrowDex® after 9 days. Red arrows indicate 
intact placental brush-border giving the impression of viable placental tissue. 
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Figure 6.10. Placental explants grown in GrowDex® after 16 days. There do not 
appear to be major structural differences between the two time-points (compared to 9 
days, figure 6.9). Red arrows indicate intact placental brush border giving the 
impression of viable placental tissue. 
 

b-hCG Expression of explants cultured in Growdex® 

 

Figure 6.11. β-hCG levels were measured in placental explants embedded in hydrogel 
on day 1 (55.42 mmol/μl), day 6 (1,050 mmol/μl) and day 16 (504.8 mmol/μl). There 
was a 50-fold increase of β-hCG secretion in explants at day 6 when explants were 
embedded into hydrogel, which fell down to 504.8 mmol/μl by day 16. Day one was 
measured before embedding into hydrogel. 
 

6.3 Discussion 
 

Developing a relevant model of the human placenta is important due to a need for 

replacement of animal models and the importance of the placenta to not only the 

viability of the fetus during pregnancy but also the health of the offspring later in life. 

As a transient organ that is difficult to research and is therefore one of the least studied 

organs of the human body, valid platforms to test chemicals that can affect mother and 

child are desperately needed. As EDCs are ubiquitous chemicals that most humans 
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are exposed to, these substances are especially important to test on the placenta. In 

this chapter, we have attempted to move from the basic human placental model of cell 

lines grown in 2D to models that represent the human placenta more accurately. 

 

By growing BeWo cell lines on a GrowDexÒ hydrogel scaffold, cells were enabled to 

grow in a more physiological 3D form with more cell-to-cell interactions and resembling 

organoids. Studies with different cells and cell lines have shown that using a 

nanofibrillar cellulose hydrogel such as GrowDexÒ can induce physiological cell traits 

that are not shown in a 2D setting. In liver progenitor cells, using nanofibrillar cellulose 

induced cell polarity as well as forming physiological liver structures, and showed 

expression of typical hepatobiliary drug transporters and mRNA of hepatocyte markers 

(Bhattacharya et al., 2012; Malinen et al., 2014). Furthermore, nanofibrillar cellulose 

hydrogel facilitated the differentiation of human pluripotent stem cells (hPSCs) and 

induced formation of 3D spheroids (Lou et al., 2014). GrowDexÒ is a reliable scaffold 

as it is free of any growth factors or proteins, with solely the cellulose concentration 

determining the properties of the scaffold, such as viscosity. By keeping the cellulose 

concentration at 1%, the properties of GrowDexÒ were reproducible, and not subject 

to any batch variability. Our study is the first study to investigate the effects of growing 

the BeWo cell line in a nanofibrillar cellulose hydrogel. 

 

In our study we found that BeWo cells grown in a 3D environment using GrowDexÒ 

form spheroids not previously seen in 2D culture. These spheroids appear to consist 

of cells that have merged to form a syncytium, with a shared outer membrane, similar 

to in vivo placental tertiary villi, rather than just forming clusters of cells. In order to 

confirm that BeWo cells grown in GrowDexÒ spontaneously syncytialise without the 

addition of 8-Br-cAMP which is usually needed for syncytialisation in cells BeWo cells 

grown in 2D, we investigated whether Syncytin-2, a marker of trophoblast 

syncytialisation (Vargas et al., 2009), is upregulated in BeWo cells grown in 

GrowDexÒ. In our experiment comparing non-syncytialised BeWo cells grown in 2D 

to BeWo cells grown in GrowDexÒ, syncytin-2 was upregulated almost 10-fold in 3D 

BeWo cells grown for 7 days, a result similar to studies in primary trophoblasts that 

were grown for 96 hours (Vargas et al., 2009). This result indicates a spontaneous 

syncytialisation of BeWo cells grown in a nanofibrillar cellulose hydrogel, a novel 
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discovery in the literature up to this point. Besides an upregulation of Syncytin-2, 

BeWo cells grown for 7 days in GrowDexÒ also showed a more than 10-fold 

upregulation of ERa and a more than 2-fold upregulation of GPR30. Furthermore, 

hormone expression of b-hCG and E2 in BeWo cells grown in GrowDexÒ showed a 

similar expression pattern in a timeframe of 20 days, when compared to a normal 

human pregnancy of 40 weeks, with b-hCG levels peaking at 7 days in 3D cultures, 

and falling under E2 levels at 12 days. This pattern is proportional to the pattern in 

normal human gestation, with peaks of b-hCG at around 12 weeks, or at the end of 

the 1st trimester, and levels falling to under E2 levels at around 24 weeks, or at the 

end of the 2nd trimester. These findings indicate that BeWo cells grown in GrowDexÒ 

could mimic physiological traits of the gestation period of the human placenta on a 

smaller scale, therefore providing a valuable model for in vitro human placental 

research. 

 

Although research in the field of placental 3D culture is still lacking, there have been 

some studies that have analysed growth patterns and different aspects of placental 

cells and cell lines in 3D using different methods and platforms. HTR8/SVneo cell lines 

have been grown in MatrigelÔ to study trophoblast recruitment to the endometrium 

(Multhaup et al., 2018), and scaffold-free hanging drop co-culture systems using 

placental fibroblasts and trophoblasts have shown upregulation of b-hCG secretion 

compared to 2D models, similar to our data (Muoth et al., 2016). Furthermore, 

spheroids have been used in order to mimic a 3D environment, using Jar cell lines to 

show that b-hCG expression increases with this system (H. Wang et al., 2012) and a 

rotating cell culture system using the placental cell line SGHPL-4 has been developed 

(Zwezdaryk, Warner, Machado, Morris, & Höner zu Bentrup, 2012). To date, however, 

BeWo cells have not been grown in a hydrogel and analysed as to their differentiation 

capacity and structure. 

 

In order to attempt another long-term viable model for placental testing which involves 

placental tissue, we used term human placental explants embedded in GrowdexÒ in 

order to extend viability and kept them in culture for over 2 weeks. In order to test for 

viability, we imaged tissue at 9 and 16 days as well as measuring b-hCG as an 

indicator for normal function and viability. Structurally, tissues showed intact brush-
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border membranes, an essential criterion indicative of viability, as well as keeping 

levels of b-hCG, indicating viability much past the common limit of 72 hours. 

 

In conclusion, our findings indicate an important role of the 3D environment on BeWo 

cells. 3D cell culture of the BeWo cell line has promoted spontaneous syncytialisation, 

suggesting a more physiological milieu for cells to unfold their natural tendencies. 

Furthermore, we have shown that BeWo cells grown in 3D over 21 days mimic in vivo 

placental hormone expression, with each week representing one gestational trimester, 

giving promise to the development of a model which encompasses human placental 

physiology throughout the entire pregnancy. These findings might be similar in explant 

studies. Given that we have developed a method for prolonging placental explant life 

in a hydrogel scaffold, we have initiated research into two future methods that could 

provide the field of placentology with platfoms that are more physiologically similar to 

human in vivo placenta. 
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Chapter 7 
7.1 General discussion 
 

EDCs and their effects on human health is an area of research that is in need of more 

vigorous comprehensive investigation. In 2012, the World Health Organisation (WHO) 

and United Nations Environment Programme (UNEP) compiled an assessment on the 

state of the science on EDCs and mentioned three strands of evidence that caused 

reasons for concern. Firstly, the fact that there is a high incidence and an increasing 

trend of disorders related to the endocrine system in humans. Secondly, that there are 

observable endocrine-related effects in wildlife, and thirdly, that chemicals with 

endocrine properties have been identified as being linked to diseases in laboratory 

studies (Bergman et al., 2012). Two of the mentioned diseases linked to EDCs 

mentioned in this protocol, 2 diabetes and obesity, were increased after EDC 

exposure, and were diseases that our study have identified as being linked to BPA 

exposure in placental cells. As in utero fetal development is sensitive to chemical 

exposure and can even determine health outcomes such as diabetes and obesity in 

the long-term and adult life (Barker, 1997), one of the important messages outlined in 

the WHO protocol is the importance of windows of exposure. Especially during fetal 

development, as metabolic rate is increased, and without defense mechanisms that 

are developed in later life (Newbold, Padilla-Banks, & Jefferson, 2009), exposure to 

chemicals that can alter the endocrine system can be dangerous. BPA is one of the 

chemicals that has been linked to a multitude of diseases in children and adults whose 

pathoaetiology stems from in utero BPA exposure. Studies have found links with in 

utero BPA exposure and intrauterine testicular development in humans (Eladak et al., 

2018) low sperm concentration and motility in 20-22 year old males (Hart et al., 2018), 

chronic inflammation in rabbit offspring (Reddivari et al., 2017), alterations in ovarian 

follicle numbers in mice (Mahalingam et al., 2017), mammary cancer in humans 

(Paulose, Speroni, Sonnenschein, & Soto, 2015) and changes in the fetal heart 

transcriptome in rhesus monkeys (Chapalamadugu, VandeVoort, Settles, Robison, & 

Murdoch, 2014). 
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BPA is a chemical that is widely used in a vast variety of chemical and industrial 

processes, which has been shown to affect the human body in a multitude of ways, 

due to its endocrine disrupting hormonal properties. Due to its ubiquitous nature, it is 

a compound that warrants intensive and effective research, as it is crucial to limit 

human exposure as much as possible. In fact, the European Food Safety Authority 

(EFSA) has identified 12 hazard assessment questions in 2017 regarding the adverse 

effects of BPA including the mode of action of BPA when considering doses under 

100nM, it’s toxicokinetic profile in humans, and whether BPA exposure causes any 

reproductive or developmental outcomes in mammalian animals (Gundert-Remy et al., 

2017). With questions remaining about the reproductive and developmental effects of 

low doses of BPA, studies investigating these effects in tissues that are directly 

involved in the regulation of human development, such as the placenta, are especially 

important. 

 

The placenta plays a crucial role in the maintenance of pregnancy, being the interface 

between mother and fetus, and the organ which is responsible for nutrient and waste 

exchange. As such, it is vital that placental function is kept throughout pregnancy, as 

placental pathology is associated with pregnancy complications such as preeclampsia 

(Vinatier & Monnier, 1995), IUGR (Ganer Herman et al., 2018; Khong & Yee, 1989),  

and gestational diabetes (Hill, 2018; Ngala, Fondjo, Gmagna, Ghartey, & Awe, 2017), 

among others. Although all of these pathologies have been researched extensively, 

they are complex in their aetiology and final conclusions about causes have not been 

reached. This study has begun the process of the development of new human 

placental models, a field that will require continuing attention in the future. 

 

Human models of the placenta are lacking when compared to other tissues and 

organs, and most models of the placenta involve 2D cultures of placental cell lines, 

short-term placental explant cultures, or animal models. Recent developments in the 

advance of physiologically relevant tissue and organ models have brought forth 

models such as organ-on-a-chip, where human organs are represented in vitro on a 

microfluidic chip, using heart (Agarwal, Goss, Cho, McCain, & Parker, 2013), lung 

(Huh et al., 2010), liver (Domansky et al., 2010), kidney (Jang et al., 2013), brain 

(Booth & Kim, 2012), gut (Esch et al., 2012) and skin (Ataç et al., 2013) among other 

organs, as well as organ systems and cancer cells. These methods often employ cells 
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grown in 3D culture, however the development of these organ-representative models 

has been absent in placental research. In our study, we have grown BeWo placental 

cells in two different 3D platforms in order to assess physiological changes associated 

with 3D growth for future EDC testing, to elucidate how different EDCs as well as 

mixtures of these can affect different cell types, potentially shedding a light on organ 

development in utero under the influence of environmental toxicants. These platforms 

have the potential to alter the face of clinical trials, by getting closer than ever before 

to actual in vitro organ development and physiology. 

 

In order to elucidate properties of placental cell lines that could be affected by BPA, 

as well as similarities to actual placental tissue, we measured base line gene 

expression and cellular distribution of estrogen receptors in BeWo and JEG-3 cell 

lines. As previous investigations have not been clear on the presence of estrogen 

receptors in BeWo and JEG-3 placental cells, we have added valuable knowledge to 

the research by demonstrating the presence of all three estrogen receptors (ERa, 

ERb, GPR30) in both BeWo and JEG-3 cell lines, a prerequisite for the use of these 

cell lines to test the effects of BPA on the placenta. We have shown that gene 

expression of ERa is dominant in both BeWo and JEG-3 cell lines, with GPR30 being 

the next most abundant followed by ERb. As ERa has been reported to be the primary 

estrogen receptor in the human placenta (Bukovsky et al., 2003; Schiessl et al., 2006; 

Yin et al., 2013), we believe that both cell lines accurately represent placenta when it 

comes to estrogen receptor expression. Furthermore, we showed that all receptors 

were upregulated after syncytialisation, which likely reflects the known upregulation of 

estrogen receptors closer to term (Kim et al., 2016), and therefore further validates the 

BeWo cell line. Furthermore, as we have successfully managed to syncytialise the 

BeWo cell line, we were able to create a model representing both the cytotrophoblast 

and syncytiotrophoblast of the placenta, with representative features such as an 

upregulation of estrogen receptors in differentiated placental cells. 

 

In order to use these cell lines as models to test the effect of BPA on the placenta, we 

employed the BeWo cell line both when syncytialised and non-syncytialised. The 

syncytialised model of the placenta more accurately represents the mature placenta, 

while the non-syncytialised model can be used to model the placenta in earlier stages, 
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due to an increase in differentiated syncytiotrophoblast later on in pregnancy (Wang 

& Zhao, 2010). Because human BPA levels in blood, saliva, urine, amniotic fluid and 

placenta are at nanomolar levels (Edlow, Chen, Smith, Lu, & McElrath, 2012; 

Schönfelder et al., 2002; Vandenberg et al., 2010), we used 3 nM and 10 nM 

concentrations of BPA treatment in BeWo and JEG-3 cell lines. We investigated the 

effects of low levels of BPA in terms of the regulation of estrogen receptor gene 

expression and mechanisms of action of BPA regarding receptor binding and 

intracellular signalling. As a xenoestrogen, BPA binds to estrogen receptors. We have 

found that 24 hour BPA treatment of BeWo cells leads to the significant upregulation 

of ERα in this cell line, a novel discovery. Studies have shown that E2 can up- or 

downregulate ERα, depending on the type of tissue (Castles et al., 1997), but 

regulation of ERα in the placenta as well as placental cell lines is not well researched. 

Interestingly, our studies have found that ERα is only significantly upregulated when 

treated with 3 nM BPA and not when treated with 10 nM BPA. These findings are in 

line with previous studies describing the biphasic effect of BPA, in which lower levels 

of BPA have a different and non-additive effect when compared to higher levels (Chen 

et al., 2017; Jeong et al., 2017; Takai et al., 2000; Wang et al., 2015). Some studies 

have also found an increased effect at lower levels of BPA treatment when compared 

to higher levels, similar to the effect we have fund in BeWo cells (Hui et al., 2018; 

Koike, Yanagisawa, Win-Shwe, & Takano, 2018). As ERα upregulation is seen at 

lower level BPA treatment in BeWo cells, lower levels could actually cause a stronger 

effect, as there are more receptors for BPA and estrogens to bind to. Although the 

effect of ER upregulation in the placenta is not widely known, an increase in 

trophoblastic differentiation to syncytiotrophoblast and functional maturation of the 

syncytiotrophoblast via estrogen has been reported, with a subsequent increase in 

hormones such as placental lactogen, which plays a role in mammary development 

and fetal growth during pregnancy (Musicki, Pepe, & Albrecht, 2003). 

 

In accordance with the finding that ERα was upregulated after 3 nM treatment with 

BPA, we found that cell proliferation was also significantly increased after treatment 

with 3 nM BPA, however not with 10 nM BPA treatment. Taken together with the fact 

that this effect was negated after treatment with the estrogen receptor antagonists G15 

and ICI, it is likely that the proliferative effect of BPA is mediated by either ERα or ERβ, 

and with ERα being the prominent receptor in BeWo cells, and/or via GPR30. 
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Studies have shown that low levels of GPR30 in placental cells can impair proliferation 

and invasion, playing a role in the development of PE (Feng et al., 2017; Li et al., 2016; 

Tong et al., 2016; Zhou et al., 2017) Traditionally, studies have focused on genomic 

action of estrogen, as receptors were believed to be purely nuclear. More recently, 

non-genomic action of estrogen has been recorded, whether via the membrane-bound 

receptor GPR30 or via membrane-bound ERα or ERβ (Vrtačnik, Ostanek, Mencej-

Bedrač, & Marc, 2014). As intracellular signaling involving AKT and p38 plays a role 

in the regulation of cell survival (Coulthard, White, Jones, McDermott, & Burchill, 2009; 

Cuadrado & Nebreda, 2010; Yu & Cui, 2016), these short-term effects of BPA could 

play a role in the increased proliferation of BeWo cells treated with BPA. To date there 

is no literature regarding the effect of low levels of BPA on proliferation and intracellular 

signaling in BeWo cells, therefore our findings provide a valuable insight into this 

subject. 

 

Furthermore, our data have shown that proliferation of BeWo cells is a function of AKT 

activation, as treatment of BeWo cells with an inhibitor of AKT (LY294002) inhibited 

the proliferative effect of 3 nM BPA. It is well known that P13K/AKT/mTOR signaling, 

for example, is constitutively activated in different types of cancer, as a pro-survival 

and proliferative signal, which can be activated by many different types of receptors, 

including G-protein coupled receptors and receptor tyrosine kinases (LoPiccolo, 

Blumenthal, Bernstein, & Dennis, 2008)  BPA treatment has had differing effects on 

different types of cells in the literature, however our findings are similar to findings in 

human thyroid cancer cells, where low levels of BPA (1mM-10 nM) induced 

proliferation via classical ERs as well as GPR30, and induced proliferation via the 

activation of AKT, as well as upregulating all three estrogen receptors (Zhang et al., 

2017). Investigating how BPA affected levels of phospho-targets in BeWo cells when 

treated for 15-60 min and found that common targets of estrogen signaling, p-38 and 

AKT were phosphorylated at different time points, and that there was no increase in 

ERK1/2 phosphorylation. 

 

Besides the effects of BPA on estrogen receptor expression, proliferation and 

intracellular signaling, our study investigated changes in gene expression after 

treatment with BPA using a non-biased screen in the form of microarray. After 

treatment of non-syncytialised and syncytialised BeWo cells with 3 nM and 10 nM 
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BPA, differential gene expression was analysed by gene and pathway enrichment, as 

well as validating upregulated genes of interest. Interestingly, differential gene 

expression was most prominent in non-syncytialised cells treated with 3 nM BPA, 

indicating that lower levels of BPA and treatment of undifferentiated cells were 

favourable conditions for changes in gene expression. RhoA and Rac1 signaling 

pathways, insulin signaling, insulin resistance, leptin signaling and differentiation of 

white and brown adipose tissue pathways were the most functionally enriched entries. 

RhoA and Rac1 signaling pathways are involved in the regulation of a multitude of 

functions within the cell, including endosomal trafficking, actin polymerization, cell 

survival and cell cycle progression (Schwartz, 2004). In terms of proliferation, RhoA 

promotes proliferation by inhibiting p21 expression and inducing cyclin D1 expression 

thereby promoting G1 entry and progression into S-phase (Etienne-Manneville & Hall, 

2002; M F Olson et al., 1995) and Rac has the potential to stimulate proliferation of 

cells via the activation of JNK/SAPK (Olson et al., 1995). 

 

Interestingly, the pathways enriched after 3 nM BPA treatment have been shown to 

be linked in a multitude of studies. Leptin and insulin work together in controlling 

glucose metabolism, thereby regulating fetal growth and development, with umbilical 

cord leptin levels correlating positively with neonate fat mass and body weight 

(Guzmán-Bárcenas et al., 2016) and increased maternal glucose levels contributing 

to large for gestational age pregnancies (Migda, Migda, Migda, & Wender-Ozegowska, 

2017). 

 

RhoA signaling also has been shown to be involved in regulation of insulin, with the 

RhoA/ROCK pathway mediating skeletal muscle insulin resistance (Chun et al., 2011; 

Tao et al., 2015) and mediating insulin release in mouse pancreatic β-cells (Xiaofang 

Liu et al., 2014). RhoA and its effector ROCK1 have also been linked to leptin, with 

leptin being one of the activators of RhoA and thereby inducing processes such as cell 

invasion, reorganization of the cytoskeleton, homeostasis of feeding behaviour and 

increasing permeability of colon tight junctions (Ghasemi, Isaac Hashemy, Aghaei, & 

Panjehpour, 2017; Huang et al., 2012; Le Dréan et al., 2014). RhoA is also involved 

in regulation of leptin function when it comes to the promotion by leptin of hypertension, 

atherosclerosis and reactive oxygen species (ROS) generation (Ghantous et al., 

2015). Rac1 similarly has been found to be involved in regulation of insulin and insulin 
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resistance development, with Rac1 being activated by insulin and increasing GLUT4 

cellular traffic and Rac activation being impaired in insulin resistance (Chiu et al., 2011; 

JeBailey et al., 2007; Ueda et al., 2010, 2008), as well as being activated by insulin in 

mouse adipose tissue (Takenaka et al., 2017). It plays a role in excess ROS 

accumulation in diabetic conditions (Sidarala & Kowluru, 2017), therefore being 

implicated in states of chronic inflammation, making it a player in metabolic syndrome 

which includes type 2 diabetes (Zhou et al., 2015). 

 

Taken together, these findings highlight the capacity of BPA to affect the BeWo cell 

genome. These changes imply a role of BPA in influencing the metabolism as well as 

proliferation of placental cells, factors that could immensely affect a fetus during 

pregnancy as well as determine the outcome of the pregnancy itself. Insulin signaling 

is a pathway which has been demonstrated to play a major role during pregnancy, as 

gestational diabetes mellitus, for example, is a disease which can have severe effects 

on the fetus, pregnancy, and long-term effects on both mother and child, including fetal 

macrosomia, maternal preeclampsia, neonatal hyperglycemia and respiratory distress 

syndrome, the development of type 2 diabetes of the mother after pregnancy, as well 

as an increased risk of the development of obesity and abnormal glucose metabolism 

of the offspring whether in childhood, adolescence or adulthood (Gilmartin, Ural, & 

Repke, 2008; Petry, 2018; Schmidt et al., 2001) . As obesity is one of the risk factors 

of pregnant women for developing gestational diabetes, high leptin levels may also be 

a contributing factor when it comes to the aetiology of gestational diabetes. In fact, 

recent studies have shown the relationship between higher placental leptin and the 

development of insulin resistance and gestational diabetes, as well as showing that 

levels of leptin in the placenta were higher in macrosomic offspring than in normal 

weight offspring (Shang, Dong, & Hou, 2018; Tsiotra et al., 2018). 

 

Lastly, we have attempted to develop a relevant model of the human placenta for 

future EDC testing. By growing BeWo cells on a 3D scaffold using GrowdexÒ, we 

enabled cells to develop a more physiological 3D form with increased cell-to-cell-

interactions, forming cell clusters that syncytialise to become differentiated. These 

cells grown in 3D mimicked the human placenta when it came to hormonal secretion 

of β-hCG and E2, with every week of growth representing a trimester during 
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pregnancy, therefore indicating that this platform is useful in simulating the human 

placenta in vivo. Furthermore, we have managed to keep human placental explants 

viable in culture for 16 days providing another physiological platform for long-term 

testing. These models have initiated research into providing new and physiologically 

relevant platforms that can mimic human placenta, which are needed in order to 

address questions such as effects of chemical exposure during pregnancy, and must 

be practical, efficient and, most importantly show similar traits to placental tissue in 

vitro. Our models show promise in terms of hormone secretion patterns as well as 

structural fidelity but will need to be further developed. 

 

7.2 Study limitations 
 

We acknowledge that this study has some limitations, which could be addressed in 

future studies. Firstly, although it is valuable to study the effects of a single chemical 

on the human placenta, the reality of the in vivo situation is more complex. Humans 

are exposed to a mixture of EDCs on a daily basis (Ribeiro, Ladeira, & Viegas, 2017; 

Webster, 2013), and these combinations could have an additive effect or other more 

complex interaction. Secondly, working with the choriocarcinoma cell line BeWo 

always warrants caution when interpreting results, as even though traits are very 

similar to placental cells, the cell line is derived from choriocarcinoma, and therefore 

differs in its genome and karyotype. Furthermore, we did not investigate the effects of 

BPA long-term, as in all our experiments we assessed effects of BPA after 24 hours 

of exposure. As in vivo exposure to BPA is more chronic than acute, it would be 

interesting and valuable to assess effects after a series of days or even weeks. As it 

is often not possible to use 2D cell lines to investigate long-term effects of a substance, 

other models would have to be used as a more robust model for this endeavour. When 

investigating effects of BPA on placental tissue, only one placenta was analysed. Due 

to patient variability, a vast amount of placentae would need to be used in order to 

discern a pattern. Lastly, some of our experiments of gene regulation were not 

followed by studies investigating protein regulation, which would give a more complete 

picture of the effects of BPA on the proteome. 
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7.3 Future studies 
 

This study evaluates the effects of BPA on the placenta, however there is a large 

scope of possible effects to evaluate. Therefore, this study can be seen as having 

made first steps into how BPA affects BeWo cells, as well as addressing the need for 

more physiologically relevant models and laying the foundation to investigate much 

needed 3D platforms. Therefore, there is room and need for future studies to build on 

data that has emerged from our study. 

 

Firstly, our study did not address some properties of cells which can be affected by 

hormones and chemicals, such as migration and differentiation. Future studies need 

to investigate how BPA can affect the migration of the BeWo cell line, as well as 

whether BPA plays a role in the differentiation of the trophoblast. Other properties such 

as epigenetic DNA changes could play a role in the effects of BPA, and warrant 

investigating. Furthermore, more recent developments in the function of BPA, such as 

the discovery that BPA can bind to estrogen-related receptor g (ERRg) (Tohmé et al., 

2014) will play a role in determining the molecular function of BPA in the future. 

Therefore, there is a vast variety of studies that should still be done in BeWo cells to 

create a more complete picture of the effects of BPA on this cell line. 

 

Future studies should also employ models that can mimic the placental environment 

more accurately, such as the regulation of flow, as well as the co-culture of cells within 

the same environment, as signaling between cells can vastly influence the physiology 

of an organ. Specifically, organ-on-a-chip technologies are being employed more 

frequently in recent studies, and placenta-on-a-chip systems are slowly emerging, for 

example by using JEG-3 cells and human umbilical vein (HUVEC) cells to recreate the 

placental barrier (Lee et al., 2016). Not only are organ-on-a-chip models being used 

for research, but organ systems such as intestine-liver-kidney-blood-brain-barrier-

skeletal-muscle systems (Vernetti et al., 2017) are emerging at a rapid pace. Future 

studies coupling placenta with fetal tissue or even more complex systems are needed 

in order to develop a more complete picture of chemical effects during human 

pregnancy. More simple models such as co-cultures of placental and fetal cells grown 

in 3D would also give valuable insights. Ideally, future techniques would employ a 

combination of chip technology and 3D culture, being able to regulate as many 
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physiological variables as possible. These developments would not only improve 

experimental readings in terms of accuracy, but drive the replacement of animal 

studies in the field of placenta research, which often uses mammals and higher 

primates such as baboons, a serious ethical concern. 

 

Future studies should also take into account the different types of cells used when 

setting up models. Although cell lines are useful, primary cells not only are taken from 

human placenta directly and have not gone through genomic changes to make them 

immortalised but are variable from patient to patient and can therefore represent the 

human placenta more broadly, when large numbers of samples are obtained. 

Therefore, if possible, a move away from cell lines and towards primary cells grown in 

a 3D environment would be useful. Explants also need to be sampled from a high 

number of patients, in order to discern effects across all samples, and understand 

common effects of environmental toxicants. Furthermore, both primary cells and 

explants should be taken from patients with pre-existing conditions in pregnancy or 

outside of pregnancy, to understand differences in patient populations with disease. 

 

Finally, mixtures of chemical substances that women are exposed to during pregnancy 

will need to be investigated, as their potential harm and ability to exert additive effects 

are still not well known to date. Studies like these are crucial, as the only way to fully 

understand how chemicals can affect human pregnancies is to investigate their effects 

in the context of human exposure to a multitude of different environmental chemicals 

as well as endogenous processes. As exposures during pregnancy as well as 

pregnancies themselves are heterogeneous due to a multitude of variables, the 

ultimate goal will be to create models that are population and patient specific, in order 

to work towards a more individualised approach to placental testing. 
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HES7 GATAD2A EML1 MYL3 GAGE7 ATF3 DPYSL2 PPARGC1B VPS37D FAT3 
CDCA4 LYPD4 LINC00963 HRK SLC7A4 EXTL2 MRPL52 FRYL THAP9-AS1 
RASL10A KANK1 C1ORF226 MDM4 FBXO27 KRCC1 CCDC144A FNTB 
LOC101927070 MBP BMF ATP6V0E2-AS1 ZNF641 ITGA1 GFPT1 MSL3 CDR2L 
SAR1A KIAA1522 FAM209A TBX3 TRIM36 RFPL4AL1 AGXT C1S EFR3B 
UPP1XLOC_L2_010056 UNKL PCDH1 RTCA STX16 RAB11FIP1 EAF2 ANK3 
NKAIN4 NUDCD3 C7ORF55 MST1 PER2 NLRP12 TCEA1 TNFRSF13C ICA1 
OPHN1 ANKRD13A DCLRE1C NEXN SLC1A3 UBE3B CLGN SGK494 SLC30A2 
ACTG2 HCAR3 TGM1 BCKDHB CAV1 TMEM45AT MEM45B DDX46 WNT6 TAC4 
LEPREL2 ALS2 ACIN1DYNLT1 TRIB3SIGIRR FAM178A ZC2HC1A PCDHB2 
TNFSF4 GABPB1 BACH2  APOL6PRTG CREB3L3 SNAI3 NGLY1 PCOLCE-
AS1PLAC8 MIOX WDR33 TMSB15A  GPR124 CDKN2C SERPINB9 RNF125 
LINC00869 PLIN5 LINC00867 RNF121 HBEGF SPEF1 LPCAT2 ARFRP1 ENSA 
ANKRD36B DGKD LAMP3 SLC39A7 OSBPL7 FANCC KIFC1 PITPNM3 ZNF778 
TCAM1P MAP3K13 ANKRD33B  CLSTN3 INSIG2 AK3 C1ORF54 CBLN1 DHCR24 
PTPN14  KBTBD11 DNAJC1 SOS2  EIF4E2 CATSPER2 NFAT5 C3ORF52 PIP5KL1 
LNC-RALGAPA1-3 DRD5 LINC01301 MLXIP TNRC6C-AS1 LINC01061 ASS1 LEP 
UHRF1BP1 PFN2 C14ORF79 TBL1X TBL1Y 

 Table 1. Shared differentially regulated genes in 3 nM and 10n M BPA treated non-syncytialised 
BeWo cells 


