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Abstract: Composite materials have been widely used in various applications, and guided 

waves are often used as a non-destructive testing tool to inspect defects or damages in 

composite laminates. A composite laminate is an assembly of many composite layers with 

anisotropic material properties and an arbitrary fibre orientation in each layer. Guided wave 

properties of Lamb and shear-horizontal waves are thus direction dependent.  As a result, the 

group velocity of each wave mode has a component parallel to the wave propagation 

direction, and also a component perpendicular to the wave propagation direction. In this 

article, a semi-analytical finite element method is developed to model composite laminates 

with an arbitrary fibre orientation and also anisotropic material properties in each layer. The 

Galerkin’s principle is used to derive the weak forms of the governing equations, and an 

energy velocity formulation is used to derive the parallel and perpendicular energy velocities. 

The finite element solutions are compared against available analytical and numerical 

solutions in the literature for forward waves, and excellent agreements have been achieved.  

On this basis, guided wave properties of backward waves are investigated. It is well 

understood that in an isotropic plate, the energy velocity of a backward wave is directly 

opposite to the phase velocity, i.e., 180o out of phase. However, in a composite laminate, the 

energy velocity of a backward wave is normally not exactly 180° out of phase with the phase 

velocity due to the existence of a skew angle. The angular dependences of wave properties of 

forward and backward waves are investigated in this article.  

 



 

1. Introduction 

Composite materials are widely used because of their lighter and stronger properties. Guided 

waves are often used to inspect defects or damages in composite laminates. Composite 

laminates have anisotropic material properties, and wave propagation properties are thus 

frequency and direction dependent. Furthermore, group velocities have components parallel 

and perpendicular to the wave propagation vector direction, and group velocity wave front 

curves are thus complicated. Guided wave properties are well studied for forward waves, 

however, backward waves in composite laminates haven’t been presented or discussed in the 

literature. In this article, a Galerkin based semi-analytical finite element (SAFE) method is 

derived to study guided wave properties of forward and backward Lamb and shear-horizontal 

waves. This requires only the thickness of composite laminates to be discretised. An energy 

velocity formation is used to calculate energy velocities in two orthogonal directions, which 

avoids the need to calculate wavenumber derivatives through a finite difference scheme. 

Guided wave properties of forward and backward waves are presented and compared to 

available analytical and numerical solutions in the literature.  

In a classical article, Lamb originally derived exact analytical governing equations for wave 

propagation in an isotropic two dimensional layer, and these waves were later named after 

him [1]. However, these governing equations couldn’t be solved analytically, and Lamb only 

presented solutions related to long and short wavelength limits [1]. The full numerical 

solutions to these equations were presented by Mindlin four decades later [2]. In addition to 

forward waves, backward waves have been observed [2, 3].  These waves have opposite 

phase and group velocities. Backward waves form small loops with group velocities both 

starting and ending at zero. Phase velocities start from a finite value and increase to infinity 



in the backward wave frequency regime. Negishi reported that the first backward wave exists 

only when Poisson’s ratio of the isotropic plate is less than 0.45, and the second backward 

wave exists when Poisson’s ratio is less than 0.31 [4]. Backward waves include zero group 

velocity points which are associated with resonance and ringing effects. Transmitted sound 

energy will be localised at these points, and this phenomenon could be important in non-

destructive testing, material characterisation applications etc [5-15]. 

Analytical and numerical approaches have been used to investigate backward waves in a 

layered medium with isotropic material properties in each layer [16, 17]. The continuous 

material variation through thickness could be represented by a number of numerically 

discretised finite element layers [17].   Existence of backward waves was also found in 

immersed layered cylindrical shells with isotropic material properties [18]. Solie and Auld 

proposed a displacement partial wave technique to study dispersion relations for elastic 

waves in a single layer plate of arbitrary anisotropy [19]. This principle has been used to 

study wave propagation in anisotropic plates with different groups of material properties [20-

22]. Hussain and Ahmad studied locations of zero-group velocity points for a single layer 

orthotropic plate [23]. Analytical governing equations were derived for wavenumber 

solutions of symmetric and antisymmetric modes. Laurent et al used a displacement potential 

technique to calculate dispersion properties of backward waves in a transversely isotropic 

cylinder [24]. Shuvalov and Poncelet presented a leading-order dispersion coefficient method 

to identify backward wave branches near thickness resonances, without the need to calculate 

the full dispersion curves [25]. This applies to a single layer plate of arbitrary anisotropy.  

 

However, composite laminates include not only anisotropic material properties, but also 

multiple layers with a different fibre orientation in each layer. The calculation of dispersion 



properties in composite laminates is thus complicated. The transfer or global matrix 

technique could be used to study wave propagation in layered composite plates [26-33]. The 

transfer matrix defines displacements and stresses at the top of a layer with respect to those at 

the bottom of the layer. The recurrence formula and continuity conditions at interfaces 

enabled quantities at the nth layer to be expressed in terms of corresponding quantities at the 

first layer. The global matrix technique assembles all the equations for all the layers, instead 

of multiplying all the transfer matrices in a recursive way. While these articles discussed the 

techniques to solve the governing equations, the physical properties of guided waves in 

composite laminates were not fully exploited. Wang and Yuan investigated wave properties 

of symmetric composite laminates both theoretically and experimentally in detail [34]. In 

particular, group velocity wave front curves were analysed, and the skew angle between 

phase and group velocity vectors was discussed, due to anisotropic material properties.  

Karmazin et al presented the Green’s matrix technique to study wave propagation in 

anisotropic multi-layered composites [35]. An algorithm of constructing the Fourier 

transform of the Green’s matrix of the given boundary problem was presented. Ma et al 

adopted the reverberation-ray matrix method to study dispersion properties of Lamb waves in 

composite laminates [36]. Thierry et al proposed the Wave Finite Element Method to study 

dispersion properties of guided waves in two-dimensional periodic textile composites, and the 

Component Mode Synthesis method was further used to reduce the size of the stiffness 

matrix [37]. Liu et al studied the frequency response of displacement and velocity to external 

sources in a two dimensional isotropic or cross-ply composite plate [38]. It was found that the 

displacement frequency response amplitude is very large within or near the backward wave 

region. Gravenkamp et al used the Scaled Boundary Finite Element Method (SBFEM) to 

compute dispersion properties of guided waves in plate structures with isotropic or 

functionally graded material properties [39].  



In this article, a semi-analytical finite element method is developed to study dispersion 

properties of guided waves in composite laminates with anisotropic material properties in 

each layer. A weighted residual method based on Galerkin’s principle is used to derive the 

weak form equations. Numerical solutions of the final eigen equation deliver both forward 

and backward waves. An energy velocity based formulation is used to separate backward 

waves from forward waves. In addition, slowness curves and group velocity wave front 

curves are presented for typical forward and backward waves in symmetric and non-

symmetric composite laminates. The paper is organised as follows. Section 2 describes the 

development of the semi-analytical finite element equations for composite laminates with 

anisotropic material properties and an arbitrary fibre orientation in each layer. In section 3, 

the finite element solutions are compared to available analytical and numerical solutions for 

forward waves in a symmetric composite laminate, and excellent agreements have been 

achieved. Guided wave properties are then presented for backward waves. In section 4, modal 

properties for forward and backward waves in a non-symmetric composite laminate are 

presented, and conclusions are drawn in section 5.  

2. Semi-analytical finite element method for composite laminates 

In this paper, it is assumed that a composite laminate includes 𝑚 layers with an arbitrary fibre 

orientation in each layer. The fibre orientation in the 𝑗th lamina is shown in Fig. 1 with 

principle material 𝑥𝑗
′-𝑦𝑗

′-𝑧𝑗
′ directions and global 𝑥-𝑦-𝑧 directions. 𝑧 direction is defined 

normal to the lamina surface, and 𝑧𝑗
′ is parallel to 𝑧. The global 𝑥 is defined parallel to the 

wave propagation direction in the composite laminate. This facilitates the development of 

equations. Here, the local principle 𝑥𝑗
′-𝑦𝑗

′ plane could be rotated about the 𝑧𝑗
′ axis to global 𝑥-

𝑦 plane. The rotation angle from the local coordinate system to the global coordinate system 

is 𝜃𝑗 , shown in Fig. 1.  



 

 

 

 

 

 

 

Fig. 1 Fibre orientation in the 𝑗th lamina with principle material 𝑥𝑗
′-𝑦𝑗

′-𝑧𝑗
′ directions and 

global 𝑥-𝑦-𝑧 directions. 

 

The governing equations for wave propagation in the 𝑗th lamina are defined as (𝑗 = 1 to 𝑚) 

[30]: 
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Here, 𝜌𝑗 is density, 𝑡 is time, 𝑢∗ is displacement and 𝜎𝑞𝑙
∗  (𝑞, 𝑙 = 𝑥, 𝑦 or 𝑧 ) is a symmetric 

stress tensor of rank two.  A time dependence of 𝑒i𝜔𝑡 is assumed throughout this article, 

where 𝜔 is the radian frequency and i = √−1.   

The displacement 𝑢∗ in the composite laminate can be expressed in the form 

 𝑢𝑞
∗(𝑧) = 𝑢𝑞(𝑧)𝑒

𝑖(𝜔𝑡−𝑘𝑥) (2) 

 

𝑥 

𝑦 
𝑧 

𝑥𝑗
′ 𝑦𝑗

′ 
𝑧𝑗
′ 

𝜃𝑗  



where 𝑢𝑞 is an eigenfunction (𝑞 = 𝑥, 𝑦 or 𝑧).  

The weighted residual method is used and Eqs. (1a)-(1c) are then weighted using an arbitrary 

weighting function 𝑤𝑞.  This procedure has been discussed in detail by Duan et al for 

isotropic fluid and elastic materials [40-43]. Substituting Eq. (2) into Eqs. (1a)-(1c) and 

enforcing continuity of displacement and normal stresses over the interfaces between 

adjacent layers, the weak form governing equations could be obtained through integration by 

parts: 

∫ (
𝜕𝑤𝑞

𝜕𝑦
𝜎𝑞𝑦 +

𝜕𝑤𝑞

𝜕𝑧
𝜎𝑞𝑧)

z=ℎ𝑚

z=ℎ0

𝑑z + ∫ 𝑤𝑞{𝑖𝑘𝜎𝑞𝑥 − 𝜌𝜔
2𝑢𝑞}

z=ℎ𝑚

z=ℎ0

𝑑z 

= 𝑤𝑞(𝜎𝑞𝑧𝑛𝑧)|z=ℎ𝑚
−𝑤𝑞(𝜎𝑞𝑧𝑛𝑧)|z=ℎ0

,            𝑞 = 𝑥, 𝑦 or 𝑧 

 

(3) 

Here, the integration is carried out in the z direction and covers all the layers in the composite 

laminate. ℎ0 is the z axis position at the bottom of the laminate, and ℎ𝑚 is the z axis position 

at the top of the laminate. Note that any integration on interfaces between adjacent layers 

would be cancelled out, because surface normals are opposite to each other between adjacent 

layers. 

Composite materials have orthotropic material properties in the principle 𝑥𝑗
′-𝑦𝑗

′-𝑧𝑗
′ coordinates 

in each layer. In the transformed global 𝑥-𝑦-𝑧 coordinates, the material properties would be 

monoclinic symmetric having 𝑥-𝑦 as a plane of symmetry. The stress-strain relations in the 

global coordinates are given as: 

                        

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 𝐶16
𝐶12 𝐶22 𝐶23 0 0 𝐶26
𝐶13 𝐶23 𝐶33 0 0 𝐶36
0 0 0 𝐶44 𝐶45 0
0 0 0 𝐶45 𝐶55 0
𝐶16 𝐶26 𝐶36 0 0 𝐶66]

 
 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦}

 
 

 
 

 (4) 

 



The stiffness matrix in Eq. (4) is layer and fibre orientation dependent. For the clarity of the 

presentation, the subscript j is ignored in Eq. (4). The relations between stiffness constants in 

the principle local coordinates and in the global coordinates as a function of rotation angle 𝜃𝑗  

are given in Appendix A. In engineering applications, the material properties for composite 

materials are normally defined as engineering constants, i.e., Young’s modulus, Poisson’s 

ratio etc. The relations between principle stiffness constants and engineering constants are 

given in Appendix B.  

The strain-displacement relations are (𝑞, 𝑙 = 𝑥, 𝑦 or 𝑧): 

𝜀𝑞𝑙 =
1

2
(
𝜕𝑢𝑙
𝜕𝑥𝑞

+
𝜕𝑢𝑞

𝜕𝑥𝑙
) 

 

(5) 

The displacement is discretised following the conventional finite element procedure (𝑞 =

𝑥, 𝑦 or 𝑧): 

                             𝑢𝑞(𝑧) = 𝐍q𝐮q (6) 

 

Here, 𝐍q is the global shape function in the form of a row vector, and 𝐮q is the nodal position 

displacement in the form of a column vector.  

 Now substitute Eqs. (4-6) into Eq. (3) and set the weighting functions equal to the shape 

functions. The governing equations can be assembled in the matrix form as: 

                        

[
 
 
 
 
 
𝑍1𝑥 𝑍1𝑦 0 0 0 𝑅1𝑧

𝑍1𝑦
𝑇 𝑍2𝑦 0 0 0 𝑅2𝑧

0 0 𝑍3𝑧 −𝑅1𝑧
𝑇 −𝑅2𝑧

𝑇 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

{
 
 

 
 
𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑖𝑘𝑢𝑥
𝑖𝑘𝑢𝑦
𝑖𝑘𝑢𝑧}

 
 

 
 

 (7) 



              = 𝑖𝑘

[
 
 
 
 
 
0 0 0 𝑇1𝑥 𝑇1𝑦 0

0 0 0 𝑇1𝑦
𝑇 𝑇2𝑦 0

0 0 0 0 0 𝑇3𝑧
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0 ]

 
 
 
 
 

{
 
 

 
 
𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑖𝑘𝑢𝑥
𝑖𝑘𝑢𝑦
𝑖𝑘𝑢𝑧}

 
 

 
 

 

 

 

where 

  𝑍1𝑥 = ∫ [𝐶55
𝜕𝐍T

𝜕𝑧

𝜕𝐍

𝜕𝑧
− 𝜌𝜔2𝐍T𝐍]

z=ℎ𝑚

z=ℎ0

𝑑z (8) 

 

𝑍1𝑦 = ∫ [𝐶45
𝜕𝐍T

𝜕𝑧

𝜕𝐍

𝜕𝑧
]

z=ℎ𝑚

z=ℎ0

𝑑z (9) 

 

𝑅1𝑧 = ∫ [−𝐶55
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗 + 𝐶13𝑁𝑖
𝜕𝑁𝑗

𝜕𝑧
]

z=ℎ𝑚

z=ℎ0

𝑑z (10) 

 

𝑇1𝑥 = ∫ [𝐶11𝑁𝑖𝑁𝑗]
z=ℎ𝑚

z=ℎ0

𝑑z (11) 

 

 𝑇1𝑦 = ∫ [𝐶16𝑁𝑖𝑁𝑗]
z=ℎ𝑚

z=ℎ0

𝑑z (12) 

 

𝑍2𝑦 = ∫ [𝐶44
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧
− 𝜌𝜔2𝑁𝑖𝑁𝑗]

z=ℎ𝑚

z=ℎ0

𝑑z (13) 

 

𝑅2𝑧 = ∫ [−𝐶45
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗 + 𝐶36𝑁𝑖
𝜕𝑁𝑗

𝜕𝑧
]

z=ℎ𝑚

z=ℎ0

𝑑z (14) 

 

𝑇2𝑦 = ∫ [𝐶66𝑁𝑖𝑁𝑗]
z=ℎ𝑚

z=ℎ0

𝑑z (15) 



 

𝑍3𝑧 = ∫ [𝐶33
𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧
− 𝜌𝜔2𝑁𝑖𝑁𝑗]

z=ℎ𝑚

z=ℎ0

𝑑z 

 

(16) 

 

𝑇3𝑧 = ∫ [𝐶55𝑁𝑖𝑁𝑗]
z=ℎ𝑚

z=ℎ0

𝑑z 

 

(17) 

 

In Eqs. (8)-(17), the stiffness constants are layer dependent. The solution of Eq. (7) 

delivers 6𝑁𝑝 eigenmodes, where 𝑁𝑝 is the total number of nodes in the composite laminate. 

These modes include propagating and evanescent modes. To separate and group modes at 

adjacent frequencies automatically, a modal assurance criterion (MAC) is used [44]: 

𝑀𝐴𝐶 =
|∫ ∑ [𝑢𝑞(𝑓1) ∗ 𝑢𝑞

𝑇(𝑓2)]𝑞=𝑥,𝑦,𝑧
z=ℎ𝑚

z=ℎ0
𝑑z|

2

∫ ∑ [𝑢𝑞(𝑓1) ∗ 𝑢𝑞𝑇(𝑓1)]𝑞=𝑥,𝑦,𝑧
z=ℎ𝑚

z=ℎ0
𝑑z ∙ ∫ ∑ [𝑢𝑞(𝑓2) ∗ 𝑢𝑞𝑇(𝑓2)]𝑞=𝑥,𝑦,𝑧

z=ℎ𝑚

z=ℎ0
𝑑z

 (18) 

 

Here, 𝑢𝑞(𝑓1) and 𝑢𝑞(𝑓2) are modal displacements at adjacent frequencies 𝑓1 and 𝑓2 

respectively, and the superscript 𝑇 is a conjugate operator. The MAC value in Eq. (18) 

indicates the consistence (degree of linearity) of any two modes, and the same mode would 

have a high consistence value at two adjacent frequencies. Evaluation of the MAC values for 

all the propagating modes at all the frequencies would allow modes to be grouped and sorted 

automatically.  

The calculation of the phase velocity follows the usual definition, i.e., 𝑐𝑝 = 𝜔 𝑘⁄ . In the 

current coordinate system, the phase velocity is parallel to the wave propagation direction, 

which is the 𝑥 direction. Clearly, the phase velocity is propagation angle dependent in a 

composite laminate. The group velocity has two components, one in the wave propagation 



direction, and one perpendicular to the wave propagation direction, due to anisotropic 

material properties. Wang and Yuan proposed a finite difference scheme to calculate group 

velocities at two orthogonal directions [34]. In this article, an alternative energy velocity 

based formulation is used to calculate energy velocity at each frequency, which is equal to the 

group velocity for a lossless system [45]. The energy velocity components at two 

perpendicular directions are defined as: 

𝑐𝑒𝑞 =
∫ ∑ 𝑟𝑒𝑎𝑙[𝜎𝑞𝑙  ∗ (𝑖𝜔𝑢𝑙

𝑇)]𝑙=𝑥,𝑦,𝑧
z=ℎ𝑚

z=ℎ0
𝑑z

∫ 𝜌𝜔2∑ 𝑟𝑒𝑎𝑙[𝑢𝑙  ∗ 𝑢𝑙
𝑇]𝑙=𝑥,𝑦,𝑧

z=ℎ𝑚

z=ℎ0
𝑑z
,      𝑞 = 𝑥 𝑜𝑟 𝑦 

 

(19) 

Here, 𝑐𝑒𝑥 is the energy velocity component parallel to the wave propagation direction 

(wave number direction), and 𝑐𝑒𝑦 is the energy velocity component perpendicular to the wave 

propagation direction. In an isotropic plate, modal properties are the same at all directions, 

and thus 𝑐𝑒𝑦 is zero. However, in a composite laminate, 𝑐𝑒𝑦 is normally not zero. The 

magnitude of the energy velocity and the skew angle are given by: 

𝑐𝑒 = √(𝑐𝑒𝑥)2 + (𝑐𝑒𝑦)
2
,      and  𝜃𝑠 = tan

−1
𝑐𝑒𝑦

𝑐𝑒𝑥
 

 

(20) 

The presence of backward waves can be determined by the sign of 𝑐𝑒𝑥 calculated from Eq. 

(19). For an isotropic plate, 𝑐𝑒𝑥 is positive for forward waves, and negative for backward 

waves (opposite phase and group velocities). The same sign indication can be used for 

determination of forward and backward waves in composite laminates. However, the overall 

energy velocity magnitude 𝑐𝑒 defined in Eq. (20) can only be positive. It should be noted that 

the energy velocity is normally not in phase or out of phase with the phase velocity in 

composite laminates. A schematic view of the relationship between the wave propagation 

vector and the energy velocity vector is shown in Fig. 2 for both forward and backward 

waves. For a conventional forward wave, the energy velocity and the phase velocity is 

roughly pointing in the same direction, with a skew angle in the vicinity of zero. For a 



backward wave, the energy velocity and the phase velocity is pointing in opposite directions, 

with a skew angle in the vicinity of 𝜋.  

 

Fig. 2 Schematic relationship between the propgation vector and the energy velocity 

vector: (a) forward wave; (b) backward wave.  

 

3. Numerical solutions for a symmetric laminate 

The SAFE model developed in section 2 is programmed in Matlab, and the numerical 

solutions are presented here. The symmetric laminate investigated by Wang and Yuan [34] is 

chosen to validate the SAFE model. This example has also been studied by Karmazin et al 

[35] and Ma et al [36], using different approaches. In this section, modal properties of both 

forward and backward waves are presented. The material properties of an AS4/3502 

composite lamina are given in Table 1. These are material properties defined in the local 

coordinate system.  
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Table 1. Material properties of an AS4/3502 composite lamina (units: Gpa, kg/m3) 

𝐸1
′  𝐸2

′  𝐸3
′  𝐺12

′  𝐺13
′  𝐺23

′  𝜈12
′  𝜈13

′  𝜈23
′  𝜌 

127.6 11.3 11.3 5.97 5.97 3.75 0.3 0.3 0.34 1578 
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Fig. 3. Dispersion curves for guided waves propagating alone 30° direction in a 

[+456/−456]𝑠 laminate: (a) phase velocity; (b) energy velocity component 𝑐𝑒𝑥; (c) energy 

velocity 𝑐𝑒.  ───: current numerical solution; o  o  o: the transfer matrix solution [34].  
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Fig. 3 presents phase and energy velocity dispersion curves for guided waves propagating 

alone 30° direction in a [+456/−456]𝑠 laminate. This is a symmetric laminate with 24 plies. 

The total thickness of the laminate is ℎ = 3mm. The modes are labelled according to their 

dominant structure of the displacements in a representative frequency range [34], i.e., 

symmetric (S mode), anti-symmetric (A mode) or shear-horizontal (SH mode). Furthermore, 

all the modes have displacements in x, y and z directions in composite laminates.  Figs. 3(a) 

and (c) show excellent agreement between the current numerical solution and the transfer 

matrix solution of Wang and Yuan [34]. In principle, energy velocity equals group velocity 

for the lossless system studied here. Fig. 3(b) shows the energy velocity component in the 

wave propagation direction, i.e., 𝑐𝑒𝑥. The presence of a backward wave is clearly visible, 

with a negative energy velocity. This mode spans in a frequency range less than 4kHz, and 

could thus be easily overlooked. The characteristics of this mode are further examined later 

on in this section.  

Fig. 4 presents slowness curves of guided waves in the [+456/−456]𝑠 laminate at a non-

dimensional frequency of 𝜔ℎ 𝑐𝑠⁄ = 4. Here, ℎ is the thickness of the laminate, and 𝑐𝑠 is the 

shear velocity defined by 𝑐𝑠 = √𝐺12
′ 𝜌⁄ . Slowness is used to define the time required for a 

mode to travel a unit distance, i.e., 𝑆 = 𝑘 𝜔⁄  . Slowness is direction dependent, and the 

slowness vector direction is the same as the phase velocity direction. Fig. 4 shows that the 

current numerical solution overlays the transfer matrix solution [34] at all the propagation 

directions. Fig. 5 shows the energy velocity wave front curves in the [+456/−456]𝑠 laminate 

at 𝜔ℎ 𝑐𝑠⁄ = 4. The current numerical solution agrees very well with the Green’s matrix 

solution [35]. Note that the energy velocity wave vector is not parallel to the wave 

propagation vector, which has been shown in Fig. 2. The skew angles have to be taken into 

consideration when plotting energy velocity wave front curves. It is thus possible for several 

wave propagation directions to be responsible for the same energy velocity direction, which 



has been shown in Fig. 5 for shear-horizontal wave modes SH0 and SH1.  This would then 

produce energy focusing. Figs. 4 and 5 also show that the fundamental anti-symmetric mode 

A0 is less fibre orientation dependent. The slowness and energy velocity wave front curves of 

this mode are close to a circle, which indicates a quasi-isotropic behaviour for this particular 

laminate. All the other modes exhibit strong anisotropic behaviour.  

 

𝑆 ∙ 𝑐𝑠 (a) 
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Fig. 4 Slowness curves of guided waves in the [+456/−456]𝑠 laminate at 𝜔ℎ 𝑐𝑠⁄ = 4: (a) 

symmetric modes; (b) anti-symmetric modes. ───: current numerical solution; o  o  o: the 

transfer matrix solution [34].  

 

𝑆 ∙ 𝑐𝑠 
(b) 

A0 

A1 

SH1 



 

 

𝑐𝑒 𝑐𝑠⁄  

𝑐𝑒 𝑐𝑠⁄  

(a) 

(b) 

S0 

SH0 

A0 

SH1 

A1 



Fig. 5 Energy velocity wave front curves of guided waves in the [+456/−456]𝑠 laminate at 

𝜔ℎ 𝑐𝑠⁄ = 4: (a) symmetric modes; (b) anti-symmetric modes. ───: current numerical 

solution; o  o  o: the Green’s matrix solution [35].  

 

To further examine properties of the backward wave, dispersion curves around the backward 

wave region have been shown in Fig. 6. The backward wave is a symmetric wave, cutting on 

in association with the symmetric Lamb mode S1. Phase velocity of the backward wave starts 

from a finite value, and increases to infinity in the backward wave region. The energy 

velocity component 𝑐𝑒𝑥 starts and ends at zero, forming a small loop. This is similar to 

conventional backward waves in an isotropic plate. However, Fig. 6(c) shows that the energy 

velocity magnitude 𝑐𝑒 starts from a finite value and ends at zero. This difference is coming 

from the energy velocity component in the direction perpendicular to the wave propagation 

direction. The zero group velocity point (with resonance effects) is associated with the start 

of the backward wave region. At this frequency, the phase velocity is finite, and the energy 

velocity component 𝑐𝑒𝑥 is zero.  

 



 

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.474 0.475 0.476 0.477 0.478 0.479 0.48
Frequency (MHz)

P
h

as
e 

ve
lo

ci
ty

 (m
/s

)

S1

Backward wave

(a)

-300

-200

-100

0

100

200

300

400

500

600

700

0.474 0.475 0.476 0.477 0.478 0.479 0.48

Frequency (MHz)

En
er

gy
 v

el
o

ci
ty

 c
ex

(m
/s

)

Backward wave

S1

(b)



 

Fig. 6. Dispersion curves for the backward wave propagating alone 30° direction in the 

[+456/−456]𝑠 laminate: (a) phase velocity; (b) energy velocity component 𝑐𝑒𝑥; (c) energy 

velocity 𝑐𝑒. 

 

To study the existence of the backward wave at all propagation directions, slowness and 

energy velocity wave front curves are shown in Fig. 7 at a frequency of 0.476MHz. The 

backward wave has the smallest slowness and energy velocity magnitude, and thus forms the 

smallest curves in Fig. 7(a) and (b). However, this wave does exist at all the propagation 

directions, and wave properties are also influenced by fibre orientations. The maximum 

slowness is pointing in the 45° direction, and the maximum energy velocity is pointing in the 

−45° direction. These directions are corresponding to fibre orientations in the [+456/−456]𝑠 

laminate. Note that different to all the other forward waves, the backward wave has a skew 

angle close to 𝜋 at all propagation directions. The anti-symmetric modes have slowness and 

energy velocity wave front curves similar to those shown in Figs. 4 and 5, and are thus not 

shown here for the sake of space.  

0

100

200

300

400

500

600

700

0.474 0.475 0.476 0.477 0.478 0.479 0.48
Frequency (MHz)

En
er

gy
 v

el
o

ci
ty

 c
e

(m
/s

)

S1

Backward wave

(c)



 

 

𝑆 ∙ 𝑐𝑠 

𝑐𝑒 𝑐𝑠⁄  

(b) 

(a) 

S1 

S0 

SH0 

Backward wave 

S1 

S0 

SH0 

Backward wave 



Fig. 7 Angular dependent properties of symmetric and backward waves in the [+456/−456]𝑠 

laminate at 0.476MHz: (a) slowness curves; (b) energy velocity wave front curves. 

 

4. Modal characteristics of a non-symmetric laminate 

For a symmetric laminate, guided wave modes are either symmetric or anti-symmetric, and 

these waves could be labelled similar to Lamb and shear-horizontal waves in an isotropic 

plate. However, for a laminate that is not symmetric with respect to the mid-plane of the 

laminate, then modes couldn’t be exactly symmetric or anti-symmetric. The conventional S 

and A mode terminologies are thus not used for guided wave modes in these non-symmetric 

laminates. In this section, a [+45/−45/0/902/0/+45/−45] laminate is investigated. The 

total thickness of the laminate is 1mm. Each ply is made of AS4/3502 with material 

properties given in Table 1.  

Dispersion properties of guided waves propagating alone 30° direction in the laminate is 

shown in Fig. 8. At this particular propagation direction, the energy velocity component 𝑐𝑒𝑥 

is almost equal to the total energy velocity 𝑐𝑒 for all the three fundamental modes in the low 

frequency range, before the cutting-on frequency of the first high order mode. This laminate 

is thus different to the [+456/−456]𝑠  laminate studied in the previous section, where the 

fundamental shear-horizontal mode has clear anisotropic material properties even in the low 

frequency range. However, as frequency increases, 𝑐𝑒 starts to differ from 𝑐𝑒𝑥, indicating the 

existence of the energy velocity component in the direction perpendicular to the wave 

propagation direction. Fig. 8(b) also shows the existence of a backward wave, with a negative 

energy velocity in the wave propagation direction. It is thus clear that backward exists in both 

symmetric and non-symmetric composite materials.  
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Fig. 8. Dispersion curves for guided waves propagating alone 30° direction in the 

[+45/−45/0/902/0/+45/−45]  laminate: (a) phase velocity; (b) energy velocity 

component 𝑐𝑒𝑥; (c) energy velocity 𝑐𝑒. 

 

To study the angular dependency of modal properties, slowness and energy velocity wave 

front curves are shown in Fig. 9 at a frequency of 1.42 MHz. This frequency is chosen to 

include the backward wave. At this frequency, one mode has almost constant phase and 

energy velocities in all directions (the large black circles shown in Figs. 9(a) and (b)). This 

mode is similar to the fundamental anti-symmetric mode 𝐴0, studied in the previous section. 

All the other modes exhibit clear anisotropic material properties. The backward wave has 

smallest slowness and energy velocity magnitudes, however, this mode does exist at all 

propagation directions. Fig. 9(b) also shows that most of the modes have multiple energy 

velocity values at some directions. This indicates that waves propagating in several directions 

could produce a wave packet overlaid in one direction, thus producing energy focusing. This 

phenomena is consistent with the modal skew angle profiles shown in Fig. 10. Fig. 10 (a) 
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shows that only the quasi 𝐴0 mode has a skew angle close to zero at all directions. All the 

other modes have skew angle variations, and this variation could lead to energy focusing. 

Furthermore, all the forward waves have a skew angle in the vicinity of zero, while the 

backward wave has a skew angle in the vicinity of 𝜋. This is similar to modal properties in a 

symmetric laminate.  

 

𝑆 ∙ 𝑐𝑠 (a) 



 

Fig. 9 Angular dependent properties of guided waves in the [+45/−45/0/902/0/+45/

−45] laminate at 1.42 MHz: (a) slowness curves; (b) energy velocity wave front curves. 
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Fig. 10 Skew angles of guided waves in the [+45/−45/0/902/0/+45/−45] laminate at 

1.42 MHz: (a) forward waves; (b) backward wave. 

 

5. Conclusions 

In this article, a semi-analytical finite element (SAFE) method is developed to study guided 

wave properties in a composite laminate containing an arbitrary number of layers with an 

arbitrary fibre orientation in each layer. The weighted residual method is used to derive the 

weak forms of governing equations. The change of fibre orientation in each layer is 

incorporated in the model through a coordinate transformation of stiffness constants. The 

composite layers are then assembled in a global matrix form, and this only requires the 

thickness of the laminate to be discretised. The eigen equation solution delivers both forward 

and backward waves. To facilitate the identification of backward waves from forward waves, 

an energy velocity based formulation is used to calculate energy velocity components in the 

direction parallel and perpendicular to the wave propagation direction.  

The numerical solution is compared to the transfer matrix solution and the Green’s matrix 

solution available in the literature, and excellent agreements have been observed for 

dispersion curves, slowness and energy velocity wave front curves of forward waves in a 

AS4/3502 composite laminate. In previous studies, the backward wave has been overlooked, 

possibly due to the way that the group velocity was calculated and the narrow frequency 

range of this mode. In this article, it has been shown that backward waves exist in both 

symmetric and non-symmetric laminates. Furthermore, the backward wave exists in all 

directions, and the skew angle of the backward wave is in the vicinity of 𝜋. This is different 

to backward waves in an isotropic plate, where the energy velocity is exactly 180° out of 



phase with the phase velocity. The angular dependency of forward and backward waves has 

been examined.  

 

Appendix A: Coordinate transformation 

As shown in Fig. 1, 𝑥𝑗
′-𝑦𝑗

′-𝑧𝑗
′ is the local principle coordinate system, and 𝑥-𝑦-𝑧 is the global 

coordinate system. The global system could be obtained from a counter-clockwise rotation 

through an angle 𝜃𝑗  about the 𝑧′ coordinate. Thus, 𝑧 is identical with 𝑧′, and a clockwise 

rotation indicates a negative angle. The transformed stiffness constants in the global 

coordinate system have monoclinic symmetry form:  

𝐶11 = 𝐶11
′ 𝛶4 + 𝐶22

′ Φ4 + 2(𝐶12
′ + 2𝐶66

′ )Φ2𝛶2 (A1) 

𝐶12 = (𝐶11
′ + 𝐶22

′ − 4𝐶66
′ )Φ2𝛶2 + 𝐶12

′ (Φ4+𝛶4) (A2) 

𝐶13 = 𝐶13
′ 𝛶2 + 𝐶23

′ Φ2 (A3) 

𝐶16 = (𝐶12
′ − 𝐶11

′ + 2𝐶66
′ )Φ𝛶3 + (𝐶22

′ − 𝐶12
′ − 2𝐶66

′ )𝛶Φ3 (A4) 

𝐶22 = 𝐶11
′ Φ4 + 𝐶22

′ 𝛶4 + 2(𝐶12
′ + 2𝐶66

′ )Φ2𝛶2 (A5) 

𝐶23 = 𝐶23
′ 𝛶2 + 𝐶13

′ Φ2 (A6) 

𝐶26 = (𝐶12
′ − 𝐶11

′ + 2𝐶66
′ )𝛶Φ3 + (𝐶22

′ − 𝐶12
′ − 2𝐶66

′ )Φ𝛶3 (A7) 

𝐶33 = 𝐶33
′  (A8) 

𝐶36 = (𝐶23
′ − 𝐶13

′ )Φ𝛶 (A9) 

𝐶44 = 𝐶44
′ 𝛶2 + 𝐶55

′ Φ2 (A10) 

𝐶45 = (𝐶44
′ − 𝐶55

′ )Φ𝛶 (A11) 



𝐶55 = 𝐶55
′ 𝛶2 + 𝐶44

′ Φ2 (A12) 

𝐶66 = 𝐶66
′ (Φ4+𝛶4) + (𝐶11

′ + 𝐶22
′ − 2𝐶12

′ − 2𝐶66
′ )Φ2𝛶2 (A13) 

 

Here, 𝛶 = cos 𝜃𝑗 and Φ = sin 𝜃𝑗. 𝐶𝑞𝑙
′  (𝑞, 𝑙 = 1,2,⋯6 ) are stiffness constants in the local 

coordinate system, and 𝐶𝑞𝑙(𝑞, 𝑙 = 1,2,⋯6 ) are stiffness constants in the global coordinate 

system.  

 

Appendix B: Local stiffness constants 

The stiffness constants in the local principle coordinate system can be expressed in terms of 

engineering constants as: 

𝐶11
′ =

1 − 𝜈23
′ 𝜈32

′

𝐸2
′𝐸3

′∆
 (B1) 

𝐶22
′ =

1 − 𝜈13
′ 𝜈31

′

𝐸1
′𝐸3

′∆
 (B2) 

𝐶12
′ =

𝜈12
′ + 𝜈32

′ 𝜈13
′

𝐸1
′𝐸3

′∆
 (B3) 

𝐶23
′ =

𝜈23
′ + 𝜈21

′ 𝜈13
′

𝐸1
′𝐸2

′∆
 (B4) 

𝐶13
′ =

𝜈13
′ + 𝜈12

′ 𝜈23
′

𝐸1
′𝐸2

′∆
 (B5) 

𝐶33
′ =

1 − 𝜈12
′ 𝜈21

′

𝐸1
′𝐸2

′∆
 (B6) 

𝐶44
′ = 𝐺23

′  (B7) 

𝐶55
′ = 𝐺31

′  (B8) 

𝐶66
′ = 𝐺12

′  (B9) 

where  



∆=
1 − 𝜈12

′ 𝜈21
′ − 𝜈23

′ 𝜈32
′ − 𝜈31

′ 𝜈13
′ − 2𝜈21

′ 𝜈32
′ 𝜈13

′

𝐸1
′𝐸2

′𝐸3
′  (B10) 

 

Furthermore, reciprocal relations must be satisfied: 

𝜈𝑞𝑙
′

𝐸𝑞′
=
𝜈𝑙𝑞
′

𝐸𝑙
′     𝑞 ≠ 𝑙 (B11) 
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