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Abstract 

Theoretical models for elastic wave propagation in fluid filled ducts normally neglects mean fluid flow. 

However, in many engineering applications the velocity of the fluid may influence the modal 

characteristics of the duct, for example in gas pipelines, turbomachinery applications and ventilation 

systems. Accordingly, the influence of a mean uniform fluid flow on acoustically driven duct wall 

vibration is analysed here for a cylindrical geometry. The semi-analytic finite element method is used 

to couple the elastodynamic wave equation for the duct wall to the convected wave equation for 

sound propagation in a uniform fluid flow. A one dimensional finite element approach is described 

and this is used to find the coupled eigenmodes for the duct. Under certain conditions, a uniform 

mean flow is seen to significantly affect the phase speed for different eigenmodes, and it is shown 

that this may cause energy to transfer from the fluid to the surrounding wall at frequencies much 

lower than those seen without mean flow. This behaviour has the potential to increase sound 

radiation from ducts at lower frequencies when mean flow is present. 
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1. Introduction 

Noise propagation in ductwork is often generated by turbomachinery such as fans or turbines. The 

ductwork is designed to move air or expel exhaust gases, and so the noise generated by these 

machines is convected along the ductwork by a mean gas flow. In many engineering applications it is 

common for the velocity of the gas inside the duct to extend to Mach numbers of 0.3 and above, and 

this can significantly affect the acoustic performance of a system. For example, Kirby et al. [1] 

investigate the influence of a mean gas flow on the acoustic performance of dissipative silencers, and 

Choy and Huang [2] investigate the influence of mean flow on drumlike silencers. In turbofan 

applications, Mach numbers well above 0.3 are common and the review by Astley [3] describes the 

influence of mean flow on the acoustics of these large engineering systems. Thus, the convective 

effect of a mean gas flow can significantly alter the acoustic behaviour of many different engineering 

systems, although in duct acoustics investigations into the influence of mean flow have generally been 

restricted to controlling noise using devices such as silencers or duct liners. The influence of a mean 

gas flow on the vibro-acoustic behaviour of duct walls has largely been neglected, even though it is 

common for the sound field inside the duct to couple to the duct wall and drive the vibration of these 

walls. This generates noise that radiates away from the duct and is often referred to as breakout noise. 

This can contribute significantly to the overall noise levels radiated by a duct [4], and so it is important 

also to understand the influence of mean flow on the radiation characteristics of a duct. Accordingly, 

this article presents a numerical model that is suitable for predicting the influence of a fluid moving 

with a uniform velocity on the acoustically driven vibrations of a duct wall. 

The analysis of acoustically driven duct wall vibrations presents a number of challenges, including 

coupling an appropriate representation of wave propagation in the duct wall to the wave equation in 

the fluid. The most popular methods for achieving this assume that the wall is either a membrane or 

an elastic plate described using a low frequency or thin wall/shell approximation. For example, Huang 

[4], Choy and Huang [2], and Lawrie and Guled [5] analyse membranes in ductwork using analytic [5] 

and numerical methods [2].  Lawrie [6] extends this approach to the analysis of elastic waves using 

the fourth order beam equation to characterise the structure. This enables an analytic solution to be 

developed and, through derivation of an appropriate orthogonality relation, it is shown that a 

scattering matrix can be obtained for a finite section of elastic plate in a two dimensional duct. This 

work extends the analytic and numerical methods developed previously by Fahy and Pretlove [7], and 

later by Cummings [8]. Cummings also analysed low order mode propagation and developed 

asymptotic expressions for rectangular ductwork [9], as well as developing numerical approaches for 

more complicated geometries [10]. Fahy and Fuller [11] also applied analytic techniques to a fluid 

filled pipe and they demonstrate how the energy in particular eigenmodes can transfer between the 



fluid and the structure depending on the frequency of excitation and the modal characteristics of the 

coupled system. This transfer of energy was also observed by Lawrie [12].  

Mean flow is known to change the modal properties of a coupled system and this can have an 

influence on the energy transfer between the fluid and the structure. For example, Choy and Huang 

[2] demonstrate the influence of a uniform mean flow on the characteristics of their membrane based 

drumlike silencer. However, very few articles examine the effects of mean flow on duct wall vibrations, 

with only the numerical approach of Kirby and Cummings [13], and the analytic methods of Martin 

[14] being relevant to this current study. Instead, the majority of investigations focus on the influence 

of mean flow on the vibro-acoustic behaviour of plates. See for example Abrahams [15], and later 

Sucheendran et al. [16], who focus on developing analytic expressions for the scattering from a finite 

elastic plate subjected to a grazing mean flow. Other applications include the analysis of blood flow 

by Klochkov [17], who used an analytic approach to examine a cylindrical structure with uniform mean 

flow. However, the methods developed in these different areas of application continue to assume low 

frequencies and/or thin plates, and Cummings [18] notes that this potentially limits the application of 

these approaches in many engineering problems in duct acoustics. 

To remove the low frequency/thin wall approximation it is necessary to return to the 

elastodynamic wave equation. Application of this equation has seen favour in the area of structural 

health monitoring, where predictions are often required in the ultrasonic frequency range. Both 

analytic and numerical methods have been developed, see for example the commercial code 

DISPERSE®, which uses an analytic solution for the coupled problem [19]. More recently, alternative 

numerical approaches have been developed, including the wave finite element method [20], and the 

semi analytic finite element (SAFE) method [21]. These numerical models have been applied to liquid 

filled pipes and demonstrate that large numbers of eigenmodes can readily be obtained. However, 

these models have yet to be applied to ductwork applications, and they also neglect the effects of a 

mean fluid flow. 

This article applies the SAFE method in the analysis of acoustically driven wall vibrations for a 

circular duct that includes a uniform mean flow. The aim of the article is to investigate the influence 

of mean flow on the modal characteristics of a duct, with a focus on investigating phenomena likely 

to affect the acoustic performance of ductwork used in ventilation and turbomachinery applications. 

The analysis is restricted to circular ducts as this simplifies the problem and enables a focus on modal 

behaviour. External fluid loading is also neglected, although this can be included if necessary, see for 

example Kalkowski et al. [21] and Duan et al. [22]. In this article, a uniform mean flow is assumed for 

the fluid as this is generally accepted to provide a good approximation in duct acoustics [1]; however, 

the numerical approach presented in the next section is sufficiently general to include shear layers if 



desired, although the addition of viscosity will significantly complicate the finite element analysis for 

the acoustic wave equation. Accordingly, in section 2 a SAFE approach is developed to compute the 

coupled eigenmodes for uniform mean flow in an elastic circular duct; in section 3 dispersion curves 

are presented and the relevant modal characteristics examined; conclusions are drawn in section 4. 

2. Theory 

In this section an eigenproblem is derived for an infinite cylindrical duct, where the fluid inside the 

duct is denoted region Ω0, and this is surrounded by a thick elastic wall, denoted region Ω1, see Fig. 

1. A cylindrical co-ordinate system (𝑟, 𝜃, 𝑧) is adopted, and the fluid inside the duct moves with a 

uniform velocity 𝐯 = [0 0 v𝑧]. 

 
 

 

 

 

Figure 1. Geometry of fluid filled elastic duct.  

The convected acoustic wave equation for the fluid in region Ω0 is [23], 
 

 ∇2𝑝∗ −
1

𝑐0
2 [

𝜕

𝜕𝑡
+ 𝐯 ∙ ∇]

2

𝑝∗ = 0, (1) 

 

where, 𝑝∗ is the acoustic pressure in the fluid, 𝑐0 is the speed of sound in the fluid, and 𝑡 is time. The 

elastodynamic wave equation for the [thick] duct wall in region Ω1 is [24], 

 

 ∇ ∙ 𝛔 = 𝜌
𝜕2𝐮∗

𝜕𝑡2
, (2) 

 
where 𝛔 is the Cauchy stress tensor, 𝜌 is the duct wall density, and 𝐮∗ = [𝑢𝑟

∗ 𝑢𝜃
∗ 𝑢𝑧

∗] is the duct 

wall displacement. An eigenproblem is obtained by expanding the wall displacement and acoustic 

pressure over an infinite set of eigenmodes, so that 

 

 𝐮∗(𝑟, 𝜃, 𝑧; 𝑡) = ∑ ∑ 𝐮𝑚(𝑟)𝑒𝑖[𝜔𝑡−𝑛𝜃−𝑘𝑇𝛾𝑚𝑧]

∞

𝑛=0

,

∞

𝑚=0

 (3) 

 
and 
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 p∗(𝑟, 𝜃, 𝑧; 𝑡) = ∑ ∑ p𝑚(𝑟)𝑒𝑖[𝜔𝑡−𝑛𝜃−𝑘𝑇𝛾𝑚𝑧]

∞

𝑛=0

.

∞

𝑚=0

 (4) 

 

Here, 𝜔 is the radian frequency, 𝑖 = √−1, 𝛾 is the coupled wavenumber and 𝑘𝑇 = 𝜔 𝑐𝑇⁄ , where 𝑐𝑇 

is the shear (or torsional) bulk wave velocity in the duct wall.  

The governing wave equation for the structure is separated into three scalar equations using the 

usual expansions for the Cauchy stress tensor in cylindrical coordinates [24]. The modal expansions 

in Eqs. (3) and (4) are then substituted into the relevant equation, and a weighted residual 

formulation is applied [25]. This involves weighting the three scalar equations for the structure using 

the arbitrary function 𝑤𝑞, where 𝑞 = 𝑟, 𝜃 𝑜𝑟 𝑧, respectively, and for the fluid the weighting function 

𝑤0 is chosen. This yields four equations for modes 𝑚 and 𝑛: 

 

 
∫ {𝜎𝑟𝑟

𝜕𝑤𝑟

𝜕𝑟
+

𝑖𝑛

𝑟
𝑤𝑟𝜎𝑟𝜃 + 𝑖𝑘𝑇𝛾𝑚𝑤𝑟𝜎𝑟𝑧 −

𝑤𝑟

𝑟
[𝜎𝑟𝑟 − 𝜎𝜃𝜃] − 𝜌𝜔2𝑤𝑟𝑢𝑟}

𝑎1

𝑎0

𝑟𝑑𝑟

= [𝑤𝑟𝜎𝑟𝑟𝑛𝑟]𝑎0

𝑎1 , 

(5) 

 

 
∫ {𝜎𝜃𝑟

𝜕𝑤𝜃

𝜕𝑟
+

𝑖𝑛

𝑟
𝑤𝜃𝜎𝜃𝜃 + 𝑖𝑘𝑇𝛾𝑚𝑤𝜃𝜎𝜃𝑧 −

2𝑤𝜃

𝑟
𝜎𝑟𝜃 − 𝜌𝜔2𝑤𝜃𝑢𝜃} 𝑟𝑑𝑟

𝑎1

𝑎0

= [𝑤𝜃𝜎𝜃𝑟𝑛𝑟]𝑎0

𝑎1 , 

(6) 

 

 
∫ {𝜎𝑧𝑟

𝜕𝑤𝑧

𝜕𝑟
+

𝑖𝑛

𝑟
𝑤𝑧𝜎𝑧𝜃 + 𝑖𝑘𝑇𝛾𝑚𝑤𝑧𝜎𝑧𝑧 −

𝑤𝑧

𝑟
𝜎𝑟𝑧 − 𝜌𝜔2𝑤𝑧𝑢𝑧}

𝑎1

𝑎0

𝑟𝑑𝑟

= [𝑤𝑧𝜎𝑧𝑟𝑛𝑟]𝑎0

𝑎1 , 

(7) 

 

 

∫ {
𝜕𝑤0

𝜕𝑟

𝜕𝑝

𝜕𝑟
−

𝑤0

𝑟

𝜕𝑝

𝜕𝑟
+

𝑛2

𝑟2
𝑤0𝑝 − 2M𝑘0𝑘𝑇𝛾𝑚𝑤0𝑝 + [1 − M2]𝑘𝑇

2𝛾𝑚
2 𝑤0𝑝

𝑎0

0

− 𝑘0
2𝑤0𝑝} = [𝑤0

𝜕𝑝

𝜕𝑟
𝑛𝑟]

0

𝑎0

. 

(8) 

 

Here, 𝑘0 = 𝜔 𝑐0⁄ , the Mach number M = v𝑧 𝑐0⁄ , and 𝑛𝑟 is the outwards unit normal in the 𝑟 direction. 

These four equations are solved using a finite element discretisation, so that the wall displacement 

and the pressure in the fluid are discretised to give u𝑞 = 𝐍𝑞𝐮𝑞 and 𝑝 = 𝐍𝐩, where 𝑞 = 𝑟, 𝜃 𝑜𝑟 𝑧, and 

𝐍 is the global shape function for the finite element mesh [25]. Adopting isoparametric elements [25], 

yields the following four equations: 



 𝐑10𝐮̃𝑟 − 𝜁2𝐑12𝐮̃𝑟 + 𝚯10𝐮̃𝜃 + 𝜁𝐙11𝐮̃𝑧 =
1

μ
[𝑤𝑟𝜎𝑟𝑟𝑛𝑟]𝑎0

𝑎1 , (9) 

 

 𝚯20𝐮̃𝜃−𝜁2𝚯22𝐮̃𝜃 + 𝐑20𝐮̃𝑟 + 𝜁𝐙21𝐮̃𝑧 =
1

μ
[𝑤𝜃𝜎𝜃𝑟𝑛𝑟]𝑎0

𝑎1 , (10) 

 

 𝐙30𝐮̃𝑧 − 𝜁2𝐙32𝐮̃𝑧 + 𝜁𝐑31𝐮̃𝑟 + 𝜁𝚯31𝐮̃𝜃 =
1

μ
[𝑤𝑧𝜎𝑧𝑟𝑛𝑟]𝑎0

𝑎1 . (11) 

 

The matrices in each equation are given in the Appendix, and 𝜁 = 𝑖𝑘𝑇𝛾. In addition, the 

displacement has been normalised so that 𝑎0𝐮̃ = [𝑢𝑟 𝑖𝑢𝜃 𝑢𝑧].  Similarly, for the fluid 

 𝐑00𝐩̃ + 𝜁𝐑01𝐩̃ − 𝜁2𝐑02𝐩̃ =
1 

𝑎0𝜌0𝜔2 [𝑤0

𝜕𝑝

𝜕𝑟
𝑛𝑟]

0

𝑎0

, (12) 

 

where 𝑎0
2𝜌0𝜔2𝐩̃ = 𝐩, and 𝜌0 is the density of the fluid. 

The boundary conditions for each region are now applied. For the fluid, 𝜕𝑝 𝜕𝑟⁄ |𝑟=0 = 0, and for 

the pipe wall,  

 𝜎𝑟𝑟|𝑟=𝑎1
= 𝜎𝜃𝑟|𝑟=𝑎0

= 𝜎𝜃𝑟|𝑟=𝑎1
= 𝜎𝑧𝑟|𝑟=𝑎0

= 𝜎𝑧𝑟|𝑟=𝑎1
= 0. (13) 

 

At the interface between the fluid and the structure, continuity of displacement in the radial direction 

is applied [1, 2], so that  

 
𝜕𝑝

𝜕𝑟
= 𝜌0𝜔2 [1 + 𝑖

𝜁M

𝑘0
]

2

𝑢𝑟 , (14) 

 

and continuity of pressure/stress [21], so that 

 

 𝑝 = −𝜎𝑟𝑟 . (15) 

 

Substitution of these boundary conditions back into equations (9) and (12) yields the following  

 𝐑10𝐮̃𝑟 − 𝜁2𝐑12𝐮̃𝑟 + 𝚯10𝐮̃𝜃 + 𝜁𝐙11𝐮̃𝑧 −
𝜌0

𝜌1
𝑎0

2𝑘𝑇
2𝐖𝑟

𝑇𝐍𝑓𝐩̃|
𝑟=𝑎0

= 0, (16) 

 
and 
 



 𝐑00𝐩̃ + 𝜁𝐑01𝐩̃ − 𝜁2𝐑02𝐩̃ − [1 + 2𝑖
𝜁M

𝑘0
−

𝜁2M

𝑘0
2

2

] 𝐖0
T𝐍𝐮̃𝑟|

𝑟=𝑎0
= 0. (17) 

 

Equations (10) and (11), with the relevant boundary conditions from (13) added, are combined with 

Eqs. (16) and (17) to given the final eigenequation: 

 

 [𝟎 𝐗𝐓

𝐗 𝐘
] {

𝐋
ζ𝐋

} = 𝜁 [𝐗𝐓 𝟎
𝟎 𝐙

] {
𝐋

𝜁𝐋
}, (18) 

 

where, 𝐋 = [𝐩̃ 𝐮̃𝑟 𝐮̃𝜃 𝐮̃𝑧] and 

 

 𝐗 = [

𝐑00 −𝐂01 𝟎 𝟎
−𝐂10 𝐑10 𝚯10 𝟎

𝟎 𝐑20 𝚯20 𝟎
𝟎 𝟎 𝟎 𝐙30

],   𝐘 = [

𝐑01 −𝐂11 𝟎 𝟎
𝟎 𝟎 𝟎 𝐙11

𝟎 𝟎 𝟎 𝐙21

𝟎 𝐑31 𝚯31 𝟎

], (19, 20) 

 
and 
 

 𝐙 = [

𝐑02 −𝐂21 𝟎 𝟎
𝟎 𝐑12 𝟎 𝟎
𝟎 𝟎 𝚯22 𝟎
𝟎 𝟎 𝟎 𝐙32

]. (21) 

 

The coupling matrices are given as 

 𝐂01 = 𝐖0
T𝐍|𝑟=𝑎0

,  𝐂10 =
𝜌0

𝜌1
𝑎0

2𝑘𝑇
2𝐖𝑟

𝑇𝐍𝑓|
𝑟=𝑎0

, (22, 23) 

 
and 

 

 𝐂11 = 2𝑖 (
M

𝑘0
) 𝐖0

T𝐍|𝑟=𝑎0
,  𝐂21 = (

M

𝑘0
)

2

𝐖0
T𝐍|𝑟=𝑎0

. (24, 25) 

 

Equation (18) is an eigenequation of order of 𝑁𝑡 = 2(𝑁𝑝 + 3𝑁𝑢), where 𝑁𝑝 is the number of nodes 

in the fluid, and 𝑁𝑢 is the total number of nodes in the duct wall. On solution of this eigenequation, 

the phase velocity 𝑐𝑝 for mode 𝑚 is given as 

 c𝑝 =
𝜔

Re(−𝑖𝜁)
. (26) 

  



3. Results and Discussion 

Dispersion curves are presented in this section for two example problems that are designed to 

illustrate the influence of mean flow. The parameters used in each example are listed below in Table 

1, and other relevant parameters, such as the Lamé constants, can be found from the usual 

relationships [26]. 

 

Table 1 

Parameters for numerical experiments 

Duct 𝑎0 (m) 𝑎1 (m) 𝜌0 (kg/m3) 𝑐0 (m/s) 𝜌 (kg/m3) E (N/m2) 𝜈  

A 0.160 0.180 1.204 344.224 1100 2.3 × 109 0.400 

B 1.200 1.210 1.204 344.224 7830 2.14 × 1011 0.287 

 

All of the solutions presented below have been computed using 16 quadratic line elements in the 

fluid and 6 in the structure, which gives 𝑁𝑡 = 144. This number of elements have been chosen to 

ensure convergence to at least two decimal places for the phase velocities shown in the figures that 

follow; a more detailed discussion on the convergence of the one dimensional SAFE method can be 

found in Duan et al. [22].  

The results presented in this section are restricted to axisymmetric modes, so that in the solution 

of Eq. (18), 𝑛 = 0. Moreover, the aim of this article is to examine the influence of mean flow on 

coupled wave propagation and so it is appropriate to start by examining dispersion curves without 

mean flow in order to provide a benchmark comparison. Accordingly, in Fig. 2 the phase velocity is 

plotted for duct A without mean flow. The phase velocity is normalised here against 𝑐0 so that one 

can clearly identify the fundamental fluid mode in the duct (which is the acoustic plane wave with 

𝑐𝑝 = 𝑐0 when the duct walls are rigid). The excitation frequency is normalised against the ring 

frequency 𝑓ring, which is defined here as 𝑓ring = 𝑐𝐿 𝜋(𝑎0 + 𝑎1)⁄ , where 𝑐𝐿 is the compressional (or 

longitudinal) bulk wave velocity in the duct wall. 

In Fig. 2 it is seen that for this geometry a complicated set of dispersion curves are present and so 

in order to provide clarity for these diagrams, as well as those that follow, the shear (or torsional) 

modes propagating in the structure have been omitted as these do not couple to the fluid. It is 

evident that the first two axisymmetric compressional (or longitudinal) modes propagate across the 

entire frequency range, and at low frequencies acoustic energy lies either in the fluid (a fluid type 

mode), or the structure (a structural type mode). As the frequency is increased, additional higher 

order axisymmetric longitudinal modes begin to propagate. These modes can be identified as either 

structural or fluid type modes by overlaying the uncoupled structural modes. 



 

Figure 2. Normalised phase velocity for duct A, with M = 0.               , coupled fluid type mode; 

            , coupled higher order compressional modes; 

               , uncoupled compressional modes for the structure only. 

 

It is evident in Fig. 2 that when M = 0 the coupling between the fluid and the wall for the 

fundamental fluid type mode is weak, so that the phase velocity remains close to that of a plane wave 

in a rigid duct (𝑐𝑝 𝑐0⁄ = 1). However, for the higher order modes a more complicated picture emerges. 

For example, modes are seen to transfer their energy from the structure to the fluid, and vice versa, 

as the frequency is increased. This illustrates the complexity of this type of coupled guided wave 

problem and this is behaviour that has been shown before [13]. Of course, it is also well known that 

the compressional modes never cross one another in the dispersion curves of a lossless system, and 

instead they avoid crossing, or veer apart, as the energy is transferred between the fluid and the 

structure [12, 21]. 

In Fig. 3, mean flow is now added to the same problem as that studied in Fig. 2. It is clear in Fig. 3 

that for the parameters chosen here the addition of mean flow has significantly altered the behaviour 

of the fundamental fluid type mode. This change in behaviour has occurred because of the convective 

effect of the mean fluid flow, which is seen to cause energy to transfer from the fundamental fluid 

type mode into the structure at a frequency below the ring frequency of the duct. 

 

0

1

2

3

4

5

6

0 0.5 1 1.5 2

N
o

rm
al

is
ed

 P
h

as
e 

V
el

o
ci

ty
 C

p
/C

0

Normalised Frequency F/Fring



 

Figure 3. Normalised phase velocity for duct A, with M = 0.3.               , coupled fluid type mode; 

            , coupled higher order compressional modes; 

               , uncoupled compressional modes for the structure only. 

 

 

Figure 4. Transfer of energy between the fluid and structure  

at an avoided crossing for duct A, with M=0.3. 
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The behaviour in Fig. 3 is more clearly observed in Fig. 4, where the dispersion curve is magnified. 

One can observe the veering phenomenon more closely, as the fundamental fluid type mode 

approaches a structural type mode but avoids crossing and so the energy transfers from the fluid to 

the structure. The change in behaviour observed in Figs. 3 and 4 has been caused by the convective 

effect of the mean flow and this has potential implications for engineering applications. For example, 

at low frequencies acoustic energy normally resides in the fundamental fluid type mode for 

turbomachinery applications. The presence of mean flow in this example causes this energy to transfer 

from the fluid to the structure below the ring frequency and this may cause an increase in the radiated 

sound power at lower frequencies.  

In Fig. 5, a larger duct is studied as this illustrates a problem in which a much larger number of 

modes propagate. Figure 5 omits mean flow and here one can see a large number of fluid type modes 

propagating, which then transfer their energy into structural type modes. In this problem, these 

modes are seen to swap energy between the structure and the fluid a number of times depending on 

the excitation frequency. This behaviour is illustrated in Fig. 5 using alternate dashed and solid lines 

in order to better illustrate this behaviour. Note that for this combination of frequency range and 

material parameters, the fundamental fluid type mode again remains only very weakly coupled to the 

structure. 

 

 

Figure 5. Normalised phase velocity for duct B, with M = 0.               , coupled fluid type mode; 

            ,                  coupled higher order compressional modes. 
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In Fig. 6 mean flow is added and the veering behaviour observed previously is also seen to occur 

for duct B. This is again illustrated more clearly by the magnified version in Fig. 7. This further 

illustrates the influence of mean flow on this veering phenomenon, and a very significant impact on 

the phase speed is observed for the fundamental fluid type mode. It is interesting also to note that for 

this larger duct mean flow also changes the phase speed of the coupled higher order modes. This 

behaviour is potentially important in the study of sound propagation in larger ductwork. For example, 

it is common for sound sources such as fans or turbines to excite higher order acoustic modes in a 

duct [27]. This means that the sound radiated by the walls of a duct will depend on the energy transfer 

between the sound source and these higher order modes (as well as the fundamental mode). Figure 

7 illustrates that this energy transfer will be affected by the presence of mean flow, so that mean flow 

has the potential to change the noise radiation characteristics of a duct in which noise is generated by 

turbomachinery. 

Finally, it is noted that the modal solutions obtained when mean flow was present did not show 

any evidence of the numerical instabilities described recently by Martin [15]. Martin investigated the 

kinematic radial boundary conditions of continuity of velocity and displacement, which was motivated 

by concern over the stability of solutions obtained when coupling mean fluid flow to an approximate 

form of the wave equation for a plate. Martin concluded that displacement was the more suitable 

boundary condition, although it was suggested that a “deeper numerical analysis is necessary”. 

Furthermore, concerns surrounding the stability of the displacement boundary condition have also 

been expressed when coupling a uniform mean flow to ducts with a locally reacting surface [28]. 

However, in this investigation continuity of displacement was seen to be stable for a large range of 

parameters (not shown in this article) and so no evidence was found to support the use of an 

alternative boundary condition. 



 

Figure 6. Normalised phase velocity for duct B, with M = 0.3.               , coupled fluid type mode; 

            ,                  coupled higher order compressional modes. 

 

Figure 7. Transfer of energy between the fluid and structure  

at an avoided crossing for duct B, with M=0.3. 
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4. Conclusions 

This article presents a SAFE approach to obtaining the eigenmodes for acoustically driven wall 

vibration in circular ductwork. The SAFE method facilities the addition of uniform mean flow in the 

interior of the duct, and the sound pressure field in the fluid is coupled to the wall displacement using 

continuity of displacement as the kinematic radial boundary condition. Predictions are presented for 

two sample problems and the phase velocities are compared with and without mean flow. In both 

cases the phenomenon of energy transfer between the fluid and the structure is observed as the 

excitation frequency is increased. The addition of mean flow is seen to significantly change the 

characteristics of this energy transfer, when compared to the no flow case, at least for the example 

problems studied here.  

The addition of mean flow is seen to transfer energy from the fundamental fluid type mode to the 

structure at frequencies much lower than those observed in the absence of flow. This has potential 

ramifications for turbomachinery applications, as the acoustic energy is predominantly carried by the 

fluid at lower frequencies. Accordingly, it is possible for the mean flow to significantly change the noise 

radiation characteristics of ductwork used in turbomachinery applications, and for energy to transfer 

from the fluid to the structure at much lower frequencies than normally expected. This may lead to 

unexpected break-out noise problems occurring, especially if the initial design work was undertaken 

in the absence of mean flow. 

The results presented in this article are intended to illustrate the potential change in behaviour 

that may be encountered under particular conditions within engineering ductwork. However it is 

recognised that the parameters chosen here indicate that this behaviour is likely to be relevant to 

more extreme engineering applications, such as the control of noise emitted by gas turbine exhaust 

systems. Nevertheless, this article presents a method for including uniform mean flow in the analysis 

of acoustically driven wall vibrations in circular ducts. The use of a finite element based approach also 

means that the method can readily be extended to rectangular and irregular cross-sectional 

geometries. Furthermore, in the future the authors aim to add in fluid viscosity so that shear layers 

may be included and a wider range of applications may be considered. 

  



 

Appendix A 

The matrices that make up the governing eigenequation are as follows: 

𝐑00 = [𝐊0 − 𝐊02 + 𝑛2𝐌02 − 𝑘0
2];    𝐑01 = 2𝑖M𝑘0𝐌0;    𝐑02 = (1 − M2)𝐌0. (A1, A2, A3) 

𝐑10 = 𝐊1 − 2𝐊2 + 𝐊3 + (𝑛2 + 2)𝐌2 − 𝐌7,           𝐑12 = 𝐌1 (A4, A5) 

𝚯10 = 𝑛[𝐊2 − 𝐊3 − 3𝐌2], and 𝐙11 = [𝐊4 − 𝐊5] (A6, A7) 

𝚯20 = −𝐊6 + 2𝐊2 + 𝐊2
T − 𝑛2𝐌3 − 2𝐌2 + 𝐌7, and 𝚯22 = −𝐌1 (A8) 

𝐑20 = 𝑛[𝐊3
T − 𝐊2

T + 𝐌4], and 𝐙21 = −𝑛𝐌5 (A9, A10) 

𝐙30 = 𝐊6 − 𝐊2 + 𝑛2𝐌2 − 𝐌7, and 𝐙32 = 𝐌6 (A11, A12) 

𝐑31 = [𝐊5
T − 𝐊4

T + 𝐌5], and 𝚯31 = −𝑛𝐌5 (A13, A14) 

The matrices that make up these equations (where λ and μ are the Lamé constants) are: 

𝐊0 = 𝑎0 ∫
𝜕𝐰0

T

𝜕𝑟

𝜕𝐍0

𝜕𝑟
𝑟𝑑𝑟

𝑎0

0

,      𝐊02 = 𝑎0 ∫ 𝐰0
T

𝜕𝐍0

𝜕𝑟
𝑑𝑟

𝑎0

0

 (A15, A16) 

𝐊1 = 𝑎0(𝜆 + 2𝜇) ∫
𝜕𝐰T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑟𝑑𝑟

𝑎1

𝑎0

,      𝐊2 = 𝑎0𝜇 ∫ 𝐰T
𝜕𝐍

𝜕𝑟
𝑑𝑟

𝑎1

𝑎0

  (A17, A18) 

𝐊3 = 𝑎0𝜆 ∫
𝜕𝐰T

𝜕𝑟
𝐍𝑑𝑟

𝑎1

𝑎0

,      𝐊4 = 𝑎0𝜇 ∫ 𝐰T
𝜕𝐍

𝜕𝑟
𝑟𝑑𝑟

𝑎1

𝑎0

  (A19, A20) 

𝐊5 = 𝑎0𝜆 ∫
𝜕𝐰T

𝜕𝑟
𝐍𝑟𝑑𝑟

𝑎1

𝑎0

,      𝐊6 = 𝑎0𝜇 ∫
𝜕𝐰T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑟𝑑𝑟

𝑎1

𝑎0

  (A21, A22) 

𝐌0 = 𝑎0 ∫ 𝐰0
T𝐍0𝑟𝑑𝑟

𝑎0

0

,      𝐌02 = 𝑎0 ∫
1

𝑟
𝐰0

T𝐍0𝑑𝑟
𝑎0

0

  (A21, A22) 

𝐌1 = 𝑎0𝜇 ∫ 𝐰T𝐍𝑟𝑑𝑟
𝑎1

𝑎0

,      𝐌2 = 𝑎0𝜇 ∫
1

𝑟
𝐰T𝐍𝑑𝑟

𝑎1

𝑎0

  (A21, A22) 

𝐌3 = 𝑎0(𝜆 + 2𝜇) ∫
1

𝑟
𝐰T𝐍𝑑𝑟

𝑎1

𝑎0

,      𝐌4 = 𝑎0(𝜆 + 4𝜇) ∫
1

𝑟
𝐰T𝐍𝑑𝑟

𝑎1

𝑎0

  (A21, A22) 



𝐌5 = 𝑎0(𝜆 + 𝜇) ∫ 𝐰T𝐍𝑑𝑟
𝑎1

𝑎0

,      𝐌6 = 𝑎0(𝜆 + 2𝜇) ∫ 𝐰T𝐍𝑟𝑑𝑟
𝑎1

𝑎0

 (A21, A22) 

𝐌7 = 𝑎0μ𝑘𝑇
2 ∫ 𝐰T𝑵𝑟𝑑𝑟

𝑎1

𝑎0

 (A21, A22) 
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