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Abstract 
 
Simulation, especially Discrete-event simulation (DES) and Agent-based simulation (ABS), is 
widely used in industry to support decision making.  It is used to create predictive models or 
Digital Twins of systems used to analyse what-if scenarios, perform sensitivity analytics on 
data and decisions and even to optimise the impact of decisions.  Simulation-based 
Analytics, or just Simulation Analytics, therefore has a major role to play in Industry 4.0. 
However, a major issue in Simulation Analytics is speed.  Extensive, continuous 
experimentation demanded by Industry 4.0 can take a significant time, especially if many 
replications are required.  This is compounded by detailed models as these can take a long 
time to simulate.  Distributed Simulation (DS) techniques use multiple computers to either 
speed up the simulation of a single model by splitting it across the computers and/or to 
speed up experimentation by running experiments across multiple computers in parallel.  
This chapter discusses how DS and Simulation Analytics, as well as concepts from 
contemporary e-Science, can be combined to contribute to the speed problem by creating a 
new approach called High Speed Simulation Analytics.  We present a vision of High Speed 
Simulation Analytics to show how this might be integrated with the future of Industry 4.0. 
 
Keywords: Big Data Analytics, Cyber-physical systems, Industry 4.0, Digital Twins and 
Smart environments.   
 
1. Introduction 
 
Analytics can be defined as the extensive use of data, analytical techniques, models and 
fact-based management to drive decisions and actions (Davenport & Harris, 2007).  Building 
on this Lustig introduces three types of analytics (Lustig, Dietrich, Johnson, & Dziekan, 
2010): descriptive, predictive and prescriptive.  Descriptive Analytics approaches analyse 
business performance on from a purely data perspective.  Predictive Analytics techniques 
create explanatory and predictive models using both data and mathematics techniques to 
investigate and explain relationships between business outputs (outcomes) and data inputs.  
Prescriptive Analytics builds on this by evaluating alternative actions or decisions against a 
complex set of objectives and constraints.   
 
Discrete-event simulation (DES) and Agent-based simulation (ABS) are widely used in 
industry to support decision making.  These techniques are clearly cornerstones of 
Predictive and Prescriptive Analytics in that these techniques are used to create predictive 
models of systems that can be used to analyse what-if scenarios, perform sensitivity 
analytics on data and decisions and even to optimise the impact of decisions.  In Industry 4.0 
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Simulation-based Analytics, or just Simulation Analytics, techniques have a major role to 
play in predictive and prescriptive decision making.  For example, in these industrial cyber-
physical systems, a simulation (or digital twin) might be constantly updated from the physical 
elements of the system and constantly runs in the “cloud” to predict and prescribe system 
behaviour (e.g. to balance manufacturing, to anticipate and prevent breakdowns, to plan and 
react to changes in customer/supplier behaviour, etc.) Further, these could create novel 
simulation applications (e.g. perpetual simulations that are always on and provide instant, 
pre-computed answers, symbiotic simulations that take real-time data and monitor real-world 
Key Performance Indicators (KPIs) against simulated ones to constantly improve system 
performance, etc.)  
 
However, a major issue in Simulation Analytics is speed.  Extensive, continuous 
experimentation can take a significant time, especially if many replications are required.  
This is compounded by detailed models as these can take a long time to simulate.  
Continuous data updates may also extend this time as statistical distributions within models 
need to be updated prior to simulation.  For example, a detailed digital twin of a factory might 
take an hour (or more) to be updated and simulated.  Each experiment might require (for 
example) 10 replications.  One experiment there can take 10 hours.  The goal of 
experimentation might be to explore efficient manufacturing strategies (e.g. a factory might 
have a complex product mix with several flexible routes through the machining processes of 
that factory) to recommend what actions should be taken within the next planning horizon 
(e.g. a week).  This could result in several scenarios, each with multiple parameters with 
many values.  Arbitrarily, if we say this results in 100 experiments (each with 10 replications 
on a model that takes an hour to simulate) then total experimentation time would be 1000 
hours or around 42 days.  If the planning horizon is one week then it is clearly impossible to 
perform the experimentation in support of this.  Contemporary simulation typically uses a 
single computer to execute simulation.  However, Distributed Simulation (DS) uses multiple 
computers to either speed up the simulation of a single model by splitting it across the 
computers and/or to speed up experimentation by running experiments across multiple 
computers in parallel. Naively, if we had, for example, 100 computers at our disposal then 
we could potentially speed up simulation experimentation 100 times.  In the above scenario 
we could therefore complete the experimentation in 10 hours.  In reality, various computing 
and networking factors reduce the efficiency of an implementation.  However, major speedup 
is still possible.   
 
How can we achieve High Speed Simulation Analytics?  To answer this question we first 
review advances in DS.  We then discuss one aspect of DS, high speed simulation 
experimentation, and how a cloud computing can be used to deliver on demand speed up. 
Building on these concept, we then “borrow” from contemporary e-Science to present a 
vision of High Speed Simulation Analytics for the future.   
 
2. Distributed Simulation 
 
DS has contributed to major successes in the simulation of large systems in defence, 
computer systems design and smart urban environments.  The field comes from two 
communities (Fujimoto, 1990; 2016): the Parallel Discrete Event Simulation (PDES) 
community that focussed on how to speed up simulations using multiple processors in high 
performance computing systems and the DS community that uses PDES techniques to 
interconnect simulations together over a communication network.  Essentially, the main 
goals of DS are to use parallel and distributed computing techniques and multiple computers 
to speed up the execution of a simulation program and/or to link together simulations to 
support reusability (Fujimoto, 2000).  Some authors have also used DS to refer to 
approaches that run simulation experiments and/or replications on distributed computers in 
parallel with the goal of reducing the time taken to analyse a system (Heidelberger, 1986).   
 



To reflect these various influences and goals, the following “modes” of DS can be identified 
(Figure 1):  
 

 Mode A: to speed up a single simulation. 
o A model is subdivided into separate models that are simulated on different 

computers and interact via a communications network; speed up arises from the 
parallel execution of the separate simulations. 

 Mode B: to link together and reuse several simulations.  
o Several simulations running on different computers are linked together to form a 

single simulation again with interactions between models carried out via a 
communications network; larger models beyond the capability of a single 
computer can be created.  This mode enables model reuse.  

 Mode C: to speed up simulation experimentation.  
o Experiments are run in parallel using multiple computers coordinated by some 

experimentation manager via a communication network; the parallel execution of 
simulation runs speeds up the experimentation thereby reducing experimentation 
time or increasing the number of simulation experiments possible in the same 
timeframe. 

 
 
 
 
 
 



Distributed Simulation Mode A: To speed up a single simulation
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(a) Model A’s submodels run on separate computers to share the computational 
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(b) Models A-D still run on separate computers but are now linked together via a 
communication network so that they can interact

Communication Network
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(c) Experiments on Models A are run sequentially, 
one-at-a-time, on a single computer

Model A

(c) Experiments on Model A are run in parallel on separate computers coordinated by an 
Experimentation Manager via a communication network

Model A Model A Model A

Communication Network

Experimentation 
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Distributed Simulation Mode B: To link together and reuse simulations

Distributed Simulation Mode C: To speed up simulation experimentation

 
Figure 1: Modes of Distributed Simulation 

 
There are various benefits that these Modes of DS offer (Mustafee, et al. 2012; Taylor, et al. 
2012; Boer, de Bruin, & Verbraeck, 2009; Lendermann et al., 2007).  For example:  
 
Execution time. A large simulation can be slow to run.  DS can be used to split the simulation 

across multiple computers to exploit parallel processing to speed up execution. DS 
may also allow simulation experimentation to be processed faster by using multiple 
computers.  

Model composability and reuse. The development of a simulation can represent a significant 
investment in time and money.  When building a new simulation it may be attractive 
to reuse a simulation as a sub-component.  However, practical issues such as 



variable name clashes, variable type incompatibility, global variables and different 
verification/validation assumptions might mean extensive recoding and testing.  
Further, if the simulations have been developed in different simulation packages or 
languages then it might not be possible to combine them at all without starting from 
scratch. It may be more convenient to just link the simulations together as a DS. 

Ownership and Management. Following the above, if a simulation has been composed from 
reused simulations then it may be difficult for a simulation owner or developer to 
update their simulation without having to update the entire simulation.  DS allows 
simulations to be independently managed as they are still separate.   

Privacy. Creating a single simulation from other simulations could also mean that the entire 
details of a simulation would be revealed to the developer of the single simulation.  If 
a simulation contains secrets (e.g. the confidential inner workings of a factory, 
hospital or military system) then these would be visible to anyone running the newly 
composed simulation.  DS preserves this separation and allows simulations to be 
composed from “black boxed” simulations.    

Data integrity and privacy. Similar to the above problems is the issue of data integrity and 
privacy.  If a simulation requires access to a specific database then when a new 
simulation is created that data may have to be copied to allow the new simulation to 
access it.  This data may be confidential.  Another issue is how can the integrity of 
the data be preserved (how can the copy be kept up-to-date)?  DS allows data to 
remain with the owning simulation and therefore avoids this issue.  

Hybrid simulation. There are very few commercial simulation packages that support hybrid 
simulations consisting of discrete-event, agent-based and/or system dynamics 
elements. DS allows simulations of these different types to be linked together. 

 
Mode A and Mode B of DS can be extremely complex to implement and, unfortunately, this 
presents a major barrier to its use (these Modes still represent some of the most challenging 
research topics in general distributed systems).  Exceptions are in simulation areas where 
modelling teams possess advanced software engineering skills and are used to developing 
complex software solutions (e.g. in defence and some simulation software “houses”).  Some 
standards and reference implementations have also been created that facilitates DS 
development (e.g. the High Level Architecture (IEEE, 2010) and associated interoperability 
issues (Taylor, Strassburger, Turner, & Mustafee, 2010)). These general standards have 
been adapted for process simulation used in Industry 4.0 (Anagnostou & Taylor, 2017).   
 
DS Mode C, however, is conceptually simpler to implement (i.e. no complex synchronization) 
high speed simulation systems are beginning to emerge.  Here the challenge is how to 
efficiently distribute and manage the execution of a series of single simulations over a range 
of computers.  This is a common problem across many scientific disciplines and emerging 
solutions to DS Mode C are emerging with many borrowing techniques from scientific 
computing and e-Science.  Early examples of these used grids of computers that already 
existed within an organisation (a desktop grid).  More recent ones essentially use the same 
techniques but instead of fixed computing resources these use virtualised ones made 
available on a cloud.  Examples of both of these include: the WINGRID desktop grid system 
that was used to speed up credit risk simulations in a well-known European bank (Mustafee 
& Taylor, 2009), SakerGrid, a desktop grid and computing cluster system in use today at 
Saker Solutions and Sellafield PLC (Kite, et al., 2011), a cluster-based high performance 
simulation system in use in the Ford Motor Company, a desktop grid that was used for 
simulations of biochemical pathways in cancer (Liu et al., 2014), and a cluster computing 
based grid used for a similar application (Choi, Seo, and Kim (2014)). Examples of cloud-
based systems include an adaptation of the JADES platform to run agent-based simulations 
in parallel on cloud resources (Rak, Cuomo, & Villano, 2012) and the CloudSME Simulation 
Platform is used to run simulation experiments over multiple clouds (S.J.E. Taylor, Kiss, et 



al., 2018).  The Cloud Orchestration at the Level of Application (COLA) project1 is 
developing  a deadline-based auto-scaling approach for simulation experimentation on cloud 
with SakerCloud being the first commercial prototype ((Taylor et al., 2018). Anderson, Du, 
Narayan, & Gamal (2014) and Yao, et al. (2017) have developed Mode C DS that also run 
Mode A DS. Commercially, Saker Solutions have implemented the same in the DS of 
nuclear waste reprocessing.      
 
In the following section, to illustrate the realisation of Mode C DS in support of High Speed 
Simulation Analytics, we present the CloudSME platform that arose from a major 
collaboration between e-Science developers and industrial simulation companies during the 
CloudSME project (www.cloudsme.eu).     
 
3. Cloud-based High Speed Simulation Experimentation  
 
Cloud computing is attractive as it offers on-demand computing resources that can be 
quickly “hired” and then discarded (Mell & Grance, 2011).  The cost of computing resources 
is priced at a very attractive level.  The use of these resources to power high speed 
simulation experimentation is therefore also very attractive.  However, the complexity and 
variety of cloud systems and technologies can make realising these applications quite 
difficult and costly. Arguably, this can be prohibitive for Small and Medium-sized Enterprises 
(SMEs) and end user developers. Further, many cloud systems are developed for a single 
cloud.  It is not an easy task to port from one cloud system to another.   
 
The aim of the Cloud-based Simulation platform for Manufacturing and Engineering 
(CloudSME) project2 was to create a generic approach to developing cloud-based simulation 
applications that enabled users to reduce implementation costs in realising commercial 
products and services.  The project created the CloudSME Simulation Platform (CSSP) from 
a combination of an AppCenter, the workflow of the WS-PGRADE/gUSE (Kacsuk et al., 
2012) science gateway framework and the multi-cloud-based capabilities of the CloudBroker 
Platform3.  The CSSP has been used to implement a range of commercial simulation 
products across a many industrial domains (see the CloudSME Website4 for examples).  To 
show how the CSSP has been used to for high speed simulation experimentation we now 
describe the Platform and a representative case study.  
 
3.1 The CloudSME Simulation Platform 
 
The CSSP consists of three layers: 
 
1. Simulation Applications Layer that allows software vendors deploying and presenting 

simulation products to end-users as SaaS (Software as a Service) in a wide range of 
scenarios and deployment models. 

2. Cloud Platform Layer that provides access to multiple heterogeneous cloud resources 
and supports the creation of complex application workflows - a PaaS (Platform as a 
Service) to create and execute cloud-based simulations. 

3. Cloud Resources Layer that represents the IaaS (Infrastructure as a Service) clouds 
connected to the platform. 

 
These layers are presented in detail below (Figure 2). 
 

                                                
1 project-cola.eu 
2 www.cloudsme-apps.com 
3 www.cloudbroker.com  
4 http://www.cloudsme-apps.com/practical-examples/ 
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Figure 2: The CloudSME Simulation Platform 
 

3.2 Simulation Applications Layer 
 
This contains the CloudSME AppCenter is a web-based one-stop-shop that is the “shop 
window” to software products and services offered by software vendors and service 
providers to end users via a single consistent interface. It stores information about software 
products in an accessible way, provides usage scenarios for the software, and offers billing 
functionality that includes price setting, payment integration and tracking of users’ spending.  
It three main deployment models: Directly Deployed Applications, Web-based Applications, 
and Desktop Applications. The CSSP offers a wide range of Application Programming 
Interfaces (APIs) to support developers.  To enable the development of applications that are 
directly deployed in the AppCenter or the extension of desktop applications with cloud 
support, either the CloudBroker APIs (Java Client Library API or REST API) or the gUSE 
Remote API can be used. Using the CloudBroker APIs bypasses WS-PGRADE/gUSE and 
provides direct access from the application to the multi-cloud resources supported by the 
CloudBroker Platform. Using the Remote API of WS-PGRADE/gUSE enables developers to 
execute complex application workflows linking multiple application components together. As 
WS-PGRADE/gUSE is integrated with the CloudBroker Platform, multi-cloud execution 
capabilities are still fully utilised in this scenario. In case of web-based applications, either 
the ASM (Application Specific Module) API of WS-PGRADE/gUSE is used that enables the 
rapid development of a custom portal/gateway in the form of customised Liferay Portlets or a 
completely custom web interface is developed by embedding either CloudBroker API or 
gUSE Remote API calls. Alternatively the standard web-based interface to WS-
PGRADE/gUSE can also be applied to launch workflows. All APIs are described in Akos, et 
al. (2013). 
 
3.3 Cloud Platform Layer 
 
The middle layer of CSSP is the Cloud Platform Layer that consists of the cloud-based 
services from the CloudBroker Platform and the science gateway framework WS-



PGRADE/gUSE. These components were developed prior to CloudSME and their first 
integration was implemented in the SCI-BUS (Scientific Gateway-based User Support) 
project (Kiss et al., 2014). During CloudSME this integration matured significantly and 
reached commercial production level. 
 
3.3.1 The CloudBroker Platform 
 
The CloudBroker Platform is a commercial PaaS that supports the management and 
execution of software on different cloud provider resources. The generic architecture of 
CloudBroker is shown in Figure 3.  
 

 
Figure 3: CloudBroker Platform Architecture 

 
CloudBroker uses IaaS clouds from resource providers and incorporates adapters both to 
public and private cloud infrastructures. The platform provides access to a wide range of 
resources including open source (e.g. OpenStack and OpenNebula) and proprietary (e.g. 
Amazon and CloudSigma) clouds, and also various High Performance Computing  (HPC) 
resources. CloudBroker supports non-interactive serial and parallel batch processing 
applications on both Linux and Windows operating systems. The platform itself consists of a 
set of modules that manage processes, applications, users, finance (accounting, billing and 
payment), and runtime issues (process monitoring, queuing, resources, storage and 
images).  A scalability and fault handler layer supervises scalability requirements and failure 
issues.  Cloud Provider Access Management oversees the connection to each Cloud 
technology and can control the number of virtual machines (VMs) started for a given 
application on a given cloud.  Application “patterns” are deployed to CloudBroker in a form 
that allows the platform when instructed to run the application on a particular cloud and cloud 
instance type. Two typical patterns are direct installation (an application package and 
deployment script that allows the installation of the software on a cloud instance) or 
virtualisation (virtual machine image containing installed software that allows direct 
deployment to a cloud instance).   
 



CloudBroker offers various interfaces for access.  Its two main operation modes to manage 
and use software in the cloud are either as direct front-end, or as a back-end middleware 
service. For the former, the platform can be accessed directly through the Web Browser 
User Interface. As a back-end for advanced and automatic usage, various APIs are provided 
for programmatic accessibility. These include REST web service interface, Java client library 
and Linux shell command line interface (CLI). Via these different APIs, the CloudBroker 
Platform can be utilized by front-end software as middleware to allow access to applications 
in the cloud.  
 
3.3.2 WS-PGRADE/gUSE 
 
gUSE (Grid and Cloud User Support Environment) (Kiss et al., 2014) is an open source 
scientific gateway framework providing users with easy access to cloud and grid 
infrastructures. gUSE provides with WS-PGRADE, a Liferay based portal to create and 
execute scientific workflows in various Distributed Computing Infrastructures (DCIs) 
including clusters, grids and clouds. The generic architecture of WS-PGRADE/gUSE is 
presented in Figure 4.  
 

 
Figure 4: Generic Architecture of WS-PGRADE/gUSE  

 
WS-PGRADE/gUSE consists of three layers: a top presentation layer, a middle management 
layer, and a bottom architectural execution layer.   
 
The presentation layer (WS-PGRADE) includes a set of Liferay portlets to create, start and 
control workflows, monitor their execution on various DCIs, and present results to users.  
WS-PGRADE has a graph editor which can be used to build workflows and specify job 
configurations. A WS-PGRADE workflow is a directed acyclic graph that defines the 
execution logic of its components. An example for a WS-PGRADE workflow is presented in 
Fig. 5. The large boxes are jobs, while the smaller boxes are input and output ports 
representing input/output files for the jobs. The execution of a job can start when all of its 
inputs are available. Using this logic the WS-PGRADE workflow engine automates the 
execution of the workflow. For example, in case of the workflow of Figure 5 only Gen3 can 



start executing when the workflow is submitted. MulCross and AddPair are waiting for the 
result of Gen3 and can start once the output file of Gen3 is available.  
 

 
Figure 5: Example WS-PGRADE Workflow 

 
The WS-PGRADE workflow concept supports multiple levels of parallelism. Each job of the 
workflow can in itself be a natively parallel application (e.g. using MPI). The workflow can 
also have parallel branches (e.g. MulCross/ColMuls and AddPair/ColAdds are in parallel 
branches) that can be executed in parallel of different resources. Finally, WS-PGRADE 
supports parameter sweep applications. Parameter sweep applications are simulations 
where the same simulation needs to be executed for multiple input data sets. This feature 
enables the same workflow to be submitted with multiple input data sets simultaneously.  
 
A full description of WS-PGRADE/gUSE gateway framework is available in Kacsuk, et al. 
(Kacsuk et al., 2012), and Kacsuk (Kacsuk, 2014) gives a complete overview of WS-
PGRADE/gUSE and its applications.  
 
3.4 Cloud Resources Layer 
 
The bottom layer of CSSP is the Cloud Resources Layer that consists of a range of clouds 
and HPC resources accessible via the CloudBroker Platform. These currently include 
CloudSigma and Amazon public clouds, various private clouds based on either OpenStack 
or OpenNebula, and the HPC resources of, for example, the Cineca Galileo Cluster or the 
ETH Euler Cluster. 
 
4. Case Study: High Speed Simulation Experimentation  
 
The following case study demonstrates how the CSSP can support high speed simulation 
experimentation.  It uses the widely used open source simulation system the Recursive 
Porous Agent Simulation Toolkit (REPAST).  This is a cross-platform, agent-based modelling 
and simulation toolkit and is a Java-based simulation system that is used for developing a 
range of simulation applications in different fields (North et al., 2013).  To enable the parallel 
execution needed for high speed simulation experimentation it uses parameter sweeps 
running on multiple cloud resources via both components of the Cloud Platform Layer.  
CloudBroker manages deployment on multiple clouds and the parameter sweep functionality 
of the WS-PGRADE/gUSE workflow engine manages the execution of the simulation 
experiments and the parameter sweep.  The deployment is first presented and then 
demonstrative results. 
 
5 REPAST Deployment on the CloudSME Simulation Platform 
 



The deployment of REPAST consists of two parts: deployment on CloudBroker and creation 
of the parameter sweep workflow on WS-PGRADE/gUSE.   
 
Deployment on CloudBroker is done by creating an application package consisting of a 
deployment shell script, an execution shell script and the zipped REPAST environment.  For 
each cloud deployment, CloudBroker is configured to create a virtual machine with a Linux 
Ubuntu OS image.  Using its web interface, CloudBroker creates this virtual machine, 
transfers the application package to the virtual machine and then runs the deployment shell 
script.  This installs REPAST, Java Runtime Environment and the execution shell script. 
When a job is started (i.e. a simulation run), the simulation model (a TAR archive consisting 
of the model source code and the simulation scenario) and the parameter sweep data (an 
XML file specifying the input parameters) are transferred to the virtual machine. The 
execution script then validates these inputs, extracts the model files and runs the simulation. 
Results are then added to a TAR archive for upload back to the Platform.  
 
The WS-PGRADE/gUSE web interface is used to create the parameter sweep workflow. An 
abstract workflow graph is first created using the graph editor. From the graph, the concrete 
workflow is then created and configured to run the selected software on the selected cloud 
resources. The same abstract workflow can be used to create many concrete workflows by 
reconfiguring them. Once the graph is completed, it can be saved and used to create a 
concrete workflow where the jobs can be configured (e.g. the simulation software, the cloud 
and the region of the resources, and the instance type).  
 
To demonstrate the performance of high speed simulation we used a well-known benchmark 
developed at Brunel.  This is an agent-based simulation of infection disease spread (Macal, 
2016).  The simulation consists of three types of agents that move in an environment and 
interact with each other. The agents represent the susceptible, infected and recovered 
population. The model starts an infection outbreak with an initial population of infected and 
susceptible agents. Infected agents move close to susceptible agents and infect them while 
susceptible agents move where the least infected agents are located. Infected and 
susceptible agents interact with each other in every simulation time unit which is a day in our 
simulation. Infected agents recover after a period of time and become recovered with a level 
of immunity. When an infected agent gets in touch with a susceptible agent, the susceptible 
agent becomes infected. When an infected agent gets in touch with a recovered agent, the 
recovered agent decreases its immunity. When the immunity level is 0, the recovered agent 
becomes susceptible and can be infected again. The outbreak occurs annually. When this 
happens, the population changes to reflect the initial conditions taking into account the 
population dynamics of the previous year.   
 
A series of experiments on two cloud infrastructures were performed: the Amazon EC2 
commercial cloud and an academic cloud offered by the University of Westminster (UoW), 
UK. Cloud instances of various sizes were used as specified in Table 1. Each experiment 
was set up in WS-PGRADE/gUSE by quickly reconfiguring the workflow by selecting a 
different cloud/instance type.  
  



 
Table 1. Cloud Resources Characteristics 

 

Cloud Instance Number 
of 
vCPUs 

Processor type Memory  

Amazon baseline 
micro (A1) 

1 High Frequency Intel Xeon Processors with 
Turbo up to 3.3GHz 

0.5 GiB 

Amazon baseline 
small (A2) 

1 High Frequency Intel Xeon Processors with 
Turbo up to 3.3GHz 

1 GiB 

Amazon baseline 
medium (A3) 

2 High Frequency Intel Xeon Processors with 
Turbo up to 3.3GHz 

4 GiB 

Amazon balanced 
medium (A4) 

1 High Frequency Intel Xeon E5-2670 v2 at 
2.6GHz 

3.75 
GiB 

Amazon balanced 
large (A5) 

2 High Frequency Intel Xeon E5-2670 v2 at 
2.6GHz 

7.5 GiB 

UoW small (U1) 1 AMD Opteron 4122 Processor at 2.2GHz 20 MB 

UoW medium (U2) 2 AMD Opteron 4122 Processor at 2.2GHz 40 MB 

UoW large (U3) 4 AMD Opteron 4122 Processor at 2.2GHz 80 MB 

UoW XL (U4) 8 AMD Opteron 4122 Processor at 2.2GHz 160 MB 

 
Our demonstration consisted of an experiment consisting of ten runs (i.e. ten simulations 
with a different parameter). We conducted ten experiments. These took approximately 200 
minutes to run on a desktop PC (i5-2500 processor at 3.30GHz speed and 4.00GB RAM). 
We ran these experiments on one, two, five and 10 instances of each cloud type. The 
experiments were distributed equally when run on more than one instances. Figure 6 shows 
the comparative runtime by instance and Table 2 shows the speedup when compared to a 
single PC run. The run-time is the average of five runs. From the results, we observe that 
Amazon EC2 instances have relatively stable performance and the academic cloud presents 
a larger variation.  For example, five instances of U2 perform worse than two. Also, we have 
a considerable increase in execution time when running on 10 instances. Types U3 and U4 
show similar behaviour. This is suspected to be rooted in variations in resource availability 
that cause job requests to be queued until resources are available. Similar behaviour with 
less variation is shown by A3 where the execution time for five instances is increased.  In 
terms of speedup, when running on a single instance for all cloud types in this experiment, 
apart from A5, the performance is slower than a desktop machine. This is expected since 
there is an overhead for starting up the virtual machines. Most of the larger instances, at 
least the commercial ones, present modest speedup. It is expected that for larger 
simulations there will be better considerable speedup as the longer processing time will 
compensate the overheads of setting up virtual instances on a cloud.  Overall this shows 
how a user might investigate different cloud and instance types to choose which is the best 
for his or her needs. 
 
 



 
Figure 6: Cloud-based REPAST Infection Model Performance 

 
Table 2. Cloud-based REPAST Infection Model Speedup 

 Clouds A1 A2 A3 A4 A5 U1 U2 U3 U4 

In
st

an
ce

s 1 0.12 0.44 0.99 0.78 1.68 0.72 0.46 0.74 0.53 

2 0.25 0.84 1.82 1.28 2.67 0.85 1.18 0.49 0.23 

5 0.44 1.49 0.70 1.32 3.39 1.53 0.66 0.89 0.21 

10 0.49 1.40 2.63 2.67 2.99 1.71 0.11 0.93 0.24 

 
6. A Vision of the Future: Towards Big Simulation Analytics 
 
The previous sections have shown how DS and cloud computing can address high speed 
simulation analytics.  Adding other modes of DS to this could enable high speed simulation 
analytics of large-scale simulations of large systems.  Taking inspiration from Big Data, this 
move towards larger and larger systems simulations involving the analysis of diverse data 
suggests that we might call this emerging aspect of simulation as Big Simulation Analytics.  
We now discuss how we might realise Big Simulation Analytics.  
 
In large scale scientific endeavours, many scientists use grid computing or e-Infrastructures, 
integrated collections of computers, data, applications and sensors across different 
organizations (Foster et al., 2001; Bird, Jones, & Kee, 2009). There are various 
sophisticated software systems that exist to use e-Infrastructure facilities, typically by giving 
“single sign-on” secure access to multiple computers across multiple administrative domains 
and the ability to manage the execution of jobs on those computers (e.g. WS-
PGRADE/gUSE (Kacsuk et al., 2012; Kiss et al., 2014) and the FutureGateway that has 
evolved from the DECIDE framework (Ardizzone et al., 2012)).  E-Infrastructure applications 
can be created from these by first deploying the application service on the e-Infrastructure 
and registering it in some form for service catalogue (see below) and then accessing the 
service via a science gateway (a web-based system that allow scientists to use e-
Infrastructures with a simple front end that has been developed for their needs) or some kind 
of programming interface (usually some kind of REST interface) integrated into software that 



is familiar to the user (for a wide range of examples of these see www.sci-
gaia.eu/community and catalog.sciencegateways.org/#/home for examples of science 
gateways). Software applications or services are being increasingly developed in a standard 
way so that they can be stored, browsed and reused from a standardized service catalogue 
(e.g. the EGI service catalogue (https://www.egi.eu/services/) and the INDIGO service 
catalogue (www.indigo-datacloud.eu)).  Applications can be linked together by workflows, 
sequences of tasks that are translated into jobs executed on specific computing systems 
supported by the above software infrastructures (Deelman, et al., 2009; Liew et al., 2016).  
Examples of workflow systems include Pegasus (Deelman et al., 2016), Kepler (Ludäscher 
et al., 2006), Taverna (Wolstencroft et al., 2013), Swift (Zhao et al., 2007) and WS-
PGRADE/gUSE (Kacsuk et al., 2012). 
 
In a possible future where DS is commonly used in OR, a user might access an e-
Infrastructure via a web-based science gateway, configure a workflow to execute a series of 
tasks and instruct those tasks to be run.  As shown in Figure 7, such a workflow might have 
five steps: Management, Acquisition, Composition, Experimentation and Analysis.   
 
6.1 Management 
 
In this task a user first selects a pre-defined experimentation service (e.g. direct 
experimentation, ranking & selection algorithm, optimization, etc.) The user then configures 
the experimentation and then selects what infrastructure to run on.  The choice might be an 
internal computing resource (e.g. a cluster), different external clouds, a dedicated high 
performance computing facility, etc.  Cost/time information might be given for each 
infrastructure to help the user to decide which to select.  A user might also set a deadline for 
experimentation and then get an estimate for how much processing resources would cost 
(and possibly their carbon footprint).  Once the infrastructure has been selected, the user 
then pays if necessary (or uses some pre-loaded credit), and then instructs the management 
task to run the experiments.  The system would then manage the experiment over the 
selected infrastructure, reporting to user the progress of the experimentation and when it is 
complete.   
 
6.2 Acquisition 
 
Experiments configured in Management use this task to acquire relevant data sources 
(databases, spreadsheets, etc.), update statistical distributions, obtain the latest versions of 
the models and simulation software, etc. needed for experimentation.  In the case of 
Symbiotic Simulation, Cyber-physical systems or a Digital Twin, this might involve direct data 
collection from the sensors in a physical system.  We may assume that the selection of 
services in this task has been predefined and the task runs these to perform the updates.   
 
6.3 Composition 
 
This task simply takes the above acquired artefacts and composes the jobs to be submitted 
to the infrastructure.  With a single simulation this task would just ready the model and its 
supporting components for uploading to the infrastructure.  A DS would require several 
models to be composed (i.e. a set of federates being composed into a federation) and a 
supporting workflow service could be selected to automate this(Chaudhry, Nouman, 
Anagnostou, & Taylor, 2016).   
 
6.4 Experimentation 
 
Jobs representing each run of a simulation (or possibly runs if these are quick but numerous) 
are submitted to a queue for the infrastructure to process.  This task also manages the 

http://www.sci-gaia.eu/community
http://www.sci-gaia.eu/community
https://www.egi.eu/services/
http://www.indigo-datacloud.eu)/


execution of the jobs (e.g. relaunching any failed jobs) and collates the results from each job 
as their results are returned from the infrastructure.   
 
6.5 Analysis 
 
The final step is the Analysis task.  Users could select from a set of services that analyse the 
output from experimentation.  This could include, for example a service that produces 
summary statistics or some deeper time series-based analysis.  The Analysis service could 
itself be workflow based and run over distributed computing resources to reduce the time 
taken to analyse the output.  Indeed, it is possible that a user could request several analyses 
to be performed at the same time and the results from this be brought together in some kind 
of hierarchical workflow.  In these cases the Management task could be extended to give 
further cost estimates for analysis. Similar extensions could be made to reflect the on-going 
cost of optimization.  
 
6.6 Conceptualisation and Example 
 
Based on this workflow, Figure 8 shows a possible conceptualization of an e-Science 
approach for DS that shows the workflow realized on an e-Infrastructure using a science 
gateway.  This is influenced by the workflow system WS-PGRADE/gUSE and is based on 
recent experiences with the CloudSME project where several commercial cloud-based 
simulation systems using e-Infrastructure approaches were created.   
 
Consider the following example.  An enterprise is capable of manufacturing a range of 
widgets for a number of consumers.  The manager of the enterprise in this supply chain 
wants to understand how the behaviour of her factory responds to changes in demand and 
supply over time.  She has a discrete-event model of her factory and agent-based models of 
her suppliers and consumers (perhaps a more reasonable large supply chain model as this 
does not assume that other discrete-event simulations in the supply chain exist but does 
assume that the enterprise has detailed information about supplier/consumer behaviour over 
time).  We assume that a management interface similar to a science gateway has been set 
up and a workflow has been defined in WS-PGRADE/gUSE. The manager might want to (for 
example) investigate the most reliable set of suppliers based on a 20% increase in 
consumption across her product range and to identify the most critical areas in her factory in 
terms of machine utilization and operator utilization (we assume that a mix of machines and 
operators are used in her factory to produce the widgets).   
 
In the Management task, she sets up the experiments on her management interface (the 
equivalent of a science gateway) and chooses an analytics service that can correlate and 
cluster the simulation results.  She then investigates the best available infrastructure to run 
the experiments within a reasonable amount of time (e.g. compares the cost of Amazon 
Cloud, Microsoft Azure and a High Performance Computing centre available in her region 
against running over a local desktop grid), makes her selection and begins the 
experimentation. The workflow then begins automatic execution by executing the Acquisition 
task.  This executes in parallel to load the most recent data and model into the infrastructure.  
The Composition task then composes the DS by bringing together the three models with 
HLA standard software for time management.  The Experimentation task would then create 
“jobs” based on each experiment and dispatch these through the infrastructure to (say) 
virtual computers running on the Amazon cloud.  As results begin to come in, the 
infrastructure passes these onto the Analysis task.  This task takes each set of results and, 
in turn, sends these jobs out for processing on the infrastructure using a clustering and 
classification service that runs for each job and then collates these together for display on 
the management interface.  The manager then makes her decisions within hours rather than 
months.  In the case of Symbiotic Simulation or Digital Twins, once set up, this process 



might run constantly as the system monitors and attempts to improve the performance of the 
system via simulation.   
 
7. Conclusions. 
 
This article has presented the possible future of High Speed Simulation Analytics from an 
Industry 4.0 perspective.  It has argued that the key to this is DS and high speed 
experimentation.  A novel commercial system has been presented that demonstrates how 
cloud computing can be used to speed up simulation experimentation.  We have then 
discussed how simulation analytics can borrow from e-Science and e-Infrastructures to 
create a vision or architecture for large-scale simulation analytics or Big Simulation 
Analytics. It is hope that this article has shown how the future for simulation analytics could 
develop and the potential functionality that emerging approaches need to urgently embrace 
to keep simulation relevant and at the heart of Industry 4.0.  Taylor (2018) develops these 
themes in more detail from an Operational Research perspective, and Taylor, et al. (2018a; 
2018b) give more detail on the CloudSME Simulation Platform and its simulation 
applications.   
 



 
 

 
 

Figure 7: A Workflow for High Speed Simulation Analytics 
 
 
  



 
 

Figure 8: An e-Science Vision for High Speed Simulation Analytics 
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