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Abstract

Software development is intrinsically a human activity and the role of the development team
has been established as among the most decisive of all project success factors. Prior research
has proven empirically that team size and stability are linked to stakeholder satisfaction, team
productivity and fault-proneness. Team size is usually considered a measure of the number
of developers that modify the source code of a project while team stability is typically a
function of the cumulative time that each team member has worked with their fellow team
members. There is, however, limited research investigating the impact of these factors on
software maintainability - a crucial aspect given that up to 80% of development budgets are
consumed in the maintenance phase of the lifecycle.

This research sheds light on how these aspects of team composition influence the structural
attributes of the developed software that, in turn, drive the maintenance costs of software.
This thesis asserts that new and broader insights can be gained by measuring these internal
attributes of the software rather than the more traditional approach of measuring its exter-
nal attributes. This can also enable practitioners to measure and monitor key indicators
throughout the development lifecycle taking remedial action where appropriate.

Within this research the GoogleCode open-source forge is mined and a sample of 1,480 Java
projects are selected for further study. Using the Chidamber and Kemerer design metrics
suite, the impact of development team size and stability on the internal structural attributes
of software is isolated and quantified. Drawing on prior research correlating these internal
attributes with external attributes, the impact on maintainability is deduced.

This research finds that those structural attributes that have been established to correlate
to fault-proneness - coupling, cohesion and modularity - show degradation as team sizes
increase or team stability decreases. That degradation in the internal attributes of the software
is associated with a deterioration in the sub-attributes of maintainability; changeability,
understandability, testability and stability.
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Glossary of Terms

Note that the definition of the terms below is offered in the context in which they are
mentioned within this thesis.

Bonferroni correction: An adjustment made to p-values when several statistical hypothesis
tests are simultaneously performed on a single data set.
Branch: A duplication of a source code directory structure within a VCS.
Class: The template that defines the behaviour and/or state of objects of its type.
Code clone: Sequences of duplicated source code residing across multiple VCS repositories.
Collinearity: Correlation between two or more independent variables in a regression model.
Commit: A set of changes made to the source code in a VCS.
Committer: A contributer who modifies source code in a VCS.
Confounding factors: Factors within a statistical model that influence both the dependent
and independent variables within a model causing an association to be made which may not
be genuine.
Coupling: The degree to which components within software systems are interdependent.
Cohesion: The measure of the extent to which functionality within a single component
belongs together.
Functional Complexity: The degree of sophistication in the logic encoded within a software
system.
Database schema: The definition of the structure of the database, including its tables and
the relationships between them.
Dependent variable: The variable that is subject to testing and measurement in an experi-
ment.
External attributes: The externally visible properties which manifest in how the software
relates to its environment. Examples include maintainability and fault-proneness.
Fault-proneness: The extent to which software exhibits ’faults’ which are structural imper-
fections which can cause a system not to perform its required function.



2 List of tables

FLOSS: Free/Libre Open Source Software (FLOSS) is developed by informal collaborative
networks of programmers. Source code is openly shared to encourage others to build upon
the software.
Forge: A platform designed to facilitate the creation of a community of developers to collab-
orate on the creation of software. Offers software development and management tools.
Fork: The process of creating an alternate and independent software development stream
from an existing project.
Integrated Development Environment (IDE): An application that provides comprehensive
features to support programmers in software development.
Independent variable: The variable that is controlled in an experiment to measure the
effects on the dependent variable.
Inheritance: The hierarchical arrangement of classes such that a child class derives be-
haviour from its parent.
Internal attributes: Attributes that can be measured through direct observation of the soft-
ware artefacts. Examples include structural properties such as coupling and cohesion.
Linear mixed models: A form of linear regression that allows for both fixed effects that
apply to all groups and random effects that apply individually to subgroups within data sets.
Linear regression: A statistical model that attempts to establish a linear relationship be-
tween dependent and independent variables.
Maintainability: The ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment.
Mann-Whitney U test: Used to test the null hypothesis that two samples come from the
same population or whether observations in one sample tend to be larger than observations in
the other.
Method: A programmed procedure defined in a class that is included in all its instances.
Modularity: The extent to which a systems functionality is logically partitioned into inde-
pendent components.
Module: A logical grouping of related components making up part of a software application.
Multivariate: A statistical model using multiple variables to predict an outcome.
Normal distribution: A probability distribution symmetric about the mean. Observations
are more frequent near the mean. When plotted, appears as a bell curve.
Object: A particular instance of a class.
Object Oriented: A programming paradigm based around ’objects’ rather than ’actions’.
Outlier: An observation that is abnormally distant from other observations in a sample.
Principal Component Analysis: A technique to reduce dimensions in a data set to transform
it to a number of linearly uncorrelated dimensions while retaining the maximum variance
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within the data set.
Probability distribution: A mathematical function providing probabilities of occurrence of
different possible outcomes that a variable can assume.
p-value: The probability of finding the observed, or more extreme, results given a true null
hypothesis.
Regression coefficients: In a linear model these are estimates of multipliers on independent
variables.
Repository: A structured data store archiving files, their revision histories and other associ-
ated meta-data. Used to facilitate and manage change to source code.
Revision: A distinct changeset in a VCS repository.
Root Mean Square Estimate: A measure of the distance between observations and the
values predicted by a regression model.
R-squared: A measure of how close the observations are to a regression line.
Scrum: A framework for managing agile development.
Software artefact: Tangible products of a software development process such as source
code, compiled binary files or documentation.
Spearman correlation: A nonparametric measure of rank correlation rank-order assessing
the relationship between two variables.
Stakeholders: People or groups affected by the outcome of a software development process.
Standard error: A measure of the typical distance between data points and a regression
line.
Static code analysis: An analysis of software through direct inspection of its artefacts (par-
ticularly source code) without the execution of the software.
Structural complexity: The measure of the degree of interactions between components in a
software system.
T-statistic: The ratio of the distance of the estimated value of a parameter from its regression
line value to its standard error.
Univariate: A statistical model using a single variable to predict an outcome.
Variance: The expectation of the squared deviation of a random variable from its mean.
Version Control System (VCS): A system that enables and tracks changes to a file or set of
files to enable recovery to previous revisions.





Chapter 1

Introduction

1.1 Research Context

There are many critical decisions that face software development practitioners throughout the
development lifecycle, ultimately contributing to the success or failure of a project. These
decisions, broadly, fall under the categories of Process, Technology, or People (Nasir and
Sahibuddin, 2011). Decisions in the Process category are those such as the choice of devel-
opment methodology (Chow and Cao, 2008; Vijayasarathy and Butler, 2016), development
standards (Rainer and Hall, 2002), or the decision to invest in test automation to achieve
shorter testing cycles (Lewis, 2016). Technology decisions can vary from questions of what
hardware or programming languages to use for development to the selection of tools that
development teams should employ (Scheer and Habermann, 2000; Ray, 2017; Chen et al.,
2018; Eichhorn et al., 2018). Finally, the People category of decisions focuses on issues such
as the resourcing and staffing of software development project teams and how those teams fit
into the wider organisation (Krishnan, 1998; Andrejczuk et al., 2017; Alfayez et al., 2018).

Each of these categories of decisions has seen a great deal of academic research. In the
Process category Kuhrmann et al. (Kuhrmann et al., 2015) conducted a mapping study of
the field of software process improvement, finding 635 publications over the past 25 years.
To give a flavour of these studies, some investigate how greater adherence to established
software process models such as CMM (Paulk et al., 1993) or ISO (ISO 15504-5:2012, 2012)
can result in better quality (Harter et al., 2012; Abrahamsson, 2013). Others are case studies
into how organisations manage adoption of process models with refinements proposed for
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particular contexts such as small or medium enterprises (Balla et al., 2001; Sulayman et al.,
2012). Research in the Technology category is extremely broad covering topics such as the
suitability of particular technologies for a given use (Sharp et al., 2003; Baker et al., 2006),
the security implications of using a given technology stack (Mirheidari et al., 2012; Choukse
et al., 2012; Gangwar et al., 2014), or studies of the tools that can be used to facilitate team
communication in a global context (Portillo-Rodríguez et al., 2012). Finally, in the People
category the research, again broad and diverse, can vary from a study of what motivates
open-source software contributors through to the impact of team size or team diversity on
team performance (Hoch et al., 2010; Von Krogh et al., 2012).

Of these three categories, ’People’ decisions are established to have the greatest impact on
development team productivity (Trendowicz and Münch, 2009) and critical success factors
for software development projects are, by far, more likely to be in the realm of people factors
(Boehm et al., 1978; Onoue et al., 2018). Software development is intrinsically a human
activity and a more people-oriented approach is in the ascendency evident in, amongst other
things, increasing adoption of agile methodologies (Pirzadeh, 2010).

Nasir et al. (Nasir and Sahibuddin, 2011) conducted an extensive literature survey of the
critical success factors that impact software projects finding that in the People category
some of the most cited project success factors, based on industrial case studies as well as
surveys, relate specifically to the composition of the software development team (Schmidt
et al., 2001; Sauer and Cuthbertson, 2003; Humphrey, 2005; Kappelman et al., 2006; Glass,
2006). This is pertinent because within most real world software development projects those
’people’ decisions - for instance the composition of individual development teams - can
be made by managers who are not particularly senior and, indeed, often with input from
individual developers. By contrast, location strategies or project budgets are often dictated
by senior management with little or no influence from those lower in the management chain
and are therefore within the sphere of influence of significantly fewer practitioners. When
considering decentralised volunteer-based Free Libre Open-Source (FLOSS) projects, it is
also true that, beyond the composition of the software development team, there can be limited
tools with which stakeholders can influence the success or failure of a project (Schweik et al.,
2008).

In the context of this research, team size is a measure of the number of developers that modify
a project source code. Within that same context team stability is taken as function of the
cumulative time that each developer has worked with their fellow team members. Within the
’People’ category of research there is an extensive body of work that empirically proves that
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team size and stability are linked to specific external attributes of the produced software such
as fault-proneness as well as more general aspects such as project success rates and team
productivity. As will be detailed in the next chapter titled ’Related Work’, earlier research
established that smaller or more stable development teams are more productive, produce
less fault-prone software, and have higher levels of stakeholder satisfaction. Much of this
research has been motivated, at least in part, to help inform practitioners on how to compose
their own development teams so that the associated risks can be limited as far as practicable,
recognising that team composition is one of the few levers within the grasp of management
to strongly influence project outcomes.

The research asserts that new insights can be gained into how team size and stability impact
the produced software by measuring the internal attributes of the software instead of the more
traditional approach of measuring its external attributes. Through this approach practitioners
can form a more complete picture to inform decision-making. Uniquely, this also enables
practitioners to measure and monitor key indicators, taking remedial action at earlier stages
in the development lifecycle.

1.2 Team Size and Stability in the Literature

In 1974 Brooks, in his popular book ’The Mythical Man Month’, stated that adding additional
developers to a project can result in a loss of productivity due to the exponential difficulties
involved in maintaining effective communication within a larger team (Brooks, 1986). In
2000, Raymond, in his book ’The Cathedral and the Bazaar’, asserted that in open-source
software development larger teams are more effective at identifying and resolving bugs,
leading to less fault-prone software. Raymond termed this ’Linus Law’ named after the
lead linux developer. In contrast to both Brooks and Linus law is the ’Core Team principle’
that states that the size of a team should not have an impact on the success of the project as
core development groups are always small. For researchers or practitioners, attempting to
navigate these somewhat conflicting principles to understand which factors will win out is no
easy task (Schweik et al., 2008).

Greater consensus is evident when reviewing the literature around team stability - a signifi-
cantly smaller body of work - which agrees that more stable teams produce less fault-prone
software. One particularly stark observation was that as team stability increased by 50%
defects decreased by 19% (Huckman et al., 2009).
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Questions of how development team size and stability impact fault-proneness is also very
much at the forefront of practitioner minds. Many practitioners have taken the time to
present their evidence and document their experience around these two particular strands in
whitepapers and blog posts, generally agreeing with the academic research - some through
empirical means (Macheronne, 2013; Mcconnell, 2018), others purely anecdotal (Miller,
2006; Erickson, 2012; Meccia, 2015; Plowman, 2015) - that smaller, more stable teams
produce less fault-prone software. This is covered in more detail in the ’Related Work’
chapter.

Interest in fault-proneness is not without good reason. There are numerous examples of
software faults causing governmental or corporate institutions severe reputational damage.
Knight Capital is oft-cited as an example of how costly fault-proneness can be after a defect
in their order routing software caused a $465 million trading loss (SEC, 2013). Behind
the headline grabbing incidents is a more pervasive issue throughout the industry. A 2013
Cambridge University study estimated that software bugs cost the global economy $312
billion annually (Britton et al., 2013). That same study found that developers spend half their
time debugging software.

However, fault-proneness is not the only aspect that of concern to stakeholders. Main-
tainability has also seen significant research activity. This refers to the ease with which a
software system or component can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment (Radatz et al., 1990). ISO 9126 states
that maintainability is comprised of four sub-attributes - analysability, changeability, stability,
and testability (ISO 9126-1:2001, 2001). Highly analysable software requires lower effort to
investigate and understand sections of the codebase in order to remediate defects or to adapt
the codebase to new requirements. Similarly, high levels of changeability require less effort to
implement changes in the codebase. Stability implies a lower likelihood that making changes
to the software may have unintended negative impacts. Finally, testability is a measure of the
effort required to adequately test software. Taken together, a codebase exhibiting high-levels
of each of these sub-attributes of maintainability support a more adaptable business against a
backdrop of an oft-changing competitive landscape.

It is of crucial importance that researchers and practitioners alike understand the impact of
any factors that can have a material impact on the maintainability of software. The focus of
this thesis is to add evidence and insights on how development team size and team stability
play a role as factors in the maintainability of produced software.
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1.3 Internal and external factors in the literature

Figure 1.1 depicts, at a very high-level, the relationship that existing literature has established
between the internal structural attributes of software and its maintainability.

Prior research has focused on establishing mathematical models that describe the impact of
the internal attributes of software on its external attributes including maintainability. In these
models the internal attributes are the independent variables while the external attributes are
the dependent variables. Broadly, these models establish that lower coupling and complexity
are more favourable structural properties, leading to lower fault proneness and greater
maintainability. Conversely, higher cohesion and modularity are associated with that same
favourable outcome of lower fault proneness and greater maintainability. Tables 2.2 and 2.5
neatly summarise these relationships which will be detailed in the next chapter titled ’Related
Work’.

This work takes an alternative yet complementary approach to the existing body of research.
The research questions in this thesis centre around establishing the impact of team com-
position on the internal attributes of software, essentially treating the team factors as the
independent variables and the internal attributes as the dependent variables. Using the
aforementioned models from existing research, these observations are subsequently used to
deduce the likely impact of these team factors on maintainability. Given the breadth of the
work modelling the impact of internal attributes on external attributes, this could be used to
apply the observations in this research to other external attributes beyond maintainability.

 

 

INTERNAL ATTRIBUTES 

COUPLING COHESION 

COMPLEXITY MODULARITY 

MAINTAINABILITY 

TESTABILITY CHANGEABILITY 

ANALYSEABILITY 

TEAM FACTORS 

SIZE STABILITY 

STABILITY 

UNKNOWN KNOWN 

Fig. 1.1 The impact of ’people’ factors on internal and external attributes of software
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1.4 Research Problem and Approach

Effective teams are crucial to the success of organisations, especially in environments that
require teams to be constantly created and dismantled as is the case in software development
(Andrejczuk et al., 2017). When organisations are tasked with delivering business critical
software, they are often faced with multiple options to resource the project. These options
could include externally recruiting a number of developers from the market and forming a
new team or alternatively seconding an existing stable team comprised of developers with
prior experience of working together - either from within the organisation or from an external
vendor.

After reviewing the existing research which does correlate team size and stability with
fault-proneness it is notable that no insight is gained into how the internal attributes of
software - such as coupling, cohesion, complexity and modularity - are impacted through
these aspects of team composition. Given that the internal attributes of software essentially
drive the aforementioned externally observable attributes (amongst others), it follows that, by
all rights, this should be a crucial area of study, through which researchers can drive a deeper
understanding of the impact of team composition on the aspects of stakeholder relevance such
as fault-proneness and maintainability. The current state of research leaves academics and
practitioners alike to draw their own conclusions on what changed internal attributes could be
driving any externally observable attributes - and whether, for example, increased likelihood
of fault-proneness could be observed at an earlier stage in the development lifecycle at
the code level and subsequently mitigated. As Fenton rightly points out, practitioners are
accustomed to measuring and monitoring internal attributes throughout the development
process, and hence would be well placed to monitor and mitigate risks if they were broadly
observable (Fenton and Bieman, 2014).

In order to qualitatively or quantitatively assess the negative effect of inappropriately sized
or unstable teams, it is essential to analyse the impact that team size and stability have on the
sub-attributes of maintainability. Such research is essential to providing practitioners with the
requisite insights to inform their decisions around team composition. While existing research
informs us that more stable development teams produce less fault-proneness, understanding
the impact on the analysability, changeability, testability and stability of the software would
enable practitioners to forecast how team stability would impact the maintainability phase of
the project. This would empower practitioners to make team composition decisions that are
more likely to be aligned with business goals and increase the likelihood of project success.
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Table 1.1 Summary of the relationship between structural attributes and the externally
observable attributes of software, as established in prior research.

  
Trend 

Objective 

Fault 

Proneness Testability 

Understand 

-ability 

Change- 

ability Stability 

Coupling    ▬ ▬  

Complexity       

Cohesion    ▬   

Modularity    ▬ ▬  

 

The empirical approach of this thesis is to measure the impact of team size and stability
on the internal attributes of a software system that, in turn, have a proven impact on its
maintainability. This is illustrated by Figure 1.1: by measuring the impact that these factors
have on the internal attributes of software, this work provides a indirect link between the
people factors and the maintainability of such a system. The primary contribution of this
thesis is to add to the existing body of work and to add evidence in the form of trends,
correlations and models describing the relationship between team size and team stability
with the produced software’s internal attributes, complementing the previously established
trends relating internal and external attributes as summarised in Table 1.1 and discussed in
detail in ’Related Work’.

This research draws upon a formally popular FLOSS ’forge’ - a centralised online system
with tools to enable distributed development teams to work together - to provide a data set
which can be mined for observations to drive the empirical work in this thesis.

1.5 Research Questions and Hypotheses

Based on the survey of the related literature, the research questions focus on the two strands
highlighted in the previously stated research problem. For each research question the null
and alternative hypotheses are stated below.

• RQ1 What is the impact of development team size on the internal structural attributes
of software projects and what are the implications on its maintainability?
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– H0,1 Development team size does not impact the coupling, complexity, cohesion
or modularity of the produced software. Naturally the default starting position is
to hypothesise that there is no relationship between team size and the structural
attributes of software.

– H1,1.1 Larger development teams produce software which exhibits greater
coupling and complexity and lower cohesion and modularity when compared to
that produced by smaller development teams. Given existing research detailing
the challenges that larger teams face in communication (Brooks, 1986) and
given the body of empirical research that finds that larger teams produce more
fault prone software (Weyuker et al., 2008; Nagappan et al., 2008; Meneely and
Williams, 2009; Foucault et al., 2015), it follows that a reasonable hypothesis is
that the internal structural attributes of the software produced by such a team will
trend in a direction that is consistent with increasing fault-proneness; namely
greater coupling and complexity, and lower cohesion and modularity. As both
Linus law and the Core Team principle indicate the presence of forces that
may ultimately work in favour of larger teams, such a hypothesis can only be
proposed cautiously.

– H1,1.2 Larger development teams will produce less maintainable software when
compared to that produced by smaller development teams. As discussed in
’Related Work’ in detail, cohesion is correlated with testability (Badri et al.,
2011) and analysability (Boehm et al., 1978) while coupling and complexity
have been negatively correlated with stability (Elish and Rine, 2003). Given
the previous hypothesis (H1,1.1) that larger teams will produce software which
exhibits greater coupling and complexity and lower cohesion and modularity,
the hypothesis follows that maintainability will likely deteriorate.

• RQ2 What is the impact of the development team stability on the internal structural
metrics of coupling, cohesion, complexity, and modularity of software projects and
what are the implications on its maintainability?

– H0,2 Development team stability does not impact the coupling, complexity,
cohesion or modularity of the produced software. Again, here the default starting
position is to hypothesise that there is no relationship between team stability and
the structural attributes of the software produced by that team.

– H1,2.1 Less stable development teams produce software which exhibits greater
coupling and complexity and lower cohesion and modularity when compared to
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more stable development teams. Similarly to larger development teams, existing
research shows that less stable teams also produce more fault-prone software
and provide lower client satisfaction levels (Huckman et al., 2009; Gardner
et al., 2012). Naturally, this leads to a similar hypothesis to H1,1.1 that less
stable teams will produce internal structural attributes which trend in a direction
counter to the objective; namely greater coupling and complexity and lower
cohesion and modularity.

– H1,2.2 Less stable development teams will produce less maintainable software
when compared to more stable development teams. Following a similar rationale
to that expressed H1.1.2, given the hypothesis that less stable teams will produce
software which exhibits greater coupling and complexity and lower cohesion
and modularity, it follows that maintainability is hypothesised to deteriorate.

1.6 Research Goals and Objectives

The research questions and the related hypotheses are connected, in logical order, to the
research goals. In the section below, each goal is formulated with its own rationale which is
further elaborated on with a series of objectives, each justified by a rationale.

• Goal 1 To establish the impact of team size on the internal attributes of software
and deduce the likely impact to maintainability. This research goal is to conduct an
analysis on the impact of team size on the structural metrics of software as a pathway
to drawing insights into how this factor impacts the externally observable attributes
of software. Within this overarching goal there are several objectives that facilitate a
deeper knowledge of the underlying trends that impact structural metrics as precursor
to formulating a credible methodology to execute the team size analysis.

– Objective 1,1 Observe structural metrics trends throughout the evolution of
software projects. As a codebase undergoes development iterations, increasing in
functional complexity and code volume, the progression of the structural metrics
exhibit trends which are necessarily of significance to any further analysis.

– Objective 1,2 Control for confounding factors. These are factors that influence
both the dependent and independent variables within a model causing a spurious
association to be drawn. These factors can pose a significant threat to validity.



14 Introduction

For this reason, this objective aims to devise and execute an analytical approach
to control for these confounding factors in order to ascertain the impact of team
size alone.

– Objective 1,3 Formulate a definition of the software development team which
enables its size to be observed through mining software repositories and analyse
structural metrics across a sample data set to observe the impact of team size on
the structural attributes of software. This objective goes to the heart of answering
the first research question - RQ1.

– Objective 1,4 Deduce the likely result that the impact from team size on the
structural metrics on software will have on the four sub-attributes of maintain-
ability; changeability complexity, testability and analysability. This is to be
done by referencing the relationships established in prior research between the
internal and the external attributes of software. Once the impact of development
team size on the structural metrics of a codebase is observed, the focus shifts to
deducing the impact that this will have on the external attributes of the software.

• Goal 2 To establish the impact of team stability on the internal attributes of software
and deduce the likely impact to maintainability.

– Objective 2,1 From the prior research identify the pitfalls that exist in mining
software repositories, how they apply to team stability analysis, and how they
can be mitigated. Two challenges exist when conducting committer collaboration
analysis in team stability analysis. The first is the effect that forking can have on
the validity of results. Forking refers to the process of creating an alternate and
independent software development stream from an existing project. As forked
projects can retain the revision history of its parent, without proper identification
and treatment, they can appear to be two independent projects with each set
of committers contributing twice. The second challenge concerns tracking
users throughout a forge - a task made complex by the fact that users often use
subtly different identifiers through a project or while traversing a forge. These
challenges should be met to ensure that they do not pose a significant threat to
the validity of this research.

– Objective 2,2 Formulate a definition of the software development team stability
and analyse structural metrics across a sample data set to observe the impact of
team stability on the structural attributes of software. A nuanced approach is
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necessary to distinguish between team stability accrued through the course of
a project and that stability that comes from the team remaining stable through
the course of multiple projects. This objective drives towards an answer to the
second research question - RQ2.

– Objective 2,3 Deduce the likely result that the impact from team stability on the
structural metrics on software will have on the four sub-attributes of maintain-
ability; changeability complexity, testability, analysability. Again, this is to be
done by referencing the relationships established in prior research between the
internal and the external attributes of software. Mirroring objective 1,4 concludes
the answer to the second research question.

1.7 Thesis Contribution

Two main contributions to the state of the art can be identified within this thesis:

• Advanced methodology to measure team size and stability: This thesis presents an
alternative approach to measuring the impact of team composition on external attributes
by directly measuring the impact on its internal attributes and leveraging established
research to deduce the ultimate impact on its external attributes. The impact of team
size and stability on maintainability is studied through the GoogleCode forge and, in
the process, numerous practical difficulties involved in mining a large and diverse forge
are solved. In particular, this work identifies, quantifies and mitigates the previously
undocumented and significant threat that forking can pose to the accuracy of forge
analysis.

• Impact of team size and stability on internal structural attributes: A clear re-
lationship is established between team size and stability on the internal structural
attributes of software. This research concludes that those projects developed by smaller
or more stable teams exhibit lower levels of coupling and inheritance complexity and
higher levels of cohesion and modularity. In addition to the observed trends, the state of
the art is furthered through the proposal of two new measures to capture team stability,
distinguishing between stability that accrues when a team remains unchanged across
projects and the stability which is present in an individual project through the close
collaboration of team members.
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Table 1.2 A summary of the research questions, hypotheses, goals and objectives of this
research.

Research 

Questions Null hypothesis 

Alternative 

hypothesis Goal Objectives 

RQ1 

What is the Impact 

of team size on the 

structural properties 

of software and its 

resultant 

maintainability? 

H0,1 

Development team 

size does not impact 

the coupling, 

complexity, 

cohesion or 

modularity of the 

produced software.  

 

H1,1.1 

Larger development 

teams produce 

software exhibiting 

higher coupling, 

higher complexity, 

lower cohesion and 

lower modularity.  

 

H1,1.2 

This leads to lower 

maintainability. 

G1 

Establish 

correlations between 

team size and the 

structural attributes 

of FLOSS software 

and deduce the 

impact that these 

correlations will 

have on the 

externally 

observable attributes 

of the software. 

O1,1: Observe how structural 
metrics progress as software 
projects evolve. 

 
O1,2 Isolate and eliminate the 
confounding impact of 

functional complexity on the 
team size analysis. 
 
O1,3: Formulate a definition 
of the software development 
team size and analyse 
structural metrics the impact 
of this factor on the structural 
metrics. 

 
O1,4: Deduce the likely result 
of the impact of team size on 
the maintainability of 
software. 

RQ2 

What is the Impact 
of team stability on 
the structural 
properties of 
software and its 
resultant 
maintainability? 

H0,2 

Development team 

stability does not 

impact the coupling, 

complexity, 

cohesion or 

modularity of the 

produced software. 

 

H1,2.1 

Less stable 

development teams 

produce software 

exhibiting higher 

coupling, higher 

complexity, lower 

cohesion and lower 

modularity 

 

H1,2.2 

This leads to lower 

maintainability. 

G2 

Establish 

correlations between 

team stability and 

the structural 

attributes of FLOSS 

software and deduce 

the impact that these 

correlations will 

have on the 

externally 

observable attributes 

of the software. 

O2,1: Identify and mitigate 

the pitfalls associated with 

mining software repositories 

for the purposes of team 

stability analysis  

 

O2,2: Formulate a definition 
of the software development 
team stability and analyse 
structural metrics the impact 
of this factor on the structural 

metrics. 

 
O2,3: Deduce the likely result 

of the impact of team stability 

on the maintainability of 

software. 
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1.8 Intended Audience

This research is intended for both the research and practitioner communities. This thesis
complements the existing body of research which correlates the internal attributes of software
with observed external attributes by specifically studying the impact of team composition on
these internal attributes. Researchers with an interest in relating software metrics to measures
of stakeholder interest will find relevance in this work. It is also intended for this work to
be of value to those practitioners in the field of software development. It is the intention
of this thesis to contribute towards more informed practitioner decision-making around
development team composition - particularly at the middle-management level. Furthermore,
practically oriented observations of the impact of sub-optimal team composition, which
can be monitored through static analysis of software, may find interest in the developer
community.

1.9 Thesis Structure

The remainder of this thesis is arranged over five chapters as described below and illustrated
in Figure 1.2.

Chapter 2. Related Work Prior research is documented in three distinct fields. Firstly,
a survey is conducted for previous research that establishes correlations between the de-
velopment team’s size and stability against attributes of stakeholder importance such as
fault-proneness and team productivity. Secondly, a survey is carried out in the established
field of mining software repositories and a sampling of research that employs mining tech-
niques to observe changes in the properties of software is discussed. Finally, software metric
suites are surveyed with a focus on object-oriented structural metrics and how they are inter-
preted and correlated with externally observable attributes of software such as maintainability.

Chapter 3. Methodology In this chapter the methodological approach to this research
is detailed. Existing mining tools are surveyed and the mining toolchain that underpins this
research will be discussed in depth. Justification is provided for the use of the CK metric
suite in this research.

Chapter 4. The Impact of Team Sizes on Structural Metrics This chapter focuses on
answering the first research question by conducting a detailed analysis on a sample of
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projects from the GoogleCode repository and establishing correlations between team size
and the modularity, coupling, cohesion, and complexity of software.

Chapter 5. The Impact of Team Stability on Structural Metrics This chapter addresses
the second research question with a focus on the impact of team stability present in an
individual project and accuring across projects within a forge. To facilitate this work, an
analysis of committer collaborations are conducted across the entirety of the GoogleCode
forge and, in the process, several threats to validity are identified and mitigated. This analysis
is used to identify the population of projects which is used to establish correlations between
team stability and the modularity, coupling, cohesion, and complexity of software.

Chapter 6. Discussion The discussion chapter provides a summary of the results against
the hypothesis, objectives and goals of this thesis. The results are analysed using individual
projects as case studies to enable a qualitative analysis. Threats to internal and external
validity and distilled conclusions are discussed. Finally, possible future avenues of research
are proposed.
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Chapter 2

Related Work

2.1 Introduction

As outlined in the introduction, this thesis focuses on how software team size and stability
impact the internal structural attributes of software. Out of this come three individual strands
of related work which will be the focus of this chapter.

The first part of this chapter reviews the studies of the impact of people factors on the exter-
nally observable attributes of software, with a focus on factors of team size and stability. This
work has the greatest direct relevance to this research and is one that this thesis endeavours
to further by offering an alternative approach based on the direct measurement of the internal
structural attributes of software rather than the observation of external attributes. The second
strand of related work in this chapter comprises the body of research that establishes correla-
tions between the internal structural metrics of software and its external attributes. This is of
crucial relevance to this work as it is that very body of research that will later be relied upon
to map observable trends of structural metrics onto conclusions that have meaning from the
perspective of a non-technical stakeholder with a sole interest in the external attributes of
the software. The third strand of related work concerns the practicalities of mining software
repositories. A survey is provided of the available tools and a summary of the pertinent
challenges and pitfalls associated with mining software repositories.
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▪ History of software metrics.  
▪ Metric correlations, thresholds 
and outliers. 
▪ Established relationships 
between metrics and attributes 
of maintainability. 

▪ Survey of prior research 
mining and analysing forges. 
▪ Overview of art in the area of 
mining tools. 

 ▪ Pitfalls of mining software 
repositories. 

▪ Impact of team size and 
stability on productivity and 
fault-proneness. 

SECTION SECTION SECTION 

IMPACT OF TEAM 
FACTORS 

MINING SOFTWARE 
REPOSITORIES 

STRUCTURAL METRICS & 
EXTERNAL ATTRIBUTES 

EVOLUTION OF SOFTWARE 
METRICS 

INTERPRETING CK METRICS 

2.2 2.3 2.4 

TEAM SIZE 

TEAM STABILITY 
CK METRICS AND 
MAINTAINABILITY 

FORGE ANALYSIS 

PITFALLS 

MINING TOOLS 

Fig. 2.1 Chapter 2 outline providing an overview of the contents of each section.

2.2 The Impact of Team Factors

There is a significant corpus of existing work concerned with establishing the impact of
factors of team composition on the external attributes of software. This body of research
models the relationship between developer and organisational factors with aspects such as
fault-proneness and team productivity. This work provides the basis for the null hypotheses
detailed in the previous chapter as well as the empirical approach of this study as we adopt
and adapt previously established measures of team size and stability.

2.2.1 Team Size

There have been several empirical studies investigating the relationship between development
team size and the team productivity. In his popular book ’The Mythical Man Month’, Brooks
argues that, since software development is a complex task, the communication effort is great
and adding more developers can lengthen rather than shorten the time taken to complete a
task as it adds an exponentially greater number of necessary communication paths between
developers (Brooks, 1986) - although it is notable that Hsia et al. (Hsia et al., 1999) argue that
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it won’t necessarily take longer but will always increase the overall cost of delivery compared
with correctly sizing the team from the outset. Roger et al., using data from 130 projects,
empirically tested the impact of a number of factors on software development productivity
concluding that larger team sizes significantly negatively impact software development time
and productivity (Rodger et al., 2011). This is corroborated in other research and using a
number of empirical methods (McLeod and MacDonell, 2011; Lalsing et al., 2012). Scholtes
et al., using a data set of FLOSS projects, perform network analysis concluding that the
magnitude of the productivity decrease is related to the growth dynamics of developer
coordination networks (Scholtes et al., 2016). In contrast, Maillart and Sornette find that
occasionally an OSS development team will exhibit ’superlinear productivity’ in direct
relation to the development team size, arguing that occasionally the whole is more than the
sum of its parts (Maillart and Sornette, 2016).

Schweik et al. (Schweik et al., 2008) highlight the need to inform development managers
who have a stake in FLOSS projects on whether increasing the development team size is more
likely to result in a successful project and help avoid ’project abandonment’, arguing that this
is the primary tool at their disposal to influence outcomes. Rodriguez et al., acknowledging
this impact on outcomes, seeks to advise managers on the ideal team size to facilitate a
process of project decomposition and distribution of work amongst appropriately sized
development teams (Rodriguez et al., 2012). The productivity of teams sized above and
below an arbitrary threshold are compared, controlling for the functional complexity of the
produced software. In-line with prior literature, it is noted that those teams sized below the
threshold are more productive than the larger teams.

Pendharkar and Rodger investigated the relationship between team size and the associated
cost of development (Pendharkar and Rodger, 2009). They observed that the team size does
not linearly increase software development cost and that, in some cases (hypothesised to be
those projects suffering communication inefficiencies), larger teams require a greater than
proportional increase in resources. Blackburn et al. make similar observations while also
noting that greater functional complexity leads to larger teams (Blackburn et al., 2006). This
is intuitive given that larger teams have greater knowledge and expertise and therefore would
typically be deployed to more complex problems. Hericko et al. worked to define the optimal
team size given these two conflicting drivers, proposing a model to minimise development
effort for a given project size (Heričko et al., 2008).

There has also been research negatively correlating team sizes to measures used as a proxy for
software quality. Nagappan used data from Microsoft’s Windows Vista project to establish
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that metrics based on organisational structures (of which team sizes were one aspect) are a
significant predictor of software fault-proneness (Nagappan et al., 2008). Nagappan’s work
was later validated by Caglayan et al. who found that, while organisational metrics were
out-performed by pre-release metrics such as defect counts as a predictor of ultimate fault-
proneness, they were a significant predictor nonetheless (Caglayan et al., 2015). Mockus
also noted a correlation between team sizes and fault-proneness (Mockus, 2010). Bird et al.
developed a more sophisticated code ownership model that distinguished between frequent
’major’ committers and infrequent ’minor’ committers and found that minor committers are
more likely to introduce defects (Bird et al., 2011). Bell et al. observed that the number of
developers that modify a file increased the probability of that file being defect prone (Bell
et al., 2013). Recently, Chopra et al. and others have moved this research forward by building
prediction models to identify fault-prone classes built upon a number of predictors including
team size (Madeyski and Jureczko, 2015; Chopra et al., 2018).

2.2.2 Team stability

Team stability (in literature also referred to as ’team familiarity’ or by the antonym ’team
fluidity’) is also viewed as a critical success factor for an effectively functioning and per-
forming group wherever complex problems are tackled. From cardiac surgery teams to flight
crews and basketball teams, those teams that experience continuity in personnel make-up are
likely to be higher performing (Carthey et al., 2001; Akgün and Lynn, 2002; Yeh et al., 2005;
Wiegmann et al., 2010; Huckman and Staats, 2013; Joshi et al., 2018). Software development
teams are no exception (Bao et al., 2017). The Scrum Agile software development methodol-
ogy, for example, favours avoiding changing team members for the stated reason that stable
development teams are more productive (Deemer et al., 2010). There is anecdotal evidence to
back this claim up with practitioners reporting that fluid teams are likely to be less productive
as they tend to go through the ’Tuckman cycle’ (Forming, Storming, Norming, Performing)
with the addition of every new team member (Tuckman, 1965; Linders, 2011).

There has been comparatively few academic studies investigating the role of team stability
within the field of software development. On the empirical side, Huckman et al. conducted a
detailed study of the team stability and role experience on the output of development teams
(Huckman et al., 2009). Armed with a data set of over a thousand projects and defining team
success criteria in terms of software defect count and adherence to deadlines and budgets,
they found that a conventional measure of experience - years of experience at a firm - was
not linked with team performance. However, team stability (measured as the average number
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of times that each member has worked with every other member of the team) was associated
with less error-proneness and more budget adherence. One stark result was that, as familiarity
increased by 50%, defects decreased by 19%, and deviations from budget decreased by
30%. This was confirmed by Gardner et al. who observed that teams with a high degree of
team stability, captured by measuring the length of time that each team member had worked
with their teammates, yielded a 10% increase in client satisfaction (Gardner et al., 2012).
Mockus, studying a large commercial software project, observed that new developers were
not associated with a decrease in quality (postulating that this was due to new developers
being assigned peripheral tasks) while departures from the project were associated with
greater fault-proneness (Mockus, 2010).

2.3 Structural Metrics and External Attributes

2.3.1 Overview

Underpinning the empirical approach to this research is the use of structural metrics to
measure the internal attributes of software. While ISO/IEC 25010 recognises that internal
quality drives external quality, it does not offer any specific direct measures for internal
quality but instead offers a framework to define metrics that are influenced by internal quality.
For example, maintainability is measured by the resources expended to modify software.
These measures are neither direct nor predictive. Fortunately, there has been significant
research in formulating such direct measures.

Coleman et al., in the early 90s, developed a maintainability model that used static measures
of source code to produce a percentage figure on how easy a system is to support and
change derived from a blend of measures including complexity metrics (Coleman et al.,
1994). This metric is still used today within Visual Studio which classifies ranges which
correspond to High, Moderate and Low maintainability (MSDN, 2015). Heitlager et al. from
the Software Improvement Group (SIG) critiqued this model as presenting difficulties in
re-constructing the root causes that drive a particular measure and suggested an alternative
maintainability model which blends structural metrics including complexity, volume, and
unit size to drive its metrics (Heitlager et al., 2007). The strength in the SIG maintainability
model is the simplicity with which a calculated index would be mapped to its constituent
structural attributes.
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In a similar vein, the approach of this research to observing indicators of internal quality is
to directly measure the internal structural attributes of a codebase and draw upon established
models to ascertain if the trends observed indicate enhanced or degraded internal software
quality.

There are two primary categories of internal attributes of software - size and structure.
Software size is a broad term and measurements can vary from basic line of code counts
through to function-point analysis. It is tempting to assume that size is directly correlated to
external attributes of fault-proneness and development effort while negatively correlated to
maintainability (Akiyama, 1971). However, as Fenton and Bieman state, experience shows
that this is not a valid assumption and that the structural attributes of software play a vital
part in driving these external attributes (Fenton and Bieman, 2014).

This section first discusses the metrics which can be used to capture structural attributes
followed by a brief historical context. A survey of relevant software metric suites is provided
alongside an overview of the research efforts to interpret metrics and modelling the impact of
structural metrics on maintainability. The latter is particularly relevant as these relationships
will be drawn upon later in this thesis to infer the likely impact of observations of structural
metrics on the external attributes of the studied software systems.

2.3.2 What Are Structural Metrics?

Software metrics embody an empirical approach to software engineering and are primarily
designed to assist in making assessments of software artefacts and development processes,
in the process guiding engineers and project managers in their decision-making. A soft-
ware metric is the quantitative measure of the degree to which a component, system, or
process possesses a given characteristic or attribute (Ordonez and Haddad, 2008). If used
appropriately, software metrics can lead to a significant reduction in costs of the overall
implementation and maintenance of the final software product.

Structural metrics are a specific category of software metrics that allow us to measure and
express the adherence of a codebase’s structural attributes to sound engineering design
principles. The key attributes in Object Oriented Programming are the interlinked concepts
of coupling, cohesion, complexity, and modularity. These are explained as follows.

• Coupling: This is the degree to which components within software systems are
interdependent. A high degree of coupling in a set of components implies that changes
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in one component may impact the other components in that set (Parnas, 1972). At
a relatively low level, modern object-oriented languages provide paradigms (such as
interfaces) to facilitate lower coupling between classes. Interfaces allow a developer
to separate the method of interaction into a component from the implementation of
functionality. At a higher level, enterprise design patterns such as the Service-Oriented
Architecture facilitates lower levels of coupling between applications (Jamshidi et al.,
2018). Lower levels of coupling are desirable at each level of an enterprise software
system (Chidamber et al., 1998; Pressman, 2005).

• Cohesion: Cohesion is a measure of the extent to which functionality within a single
component belongs together. A component that exhibits a high degree of cohesiveness
typically encapsulates a single set of highly related functionalities. In object-oriented
languages, a high degree of cohesiveness is a desirable trait and is consistent with the
’single responsibility principle’ which states that a class should have a single purpose
and its functionality should be encapsulated within the class - i.e. not exposing its
inner workings to other components (Fenton and Bieman, 2014). A high degree of
cohesiveness and encapsulation is associated with a low level of coupling (Chidamber
et al., 1998).

• Complexity: In the context of structural metrics, complexity refers to the structural
complexity of software rather than the functional complexity. This is a contrast that
will be discussed in the coming chapter in Section 4.4.3.2. Structural complexity is
a measure of the degree of interactions between components in a software system
(Fenton and Bieman, 2014). A highly complex system would contain a large number
of components and a large number of interactions between the components. Although
the number of interactions between components is a driver of structural complexity,
the nature of the interaction between two components can introduce further structural
complexity if there is a dependency on the inner workings of the components (i.e. poor
encapsulation and high coupling). Although functional complexity can often introduce
structural complexity, all things being equal, lower measures of structural complexity
are desirable.

• Modularity: This refers to the extent to which a system’s functionality is logically
partitioned into independent components (Parnas, 1972). A high degree of modularity
is desirable as it encourages low coupling and high cohesion which, in turn, reduces
structural complexity (Parnas, 1972; Sullivan et al., 2001).
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2.3.3 Evolution of Software Metrics

The study and application of software metrics dates back to the mid-1960’s when the primitive
Lines of Code metric was routinely used as the basis for measuring software development
productivity (developer LoC per month) and quality (defects per KLoC). In 1971 Akiyama
proposed the use of metrics for software quality prediction proposing a regression-based
model for module defect density (number of defects per line of code) where line of code
was used as a crude indicator of complexity (Akiyama, 1971). This was one of the earliest
attempts, albeit a simplistic one, to extract an objective measure of software quality through
the analysis of artefacts of a system. With the increasing diversity of programming languages,
it became necessary to introduce a more sophisticated model of the structural attributes of
software.

McCabe, recognizing the importance of testable and maintainable software systems, broke
new ground in the area of software metrics introducing the first meaningful structural metrics
(McCabe, 1976). In 1976, motivated by the observation that half the development time
is spent in testing and that most of the cost of owning a system is in its maintenance, he
developed a software metric which he termed ’cyclomatic complexity’. This metric is based
on a formula to calculate the number of linearly independent paths through source code. Its
purpose is to identify complex software modules based on program flow. Around the same
period Halstead designed a structural metrics suite based on definitions of operators and
operands modelling the complexity of individual lines of code (Halstead, 1977). To give
a flavour of these metrics, the Halstead Difficulty uses a formula to assess the complexity
based on the numbers of unique operators and operands capturing a measure of how difficult
the code is to write and maintain. Halstead Effort is an estimate on the effort to rewrite a
particular method.

The research community continued to be highly active in the field of structural metrics
throughout the next decade (Côté et al., 1988) with advances in the usage of existing
’classical’ metrics (Behrens, 1983; Gaffney Jr, 1981) as well as the formulation of new
structural metrics (Boydston, 1984; Prather, 1984).

In the 90s, with the increasing adoption of Object-Oriented (OO) programming languages, the
research in structural metrics took another significant step forward. Chidamber and Kemerer
argued that Object-Orientation, as the most prominent advance in software development, and
with yet to be established practices, necessitated measures that could guide organizations
to its successful adoption. This fact, coupled with criticisms of existing metrics suites, saw
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the development of the Chidamber and Kemerer (CK) metrics suite, detailed in Table 2.1
(Chidamber and Kemerer, 1991, 1994). For its popularity and simplicity, as detailed later in
this chapter, this is the suite that will be used to underpin the empirical work in this thesis.

2.3.4 Survey of Metrics Suites

There are a number of structural metric suites that commonly appear in both academic
literature and practitioner tools. In this section a comparative survey is provided for the most
popular metric suites and justification is given to the choices in this research. The discussion
is limited to object-oriented structural metrics given that, as will be discussed in the next
chapter titled ’Methodology’, this research studies Java software only. This is to the exclusion
of suites such as the Halstead metrics. Furthermore, consideration is only given to those
metric suites that comprehensively cover the key internal structural attributes - coupling,
cohesion, complexity and modularity - to the exclusion of, for example, the McCabe metrics
with their almost exclusive focus on structural complexity (McCabe, 1976; McCabe and
Butler, 1989). For a fuller survey of the available object-oriented structural metric suites,
the reader is encouraged to review the work of Gomathi and Linda Edith (Gomathi and
Linda Edith, 2013) and Xenos et al. (Xenos et al., 2000). The survey is therefore limited to
the Chidamber and Kemerer suite, the MOOD metric suite and the Lorenz and Kidd metric
suite.

• Chidamber and Kemerer metric suite The Chidamber and Kemerer (CK) metric
suite is one of the most cited of all structural metric suites within the academic
community (Pressman, 2005) with a great deal of research spanning the two decades
since its creation.

The CK metric suite is designed to operate on the most fundamental unit in object-
oriented systems - the class. The CK metric suite contains measures that capture
complexity, coupling and cohesion. The values of the measures are fairly arbitrary and
there has been research into defining the thresholds that could indicate classes which
would be more likely to require remedial action (Rosenberg, 1998). While there has
been some doubt cast on the theoretical and empirical validity of one of the measures in
the suite (Fenton and Bieman, 2014), nonetheless, this remains the most validated OO
metric suite available (Kitchenham, 2010) with a great deal of research successfully
correlating the metrics to external quality attributes (Rosenberg, 1998; El Emam et al.,
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Table 2.1 A summary of the CK metric suite. For further detail on the calculations and their
theoretical basis refer to the research of Chidamber and Kemerer (Chidamber and Kemerer,
1994)

Metric Attribute  Detail 

Coupling 

Between Objects 

(CBO) 

Coupling, 

Modularity 

CBO is a count of the classes to which the class being 

inspected references. 

 
This metric is a measure of the number of other objects 

to which the class being considered is coupled. A high 

number can indicate poor encapsulation and lower 
modularity resulting in a low level of reusability. 

Depth of 

Inheritance tree 

(DIT) 

Complexity DIT is calculated as the number of classes from that 

which is being measured to its top-level parent.  

 
This is a measure of design complexity, capturing the 

number of parent classes from which a class inherits. A 

high number may indicate excessive design complexity. 

Lack of Cohesion 

of Methods 

(LCOM) 

Cohesion The LCOM is a count of method pairs whose similarity 
is 0 minus the count of method pairs whose similarity is 

not zero. The degree of similarity for two methods m1 

and m2 in a class is given by: 

LCOM = {v1} ∩ {v2} 
{v1} and {v2} are the sets of instance variables used 

by M1 and M2. 

 
This metric is a measure the dissimilarity of methods in a 

class via instanced variables. A high number can point 

towards poorly designed classes that do not adhere to the 
“single responsibility principle”. 

Number Of 

Children (NOC) 

Reuse NOC is the number of direct subclasses extending the 

class being measured.  

 
This metric is an indicator of reuse and abstraction. High 

numbers may indicate poor design or diluted abstraction.  

Response For a 

Class (RFC) 

Complexity RFC is the number of methods within a class added to 

the number of methods invoked by any of those methods.  
 

This is a measure of the count of methods which may be 

executed in response to a message. High numbers may 

highlight objects with undue complexity. 

Weighted 

Methods per 

Class (WMC) 

Complexity WMC is calculated as the number of methods in the class 

where each method complexity is considered to be 

‘unity’ or equal to 1. 
 

This metric is the sum of the complexity of the methods 

of a class and is an indicator of the complexity of a class 

through its method count. A high number can indicate 
undue complexity and limited scope for re-use.  
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2001; Basili and Perricone, 1984; Subramanyam and Krishnan, 2003). This suite is
covered in more detail later in this chapter.

• MOOD metric suite The MOOD metric suite was developed by Abreu and Carapuça
in 1994 to provide system-level measures (as opposed to class-level measures) for
object-oriented systems in order to guide and assess OO design quality (Abreu and
Carapuça, 1994). The measures capture a broad range of structural attributes including
encapsulation and polymorphism factors - factors absent from the CK metrics suite.
In contrast to CK metrics where the values of the measures are arbitrary, the MOOD
metric values are probabilities with values from 0 to 1 representing the likelihood of
the existence of a particular attribute. Harrison et al. conducted research detailing the
utility of MOOD metrics to practitioners finding that they present information that
would be of general use to software managers to understand the overall attributes of a
system (Harrison et al., 1998b). MOOD metrics are not widely adopted in academic
research nor industry and this is reflected in the very scarce availability of tools that
generate these metrics with Project Anaylzer (Abounader and Lamb, 1997) being the
only distributed tool that the author could find. This tool only had support for the
Visual Basic programming language. In its favour there has been significant research
analysis which largely validated the MOOD metric suite (Abounader and Lamb, 1997;
Harrison et al., 1998a).

• Lorenz and Kidd metric suite In their book ’Object-Oriented Software Metrics’
Lorenz and Kidd proposed a metric suite consisting of eleven metrics that, in a
similar fashion to the CK metric suite, measured attributes at a class level (Lorenz
and Kidd, 1994). Metrics are broadly in four categories - size, inheritance, class
internals (attributes that can be measured on a class in isolation such as cohesion) and
class externals (attributes that capture how a class interacts with other classes such as
coupling and reuse). Lorenz and Kidd also propose threshold values to help interpret
metric observations. The Lorenz and Kidd suite did experience a degree of recognition
in academic circles with a large number of citations (Nesi and Querci, 1998) but, with
few validation studies (Sharma et al., 2012) and no available tools to measure these
metrics, it is fair to say that this metric suite has not experienced significant academic
or practitioner adoption. This may be due to the fact that the metric suite is fairly basic
and constitutes directly measurable attributes such as Number of Methods, Number of
Public Variables and Number of Variables which has caused some doubt to be cast on
its usefulness (Harrison et al., 1998b).
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Table 2.2 A summary of the Rosenberg OO metrics guidelines.

Metrics Objective 

Testing 

Efforts 

Understand-

ability 

Maintain-

ability 

Dev. 

Effort Reuse 

Complexity     
  

Size (LOC)     
  

Comment %      
 

CBO       

LCOM  
 

    

RFC       

WMC  
  

   

2.3.5 Interpreting CK metric values

At a time when OO metrics were a relatively new field of study, Rosenberg proposed that
metrics without interpretation guidelines are of little value. She concluded that, although
some numeric thresholds were suggested by developers, there was little to justify specific
values (Rosenberg, 1998). She proceeded to harness experiences within the NASA Software
Assurance Technology Centre (SATC) to apply a common sense approach to the formulation
of interpretation guidelines of individual OO metrics including most of the CK suite. These
findings are summarized in Table 2.2. The table shows the objective - the direction of trends
associated with favourable outcomes - and the associated impact on the external attributes.
For instance, it was concluded that developers should attempt to attain low values of LCOM
(the objective), which will result in a higher degree of understandability, maintainability and
reuse, while reducing development effort.

However pertinent and useful, Rosenberg’s research was based on the knowledge and
experience within SATC, and was not an empirical treatment of software metrics. Shatnawi
moved this area of metrics research forward by establishing CK metric threshold values
at a number of risk levels representing probabilities of error proneness (Shatnawi, 2010).
Oliveira et al. worked to devise a technique to establish relative thresholds across a corpus
of 79 projects programmed in Pharo and Smalltalk, identifying those projects that violated
thresholds for a higher percentage of metric observations in order to find projects which
would be expected to exhibit lower maintainability (Oliveira et al., 2015). Hussain et al. used
logistic regression to identify thresholds above which classes exhibit greater fault-proneness
(Hussain et al., 2016).
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Chidamber et al. researched the question of the interpretation of the CK metric suite for
managerial use and concluded that ’outlier’ metric values indicate a level of complexity that
would require management action (Chidamber et al., 1998). Chidamber et al. continued
to suggest that a useful method to identify such ’outlier classes’ is by applying Pareto’s
80/20 principle and selecting classes which exhibit metric values from the 80th percentile for
further attention - for example assigning a higher skilled developer to that implementation or
assigning extra testing resources to that component.

Basili et al, motivated by the objective to leverage structural metrics to provide guidance to the
areas of a system where testing efforts are best spent, established the utility of the Chidamber
and Kemerer suite as a predicator of fault-prone software classes (Basili et al., 1996). This
was achieved by assembling eight software development teams and using regression analysis
to establish relationships between OO metrics and observed defects.

These are, by no means, the only studies of this nature. Subramanyam and Krishnan
conducted similar work with access to a large number of in-house developed codebases,
controlling for programming language and software size, confirming the results obtained by
Basili et al (Subramanyam and Krishnan, 2003). These results were further validated in a
number of similar studies, each adding its own unique contribution (El Emam et al., 1999;
Tang et al., 1999; Cartwright and Shepperd, 2000; El Emam et al., 2001; Subramanyam and
Krishnan, 2003; Gyimothy et al., 2005; Xu et al., 2008; Malhotra and Jain, 2012; Okutan
and Yıldız, 2014; Song et al., 2018). Table 2.3 surveys the empirical approach within this
research.

Saberwal et al. developed logistic regression models relating CK metrics to bad code smells
driven by the desire to guide refactoring efforts to where they are most needed (Saberwal
et al., 2013). More recently, this work was validated by Tufano et al. (Tufano et al., 2017)
using linear regression models. Badri et al, using similar techniques, concluded that a
correlation exists between LCOM and unit test coverage, validating the use of OO metrics as
a predictor of the testability of classes (Badri et al., 2011).

2.3.6 CK metrics and Maintainability

Santos et al and Ernst independently identified a number of issues with threshold values,
foremost among them that these values make generalised statements across projects (Santos
et al., 2017; Ernst, 2018). Structural metric values depend heavily on complexity and size, and
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Table 2.3 A survey of the research modelling fault-proneness as the dependent variable and
CK metrics as the independent variables.

Study 

Confounding 

Variable(s) Data Set Analysis Results 

Basili et al, 

1996 

None factored in 8 student projects 

written in C++ 

Univariate linear 

regression. 
Multivariate 

logistic regression 

Finds that LCOM is not a 

significant predictor of fault-

proneness while the remainder of 

the CK metrics are. 

Tang et al., 

1999 

None factored in 3 small/medium 

commercial 
systems written in 

C++ 

Logistic regression RFC and WMC strong 

predictors for fault-proneness 

Emam et al., 

1999 

Class size 

(LOC) 

1 medium-sized 

commercial project 

Logistic regression After controlling for size, only 

CBO was an indicator of fault-

proneness 

Cartwright and 

Shepperd, 2000 

None factored in One large 
commercial project 

Linear regression Found the inheriting classes were 

more defect prone (identified as 

classes having a DIT or NOC > 0)  

Subramanyam 

and Krishnan, 

2003 

None factored in 1 large commercial 
project written in 

C++ and Java 

Linear regression CBO, DIT, WMC predictive of 

fault-proneness 

Ferenc et al., 

2005 

None factored in 1 large C++ FLOSS 

project 

Linear regression, 

decision trees and 
neural networks. 

CBO and LOC predictive of fault-

proneness.  

Xu et al., 2008 Class size 

(LOC) 

1 medium-sized 

government project 

written in C++ 

Neural networks CBO, RFC and WMC are reliable 

metrics for defect estimation 

finding that overall 

Malhotra and 

Jain, 2012 

None factored in 1 medium/large-
sized FLOSS 

project written in 

Java 

Logistic regression 
and machine 

learning techniques 

Machine learning models 
comparable in performance to 

linear models. Found that CBO, 

LCOM, RFC and WMC not to be 

significant predictors of fault-

proneness. The rest of the CK 

metrics were indicators. 

Okutan and 

Yıldız, 2014 

None factored in 9 open-source Java 

projects. 

Bayesian networks RFC is the most reliable predictor 

of fault-proneness. LCOM and 

WMC are less effective while 

NOC and DIT have limited effect. 

Song et al, 2018 None factored in 106 publicly 

available data sets. 

Machine learning 

algorithms 

CK metrics, used alongside 

network and process metrics, were 

found to enable defect prediction. 
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therefore a single threshold value will not necessarily hold true across a diverse set of projects.
Moreover, establishing a threshold across a corpus of projects using the techniques devised by
Oliveira et al. is arguably of limited value to this research given the objective of establishing
inferences from metric trends on how software maintainability is generally impacted by
team factors. For this reason, this section focuses on surveying the research that empirically
establishes a relationship between CK metric values and externally observable attributes
of software in order to expand upon (and detail the empirical validation of) Rosenberg’s
interpretation of the relationship between CK metrics and maintainability.

As established in the previous chapter, maintainability is comprised of four sub-attributes -
analysability, changeability, stability, and testability. Correia et al, through a survey-based
study present the opinion of software quality experts that a number of structural attributes
drive the sub-attributes of maintainability (Correia et al., 2009), the consensus being that size,
complexity, coupling, cohesion and test quality are all key factors. Chong and Lee developed
a technique to visualise the structural attributes of codebases using a weighted complex
network in order to capture its structural characteristics, with respect to its maintainability
and reliability (Chong and Lee, 2015). They broadly observe that high coupling and low
cohesion are associated with lower maintainability, confirming the consensus of the software
quality experts. Li and Henry conducted one of the first studies to determine if CK metrics
could be used as a predictor of maintenance effort, concluding that DIT, LCOM, NOC, RFC
and WMC all predict maintenance efforts beyond what can be predicted for size alone (Li
and Henry, 1993).

The next section surveys research modelling the relationship between CK metrics on particu-
lar sub-attributes of maintainability and each of the sub-attributes of maintainability.

2.3.7 CK metrics and the Sub-Attributes of Maintainability

Bruntink and van Deursen used correlation analysis to study the relationship between CK
metrics and the testability of software using a data set of five projects (including one open-
source project) (Bruntink and van Deursen, 2006). Using the lines of test code and the
number of test cases in the unit tests as a proxy for testability, they find that DIT, LCOM and
NOC are predictors of testability. It is attributed by the authors to be due to the developers
choosing not to re-test inherited behaviour from the parent class within each child class.
Badri et al. furthered this research by testing a series of metrics capturing the structural
attribute of cohesion for correlation (of which LCOM was one) against testability (Badri
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Table 2.4 A reproduction of Boehm’s software understandability model.

 Understandability 

Very Low Low Nominal High Very High 

Structure Very low 

cohesion, high 

coupling, 

spaghetti code. 

Moderately low 

cohesion, high 

coupling. 

Reasonably well-

structured; some 

weak areas. 

High cohesion, 

low coupling 

Strong 

modularity, 

information 

hiding in 
data/control 

structures 

Application 

Clarity 

No match 

between 
program 

and application 

world views. 

Some 

correlation 
between 

program and 

application. 

Moderate 

correlation 
between 

program and 

application. 

Good 

correlation 
between 

program and 

application. 

Clear match 

between 
program and 

application 

world-views. 

Self-

Descriptiveness 

Obscure code; 
documentation 

missing, 

obscure 
or obsolete 

Some code 
commentary 

and headers; 

some useful 
documentation. 

Moderate level 
of code 

commentary, 

headers, 
documentations. 

Good code 
commentary 

and headers; 

useful 
documentation; 

some weak 

areas. 

Self-
descriptive 

code; 

documentation 
up-to-date, 

well-organized, 

with design 

rationale. 

et al., 2011). Confirming the results of Bruntink and van Deursen, LCOM was found to be a
significant predictor of testability.

Harrison et al. used a similar statistical approach to confirm a negative correlation between
WMC and the time to create automated tests for software (Harrison et al., 1998b).

Harrison et al. also broadened the scope of their research to cover understandability and
changeability. To measure software understandability, a model formulated by Boehm et
al. is used which rates software qualitatively on its structure, application clarity and self-
descriptiveness (Boehm et al., 1978). A simplified version of this model is replicated in Table
2.4. Harrison et al. measure the time to implement modifications as a proxy to measuring
changeability. WMC was found to be negatively correlated with understandability. Both
WMC and LCOM were negatively correlated with changeability.

Elish and Rine conducted a study to determine if CK metrics could be used as a predictor
of the stability of software (Elish and Rine, 2003). Their research calculated the class-
level stability through an algorithm that determined the likelihood that the class would be
change-prone as a result of a class-level change elsewhere in the design.

CBO, DIT, LCOM, RFC, and WMC were all found to be negatively correlated with stability.
In particular CBO and RFC were strong predictors of stability. A high CBO indicates that a
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Table 2.5 A summary of established associations between CK metrics with the sub-attributes
of maintainability.

 Sub-attributes of Maintainability 

Structural 

Attribute 

Rosenberg 

Objective 

Testability Understand-

ability 

Change-

ability 

Stability 

CBO      

DIT      

LCOM      

NOC      

RFC      

WMC      

class depends on many other classes or that many other classes depend on it, increasing the
likelihood that change ripples through to the high CBO class. Similarly, a class with a high
RFC indicates a higher number of internal and external methods that may impose change on
the class.

Tables 2.5 and 2.6 provide a summary of this survey. This will be drawn upon later in this
thesis to draw insights from observations on structural metrics trends in the context of their
impact on maintainability.

2.4 Mining Software Repositories

Mining Software Repositories is a term that refers to the extraction, inspection, and analysis
of artefacts produced through the software development process in order to deduce useful
information about software projects. The intention is often to make this information available
both to researchers to build upon and to industry practitioners to better inform decision-
making (Hassan, 2008).

This section reviews the related work in four areas. The general motivations for mining
software repositories is first outlined. A survey is provided of the prior research mining and
analysing forges - those centralised platforms such as SourceForge, GitHub and GoogleCode
which provide the ecosystem to facilitate distributed development. Then a survey of the tools
that have been developed to support the activity of mining software repositories is presented
and evaluated in the context of its applicability to this research. Finally, the challenges
and pitfalls associated with mining individual project repositories or entire forges are then
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Table 2.6 A survey of the research establishing associations between CK metrics with the
sub-attributes of maintainability. No confounding factors are controlled for.

Study 

Dependent 

Variable(s) Data Set Analysis Results 

Li and Henry, 

1993 

Maintainability 

(measured by 
LOC changed) 

Two commercial 

systems written in 
Classic-Ada 

Linear 

Regression 

Concludes that NOC, LCOM, 

RFC, WMC, DIT all predict 

maintenance efforts beyond 

what can be predicted for size 

alone. 

Harrison et al., 

1998 

Size (LOC), 
testability (time to 

create automated 

tests), 
changeability 

(time to 

implement 

modifications), 
understandability 

(Boehm 

measures)  

Five small  projects 
written in C++ 

Correlation 
analysis 

No results on DIT and NOC as 

no inheritance in data set. 
Negative correlation between 

WMC and the time to create 

automated tests for software. 

WMC was found to be 

negatively correlated with 

understandability. Both 
WMC and LCOM were 

negatively correlated with 

changeability. 

Elish and 

Rine, 2003 

Stability Three medium-
sized FLOSS 

projects written in 

Java 

Correlation 
analysis 

CBO, DIT, LCOM, RFC, and 
WMC (particularly CBO and 

RFC) were all found to be 

negatively correlated with 

stability. 

 

Bruntink et 

al., 2006 

Testability Five medium/large-

sized projects 

written in Java 

Correlation 

analysis 

Using the lines of test code and 

the number of test cases in the 

unit tests as a proxy for 

testability, they find that only 

DIT and NOC are predictors of 

testability. 

Badri et al., 

2011 

Testability Two medium-sized 

FLOSS projects 
written in Java 

Correlation 

analysis and 
logistic 

regression 

Found a correlation between 

LCOM and unit test coverage, 

validating the use of OO metrics 

as a predictor of the testability 
of classes 

Saberwal et 

al., 2013 

Bad code smells  One medium-sized 
FLOSS project 

written in Java 

Logistic 
regression 

RFC, LCOM, NOC and WMC 
found to be useful predictors of 

bad code smells. 

Tufano et al., 

2017 

Bad code smells Two hundred 

FLOSS projects 

Linear 

regression 

RFC, LCOM and WMC found 

to be predictors of code smells.  
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discussed with an emphasis on aspects of network analysis and accurately determining
authorship.

2.4.1 Overview

A software repository is built on a Version Control System (VCS), such as CVS (CVS, 2018)
or GIT (GIT, 2018), which is used to manage change in source code. These repositories
come with a great deal of data that can be mined and subsequently analysed. Each act
of file creation, deletion, or edit is represented within a ’commit’. Meta-data associated
with every commit lists the paths of files that have been modified, committer details and
a date. Snapshots of the source files themselves can be retrieved in their present state or
at any point in their history - typically either for manual qualitative analysis or more often
by machine-driven quantitative analysis. By mining software repositories, the evolution of
software can be observed.

Researchers typically inspect particular characteristics of a system throughout its evolution
and observe trends and relationships. Kagdi et al. classify these types of studies into one of
two categories (Kagdi et al., 2007). The first category of investigations observes the changes
in properties through multiple versions of a system - for example, defect density or software
complexity (Yamashita et al., 2017; Agrawal et al., 2018; Tian et al., 2018). The second
category of investigation is more interested in the mechanics of the changes in artefacts - for
example who is revising source files, how often, and the drivers of change (Lee et al., 2017;
Ortu et al., 2018). This research is focused on mining software repositories to study changes
in properties.

Studying aspects of software engineering, and indeed social science, through the mining
and subsequent analysis of data from FLOSS repositories is a well-trodden path with a large
volume of academic studies leveraging this approach (Hassan, 2008; Hemmati et al., 2013).
There are a number of reasons why this approach is widely adopted:

• Depth: There are several million FLOSS projects available in the public domain - with
thousands being added on a daily basis. Although a large number of projects never
reach maturity (Comino et al., 2005), this is still an extremely rich resource to mine
(Deshpande and Riehle, 2008).

• Access: Under the GNU license under which FLOSS projects are typically distributed,
no restrictions apply to extracting, analysing, and publishing data derived from the
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publicly available source code or associated meta-data (GNU, 2007). In contrast,
access to source code for proprietary commercial software is often restricted to the
relevant in-house development team only for security, compliance and competitive
reasons.

• Rich data: Open-source forges such GitHub (GITHub, 2018) or GoogleCode (Google-
Code, 2018) come with a great deal of data that can be mined and analysed. In addition
to the VCS commit data, there is also project level information that is made available
including project categorisation, activity, artefacts, and bug reports. The FlossMole
project was established to extract, normalise and publish project-level meta-data avail-
able across forges in unified format (Howison et al., 2009). Some of their artefacts are
used in this research.

2.4.2 Forges

There have been a number of studies where a multitude of repositories have been mined
within a broader forge. These studies have typically focused on analysing project artefacts to
study the impact of developers, the forge, or to otherwise facilitate the process of FLOSS
adoption.

Eilhard and Ménière conducted an empirical study of 10,533 projects on SourceForge
assessing the productivity of development team members, finding that volunteers tend to
score lower than corporate developers (Eilhard and Ménière, 2009). Similarly corporate
developers are found to benefit more from ’knowledge spillover’ - the positive exchange
of information between individuals within an organisation. Capiluppi and Beecher carried
out a comparative analysis between two large forges - Debian and SourceForge - to assess
whether the decay of software architecture is impacted by the forge (Capiluppi and Beecher,
2009). While Debian was found to host more complex projects, it also exhibited greater
’anti-regressive’ work to reduce this complexity over time. Capiluppi et al. also attempted to
identify whether the forge could have an impact on the structural metrics of the developed
software (Capiluppi et al., 2009). They find no significant difference between metrics on
the KDE forge (which specifically reinforces coding standards) compared with SourceForge
(which does not do so).

Bagnato et al. state that assessing if a FLOSS project meets the requisite standards for
business adoption is a non-trivial task and requires analysis of multiple project artefacts
including source code, documentation and issue trackers (Bagnato et al., 2017). To support
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this process, they developed an IDE plug-in called CrossMiner which extracts information
from these various data sources for a given project and presents it within a single screen. In a
similar vein, Wasserman et al. developed a methodology and a tool to assess the ’business
suitability’ of FLOSS projects by, again, mining these data sources and rating projects on
a series of criteria including functionality, documentation and adoption (Wasserman et al.,
2017). More recently Tamburri et al., also motivated by the need to provide greater rigour
around the process of FLOSS adoption developed a tool called ’Yoshi’ to analyse the open-
source community and categorise it into one of a number of known organisational patterns
(Tamburri et al., 2018). Applying their analysis to 25 projects from GitHub, they assert that
they find value in measuring and monitoring these key organisational aspects.

2.4.3 Mining Tools

With the advent of open-source repositories, researchers acquired access to an large and
rich data set. This led to an improvement in the tooling used to mine repositories. German
(German, 2004) documented the challenges involved in mining the CVS repositories of the
GNOME project. German et al. (German et al., 2005) followed this up with a review of
some tools the mine repositories and suggested a comparison framework to support this
activity. The available tools were generally found to be disparate and fulfil the relatively
narrow requirements of the research groups that developed them. More recently Tiwari et al.
proposed an ’app store’ model for packaging and distributing software repository mining
tools utilising their platform ’Candoia’ (Tiwari et al., 2017). While this platform has not seen
significant adoption, the concept is undoubtedly a step forward. In the next chapter a review
is provided of the tools of direct relevance to this work and the potential for employing
these tools is evaluated in the context of the data extraction and analysis requirements of this
research.

2.4.4 Pitfalls

As will be discussed during the course of this thesis, when mining a significant amount of
repository data, there are a number of pitfalls that, where ignored, can constitute a serious
threat to the validity of the research. This is an interesting stream of research in its own
right and there are a number of studies that typically focus on either a particular VCS or
particular challenges that exist across VCS. This is covered in the next sub-section titled
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’Data Extraction and Entity Reconciliation’. Through the course of this research the pitfalls
around conducting analysis in a forge containing forked projects has been a particularly
significant challenge and will emerge as dominant theme later in this thesis. Prior research in
this area is documented in the sub-section titled ’Forking and Cloning’.

2.4.3.1 Data Extraction and Entity Reconciliation
German did some early work in the field of mining software repositories and raised practical
concerns with the volumes of data involved in mining a single significant CVS reposi-
tory, proposing a graphical tool to help visualise large data sets (eventually becoming the
SoftChange tool) (German, 2004). Bird et al. conducted a similar study against the GIT
version control system bringing out some its particular idiosyncrasies, particularly around the
pervasive nature of branch development and the implications that this has on how to interpret
revision history (Bird et al., 2009).

Also relevant to this work is the research that focuses on the pitfalls associated with mining
data from forges. Iqbal et al., attempting to solve for the challenge of integrating data across
multiple FLOSS code forges propose the use of so-called ’semantic web’ technologies to
represent the meta-data contained therein (Iqbal et al., 2012). They argue that linking the var-
ious developer aliases across forges can produce a holistic picture of their activity, unlocking
in the process some useful analytics. To do so they propose an email similarity algorithm
which is not fundamentally dissimilar to that used within this research and described in
Section 5.2.1 (Iqbal, 2015). Goeminne and Mens also highlight the challenges in reliably
establishing committer identities across repositories, conducting a survey of a variety of
algorithms available to help mitigate this (Goeminne and Mens, 2013). Their work was
built upon by Xiong et al. who employed Natural Language Processing to perform identity
reconciliation across GitHub and Stackoverflow, the popular developer community-based
knowledge base (Xiong et al., 2017; GITHub, 2018; StackOverflow, 2018). In a similar vein,
Squire tackled the specific problem of identifying projects that reoccur across forges and
presented a method to score similarity between project pairs (Squire, 2009).

Howison and Crowston documented the promises and perils of mining SourceForge, doc-
umenting the practical challenges of data extraction, data analysis and research design
(Howison and Crowston, 2004). More recently Kalliamvakou et al. conducted a similar study
against GitHub finding that many projects were inactive or have very few commits and most
repositories were for individual development (Kalliamvakou et al., 2014). Some of their
work informs the forge and repository analysis documented in Chapters 3 and 4 in an effort
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to understand the extent that the trends observed in SourceForge and GitHub apply to the
forge that is the subject of this thesis: GoogleCode.

2.4.3.2 Forking and Cloning
Forking refers to the process of creating an alternate and independent software development
stream from an existing project, often retaining the original VCS revision history of the parent.
When mining data from projects within open-source forges it is crucial to reliably establish
the unique commit activity on a given project and the fact that the forking process duplicates
the revision history across multiple projects introduces an avenue of potential distortion to
the raw results. When conducting committer collaboration analysis, it is essential that each
committer’s contribution is accurately and reliably identified without threat of misreporting
child project engagement when there was only engagement in the parent project. This is
particularly true in the case of this research where a particular form team stability is measured
by observing the number of previous projects that committers have partnered in. This will be
covered in greater detail in Chapter 5.

Nyman and Mikkonen conducted research to establish the most common motivations for
forking within SourceForge (Nyman and Mikkonen, 2011). The methodology to identify
forked projects was to execute a keyword search within project descriptions to find references
to forking. Although this approach suffices when attempting to locate a statistically significant
sample to study, relying on developers to specifically declare a project as ’forked’ in the
description does not help us identify the full set of forked projects.

Robles et al. (Robles et al., 2006) suggested a fairly manual approach for locating significant
software forks that involved searching Wikipedia using the term ’software fork’ and manually
navigating to the project homepage to extract key information ahead of a study on the
motivations and outcomes of forking. This is an adequate approach when attempting to
extract a sample of forked projects for further study but cannot be applied to the large-scale
mining of software forks within open-source forges. More recently, Jiang et al conducted
similar research against the GitHub forge and they were able to directly use project meta-data
made available by the forge (a recent innovation) to identify forks (Jiang et al., 2017).

As part of the process of maintaining a forked project, it is often desirable or indeed necessary
to import changes from the master project. Ray et al. developed a tool called REPERTOIRE
to automate the identification of common commits between known forked projects through
comparison of source files but it does not attempt to identify forked projects in a wider
open-source forge (Ray et al., 2012). This is the most sophisticated approach to detecting
forks that is noted in the prior literature. In this general research field there have also been
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a number of efforts to automate the identification of ’cloned code’ i.e. source code that is
duplicated within a single project or across projects within a forge. This field of research
has drawn some attention due to the potential negative impact that code cloning has on
maintainability (Lozano et al., 2007). Lozano and Wermelinger developed a prototype tool
called ’CloneTracker’ and applied it to the study of changeability within software containing
clones (Lozano and Wermelinger, 2008). Clones within a wider forge could indicate the
presence of forking, making it valuable input for a heuristic that identifies such projects.
Gharehyazie et al. developed a tool called Clone Huntress which identifies code clones in
GitHub with the motivation of simplifying ’code foraging’ - the process of discovering code
within a broader repository that may be of relevance to the ’forager’ (Gharehyazie et al.,
2018).

Schwarz et al. (Schwarz et al., 2012) developed a set of lightweight techniques based on
hashing algorithms to identify cloned code in a way that, in theory, could scale up to an entire
forge. Lee et al. (Lee et al., 2010) developed similar techniques to support instant cloned
code researches (albeit designed to work within a single repository only) based on a more
sophisticated multi-dimensional indexing algorithm. This is a particularly active research
area with recent efforts to identify code clones using an array of novel techniques including
image processing and machine learning (Ghofrani et al., 2017; Ragkhitwetsagul et al., 2018).

This research builds upon earlier work by developing a framework that employs heuris-
tics, including mining version control histories and project meta-data with the objective of
identifying forks to enable accurate analysis across a large forge.

2.5 Chapter Review

This chapter provided a literature review in three fields that are directly related to this thesis.
First, the impact of the development teams size and stability on key project attributes was
considered. The work of Nagappan et al., Mockus, and Caglayan et al. was discussed, finding
a correlation between team size and fault-proneness (Nagappan et al., 2008; Mockus, 2010;
Caglayan et al., 2015). Similarly, the research of Huckman et al. and Gardner et al. was
covered, establishing a relationship between team stability and fault-proneness as well as
overall client satisfaction (Huckman et al., 2009; Gardner et al., 2012). The second strand
of research that was discussed was the impact of CK metrics on the external attributes of
software, particularly the sub-attributes of maintainability; testability, stability, changeability,
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and stability. Tables 2.3 and 2.6 documented the empirical approaches to the prior research
along with the key findings. Finally, this chapter provided a review of most relevant research
in the field of mining software repositories focusing on FLOSS forges previously mined and
the pitfalls associated with these mining efforts.

The next chapter covers the methodological approach to this research covering team size and
stability definitions, the forge mining toolchain, and the process of selecting a metrics suite,
crucial to the empirical measurement of structural attributes.





Chapter 3

Methodology

3.1 Introduction

This chapter is divided into three sub-sections documenting the methodological approach to
each of the key challenges in observing the impact of team factors through mining software
repositories. As reflected in Figure 3.1 outlining the structure of this chapter, these challenges
are broadly in the categories of Definitions, Mining and Metrics. In order to begin to model
the relationship between team factors and the internal attributes of FLOSS software, it is
first necessary to define team size and stability and establish an empirical approach to their
measurement. This is the topic of the first section in this chapter. The second section is
concerned with the identification of an appropriately rich data set to study which, fortunately,
open-source repositories provide with few technical limitations. The criteria of selecting a
forge to mine will be articulated and a mechanism to mine this data and extract information in
a consistent, reliable and repeatable way is described. In its final section, this chapter details
the approach to measuring the pertinent internal structural attributes of the code through the
evolution of the project.
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3.2 Definitions

3.2.1 Development team size

There are a number of possible definitions of a software development team. Both Capra and
Wasserman and Smith et al. consider a team to consist of all developers to have worked on
a codebase for any length of time (Smith et al., 2001; Capra and Wasserman, 2008) while
Nagappan et al. (Nagappan et al., 2008) consider the development team to also include
management, administration and operations personnel. Given the context of mining open-
source repositories, there is a preference to define team size as the cumulative total of all
unique committers present in the revision history in the version control system of a given
project. This is the definition that is adopted by this research as it is consistent with the
prior literature, simple to measure and reproduce, and elegantly enables the representation
of the plurality of the unique development design approaches that may have influenced the
evolution of a codebase. Independently, Rempel and Mader developed the same approach
to measuring development team size through their work studying quality factors in FLOSS
repositories (Rempel and Mäder, 2017).

There are some potential limitations to this approach, most notably that we do not distinguish
between frequent committers and causal (infrequent) committers. As will be discussed
later in this thesis, while it is true that the majority of commit activity takes place by
a minority of committers, nonetheless the majority of committers do make a significant
contribution and cannot be discounted, hence this is not regarded as a threat to validity.
Similarly, when defining the team, the time during which developers contributed to the
project is not considered. While it could be considered counter-intuitive that developers
making contributions without any time overlap be considered part of a single team, analysis
of the data sample shows that this is by far the exception in the GoogleCode forge, with the
vast majority of developers making contributions in overlapping time windows with their
fellow team members.

3.2.2 Development team stability

There has been relatively little empirical work that investigates the stability of development
teams and its impact on aspects of the software development process. This could be due to the
fact that it is a non-trivial task to capture a measure of stability. In the prior literature, team
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stability is also referred to using the terms team fluidity or team familiarity (Huckman et al.,
2009) and care is taken to distinguish this concept from ’team tenure’- i.e. the cumulative
programming experience of the individuals on the team (Hackman, 2002). To measure team
stability a similar approach to Huckman et al. (Huckman et al., 2009) is adopted, defining
this as the cumulative time that each member has worked with every other member of the
team. This approach is consistent with the limited prior research in this field and offers a
simple, easily understood measure. Chapter 5 expands on this definition and proposes a
methodology to calculate stability as it accrues within a project team.

3.3 Mining

3.3.1 Selecting a metrics suite

The research questions in this thesis mandate a number of key criteria of the metric suite
chosen for this work. The first main requirement is that the suite is comprehensive in
capturing the key attributes in Object Oriented Programming, described earlier in this chapter,
of coupling, cohesion, complexity, and modularity. The second key criterion, necessary for
the validity of this research, is that the metric suite be credible and empirically validated in
an existing body of research. This means that the metrics must be proven reliable indicators
of external quality attributes.

For this work to maintain relevance to its intended audience, which encompasses both
researchers and practitioners, it is helpful to employ a metrics suite that can be well under-
stood by practitioners, with individual metrics directly mapping onto the internal attributes.
Furthermore, the chosen metric suite is that it should have good tool support as eases the
development of a toolchain, enhances the repeatability of this work, and also serves as a
gauge of its popularity amongst researchers and practitioners alike.

The matrix in Table 3.1 below details how each of the three metric suites considered match up
to this criteria. The CK metrics suite is the only suite that is an adequate match - particularly
with respect to empirical validation, relevance to practitioners and tool availability. For these
reasons the CK metrics suite forms the basis for the empirical approach to this research.
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Table 3.1 A comparison of the three metric suites considered for this research against the
stated criteria.

Criteria CK Metrics MOOD Metrics Lornez & Kidd Metrics 

Empirically 

validated 

Yes – the most cited 

OO metric suite in 

academic research 
with plenty of work 

correlating values to 

external attributes of 
fault-proneness, 

maintainability, 

testability, and more 

(Kitchenham, 2010). 

Limited – A fraction (less 

than 5%) of the citations of 

the CK metric suite despite 
being published in the same 

year. Limited empirical 

validation work from 
Baroni et al (Baroni et al., 

2003). 

 

Limited – Nesi et al. did 

conduct some validation 

(Nesi et al., 1998) but 
overall there is a lack of 

empirical validation to 

support the use of this 
suite (Sharma et al., 

2012). 

Relevance to 

practitioners 

Yes – metrics are 

simple and capture 

clearly understood 

design attributes. 

Limited – system-wide 

measures appeal to project 

managers but lose a level of 

granularity that would be of 
interest to developers 

relative to CK Metrics 

(Harrison et al., 1998b). 

Limited – As the metrics 

are fairly basic, they 

require a degree of 

further analysis before 
they are meaningful to 

practitioners.  

Tool 

availability 

Yes – Plenty of tools 
are available to 

practitioners to 

measure and monitor 
these metrics. 

No – very few tools 
calculate MOOD metrics 

and they are not suitable for 

Java codebases (Abounader 
and Lamb, 1997). 

No – No available tools 
that measure these 

metrics. 
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Table 3.2 Popularity of languages in top 3 open-source software forges (reproduced from
Redmonk (O’Grady, 2011))

Rank Github SourceForge GoogleCode 

1 Ruby C++ Java 

2 Python Java XML  

3 Javascript C  C++ 

4 C++ XML  Python 

5 C  Python PHP 

6 XML  PHP Javascript 

7 Java  Javascript C  

8 PHP Shell C# 

9 Perl C# Shell 

10 Shell Perl SQL 

11 C# Ruby Perl 

12 SQL SQL Ruby 

13 Assembler Assembler Assembler 

3.3.2 Selecting a forge to mine

There are a number of popular open-source project hosts or ’forges’. According to research
in 2011 (at the outset of this research’s data collation activities) in terms of the number of
commits, GITHub was the most popular, followed by SourceForge and then GoogleCode
(O’Grady, 2011). Each of these forges attracts has a unique and varied make-up of languages
making up its project population - see Table 3.2.

The practicalities of constructing a toolchain that is capable of mining data from a VCS and
subsequently conducting static code analysis to extract the pertinent internal attributes of
the software meant that it was going to require significant additional effort to accommodate
more than one programming language. Given that one of the aims of this work is to maintain
the relevance of this work to both the research and practitioner communities, it was logical to
select a programming language with a high degree of popularity. For this reason, the Java
was chosen as it consistently rates as the programming language with the highest adoption
rates (TIOBE, 2017). This also has the fortunate consequence of meaning that in most large
forges there are a large number of Java projects available for study. Furthermore, from a
static code analysis tooling perspective, Java is very well supported.
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GoogleCode was the open-source forge selected for its popularity and high level of Java
adoption rates. Another strong advantage in favour of GoogleCode was that they allowed
project administrators to choose from among three available version control systems - Sub-
version, GIT, and Mercurial - on which to host their source code meaning that the mining
toolchain would be sophisticated enough for others to reuse to mine GitHub (which uses
GIT as its underlying VCS) or SourceForge (which uses Subversion and Mercurial). This
is helpful as it means that the toolchain developed for this research can have utility across
a broad set of forges. This is particularly pertinent given that GoogleCode announced that
it was shutting down their service and entering ’archival mode’ - meaning that any future
research on active projects will not happen on the GoogleCode forge.

At this point it is also worth noting that, since the selection of the repository to study, the
landscape has significantly changed and new repositories such as Assembla (Assembla,
2018), and Gitlab (GITLab, 2018) have established a strong presence - both of which use
GIT as the underlying VCS - helpfully ensuring that the toolchain remains current.

3.3.3 Overview of the GoogleCode forge

As of May 2012, GoogleCode hosted 236,787 projects of which a significant number has
seen sustained developer activity. GoogleCode projects are assigned ’labels’ by the project
administrators to assist in categorising the project. Many projects are ’forks’ from popular
projects - often where developers choose to take the project evolution in a slightly different
direction or choose to ’experiment’ on the codebase in their own sandbox. Forked projects
retain the revision history of the original project which creates a challenge in ensuring that a
forked project with a handful of commits isn’t mistaken for the more popular parent project.
As this is a particularly difficult challenge for which a unique solution was devised, a section
is devoted to this topic later in this chapter.

The GoogleCode repository was started on the 27th of July 2006 (Shankland, 2006) and the
decision was announced nine years after its inception for its shut down (DiBona, 2015). This
offers a unique opportunity to observe a forge throughout its lifespan. As we study commit
patterns, it is notable in Figure 3.2 that the cumulative number of commits across all projects
grows from the low hundreds at the forge initiation to a peak of over 10K commits per day.
It is also notable that the committer activity begins to steadily tail off towards the end of
2010 as projects migrate to more popular repositories such as GitHub. In the first half of
2011 the commit activity on GitHub surpassed GoogleCode, SourceForge and Microsoft
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Codeplex combined (RedMonk, 2011). This shift led industry commentators to observe that
in 2011 GitHub had become the major centre of gravity within the open-source space. This is
likely attributable to the collaborative nature of its offering which pushed the boundaries of
’social coding’ by providing transparency on contributors activity and allowing them further
their skills and manage their reputation (Dabbish et al., 2012). As GitHub continued its
exponential growth over the subsequent years, GoogleCode did not compete in a meaningful
way by enhancing or rebooting its offering. In this context, it is easy to rationalise Google’s
decision to shut down the repository, closing the forge to new project creation in 2015.
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Fig. 3.2 Commit histogram showing daily activity levels across the entirety GoogleCode.

In the data analysis and visualisations throughout this thesis a fixed upper bound is defined
for the time period of study. This was necessary as mining such large volumes of data can
take multiple weeks to successfully extract. The majority of this data mining effort took
place in the years 2012-2013 and for this reason, it was chosen to only study data up to the
end of May 2012. This date was also chosen as it coincides with the availability of then
up-to-date FLOSSMole artefacts which, as outlined later in this chapter, facilitates the data
mining effort.

Figure 3.2 gives an indication of the activity trends but doesn’t give an insight into whether
this is down to an increase in the number of projects or whether this is attributable to greater
activity on existing projects. Figure 3.3 helps establish that this commit activity is, indeed,
visually correlated with an increasing number of projects. Clearly observable is an initial
spike of project creation on the go-live date of GoogleCode. In October 2011, a significant
drop in project creation is evident, decreasing to an average rate of 3 projects per day. There
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is no immediately obvious reason in the publicly available records to explain this drop but it
is clear that, even prior to this drop, there was a general downwards trend.
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Fig. 3.3 A histogram depicting the daily rate of new project creation.

From a total project count of 236,787 only 95,490 have a single commit (corresponding
to the initial project creation). Squire postulates that this is due to ’bots’ creating projects
although the motive for this activity remains unexplained (Squire, 2017).

3.3.4 Toolchain requirements

This research presented a number of challenges to mine the commit details for all the projects
in GoogleCode’s repositories and consolidate this information within a single data model
and, ultimately, in a relational database for further analysis.

Given that this research tackles the study of team stability, it is necessary to mine the entirety
of the chosen repository in order to derive team stability analytics based on the number of
times each committer has worked with every other committer. This research clearly does not
stop at an analysis of commit data. Given the focus on the internal attributes of software it is
essential to inspect the source files for each project chosen for study, from which structural
metrics can be extracted. This data, when juxtaposed with the relevant commit data, allows
the trends surrounding structural metrics to manifest as projects evolve and mature. Given
the sheer size of GoogleCode this is no small task and it will involve hundreds of gigabytes
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of data transfer, multiple gigabytes of storage and many days of processing to produce an
accurate representation of individual contributor behaviour.

The requirements of the toolchain can be articulated as follows.

• Mine VCS logs and software metrics: Mine VCS revision history and conduct static
source code analysis against each snapshot of source code.

• Breadth and scale: Capability of mining VCS revision history of thousands of reposi-
tories across SVN, Mercurial and GIT.

• Queriable data sets: Store revision history in normalised queriable form.

• Joinable data sets: Join VCS revision history data with software metrics mined from
snapshots of source code.

3.3.5 Open-Source Tools

Table 3.3 provides an overview of several relevant open-source mining tools - Softchange
(German, 2004), Hipikat (Čubranić and Murphy, 2003), Dynamine (Livshits and Zimmer-
mann, 2005), Kenyon (Bevan et al., 2005) and CVSAnaly (Robles, 2004) - along with a brief
summary of their limitations with regards to this research.

Of these tools CVSAnaly was considered the more versatile to mine, normalise, and store
revision history. The main functional limitations associated with CVSAnaly in the context of
this research are as follows.

• Missing support for the Mercurial VCS: This is one of the GoogleCode supported
VCS systems alongside GIT and Subversion - both of which are supported by CVS-
Analy.

• Missing support for Static Code Analysis: Although there was no out-of-the-box
support for Java static code analysis, there is support for ’extensions’. For this approach
to be successful, such an extension would need to check-out each version of the
codebase, execute static code analysis, and commit the results to a version of the
CVSAnaly schema.

• Restricted Database Schema: Integrating static code analysis would necessitate
further building out the CVSAnaly schema to store the mined metrics
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Table 3.3 A comparison of a number of version control mining tools

Tool Summary Limitations 

Softchange 

(German, 2004) 

Extracts historical data from CVS 

repositories and defect trackers and 

joins both sources of information. It 
can also do static analysis of C++ and 

Java source code. 

Only capable of extracting data from 

CVS. Source code analysis is syntactic 

in nature only. No support for 
structural metrics mining. 

Hipikat 

(Cubranic and 
Murphy, 2003) 

 

Similar to Softchange in that it is 

designed to join multiple sources of 
open source project data. Supports 

CVS, Bugzilla, Newsgroups, and 

mailing list archives.  

 

Only capable of extracting data from 

CVS. No static source code analysis. 

Dynamine 

(Livshits and 

Zimmermann, 
2005) 

This tool correlates repository revision 

histories with snapshots of source code 

to identify common code change 
patterns. 

Language and VCS independent but 

fairly limited in that it is designed with 

specific use cases in mind – namely to 
identify common commit patterns 

across individual repositories. 

Kenyon 

(Bevan et al., 
2005) 

Re-usable framework to extract data 

from multiple VCS systems and store 
it to disk in a customisable file format. 

No static source code analysis. No 

out-of-the-box  support for database 
persistence. 

CVSAnaly 

(Robles, 2004) 

Extracts information from revision 

history logs, storing in a database. 

Supports multiple VCS systems. 
Active research community. 

No out-of-the-box support for static 

Java source code analysis. 
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Consideration was given to committing to enhancing CVSAnaly with the aforementioned
functionality - an undertaking that would require that the CVSAnaly codebase be sufficiently
understood in order to correctly identify the integration points for various new functionalities.
Given the complexity of this task along with the limited existing functional scope, the balance
ultimately tipped in favour of creating a bespoke toolchain for data mining.

3.3.6 Toolchain

This section documents the toolchain developed to mine and analyse the GoogleCode forge.
Particular attention is devoted to those components that are common to both team size and
team stability analysis: those components that are particular to either type of analysis are
discussed in Chapters 4 and 5 respectively.
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Fig. 3.4 Toolchain to mine and analyse the GoogleCode forge.

• 1. VCS Log Mining: The FLOSSmole project makes available the raw data describing,
at a project level, details of all projects hosted in GoogleCode. This, along with the
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GoogleCode project webpages and the associated repositories formed the input into the
bespoke toolchain illustrated in Figure 3.4. At its essence, the VCS mining component
is a collection of shell scripts, run on a UNIX platform and driven by the FLOSSMole
flat files and the GoogleCode project webpages, designed to retrieve, parse and persist
the full revision history of all the projects in the forge. To mine this data, these scripts
access all project repositories in the forge to retrieve the full revision history, parsing it
accordingly and storing it in the database to then drive subsequent analysis. To achieve
this, the scripts make use of command line tools made available by the VCS to retrieve
meta-data about each project revision. Spinellis and Gousios adopt a similar approach
to mining VCS meta-data, discussing its necessity in detail (Spinellis and Gousios,
2018).

These scripts support three version control systems: Subversion, GIT, and Mercurial.
In the case of Subversion and GIT, the revision history can be directly queried through
the appropriate binaries (albeit through different syntax and requiring individual log
parsers) while in the case of Mercurial it is necessary to clone the repository before
retrieving the history. The revision history extraction scripts use the repository URI to
determine the type of version control system and extract the data appropriately.

• 2. Committer Collaboration Analysis: This analysis is focused on accurately map-
ping committer activity and project engagement in the context of the activity of the
broader development team. This is used to calculate the stability of a team through
the evolution of the project as well as understanding the change in team composition
from one project to the next. This analysis also enables the mining of the full data set
for projects that fulfil the criteria necessary for team stability analysis; for instance,
pairs of projects where the development team remained stable. This will be discussed
further in Chapter 5 as the team stability analysis is detailed.

• 3. Project Sampling: This is a Java component designed to extract, in a reproducible
fashion, a representative sample of projects from the full data set of 236,787 projects
in the GoogleCode forge. There is functionality to identify and select projects pro-
grammed in a particular programming language (Java) to simplify structural metrics
mining. This component is covered in detailed in Section 4.2 of the next chapter.

• 4. Structural Metric Mining: This component comprises of, again, UNIX shell
scripts responsible for checking out each version of the project, handing over the heavy
lifting of metrics generation to an out-of-the-box metrics generation tool. Using an
existing tool for structural metrics mining was favoured over writing a bespoke tool
given that, unlike VCS mining, metrics calculation is complex and potentially error
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Table 3.4 A comparison of a number of structural metrics mining tools

Tool  Category Description 

CKJM 
(Spinellis, 2005)  

 

Open source 
standalone 

This is a simple tool that calculates CK metrics by inspecting the 
compiled bytecode of the compiled java code. CKJM has hooks 

into Ant or Maven, two popular software build tools typically 

used for Java systems, and generates data in an XML format. 
CKJM is distributed under a ‘Creative Commons’ license which 

does not limit its usage for academic or commercial purposes. 

Understand 

(SciTools, 2017) 
 

Commercial 

standalone 

Understand is a commercial tool, created and distributed by 

SciTools, which is freely available for academic use. Having gone 
through many release versions, Understand is a mature tool which 

is used by numerous multinational firms and large governmental 

institutions. Understand covers all the CK metrics in addition to 

size metrics and McCabe’s complexity metrics. 

Krakatau 

metrics 

(PowerSoftware, 

2017) 

Commercial 

standalone 

Krakatau is another commercial tool, developed and marketed by 

Power Software, and with a much smaller user base. Again with 

support for all CK metrics in addition to size metrics. A key 

drawback is that it is not available on a free or academic licence. 

Metrics 

(MetricsProject, 

2017) 

Open source 

IDE Plug-in 

Metrics is an open source metrics generation tool designed to be a 

plug-in to the Eclipse IDE. Useful for ad-hoc use by developers, 

unfortunately it does not have the requisite integration points to 
be useful to this research. 

nDepend 

(nDepend, 2017) 

Commercial 

IDE Plug-in 

This is a powerful commercial tool designed to integrate into the 

Visual Studio IDE and into Continuous Integration build 

processes. Metrics coverage is comprehensive and includes all 
CK metrics. Not available on a free or academic licence. 

prone. This meant that creating a bespoke tool would require significant build and
validation effort. Fortunately the landscape of available tools was sufficiently rich such
that a suitable tool could be identified with ease and without the need for extensions or
enhancements. Table 3.4 shows a comparison of the available metric generation tools
categorised by the distribution license (commercial or open-source) and deployment
(standalone or integrated into an IDE) (Spinellis, 2005; SciTools, 2018; PowerSoftware,
2018; MetricsProject, 2018; nDepend, 2018). ’Understand’ by Scientific Toolworks
Inc. was chosen as it is amongst the most reputable and widely adopted, was available
on academic license, and offers a command line tool that generates metric reports in
an easily parsable format. The report created by Understand is then passed through a
Java Parser which extracts the information that is pertinent to this research and stores
it in a format appropriate for use by the metrics analysis component. The calculations
used by Understand to generate metric values are documented in Table 3.5.

• 5. Data Store: Raw metrics and analysis should be stored in a queriable format to
facilitate further data analysis - particularly statistical analysis - to identify trends and
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Table 3.5 A description of how CK Metric values are calculated for Java classes by Under-
stand.

Metric Full Name Calculation for Java classes in ‘Understand’ 

CBO Coupling Between 

Objects 

Number of other classes invoked from this class. The 

following do not contribute towards the CBO calculation: 

 
- Coupling to classes in external dependencies. 

- Classes wired through dependency injection (e.g. 

using frameworks such as spring). 
- Coupling to interfaces. 

- Inner static or non-static classes where are coupled 

to the outer classes. 

DIT Depth of Inheritance tree Number of parent classes in total. The following do not 
contribute towards the DIT calculation: 

- Implemented interfaces. 

- The inheritance tree of extended external 
dependencies. For example my.CustomException 

extending java.lang.Exception extending 

java.lang.Throwable will return a DIT value of 2 for 

CustomException rather than a value of 3 which 
would otherwise be returned if the entire dependency 

tree was traversed. 

LCOM Lack of Cohesion of 

Methods 

For each member variable calculate the percentage of 

methods which do not access that variable. Average the 
percentages to determine LCOM. Visibility modifiers and 

the static keyword do not affect the calculation here. 

NOC Number Of Children Count of other classes that directly extend it. The restrictions 

listed on DIT apply here.  

RFC Response For a Class Number of total methods including all methods in parent 

classes (regardless of invocation or visibility). 

WMC Weighted Methods per 

Class 

Count of all methods in that class only (regardless of 

invocation, visibility, and instance or static). 
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correlations. A MySQL database was created with a schema reflecting the data model
outlined in Figure 3.5 to store the results of the VCS log mining and the structural
metric mining.

 

 Metric
Project ID  [FK][CPK]
File ID  [FK][CPK]
Revision  [FK][CPK]

 CBO
 DIT

 NOC
 LCOM

 RFC
 WMC 

 File
Project ID  [FK][CPK]
File ID  [CPK]

 File Name

 Author
Project ID  [FK][CPK]
File ID  [FK][CPK]
Revision  [FK][CPK]
Author  [CPK]

 Project
Project ID  [CPK]
Project Name  [CPK]

 Revision
Project ID  [FK][CPK]
File ID  [FK][CPK]
Revision  [CPK]

 Revision Count
 Author Count
 Revision Date

 LEGEND
[FK]  = Foreign Key
[CPK]  = Composite Primary Key  .

 1

 1

 1

 1..*

 1..*

 1

 1..*

 1

 1

 1

 1

 1

 1..*

 1..* 1

Fig. 3.5 A simplified ER diagram depicting the data model used by the data store. This is
closely reflected by the object model underpinning the analysis components.

• 6. Data Cache: When conducting forge analysis it is often necessary to traverse a
large data set multiple times in order to make meaningful observations on the data.

For example, to establish which committers have common project engagements, it is
necessary to traverse the data set and categorise project engagements by committer.
To calculate the stability of a team within a project, a traversal of the data for that
project is required to determine the overlapping committer engagement periods. For
this reason, it is efficient to load entire commit data into an in-memory data structure
within the Java Virtual Machine running the team size and stability analysis to facilitate
rapid access and flexible indexing. In practice this is implemented using hash maps
keyed by author and project as appropriate for the requisite type of analysis.
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• 7. Team Size Analysis: This is the subject of Chapter 4 so will not be discussed at
length here. However, as a brief overview it is worth mentioning that a Java component
queries the database and joins structural metrics with commit-level information in
order to produce an aggregated result set. This result set is then analysed using the
Anaconda Data Science workbench (Anaconda, 2018) running Python ’notebooks’,
the source code for which is available on GitHub in the location previously specified
in the chapter titled ’Publications’. Figure 3.6 illustrates the approach to data analysis
across both team size and stability.

• 8. Team Stability Analysis: Similarly, this analysis is the subject of Chapter 5 but
suffice to say that the design is similar to the previous component with a focus on
reading commit data and its associated meta-data to calculate team stability measures.
This then drives the categorisation and statistical comparison of structural metrics in
order to ascertain the impact of stability on metric values.

 

EXPLORATORY 
ANALYSIS 

DISTRIBUTIONS  
& CORRELATIONS 

6 

NULL HYPOTHESIS 
TESTS 

SIMPLE LINEAR 
MODELLING 

LINEAR MIXED 
MODELLING  

6 

PROJECT ANALYSIS 

IN
C

R
EA

ISN
G

 C
O

M
P

LEX
ITY

 

Identify the main characteristics  of the  
data set 

Distributions inform subsequent statistical tests.  
Correlations identify relationships and confounding factors 

6 

Using a the Mann-Whitney test identify if there is a 
significant difference between metric populations 

Test a linear model with team factors as the independent 
variables and CK metrics at the dependent variables 

6 

Enrich the model using the ‘random intercepts’ approach 
to accommodate for project-specific idiosyncrasy 

Using clustering, identify two projects for deeper analysis, 
studying the code-level drivers that drive observed trends 

Fig. 3.6 A summary of the common approach to data analysis across both team size and
stability.
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3.3.7 Validating the Toolchain

The toolchain described bears a basic high-level similarity to one independently developed by
Ludwig et al. to extract metrics of maintainability from GitHub repositories (Ludwig et al.,
2017). One challenge involved in developing a bespoke toolchain was the requisite effort
to ensure its validity. Whenever writing code, typically good engineering practices such as
ensuring adequate unit test coverage should be a given (Tosun et al., 2018). The approach
taken to development of components for this research was no different. This gives some level
of confidence that individual elements in the toolchain have been correctly implemented.

However, to get adequate confidence that the complete toolchain is functionally sound from
an end-to-end perspective, it was necessary to manually validate the toolchain results against
a small project. To ensure that the validation process was not overly taxing yet suitably
thorough, the project to validate was chosen to have a limited number of project revisions
yet have multiple authors including multiple revisions and authors on the same source file.
The project selected for this purpose was zsea-planetwars as it has 8 revisions and 3 authors.
The project was downloaded in each of its 8 snapshot states and imported within the Eclipse
IDE. For each file within each snapshot, the metrics were derived by hand and validated
successfully.

3.3.8 Toolchain Performance

The toolchain uses standard programming languages and does not require any specialised
hardware or operating systems. However, as mining processes are network bandwidth
intensive, the software was deployed to a commercially hosted Virtual Private Server (VPS)
as this guaranteed faster internet connectivity than could be achieved with a typical domestic
connection. The VPS account was an entry-level single core deployment with 512MB RAM,
25GB of data storage. The Linux distribution was CentOS 6.8.

The time taken to download VCS logs is dependent on the volume of revision history for
a given project but is generally in the single digit seconds. Mining structural metrics is a
more time-consuming process and can take around several minutes for a single ’snapshot’ of
the source code. This is a roughly equal distribution between the time taken to download
the source code and the time taken to run static code analysis. Medium sized projects can
have hundreds of revisions which leads to a total analysis time in the hours. As a rough
guide, mining structural metrics for a 1000 project sample takes about 300 hours. Even with
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the limitation of a single core, this process can be made much faster by running parallel
processes (multi-threading). 25 threads was found to be optimal and resulted in a sample
processing time of approximately 24 hours.

Once stored in the MySQL relational database the data associated with all revisions of a
single project within the sample takes up approximately 4-5MB of disk space. While this
may present a technical challenge when mining the entirety of the forge for structural metrics,
this was not a concern when limiting the static analysis to a representative sample of projects.

3.4 Chapter Review

This chapter covered three fundamental aspects to the methodological approach of this
research. First, measurable definitions of team size and stability were established, laying
the groundwork to the empirical work in this thesis. The FLOSS mining toolchain was then
detailed, covering aspects of performance and validation. Figure 3.6 illustrated the general
approach to data analysis across the team size and stability analysis that will follow in the
coming chapters. Finally, structural metrics are covered in detail and the process leading to
the selection of the CK metrics for this research is covered.

The next chapter uses the methodology described in this chapter, along with a number of
linear models, to establish a relationship between team size and the structural attributes of
software.





Chapter 4

The Impact of Team Size on Structural
Metrics

4.1 Introduction

The first research question (RQ1) seeks to establish ’the impact of development team size
on the internal structural attributes of software projects and the implications on its main-
tainability’. In practice this means first establishing if populations of structural metrics of
software, when grouped by team size, exhibit statistically significant differences. Where
such a difference is observed, the nature of that difference should be ascertained.

This chapter follows a methodical approach of initially conducting foundational work to
facilitate that statistical analysis. The subsequent sub-sections articulating the analyses are of
incrementally increasing complexity as outlined in Figure 4.1. Section 4.2 is titled ’Data
Mining’ which details efforts to extract a data sample from the broader forge and to mine
the sample for structural metrics. Section 4.3 covers an initial ’Exploratory Data Analysis’:
efforts to understand the underlying trends in the mined data from a one-dimensional perspec-
tive in addition to the distribution and correlations within. Section 4.4 documents an initial,
’Univariate Analysis’ to establish a relationship between team size and structural metrics -
simplistic as the confounding impact of revisions (potentially a proxy to functional complex-
ity) means that this analysis will not yield clear or reliable results but will serve to establish
the foundation on which the further analysis will take place. These confounding factors will
be the subject of Section 4.5 which factors in the impact of revisions to observe the impact
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of the development team size, alone, on structural metrics. In Section 4.6 the results are
presented in the context of two individual projects and qualitative code-level observations
are made to highlight the reasons that drive the quantitative forge-level observations. Finally
Section 4.7 provides a summary of the results and relates the observed relationship between
team factors and CK metrics to the likely impact on maintainability. Figure 4.2 highlights
the aspects of the toolchain that will be subject to further discussion in this chapter.
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Fig. 4.2 Some aspects of the toolchain pertinent to team size analysis. Project Selection and
Structural Metric Mining are both the subject of discussion in section 4.2. Analysis is the
subject of the remainder of the chapter.

4.2 Data Mining

When analysing basic committer activity within a forge it is possible to learn a substantial
amount through mining the revision logs across all the repositories within the forge. Although
requiring significant processing, given modest resources it is computationally feasible to
mine the revision history of all projects in a forge made of up several hundred thousand
repositories. It is necessary to mine the entire forge when conducting committer collaboration
analysis (as discussed in detail in the next chapter). This, however, is not the case when
conducting the detailed structural metric based analysis contained within this chapter. To
mine structural metrics necessitates network, processor and storage intensive processes to
execute the retrieval and static analysis of the source code at each revision for each project
studied. As described in section 3.3.8 in the previous chapter this is still a very resource
intensive task and it is not practical or necessary to run this type of analysis across the entirety
of the forge. For the purposes of this research it is most appropriate to restrict this type of
in-depth analysis to random sample of projects.

With this context in mind, this section covers two key aspects of the data mining approach that
are foundational to the team size analysis: Project Selection and Structural Metric Mining.
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4.2.1 Sampling

The project selection component was outlined in section 3.3.6 of the previous chapter and
is a Java component taking, as its input, flat files made available by FLOSSmole providing
a full listing of all projects hosted by GoogleCode. Its first responsibility is to identify,
within this population, a sample of projects programmed in Java. As discussed earlier,
Java was chosen as it increases relevance to the academic and practitioner community and
restricting to projects of a single language greatly simplifies the data mining by not requiring
support for static code analysis across multiple languages. While restricting the analysis
to a single language aids practicality, it also presents a threat to validity when generalising
the applicability of any results to projects in any other language, as was highlighted in early
research (Basili et al., 1996). While some similarities carry across object-oriented languages,
earlier work has highlighted some of the structural differences between Java and C++ projects
(Subramanyam and Krishnan, 2003; English and Mc Creanor, 2009) finding that Java lends
itself to greater maintainability. These threats to validity are the subject of further discussion
in Chapter 6.

While creating projects in GoogleCode the project administrator can associate ’tags’ with the
project. This is essentially meta-data enabling the categorisation of projects for the purposes
of searching or browsing projects. FlossMole provides this meta-data in flat file format.
Analysis of this meta-data shows that 204,918 projects (87%) have at least one tag and on
average each project has 4 tags defined. Given that tags are free text, there are a large number
of unique tags (145,600). The top 250 most frequent tags were extracted and manually
categorised accordingly. The relative occurrences of each category was then calculated on
the basis of the 250 most frequent tags and depicted in Figure 4.3.

The results in Figure 4.3 demonstrate that tagging projects by programming language is
fairly common. It follows that identifying a substantial set of Java projects is achievable
through tag analysis alone. Table 4.1 shows Java as the most popular language tag associated
with 22,594 projects (making it also the most popular tag in any category). This set of
projects is considered the population.

GoogleCode allowed project administrators to choose from among three available version
control systems - Subversion, GIT, and Mercurial - on which to host their source code. Each
of these necessitate a different mechanism to mining data. In the case of Subversion and GIT,
the revision history can be directly queried (albeit through different syntax and requiring
individual log parsers) while in the case of Mercurial it is necessary to clone the repository
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before retrieving the history - an altogether slower process. As this research is concerned with
building a toolchain that can efficiently mine data from each repository type, it is necessary
to understand the distribution of projects across types. Table 4.2 shows that Subversion was
overwhelmingly the most popular repository type. This reflects the relative popularity of
these version control systems at this point in time as GIT was later to see greater adoption
in the industry, eventually becoming the most popular VCS by web searches according to
Google Trends (RhodeCode, 2016). De Alwis and Sillito attribute this transition to the
decentralised nature of GIT which allows enhanced developer access, greater support for
experimental changes and improved workflows around branching and merging (De Alwis
and Sillito, 2009). While the revision history mining effort spans all projects (necessary for
the comprehensive committer collaboration analysis discussed in the coming chapter), the
static code analysis effort is simplified by exclusively selecting Subversion projects to mine
for structural metrics.
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Fig. 4.3 A representation of the categorisation of tags and their relative occurrences across
the forge

A sample is extracted from the population of 22,594 projects by iteratively invoking a
simple pseudorandom function (the ’random’ method in the Java Utils API which has an
approximately uniform distribution) to select a number between 0-1 to be multiplied by the
total number of projects available until the sample is extracted of an appropriate size. The
selection algorithm discards from consideration any projects with no revision history as they
represent projects which never saw committer activity beyond initial project creation and
therefore have no relevance to this study. With a confidence level of 99% and a confidence
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Table 4.1 The top 5 tags within the language category showing the ’Java’ tag the most popular
of all.

Programming 

Language 

Occurrences 

(Projects) 

Java 22,594 

Python 13,525 

PHP 12,180 

C 8,144 

GME 7,858 

Table 4.2 The repository counts for each version control system across the forge.

Version Control 

System 

Repository 

Count 

Subversion 207,390 

GIT 1,643 

Mercurial 2,064 

interval of 5%, a minimum sample size of 646 was calculated. The actual sample size used
was arbitrarily higher than the minimum sample size at 658 projects.

Once the sample projects are selected, a utility in the toolchain allows for the automated
parsing of the repository URL from the relevant project’s page on the GoogleCode website.
The project list with the associated URLs are then consolidated in a single file output which
is used to drive the metric mining process.

4.2.2 Structural Metrics Mining

The broad approach to mining project repositories for structural metrics is documented in
section 3.3.6 of the previous chapter. This section builds upon that foundation to detail
the aspects of mining that are specific to the particular analysis that forms the latter half
of this chapter. For the initial univariate analysis, static code analysis is conducted on the
latest version of the code of all selected projects within the sample. However, the later
multivariate analysis, as will be covered in section 4.5, the identification of revision counts
as a confounding factor will necessitate the analysis of every revision of each project and
subsequently the static code analysis to mine for structural metrics - again for each revision.
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This creates a requirement to store structural metrics for each Java class file in each project for
every revision of that project. Given that there can be hundreds of class files and thousands
of revisions, this is a fairly large data set. In order to be able to query this data effectively
there is a reliance on the database model documented in Figure 3.5. This is in contrast to
the univariate analysis where only a single set of structural metrics is captured for the entire
project. Figure 4.4 illustrates the difference in these two approaches. On the left, there
are three revisions and three classes: class A being revised three times and class C revised
just once. On the right the contrast is shown between the univariate analysis (where only
the final revision is considered) and the multivariate analysis (where all three revisions are
considered).

 

CLASS A CLASS B CLASS C REVISION 3 

CLASS A 

CLASS A CLASS B REVISION 2 

REVISION 1 

UNIVARIATE ANALYSIS MULTIVARIATE ANALYSIS 

REVISION 3 CLASS A  
REVISION 3 CLASS B 

REVISION 3 CLASS C 

REVISION 3 CLASS A  
REVISION 3 CLASS B 

REVISION 3 CLASS C 

REVISION 2 CLASS A  
REVISION 2 CLASS B 

REVISION 2 CLASS A  

METRICS 

Fig. 4.4 An illustration of the difference between data sets for each of the univariate and
multivariate analysis.

4.3 Sample Analysis

Ahead of conducting a detailed analysis of the sample or carrying out a regression analysis
to answer the research questions, it is standard practice to conduct an initial exploratory
data analysis. This is a typical approach in this type of research (Grechanik et al., 2010;
Cartwright and Shepperd, 2000) as it enables for a dissection of the dataset allowing it to
reveal its underlying structure without prior assumptions or biases. It is through that initial
analysis that potential complexities or threats to validity can be identified mitigated (Tukey,
1977). This section details that exploratory data analysis as applied to the sample of 658
projects and presented against similar analysis in the population of 22,594 projects. This
analysis will show that the sample is broadly representative of the wider forge.
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Table 4.3 File Extensions: top five cumulative occurrences.

Extension Count 

JAVA 311,252 

XML 38,089 

HTML 37,817 

PNG 33,141 

GIF 27,082 

Table 4.4 The number of projects within the sample of 658 projects, grouped by team size.

Team Size Project Count 

1 465 

2 102 

3 37 

4 21 

5 21 

> 5 12 

4.3.1 Exploratory Data Analysis

First, the extensions of files contained within the commits were mined and analysed with
the results confirming a very heavy bias towards the Java file extension alongside other
file extensions usually associated with Java web-based projects. This is as expected given
the project sample selection criteria which exclusively selected ’Java’ tagged projects. The
results of this analysis are depicted in Table 4.3. The table reveals a substantial proportion
of XML files (typically used in Java projects for configuration) and HTML and graphics files
(mostly used in web-based projects).

Next, the cumulative number of project committers was analysed. This is of relevance to this
analysis as it is used as a measure of team size. Figure 4.5 shows that the sample follows a
similar profile to the forge-wide analysis. Table 4.4 summarises the project team sizes in
greater detail. The analysis reveals that more projects exist on lower committer counts; a fact
that will have a bearing on the upper limit imposed on team size throughout the analysis in
this chapter to help ensure a substantial population of data points for each team size that is
included in this study.
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Fig. 4.5 The number of projects with a team size of 1, 2, 3 through to 12.

Committer behaviour was also analysed by investigating the cumulative number of commits
grouped by committer and project, depicted in Figure 4.6. It is notable that the broader forge
shows a majority of committers only ever contributing a single commit when participating
in a project. The sample deviates from this trend exhibiting a more even distribution across
committer activity levels. This is attributable to the fact that the sample constituting only
those projects tagged with the appropriate meta-data and, hence, are more likely to be active
projects showing more sustained committer engagement. These trends will bear relevance to
the multivariate team analysis later in this chapter where structural metrics are grouped by
the number of revisions that files undergo.

The final aspect of sample analysis concerns the nature of the individual commits that make
up committer activity. An individual commit can have any number of affected files. A
commit could be a single file or path modification or, on the other extreme, the check-in of
large mature codebase. Figure 4.7 shows the general trend that smaller commits are more
frequent than larger ones. Any file-level analysis of commit information will necessitate the
joining the structural metrics of potentially multiple affected files with the commit-level data.
This will become apparent through the course of the multivariate team analysis.
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Fig. 4.6 Sample analysis of the number of commits that each committer makes within
individual projects. The chart shows x-axis shows the number of commits that a committer
contributes to a project and the y-axis shows the frequency of that level of project engagement.
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Fig. 4.7 The frequency of commits grouped by the number of files affected.
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Table 4.5 Results of Kolmogorov-Smirnov tests comparing the distribution of each metric
against a ’reference’ normal distribution.

 CBO DIT LCOM NOC RFC WMC 

Test Statistic (D) 0.62 0.84 0.68 0.50 0.87 0.84 

Significance (p-value) 0.00 0.00 0.00 0.00 0.00 0.00 

4.3.2 Distributions and Correlations

To conduct robust hypothesis testing and apply linear regression techniques, it is necessary to
understand how the key parameters of the data set distribute relative to a normal distribution.
An in-depth qualitative analysis of the distributions of CK metrics is not the focus of this
work and the reader is referred to the work of Succi et al. (Succi et al., 2005) and Basili et al.
(Basili et al., 1996) for an analysis into the typical distribution of CK metrics for Java and
C++ software respectively. For the purposes of this research the Kolmogorov-Smirnov test
was used to compare the population of values of each CK metric against a normal distribution
(Kolmogorov, 1933; Smirnov, 1948). This test makes no assumptions of the distribution
of those data sets being compared and produces a p-value and a D-statistic as an output.
Table 4.5 shows zero p-values allowing the rejection of the null hypothesis of normality. The
D-statistic indicates the ratio of the data sets that exists outside the normal distribution. This
insight will influence the choice of statistical methods later in this thesis.

To analyse the relationship between the metrics within the sample, the Spearman correlation
coefficients are analysed in Figure 4.6. The Spearman measure of correlation was chosen
as it makes no assumptions of the normality of the distribution of the data being analysed
(Spearman, 1904). The correlation matrix shows positive correlations between CBO, LCOM,
RFC and WMC. Weak correlations exist DIT, NOC and the remainder of the metrics. These
observations are in-line with prior analysis by Succi et al. (Succi et al., 2005). Team size
is found to be correlated to CBO and, to a lesser extent DIT, NOC and RFC. It is worth
stressing that, for reasons explained in the next section, team size is measured at a project
level while the metric values are at an individual class level. This initial result implies that
greater team sizes cause metrics to trend counter to the objective as articulated by Rosenberg
and others (detailed earlier in Chapter 2) - something which has been empirically associated
with degraded external attributes. This adds further weight to the empirical evidence of prior
research associating larger team sizes to lower productivity (Pendharkar and Rodger, 2009)
and greater fault-proneness (Nagappan et al., 2008; Caglayan et al., 2015).
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Table 4.6 Spearman correlation matrix for Team Size and the CK metrics within the sample.

 TEAM 

SIZE CBO DIT LCOM NOC RFC WMC 

TEAM SIZE 1       

CBO 0.25 1      

DIT 0.13 0.32 1     

LCOM 
 

0.24 0.14 1    

NOC 0.14 0.46 0.57  1   

RFC 0.12 0.52 0.38 0.53 0.50 1 
 

WMC 
 

0.40 0.14 0.64 0.16 0.87 1 

 

KEY 
+VE STRONG +VE MODERATE +VE WEAK NOT SIGNIFICANT 

0.7 - 1.00 0.40 - 0.69 0.01 - 0.39  

4.4 Univariate Team Size Analysis

4.4.1 Defining the Team Size

For the purpose of this research, team size is defined as the cumulative total of all unique
committers present in the revision history in the version control system of a given project.

As alluded to in the previous section, while it is reasonable to suggest that such a definition
would be an oversimplification as some committers could contribute to the codebase during
widely varying time windows, it was posited that the majority do commit in overlapping
time windows. This is borne out in analysis of the project sample that found that 83% of
committers to a project contribute in overlapping time windows to their fellow contributors,
an example of which is shown in Figure 4.8. This fact, alluded to the reality that those
committers who contribute outside the time window of their peers nevertheless leave an
impact to the codebase which cannot be discounted, reinforces the argument in favour of a
simple cumulative measure of team size.

Mockus et al. studied an Apache project and observed that the majority of development was
attributable to a minority of ’core’ developers (Mockus et al., 2000) who commit frequently
to the codebase. It could be suggested that the measure of team size proposed in this research
does not distinguish between this frequent core committers and infrequent ’peripheral’
committers. As Figure 4.9 illustrates, a significant amount of activity takes place by those
committers who contribute with a low number of commits, hence infrequent committers
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cannot be excluded from any analysis without losing a key influencing factor on the codebase.
Indeed Terceiro et al. studied the contributions of core and peripheral committers across 7
projects concluding that peripheral committers contribute a disproportionately high amount
of structural complexity to the codebase further strengthening the argument that a measure of
team size should include all committers (Terceiro et al., 2010). Figure 4.8 highlights the
simple and intuitive nature of a team size measure derived from the cumulative committer
count as contrasted with a count of the number of committers with overlapping committer
activity.

It is also reasonable to suggest that, given CK metrics are measured at an individual class
level, so team size could also be measured at a class level (perhaps as the total number of
committers to modify a class). This runs somewhat counter to the intention of making this
research relevant to practitioners (particularly middle-management) which, the author argues,
would relate much more to a measure of team size at a project level than at a class level.
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Fig. 4.8 The committer engagement timelines for project ’TeamAwesomeExpress’. The
diagram depicts the count of the number of committers with overlapping timelines of activity.
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Fig. 4.9 The number of commits that each committer makes within individual projects.

4.4.2 Analysis

The analytical approach to the ’univariate’ team size analysis uses, as its structural metric
data set, the results of a static analysis of the projects codebases snapshotted at their final
revisions. This is depicted in Figure 4.10 and illustrates the approach of overlooking the
evolutionary path that a project took to reach its final (snapshotted) end state.
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Fig. 4.10 The evolution of project along the axis of time overlaid with a depiction of the
point at which static analysis is conducted.
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Table 4.7 The bucketed metric comparison strategy.

 Team Size 

 1 2 3 4 5 

1      

2      

3      

4      

5      

 Mann-Whitney Bucket Comparison 

Armed with these structural metrics, project metrics are then grouped or ’bucketed’ according
to the cumulative number of committers to the originating project. By way of example, should
the total number of committers for a project number n, then all the class-level structural
metrics for that project would move into the n committers bucket. This is illustrated in Figure
4.11.

 PROJECT A 
X committers 

  PROJECT B 
Y committers 

PROJECT C 
X committers 

PROJECT D 
Y committers 

X 
COMMITTER 

METRICS 

Y 
COMMITTER 

METRICS 

CLASS-LEVEL STRUCTURAL  
METRICS COMPARSION 

Fig. 4.11 An illustration of our bucketing strategy categorizing the class-level structural
metrics of a project according to the cumulative committer count of that project.

As shown in the sample analysis in Figure 4.5 earlier, there is a dramatic drop in the
proportion of projects that have a higher committer count compared with those projects with
a lower committer count. In the sample this drop is particularly dramatic from 5 committers
to 6 committers with counts of 12 and 3 projects respectively. For this reason, the statistical
analysis excludes buckets for 6 or more committers. As will be discussed in Chapter 6, this
can present an external threat to validity generalising some of the findings in this research to
substantially larger team sizes.

Table 4.7 illustrates the approach of comparing each bucket to every other. When comparing
metrics populations bucketed by committer count, the Mann-Whitney test is ideally suited as
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all metrics populations are independent and consist of continuous non-normal data (Mann
and Whitney, 1947). Unlike the t-test, the Mann-Whitney test is a null hypothesis test that
makes no assumptions of the distribution of the data. Null hypothesis H0,1 anticipates no
significant difference between bucket populations of varying committer count and is rejected
where the p-value is less than a certain threshold denoted by α . With a target confidence level
of 95% this would imply a p-value cut-off (α) at 0.05. However, a number of hypothesis
tests are conducted, increasing the likelihood of observing at least one significant result at
our chosen value of α . It is therefore necessary to apply the ’Bonferroni correction’ which
sets the significance cut-off at the product of α and n where n represents the number of tests
(Bonferroni, 1936). In this analysis there are 10 hypothesis tests for each metric giving a
corrected α value of 0.005. Where the null hypothesis is rejected, the mean value of the
bucketed metric populations are compared to determine in which direction the metric value
is trending. Table 4.9 shows the mean and median metric values and observation counts by
bucket.

Table 4.8 summarises the results of this analysis, based on which, two immediate observations
can be made.

• Rejecting null hypothesis H0,1: The null hypothesis can be rejected in the case of
all metrics with the exception of NOC as p-values are lower than the α for most of the
remaining metrics comparison tests. NOC excepted, 44 out of 50 comparisons show
p-values under the α threshold.

• Metrics not overwhelmingly trending in a one direction: Based on the analysis of
simple means, there is a roughly even split between metric values increasing in value
by committer count and those decreasing in value. Looking at the trends in more detail,
DIT and RFC bucket comparisons show a dominant trend of decreasing metric values
with increasing committer count. However, DIT shows the opposing trend where 1
committer bucket is compared to 2, 3, and 4 committer buckets. Similarly, the LCOM
bucket comparisons show a dominant trend of increasing metric values with increasing
committer count.

While some trends do emerge from this analysis, it is important from the perspective of the
validity of this research to ascertain whether there are any potentially confounding factors
that may be impacting these results. That is the subject of the next section.
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Table 4.8 Tabular summary showing the results of each bucket comparison within the sample
analysis.

Team Size 

CBO DIT LCOM NOC RFC WMC 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                               

2                               

3                               

4                               

5                               

 

 P-value ≤ 0.05 and smaller team’s bucket has a lower mean metric value compared to the larger team’s bucket 

 P-value ≤ 0.05 and smaller team’s bucket has a higher mean metric value compared to the larger team’s bucket 

 P-value > 0.05 

Table 4.9 Metric mean and median values for each metric bucket within the sample analysis.

 Mean CK Metric Values 

Team Size Count CBO DIT LCOM NOC RFC WMC 

1 68087 2.76 1.76 41.73 0.27 12.34 7.16 

2 28734 3.58 1.71 43.58 0.32 12.69 7.24 

3 17296 3.98 1.68 46.21 0.35 12.81 8.15 

4 106966 4.45 1.66 48.14 0.30 13.00 9.00 

5 8523 4.90 1.64 49.77 0.28 13.46 9.85 

 Median CK Metric Values 

Team Size Count CBO DIT LCOM NOC RFC WMC 

1 68087 2 1 57 0 8 5 

2 28734 2 1 62 0 8 5 

3 17296 2 2 57 0 8 6 

4 106966 3 2 44 0 8 5 

5 8523 1 2 58 0 8 6 
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4.4.3 Confounding Factors

Confounding factors are those that influence both the dependent and independent variables
within a model causing an association to be made which may not be genuine. In prior
research modelling the impact of structural metrics on the externally observable attributes
of software, class size was found to be one such factor. Emam et al. found that class size
had a confounding impact on fault-proneness (El Emam et al., 2001). They suggested that
earlier models which had established the predictive power of CK metrics over fault-proneness
were largely (but not entirely) driven by class size and therefore not controlling for this
confounding variable was a significant threat to validity. Their work was very recently
corroborated by Gil and Lalouche (Gil and Lalouche, 2017) who argued that this threat to
validity also extends to other OO metrics. In a similar vein, Zhou and Leung found that
class-size was a confounding variable to CK metrics models where change-proneness was
the dependent variable (Zhou and Leung, 2006).

This research differs from the prior literature in that the CK metrics are essentially the
dependent variables rather than the independent variables. For the purposes of the validity of
this analysis, it is necessary to establish those factors that could potentially confound models
that use CK metrics as the dependent variables.

4.4.3.1 Class Size
The typical measure of class size is Lines of Code (or LOC). This is a simple measure of the
number of lines within a class to the exclusion of comment lines (Nguyen et al., 2007). An
analysis of the Spearman correlation p-values show no correlation between class-level LoC,
team size and CK metrics. This is not surprising in an object-oriented language where one
could reasonably hypothesise that a larger team is likely to work on a codebase which has
more class files rather than larger class files per se. Similarly, LOC shows very weak negative
correlations to the DIT and NOC metrics with almost no correlation to the rest of the metrics.
On this basis it is accurate to say that class size has no relationship to either the dependent or
independent variables in the model that was established in the previous section and therefore
cannot be considered a confounding factor that should be controlled. Figure 4.12 depicts
how CK metrics trend against project size showing the mean metric values across individual
projects against their aggregate Lines of Code (LOC) count. These charts show that at a
project level there is no obvious relationship between code volume and metric values.

4.4.3.2 Revision Counts
When using version control systems, it is usual to build functionality iteratively through
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Fig. 4.12 Sample analysis of the mean project-level structural metric values plotted against
the cumulative Lines of Code for that project.
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repeated modification of source files. This represents the development iterations driving the
evolution of the codebase. It has been proven that, as software projects evolve, iterations of a
codebase tend to exhibit both growing size and complexity (Prather, 1984). Each time a file
(or group of files) is edited and re-committed this is considered a single revision. Revisions
are tagged with commit comments which often refer explicitly to additional functionality
that relates to the commit. An example of this can be seen in Figure 4.13 which is an excerpt
from the revision logs from a project called ’Precise’, a requirements management tool,
which will be studied in more detail in a later chapter.

 

Fig. 4.13 An excerpt of the revision log from the ’precise’ project showing commentary
explaining the addition of functional complexity with each revision.

To date in this thesis, references to complexity have, in fact, alluded to structural complexity.
This was defined earlier as the measure of the degree of interactions between components
in a software system. This is in contrast to functional complexity which has no single
definition but generally refers to the degree of sophistication in the logic encoded within a
software system. Revision counts are an important factor to study as, this research argues, it
represents a proxy to functional complexity (albeit a flawed one). While measuring structural
complexity is a fairly straightforward task captured by RFC and WMC metrics (to make
no mention of Halstead or McCabe’s complexity metrics which are specifically designed
for this purpose) capturing functional complexity is notoriously more difficult. Several
measures have been proposed, generally with a tendency to conflate functional and structural
complexity through attempts to track the nature of control structures within the source code
or interactions between components. It is understandable that code inspection would be the
default approach to measuring functional complexity as, where requirements are documented,
they are often fragmented and therefore difficult interpret in an automated fashion.

Revision counts cannot be considered a perfect proxy to functional complexity as revisions
will not exclusively be associated with the addition of new logic. Refactoring activities and
bug fixes both necessitate revisions which would not add to the functional complexity. The
efficacy of revision counts as a proxy to functional complexity is beyond the scope of this
work but, nonetheless, revision counts are an important factor worthy of further study for its
potential confounding effect.
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Table 4.10 Sample analysis of the Spearman correlation coefficients for revisions against
team size and each CK metric.

 TEAM 

SIZE CBO DIT LCOM NOC RFC WMC 

REVISION 0.47 0.29 0.12 0.12 0.14 0.21 0.16 

 

KEY 
+VE STRONG +VE MODERATE +VE WEAK NONE -VE WEAK 

0.7 - 1.00 0.40 - 0.69 0.01 - 0.39 0.00 -0.2 – -0.01 

Table 4.10 shows the Spearman correlation coefficients for the relationship of revisions
to team size and also CK metrics. It is notable that revisions do have a marked positive
correlation to team size (0.47) as well as to the CK metrics; particularly CBO and RFC
(0.29, 0.21 respectively). While these correlations are weak (under the arbitrary threshold of
0.40) they are nonetheless significant and imply a linear relationship between revisions and
both the independent and dependent factors in our earlier model; namely team size and CK
metrics respectively.

This relationship between revisions and team size is confirmed at a project level with Figure
4.14 showing that the cumulative number of committers to a project trending positively
against the number of revisions that the project has undergone. Furthermore, Figure 4.15
demonstrates a clear positive correlation between class revision counts and all CK metrics
with the exception of DIT and NOC. These metrics capture a very specific facet of structural
complexity - inheritance complexity - which the results imply is not correlated with functional
complexity. These results are consistent with the work of Johari et al. (Johari and Kaur, 2012)
who studied the relationship between CK metrics and revision counts on an open-source
project.

4.5 Multivariate Team Size Analysis

4.5.1 Data Analysis Approach

Having established revision counts as a confounding factor, in order to accurately study the
impact of team size and produce reliable comparisons between metric populations of varying
committer count it is necessary to control for revision counts. Continuing with the same
sample as previously described, the data set takes the form of a class-level and revision-level
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Fig. 4.14 Analysis of the sample projects showing a clear upwards trend of the project
revision count against committer count.

CK metrics along with date and committer associated with each file revision as previously
illustrated in 4.13. This allows the determination of the number of unique committers to
an individual project which is, as defined earlier, the project development team size. The
approach of conducting static data analysis at each revision of the projects in our sample is
illustrated in Figure 4.16. This figure depicts the evolution of a project revised through its
timeline of development with each revision the subject of static code analysis.

Given this enriched data set, metrics can be grouped together by project team size - irrespec-
tive of the individual project from which they came - and considered distinct populations.
For example, if project X and project Y each had the same number of unique committers, all
metrics belonging to each file within both projects would reside in a single bucket. Using this
bucketing approach, a set of distinct metrics populations can be compared using statistical
techniques. From the meta-data associated with each file, the number of revisions any one
file has undergone can be ascertained. This data will feed into the bucketing process where
the population of metrics within a particular bucket only contains those metrics belonging
to projects with a particular team size and only from files that have been modified a partic-
ular number of times. This approach, illustrated in Figure 4.17, will give confidence that,
when comparing our bucketed metric populations, any statistically significant differences are
attributable to team size without the confounding impact of revisions.
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Fig. 4.15 Mean metric values at a class level plotted against the last revision count for all
files within the sample.
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Fig. 4.16 Static analysis is conducted at each revision of the project evolution.
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Fig. 4.17 An illustration of the bucketing approach used to categorise metrics for comparison.
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Table 4.11 Bucket population sizes where each file within the sample is inspected at its final
revision.

 Team Size 

 1 Committer 2 Committers 3 Committers 4 Committers 5 Committers 

1 Revision 39,460 12,524 4,372 2,060 4,962 

2 Revision 14,236 5,552 2,630 2,169 2,316 

3 Revision 8,291 3,662 1,758 981 1,509 

4 Revision 5,743 2,395 1,282 695 973 

5 Revision 4,024 1,705 995 515 687 

6 Revision 2,985 1,311 786 393 528 

Consistent with the univariate team analysis in the previous section, as the dimensions in the
data are not normally distributed, the Mann-Whitney test is again used to compare bucketed
populations of metrics. Once again null hypothesis H0,1 is the subject of this analysis. H0,1
is rejected where the bucketed populations are found be independent where the p-values
indicate a 95% confidence level. As 50 hypothesis tests are executed for each metric, once
again the Bonferroni correction need apply. This sets the p-value threshold of α at 0.001.

It is logical that there would be a greater number of metric results pertaining to the lower
revision counts as, by necessity, for a file to be revised x times, it would have x-1 prior
revisions (where x>1). However, it is perfectly normal for a file to only have very few total
revisions. This is an important consideration as those buckets with metric populations of
higher revisions and committer counts have diminishing populations. Figure 4.18 and table
4.11 show this effect. For this reason, and to ensure suitable metric populations in each
bucket, in this analysis only buckets belonging to team up to 5 committers with a maximum
of 6 revisions are considered. A substantial drop in bucket population is notable beyond
these thresholds.

4.5.2 Comparing Bucket Populations

Table 4.12 shows the results from the statistical tests run across each team-size comparison,
similar to the previously discussed Table 4.8 but also grouped by revision. By way of
explanation, the first set of rows are bucket comparisons for the CBO metric. The revision
columns relate to the number of times that the classes (from which the metrics were extracted
to make the bucket metric populations) have been revised. The committer count columns and
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Fig. 4.18 Analysis of mean metric values against revision count where each file within the
sample is inspected at its final revision.

rows refer to the number of unique committers to the project from which the class originates.
For completeness, those tests that do not meet the Bonferroni corrected α cut-off but do show
significance at the 95% confidence level are depicted accordingly.

Where the bucket populations are found to be significantly independent the bucket population
metric means are compared. Based on this, a determination is made as to whether increasing
committer count will result in a rise or a fall in the metric value.

From these results a number of notable observations can be made.

• Rejecting null hypothesis H0,1: After controlling for revisions it is still possible to
reject null hypothesis H0,1 for all metrics but NOC and RFC. NOC showed no impact
from team size before or after controlling for revision counts. However, RFC did
earlier show a negative association with team size but this analysis has shown that this
was due to the confounding impact of revision counts. It is evident that a large number
of buckets that show statistical significance across CBO, LCOM, WMC and, to a lesser
extent, DIT.

• DIT and LCOM show a positive relationship with team size at higher revisions:
The results for DIT and LCOM show a dominant trend of increased committer count
resulting in increased metric values. In the case of DIT this trend is stronger at higher
revisions of 4 and above. However, DIT does the opposing trend where 1 committer
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bucket is compared to 2, 3, and 4 committer buckets. Similarly, the LCOM bucket
comparisons show a dominant trend of increasing metric values with increasing team
size.

• WMC shows a negative association with team size: WMC shows a trend with a
decrease in metric value accompanying an increase in team size.

4.5.3 Simple Linear Models

While the previous analysis focused on holding revision counts constant, it is appropriate to
model revision counts and committer counts as two independent variables with the CK metric
values being their dependent variables, using simple linear regression to analyse their impact.
Table 4.13 shows the output of this linear regression using the Ordinary Least Squares
(OLS) regression method. One of the considerations when using this method for multivariate
regression is that collinearity between the independent variables can lead to misleading
coefficient estimates. The Variance Inflation Factor measures the increase of the variance of
the parameter estimates if an additional variable is added to the linear regression. This helps
ascertain the impact of collinearity of parameters on the validity of an OLS regression. At
1.65, this measure is significantly less than the ’rule of thumb’ threshold of 5 (Menard, 2002),
hence the collinearity between revisions and team size is not a concern.

The linear models capture the linear relationship between team size, class revision count (as
independent variables) and CK metrics (as dependent variables) expressed as the following
equation where team size and revision count are multiplied by their respective coefficients β ,
γ is the intercept, and ε is the standard error:

MetricValue = βT S T S+βR rev+ γ + ε

R-squared is a statistical measure, ranging from ’0’ to ’1’, of how close the observed data
points are to the fitted regression line. A value of ’1’ would imply that the independent
variables linearly explain all variance of the respective CK metric.

The coefficients are the estimated slope (that is to say the slope based on a sample of the
population) of the component of the independent variable that is uncorrelated with the other
independent variable. Coefficients cannot be directly compared across independent variables
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Table 4.12 Tabular summary showing the results of each bucket comparison within the
sample.

 CBO 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

5                          

 

 DIT 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

5                          

 

 LCOM 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

5                          

 

 NOC 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

 5                          

 

 RFC 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

5 `                         

 

 WMC 

Team Size 

Revision 2 Revision 3 Revision 4 Revision 5 Revision 6 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1                          

2                          

3                          

4                          

5                          

 

 P-value ≤ 0.05  
Higher committer bucket has a 

lower mean metric value 

compared to the lower 

committer bucket 
 P-value ≤ 0.001  

 

 P-value ≤ 0.05 
Higher committer bucket has a 

higher mean metric value 

compared to the lower 

committer bucket 
 P-value ≤ 0.001  

  

 P-value > 0.05 
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Table 4.13 The results of an Ordinary Least Squares regression using the sample dataset with
committer and revision counts as independent variables.

 CBO DIT LCOM NOC RFC WMC 

Statistics R-squared 0.21 0.44 0.43 0.00 0.12 0.10 

Coefficients 
Team Size (βTS) 0.59 0.30 7.74 0.05 2.06 1.14 

Revisions (βR) 0.33 0.00 2.08 0.01 0.75 0.66 

Residuals RMSE (ε) 8.51 1.46 45.43 4.71 32.50 25.37 

Intercepts Intercept (γ) 2.87 1.70 45.78 0.31 10.06 6.99 

Standard 

errors 

Team Size 0.01 0.00 0.03 0.00 0.03 0.02 

Revisions  0.00 0.00 0.01 0.00 0.01 0.01 

T-statistics 
Team Size  91.41 275.56 225.02 15.04 83.62 59.47 

Revisions  134.90 105.05 159.80 5.35 80.41 91.35 

 

P-values across all regressions: 0.00 

Variance Inflation Factor: 1.22 

Degrees of Freedom: 173,189 

on the same model as they exist on different scales. For instance, if team size had the same
impact on a metric value as revisions, it would still be expected that the coefficients of
revisions would be lower given that they possess a higher range. Similarly it is not possible to
directly compare coefficients of a specific independent variable across multiple CK metrics
as here the dependent variables are on differing scales.

The residuals are a measure of the distance between the actual observations and the model
prediction. Table 4.13 shows the Root Mean Squared Error (RMSE) which is a measure of
residuals in units of the respective CK metric. Residuals are difficult to interpret in isolation
but will become useful when comparing the accuracy of these models against the mixed
linear models in the next section.

The intercepts are the values at which the fitted regression lines cross the y-axis. It is worth
noting that the intercept point where team size and revisions are at ’0’ is purely a theoretical
construct. It is useful, however, as it does indicate the degree to which the regression line is
shifted upwards and will bear some relevance in Section 4.7 where intercepts of individual
projects are compared.
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Standard errors indicate the degree to which the coefficient estimates may vary from the
sample to the full population. This is a function of the R-squared and the variance in the
sample. T-statistics are the ratio of the coefficient estimate and the standard error. Degrees
of freedom are the number of independent observations available to establish a regression
model.

The simple linear models detailed in Table 4.13 show a number of key results outlined as
follows.

• Further rejection of null hypothesis H0,1: In producing coefficients for team size
and revisions, the linear modelling process first runs a hypothesis test to prove the
rejection of the null hypothesis of coefficients of zero (i.e. the hypothesis that the
independent variables have no effect on the dependent variables). This test returns
highly significant p-values (approximated to 0.00) across all CK metrics.

• Team size and revisions explain a substantial degree of variance, particular for
DIT and LCOM: It is notable that revisions and team size explain a substantial propor-
tion of the variance in DIT and LCOM - 44% and 43% respectively - as represented by
the R-squared values across the respective regression models. This is consistent with
the results of the previous section that found that DIT and LCOM trended quite clearly
positively with team size (controlling for revisions). NOC shows a R-squared value
approximated to ’0’ which confirms the results of the spearman coefficient matrix that
was presented earlier in Table ?? where no linear correlation was observed between
NOC and the independent variables.

• Inheritance complexity not impacted by revisions: Coefficients close to zero for
revisions across both DIT and NOC indicate that these metrics, both of which capture
inheritance complexity, are not affected by revisions.

• Team size trends positively with all CK metrics but NOC: The positive estimated
coefficients for team size (βT S) across all regressions with the exception of NOC
indicate that team size has a positive association with all but one of the CK metrics.

• Low standard errors: The standard errors indicate the probability that the sample
mean and the population mean differ and therefore impact the estimated coefficients.
The standard errors across the regression models do not rise above 0.03 indicating
that, within a 97% confidence level, the coefficients would prove accurate if calculated
across the full population - i.e. all projects in the Forge.
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4.5.4 Linear Mixed Models

While the application of the Ordinary Least Squares regression enabled the creation of some
initial models, these models attempt to fit a single regression line per metric across the entire
sample, disregarding the project-by-project variation. This is at odds with prior research
which tends to produce a distinct population of observations for each project and study them
individually using regression techniques (for the full survey refer to Tables 2.3 and 2.5).
This is somewhat intuitive as the idiosyncratic aspect of a project, driven by the nature and
complexity of the functional behaviour as well as the individual programming traits of the
individuals composing the team, has the potential to have a material impact on its structural
metrics.

As this analysis is applied on a representative sample of an entire forge, it leads to a
substantially larger data set than the 1-5 small/medium sized projects that is typical in
the prior literature. As a result it is not feasible nor desirable to treat each project as an
isolated data set as it would lead to a reduction in the degrees of freedom available to establish
each individual linear model, consequently impacting the ’goodness of fit’.

Linear Mixed Models (LMMs) allow for a more nuanced linear regression by distinguishing
between ’fixed effects’ that apply to all groups and ’random effects’ that apply individually
to subgroups within data sets. Specifically, this approach can generate a single coefficient
estimate but can allow for project-specific intercepts. This approach is useful in recognising
and modelling the idiosyncratic ’project specific’ impact to the metrics while using the full
available data set to establish the coefficient estimates.

This is the first application of LMMs to the study of software structural metrics but there is a
substantial corpus of research that uses this technique in other fields. LMMs have gained
recognition in the field of genomics for allowing ’relatedness’ - modelled as the random
effects - to factor in genetic association tests (Zhou and Stephens, 2012). Ecologists have
recently started to apply this technique to modelling random effects of space, time and
individuals in the study of species diversity and extinction risk (Bolker et al., 2009).

Linear mixed models can be expressed in a similar way to the previously specified OLS
regressions in the previous section where γp is now the project-specific intercept:

MetricValue = βT S T S+βR rev+ γp + ε
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Table 4.14 summarises the results of a mixed model linear regression using project as
the grouping variable. The coefficients and residuals are detailed as previously in the
OLS regression results of Table 4.13. The sample variance shows the the degree to which
observations are spread from the mean across the sample. The group variance shows the same
measure across individual groups and averaged across the full set of groups. This highlights
the degree to which observations within a group share similar values when compared to
ungrouped observations across the sample.

The following observations can be drawn from Table 4.14.

• Sample variance is substantially higher than group variance: With the exception
of the DIT regression, the groups exhibit lower variance than overall sample. This
confirms that the project-specific idiosyncratic characteristics have a significant bearing
on metric values.

• Lower Residuals: The results from the LMMs exhibit substantially lower residuals
across all metric regressions when compared to the OLS results in Table 4.13. A
reduction is expected as the intercepts are defined on a per project basis explicitly to
reduce residuals.

• Higher coefficient estimates: The higher coefficient estimates in the LMMs indicate
that team size and revisions have a greater impact on metric values than otherwise
apparent in the OLS regression. While all projects share the same coefficient estimate,
the revised values are attributable to the greater flexibility afforded by LMMs in fitting
a regression line without forcing all projects through a single intercept.

4.6 Results at a Project Level

4.6.1 Context

While the analyses of the previous sections established a relationship between team size
and CK metrics, it is informative to analyse individual projects at a code level and shed
light on what may be driving the broader relationships observed. This section begins with
the application of dimensionality reduction to visualise the team size sample which is then
used to identify two individual projects for further study. Those projects are then analysed
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Table 4.14 The results of an mixed model linear regression against the sample dataset with
committer and revision counts as independent variables and the project as the grouping
variable.

 CBO DIT LCOM NOC RFC WMC 

Statistics 
Sample variance 72.97 0.89 1345.27 22.13 1003.25 633.47 

Group variance 4.78 1.15 1037.15 0.07 225.69 38.41 

Coefficients 
Team Size (βTS) 0.66 0.53 14.26 0.06 2.92 1.88 

Revisions (βR) 0.30 0.00 0.92 0.00 0.55 0.54 

Residuals RMSE (ε) 7.72 0.92 34.16 4.69 28.32 24.46 

 

P-values across all regressions: 0.00 

Degrees of Freedom: 173,189 

qualitatively through observing the source code of individual class files and quantitatively
through metric values and LMM regression parameters.

4.6.2 Project Selection

To drive the process of project selection it is first necessary to visualise the project sample.
This would enable us to ensure that the projects selected for study are not too similar
but capture the diversity within the sample. Plotting a scatterplot for a data set with two
dimensions is simple as the data can directly transpose onto the axis. When there are more
dimensions the process of ’dimensionality reduction’ can be applied. Principal Component
Analysis (PCA) is one such technique, transforming the data set to a number of linearly
uncorrelated dimensions (Pearson, 1901). The ’Principal Components’ are the combination
of the original dimensions weighted to retaining the maximum variance within the data set.
PCA does not require the individual dimensions to be of any particular distribution (Timm,
2002).

Through the application of PCA it is possible to visualise the team size data sample through
two orthogonal dimensions. This process results in ’loading coefficients’ which weight each
dimension within the sample to derive two principal components. As shown in Table 4.15,
the first principal component is weighted towards CK metrics and particularly measures of
structural complexity while the second principal component shows a greater bias to cohesion
and team size.
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Table 4.15 Loading coefficients of the Principal Component Analysis as applied to the team
size analysis sample.

 
LOC 

Revision 

Count 

Committer 

Count CBO DIT LCOM NOC RFC WMC 

PC-1 0.27 0.08 0.17 0.39 0.37 0.29 0.41 0.48 0.34 

PC-2 -0.33 -0.10 -0.29 -0.26 -0.22 0.52 -0.25 0.18 0.56 

Figure 4.19 shows a depiction of the team size sample scattered across these two principal
components. No distinct clusters immediately emerge from this, but through this process it is
possible to select two projects which are visually distant from one another for further study.
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Fig. 4.19 A visualisation of the team size sample scattered across the two principal compo-
nents. The selection of Aviator and Precise for further study.

Aviator and Precise are two projects that exhibit metric values that, relative to each other,
are consistent with the wider forge trends for the given team sizes: one and five committers
respectively. Aviator is located on the edge of the main cluster while Precise appears very
much as an outlier - likely owing to its higher than mean LOC. Figure 4.21 shows a
comparison of the metric profiles between these two projects plotted against revision counts.
Aviator is an expression engine that dynamically compiles expressions into Java byte-code
and delivers them to a running JVM. It is a single committer project with the full codebase
in Java and no graphical user interface. The project comprises 233 Java class files. The
committer is currently a prolific contributor to open-source projects with an active public
GitHub profile. The Aviator project represented one of his early efforts started after he had
accumulated roughly 2 years of development experience.
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Precise is a requirements modelling and tracking tool designed to plug into the Eclipse IDE,
with no dedicated user-interface as such. The project codebase comprises 524 Java class
files alongside some modelling artefacts. Four distinct committers contributed to this project
over a period of two years with the activity levels shown in 4.20. It is notable that one
committer contributes very little commits to the project while two committers contribute the
majority of commits and unique files. The definition of team size within this research does
not distinguish between the activity levels of committers in assigning a value to this measure.
However, the final chapter of this thesis does consider avenues of future work to assess the
impact to regression models by distinguishing between core and peripheral committers in the
calculation of team size.

4.6.3 Project Comparison

Figure 4.21 shows a comparison of the metric profiles between two projects plotted against
revision counts. As previously, metric values are bucketed by revision count and averaged. It
is notable that the observations for Precise are higher than those for Aviator for those metrics
most affected by team size according to the linear regressions; CBO, DIT and LCOM. CBO
and LCOM trend up with revisions, as expected given the positive coefficient estimates of
the linear models. DIT does not exhibit a consistent trend against revision counts which is
consistent with the earlier results which assigned a coefficient of zero to revision counts (βR).
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Fig. 4.20 Committer behaviour analysis for the Precise project.

Within the Precise project there is some obvious fragmentation which can be observed
through a fairly dis-organised source folder and package structure. Many classes are too large
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Fig. 4.21 Key structural attributes for the single contributor Aviator project compared against
multi-contributor project Precise.
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Table 4.16 The intercepts and residuals for the Precise and Aviator projects.

 CBO DIT LCOM NOC RFC WMC 

Intercepts (γp) 
Aviator 3.13 0.79 12.23 0.08 8.02 5.93 

Precise 1.84 -0.73 -25.65 0.09 -4.38 -3.22 

Residuals (εp) 
Aviator 1.93 0.43 36.05 0.46 3.85 3.60 

Precise 5.71 1.05 34.82 1.19 10.58 6.69 

 

P-values across all regressions: 0.00 

Variance Inflation Factor: 2.07 

with 28 classes over 250 lines long, with code violating the ’single responsibility’ principle
which dictates that a class should do one thing and do it well. Failure to adhere to this leads
to a lack of cohesion as member variables are rarely relevant to all methods in a fragmented
class. Similarly a large number of methods would lead to a high values for WMC and CBO
which are capture structural complexity and modularity respectively. To illustrate, Figure
4.23 shows a snippet of code from one of the most complex classes which contains 635 lines
and 35 methods, most of which contain complex functionality. In one method there are seven
nested conditional blocks, indicative of inordinate structural complexity and poor modularity.
The revision history of this particular class shows that it had three distinct committers and
had a high degree of structural complexity from the initial creation which steadily increased
over subsequent revisions.

Precise has a significantly larger and more fragmented codebase than Aviator which appears
to lead to fairly large class files with multiple responsibilities and points of coupling with
other classes. By way of example, the ASMCodeGenerator class has responsibilities for code
generation, arithmetic operations and maintaining complex collection structures indicating
poor cohesion. Furthermore, as illustrated in 4.22, it directly coupled to multiple concrete
implementations within the codebase, albeit mostly functionally oriented to code generation.
It is reasonable to postulate that a lack of effective coordination between committers on the
Precise project lead, at least in part, to this fragmentation. This is a vicious cycle as poor
structural attributes leads to further degradation as the codebase becomes more difficult to
navigate and the demands for effective coordination between committers become unwieldly.
All evidence is that the Precise project never made it to a fully-fledged release and ultimately
failed as a project. Meanwhile Aviator continued to remain under active development after
GoogleCode was decommissioned, migrating to GitHub and registering numerous releases.
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Fig. 4.22 A depiction of the external dependencies to which the ASMCodeGenerator class is
coupled.

Table 4.15 shows the intercept and residual values for the Precise and Aviator projects from
the LMM regression in the previous section. The residual values of Aviator and Precise
are consistent with their respective positions in the scatter plot. Precise, as an outlier in the
scatter plot, could reasonably be expected to have a regression line that is compromised
by the nature of the majority of the projects in the sample that make up the main cluster.
This is reflected in higher residual values relative to the Aviator project. Conversely, the
intercept values for the Precise project are significantly higher than Aviator. This is a result
of the greater distance to the y-axis when extrapolating regression lines to achieve intercepts
for projects with a higher team size. Given that projects with larger team sizes will have
’further to travel’ in order to intercept with the y-axis, and that all projects will have share a
single gradient (the coefficient estimate) for a given metric regression, it is logical that those
projects with a higher team sizes are likely to have lower (or even negative) intercepts. These
observations help illustrate the strength of LMMs over OLS regression models within this
context.



106 The Impact of Team Size on Structural Metrics

 

1 2 
3 

4 

5 
6 7 

Fig. 4.23 A code snippet from the DomainProxyInvocationHandler class within the Precise
project. The nested iterative blocks are numerically labelled.
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4.7 Summary of Analysis

To recap the analysis in this chapter, at the outset there was basic exploratory data analysis
revealing underlying trends around committer behaviour and the nature of a commit as well
as the distribution and correlations between the key variables in the data set. The analysis then
moved on to tackling the first research question (RQ1) to establish if there was a relationship,
at a forge level, between team size (the independent factor) and CK metrics (dependent factor).
Then, following in the approach of the prior literature, there was a study of two factors for
potential confounding impact, code size and revisions. It was determined that the former was
not a confounding variable but the latter is. Revisions were then controlled for as a part of
the next phase of analysis. The analysis to this point was achieved by taking observations
from across projects and grouping them by team size and later by revisions, but always
out of the context of the project from which they came. The latter section used the mixed
models approach to linear regression to retain the project-specific idiosyncratic element to the
data, re-evaluating the coefficient estimates and generate lower residuals. Finally the forge
sample was visualised on a scatterplot, using PCA for dimensionality reduction, enabling
the selection of two distinct projects for further qualitative and quantitative study. This
helped shed light on the code-level features that drove the relationships reported by the linear
models.

The results showed that projects developed by larger team sizes exhibited an increase in
coupling (reflected by larger CBO values), an increase in inheritance complexity (reflected
by higher DIT values) and a decrease in cohesion (reflected by larger LCOM values). This is
a rejection of the null hypothesis H0,1 which anticipated no impact to any of the structural
attributes of the software. Similarly, this leads us to accepting the alternate hypothesis H1,1.1,
the basis of which was that prior research had linked larger teams to greater fault-proneness
and, in the absence of further data, it was reasonable to hypothesise that maintainability and
fault-proneness could be negatively correlated. There is consistency between the results of
this team size analysis and the research of Nagappan et al. (Nagappan et al., 2008) who
linked larger team sizes with increased fault-proneness given that Basili et al. had confirmed
that CBO and DIT is highly correlated with fault-proneness (Basili et al., 1996); this research
having also observed higher CBO and DIT values from larger team sizes.

Referring to Table 2.5 (the survey of research correlating CK metrics to the sub-attributes
of maintainability), inferences can be drawn from the observed structural trends against
the impact on the maintainability of the software. Bruntink et al. had observed that DIT
was negatively correlated with the testability while Badri et al. noted the same relationship
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between LCOM and testability (Bruntink and van Deursen, 2006; Badri et al., 2011). Harrison
et al. found that LCOM was negatively correlated with changeability and Elish and Rine
found that all CK metrics were negatively correlated with stability (Harrison et al., 1998b;
Elish and Rine, 2003).

Based on this prior research it can be deduced from the results of this chapter that the
increased coupling, inheritance complexity and decreased cohesion of software associated
with larger team sizes - represented by the higher values of CBO, DIT and LCOM respectively
- result in degraded levels of the maintainability sub-attributes of testability, changeability
and testability. This is an acceptance of alternate hypothesis H1,1.2 and is depicted in Figure
5.27.
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(Elish and Rine, 2003) 
 

Fig. 4.24 The impact of structural attributes on the maintainability of software. Coupling,
cohesion and modularity and inheritance complexity all trend in a direction that indicates an
attendant degradation in testability and stability and changeability.

4.8 Chapter Review

This chapter studied the relationship between development team size and the CK metrics
of the produced software. This was done by first sampling the broader GoogleCode forge
followed by exploratory data analysis studying committer behaviour and comparing the
sample to the broader forge. Simple linear models were produced and the confounding factor
of revision counts was identified. The multivariate analysis introduced revision counts into
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the linear model and, through studying individual projects in detail, the nature of the linear
relationship was established.

The next chapter uses a similar approach to study the impact of team stability on the structural
attributes of software. A distinction will be drawn between the team stability that is developed
through the commit history of a project and the team stability that accrues across multiple
projects.





Chapter 5

The Impact of Team Stability on
Structural Metrics

5.1 Introduction

The previous chapter focused on impact of team size on the structural metrics of software,
addressing the first research question (RQ1). In this chapter, the focus turns to the second
research question (RQ2): the impact of the development team stability on the internal
structural metrics of coupling, cohesion, complexity, and modularity of software projects and
the implications on its maintainability. Consistent with the previous chapter, a representative
sample is first extracted and a measure of team stability is then presented. This is then used
to drive a series of statistical analyses to answer the research question. At the outset of this
chapter it is useful to restate the basic definition of team stability as the cumulative time
that each team member has worked with their fellow team members. Consistent with the
previous chapter, the definition of the team remains the set of unique committers present
in the revision history in the version control system of a given project. This initial basic
definition of team stability will be developed and expanded upon through the course of this
chapter.

Figure 5.1 depicts the structure of this chapter starting with an initial treatment of those
aspects of data mining and analysis that are foundational the team stability analysis which is
detailed in the latter sections of this chapter. Section 5.2 outlines the approach to conducting
collaboration analysis throughout the GoogleCode forge; this is necessary to calculate a
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reliable measure of team stability. The pitfalls associated with forked projects and multiple
committer identities are documented, along with mitigation strategies to these threats to
validity. Section 5.3 is concerned with the second strand of foundational work - data mining
and preliminary forge analysis to discover those basic trends that have a bearing on the latter
analysis phase. Section 5.4 documents the approach to sample extraction necessary for the
subsequent analysis in this chapter. Section 5.5 is a study of the impact of ’intra-project
team stability’ on structural metrics; that is assessing how the stability accrued through the
course of the evolution of the project affects its structural metrics, observing the project’s
final archived state within the forge. Section 5.6 assesses the impact of ’inter-project team
stability’ on structural metrics; that is the stability that is gained from retaining committers
in a development team across multiple projects. Inter-project team stability analysis factors
in the chronology of projects and makes observations of the impact of stability that accrued
in previous projects on structural metrics of the team’s subsequent projects. Fortunately,
given the breadth of the forge it is feasible to focus exclusively on the study of projects where
an entire development team collaborated on a project and subsequently migrated, with the
introduction of no new committers, to a later project. A comparison is carried out between
the structural metrics of the chronologically earlier project against the later projects and, as
in the previous chapter, functional complexity is isolated to remove any confounding impact
it may have on the analysis. As in the previous chapter, section 5.7 presents the results in the
context of two individual projects.

Figure 5.2 highlights, at a high level, aspects of the toolchain that are of relevance to the
team stability analysis - aspects that will be expanded on later in this chapter.
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Fig. 5.2 Aspects of the toolchain pertinent to team stability analysis.

5.2 Forge Collaboration Analysis

The accurate mining of committer collaborations for the purpose of team stability analysis
necessitates two types of forge analyses as illustrated in figure 5.3. The first type of analysis
is focused on committers where every single commit is mined and mapped to its respective
project and the nature of the engagement of each committer’s project engagement is analysed
within the context of their fellow committers. This is used to calculate the stability of a team
through the evolution of the project.

The second type of analysis - project-focused analysis - is concerned with establishing the
relationship of projects to one another. This relationship is given rise through the process of
’forking’ creating, in essence, a dependency network. As will be discussed in this section, this
relationship can distort analysis of committer history hence is it critical that this hierarchy is
mapped out in order to eliminate this issue as a potential threat to validity. The project-focused
analysis in this chapter does not consider directionality although this will be discussed in the
final chapter as a potential future avenue of work.

This section discusses each of these two types of analyses separately, their associated mining
challenge and the strategy to solve for those challenges.
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Fig. 5.3 A depiction of the collaboration analysis conducted in the GoogleCode forge.

5.2.1 Committer-Focused Forge Collaboration Analysis

The committer-focused forge collaboration analysis is concerned with mining the commit his-
tory of every committer in the forge, identifying which projects they contribute to, capturing
the detail of their project engagement and analysing each committer’s project engagement
within the context of their fellow committers on those projects. The project engagement
detail captured comprises the sub-modules that committers contribute to and the time interval
of their contributions. This analysis will provide a basis for the calculation of intra-project
team stability to be discussed in more detail in section 5.4.

A challenge to this analysis is building the capability to consistently track committers as they
traverse through the forge. When determining contributor activity, it is noted that multiple
user identifiers are occasionally used by the same committer. Without rationalising these to a
single identifier it is not possible to effectively track a committer’s behaviour. As this research
seeks to accurately establish the composition of development teams across all the projects in
the forge in order to establish instances where groups of two or more committers contribute to
more than one project together, it is essential to reliably identify committers across multiple
projects. This is a common problem in the field of mining software repositories and has seen
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some earlier research efforts. Robles and Gonzalez-Barahona developed a methodology and
general heuristics to identify developers across repositories (using data from VCS, mailing
lists, and bug reports) (Robles and Gonzalez-Barahona, 2005). They classify email addresses
as a ’primary identity’ which is almost always present across diverse repositories and they
present a general approach to extract identities from email addresses. Applying this approach
on the GoogleCode forge, it is observed that multiple email addresses can be attributed to the
same identity.

To illustrate by way of example consider the two IDs below which, for the sake of this
example, appear in the same project:

ID1: Jane Doe <jane.doe@doe.com>
ID2: Jane Doe <jdoe@doe.com>

Robles and Gonzalez-Barahona argue that it is a reasonable assumption that both these user
handles refer to the same committer, albeit from two separate user accounts (Robles and
Gonzalez-Barahona, 2005). If this is not accounted for in the team stability analysis later in
this chapter, this could result in an incorrect determination of the degree of stability attributed
to a project.

Fortunately multiple user IDs for a single contributor usually carry sufficient similarity
to allow automatic detection and rationalisation of these user IDs. Bird et al. propose a
heuristic to rationalise user IDs when mining email social networks (Bird et al., 2006) which
is partially adapted and adopted for this purpose. Specifically, there are several stages of
name parsing that are applied:

• Where a name is accompanied by an email address in brackets the email address is
ignored. In this case one user ID would be selected to which we assign the commits of
both user IDs.

• All names are converted to lower case and all trailing spaces are removed.

• All punctuation is removed and replaced with a single space.

• Multiple spaces are replaced with a single space.

When this type of analysis is applied to the GoogleCode forge, it is observed that 17% of
unique committer identities are indeed sufficiently similar to be considered subtly different
identities referring to the same committer. Naturally, activities on these alternate identities
are conflated to represent a comprehensive view of the committer’s behaviour.
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Fig. 5.4 A depiction of the number of committers in the GoogleCode forge pre- and post-
analysis.

5.2.2 Project-Focused Forge Collaboration Analysis

The project-focused forge collaboration analysis within this research is concerned with
mapping out the parent-fork relationships between projects. Forking refers to the process
of creating an alternate and independent software development stream from an existing
project. When unmapped, these relationships can pose a real threat to validity due to
the duplication of commit history in the child project which can erroneously reflect those
committers contributing to the parent project also contributing to the child project. This
research seeks to study inter-project stability by studying projects where groups of committers
genuinely contributed to multiple projects. Therefore this type of analysis is necessary to
avoid misattributing duplicated commits from forked projects to committers who have not
genuinely contributed to those projects.

5.2.2.1 Mechanics of Forking
One of the strengths of open-source software development is the ease with which one
can start a new project leveraging all the tools that an open-source forge can offer. An
unsuccessful project will attract few additional contributors while a successful project will
build an active development community, produce artefacts and ultimately an active user base.
Open-source forges also simplify the process of starting new projects based on the source
code of existing projects and without affecting the original. The motivations to do so can
range from discontent at the direction of development in the ’master’ project through to a
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desire to build or experiment with new ideas within a mature project. The process of forking
is named as such after the concept of forking processes to execute in parallel.

Forking projects can take multiple forms and each presents its own challenges in terms of
automated detection. For the avoidance of doubt, when ’forking projects’ are referred to,
this is distinct to the ’fork and pull’ development approach adopted by repositories such as
GitHub, studied extensively by Kalliamvakou et al. (Kalliamvakou et al., 2014). ’Fork and
pull’ is the process of cloning a master repository into an individual contributor’s personal
repository which acts as a staging area before changes, after review, can be merged into the
master repository. This research, however, is concerned with forked projects that represent
an entirely different development stream to the original project.

The process of creating a fork of a project can take several forms. This section discusses
each approach illustrating using examples from GoogleCode.

• Copying source files or binaries Some developers choose to fork projects by copying
selected elements of the parent project’s codebase. This could, for example, take the
form of copying selected pre-compiled binaries or indeed the entirety of the source
code. The example depicted in Figure 5.5 illustrates a snapshot of the revision history
of the ’iTerm2’ project - a MacOS Terminal replacement - which is a fork of the
iTerm project. The second of the two revisions (r2) shows an import of the source
files of the parent project. At the heart of this threat is that there is essentially no way
of determining if a committer’s contribution is their original work or whether it was
fully or partially copied from other projects or sources without mining a host of other
forges. While this is not a serious threat to the validity of this research, this could
impact those researchers attempting to understand the value of developer contributions
and would necessitate a mechanism to distinguish between a committer’s original
source code and that imported from other projects. For this reason, among others,
development of techniques and software to identify ’code cloning’ is an active field of
research (Roy et al., 2009). While Brixtel et al. presented a framework which could be
deployed for the purposes plagiarism detection (Brixtel et al., 2010), the majority of the
efforts in this field focus on gaining greater understanding on the evolution of software
repositories and reducing the wasted effort arising from duplicate code. Juergens et
al. created an open-source workbench for code detection research geared towards
configurability and extensibility and hence designed to support code clone research
(Juergens et al., 2009). Lee et al. worked designed algorithms to support scalable
indexing structures on vector abstractions of code to allow for the rapid detection of
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clones (Lee et al., 2010). This work will be discussed towards the latter part of this
thesis in the context of possible future work.

 

Fig. 5.5 A snapshot of the start of the commit history of the ’iTerm2’ project.

• Cloning a repository within the forge Most popular version control systems make it
fairly easy to clone a project, along with its full commit history into a new repository.
Where this approach is taken to create a new fork, it will have an identical history to its
parent. Figure 5.6 shows the identical VCS history of the ’hotcakes’ and ’zumastor’
projects - both enterprise network storage solutions. In this example both projects
share the same first 239 commits, after which they take divergent development paths.
When conducting collaboration analysis across the forge, without factoring in this
threat to validity, it may be falsely observed that the committers of ’hotcakes’ later
contributed on ’zumastor’.

 

Fig. 5.6 The identical VCS history of the ’hotcakes’ and ’zumastor’ projects.
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• Cloning a repository from outside forges This approach is a subtle variation on the
previous method. Figure 5.7 depicts the commit history of the ’cacheboy’ project
repository - a fork of ’squid’ which is a webserver caching solution. Commits predate
GoogleCode’s launch by 9 years so clearly cannot be part of the ’cacheboy’ project
itself. These commits do, in-fact, belong to the ’squid’ project which was hosted on
a repository external to the GoogleCode forge. The existence of a parent outside the
open-source forge will prove a challenge to detect. The threat to the validity of the
collaboration analysis in this case is the erroneous attribution of committer activity to a
fork rather than a parent that resides outside the forge. This threat is of no consequence
to this research given that the parent resides outside GoogleCode, there is no threat
of ’double counting’ the committer contribution; the risk is solely that the aggregate
activity across the two projects is assigned to the later forked project.

 

Fig. 5.7 The VCS history of CacheBoy.

5.2.2.2 Identifying Forked Projects
Identifying forked projects is an area which has seen some prior academic interest. Nyman
and Mikkonen conducted research to establish the most common motivations for forking
within SourceForge (Nyman and Mikkonen, 2011). The methodology to identify forked
projects was to search the project descriptions that referred to forking. Although this approach
suffices when attempting to locate a sample to study, relying on developers to specifically
declare a project as ’forked’ in the description does not help us identify a comprehensive
set of forked projects to facilitate an accurate collaboration analysis. Similarly, Robles
et al. (Robles and González-Barahona, 2012) used a fairly manual approach for locating
significant software forks that involved searching Wikipedia using the term ’software fork’
and manually navigating to the project homepage to extract key information ahead of a study
on the motivations and outcomes of forking. Again this cannot be applied to the large-scale
mining of software forks within open-source forges making this approach inappropriate to
identifying a comprehensive set of forks.
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As part of the process of maintaining a forked project, it is often desirable or indeed nec-
essary to import changes from the master project. Ray and Kim developed a tool called
REPERTOIRE to automate the identification of commonality between known forked projects
through comparison of source files but it does not attempt identify forked projects in a wider
open-source forge (Ray et al., 2012). Of the approaches to automated clone detection, this is
closest to the methodology adopted in this research. While REPERTOIRE tracks activity
between known forked projects, this research is focused on identifying the forked projects
the co-exist within a forge. As such, this research can be considered complementary to the
work of Ray and Kim.

5.2.2.3 Identification Heuristic
This research proposes a heuristic which searches for common commits across projects and
identifies them as projects exhibiting a fork relationship. This heuristic searches for common
commits across projects and identifies them as projects exhibiting a fork relationship. This
approach is only capable of detecting forks where the parent resides in the same forge, and
has been cloned, retaining the revision history of its parent. Therefore, if we capture both the
parent and its forks within GoogleCode we would expect to see commits of identical lists of
affected files, date and author across multiple projects. Using this approach we are able to
determine networks of linked projects as the forks are identified in the context of their related
projects rather than in isolation as is the case with the other heuristics.

It is important to note that very simple changelists (defined as the set of files affected by a
commit) may appear across a large number of unrelated projects. For example, most Maven
projects will contain changelists which contain a modification to the pom.xml file (the key
configuration file in such projects). In order to eliminate these false positives, one important
parameter in this heuristic is the minimum number of files which a changelist has to contain
in order to be considered for duplicate analysis. For the purposes of our work, a size of ten
has been found to eliminate false positives without unduly restricting the result set.

Limitations to the heuristic are outlined below.

• Coverage: This approach is only capable of detecting forks where the parent also
resides in the forge (or set of forges) being analysed; i.e. the mechanism of forking
earlier referred to as ’cloning a repository within the forge’. This is not a limitation
within the context of this research as this analysis is concerned with identifying those
inter-project relationships that arise as a result of forking projects within the forge. This
is because this forking mechanism was earlier identified at the only mechanism that
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has the capacity to create a distortion to the type of committer-focused collaboration
analysis conducted in this research.

• Forks by source file import: As detailed earlier, some projects are forked by im-
porting binaries and source files from other projects rather than importing the version
control commits themselves. These forked projects are not detected by this heuristic
but may be found by the other heuristics if the project or commit description contains
the term fork. Again, this is not a limitation in the context of this work as these other
forking mechanisms do not pose a threat to the validity of the collaboration analysis in
the latter parts of this chapter.

• Context limitations: This heuristic does not attempt to establish which, within a fork-
ing relationship, which project is the parent and which is the child. While establishing
this relationship can be informative, as will be outlined in the Discussion chapter, it is
not necessary for the purposes of the committer-focused collaboration analysis in this
research.

Figure 5.8 shows the results of this analysis. 6.25% of projects in the GoogleCode forge
are forks of parent projects with a revision history that contains commits that are duplicated
from the parent project.
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Fig. 5.8 A chart comparing the total number of active projects (i.e. those projects with
commits beyond the initial repository creation commit) to the number of project forks.
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5.3 Exploratory Data Analysis

This section studies basic committer behaviour in order to analyse typical project engagement.
This basic preliminary analysis will be valuable when conducting forge collaboration analysis
to calculate team stability.

Figure 5.9 depicts the number of distinct projects that individual committers engage in,
plotted against the log of the number of committers with that project engagement count.
While 87% of committers engage in a single project only, there are substantial numbers of
committers that engage in multiple projects. This is significant as it indicates the availabil-
ity of multiple committers engaging multiple projects - something that is critical for the
identification of the inter-project team stability analysis data set as discussed in the next
section.

Figure 5.10 is a representation of the duration of committer project engagement. This
is calculated as the elapsed time (in units of days) between the first and last commits of
individual committer on a project and is plotted against the frequency of that duration across
all committer project engagements. It is observed that the majority of project engagements
have a duration of eleven days or more. This has implications for the accumulation of
intra-project team stability and, again, makes it likely that significant time overlaps between
committers within a single project will be observed. As will be discussed later in this chapter,
this is necessary for the accumulation of intra-project stability through the evolution of a
project.

5.4 Sampling

The forge collaboration analyses detailed earlier underpins the team stability analysis which
is necessarily based on an accurate and comprehensive picture of committer project contribu-
tions and forge traversal. Where intra-project stability is studied, it is necessary to map the
individual committer contributions at the project level. This type of analysis places limited
demands on the requisite data set. Projects included in the data set should have more than
one committer as there can be no meaningful analysis unless there are multiple committers.
As with the team size analysis, it is possible to continue to restrict the study to Java projects
only without unduly compromising the sample size.
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Fig. 5.9 The number of projects individual committers contribute to throughout GoogleCode.
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Fig. 5.10 The frequency of the timespan of project engagement - measured as the time
between the first and last commits on projects by individual committers.
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Inter-project stability analysis places greater demands on the data data-set and essentially
should comprise pairs of projects where multiple committers migrate from a project, poten-
tially shedding committers but not gaining any new ones, onto a new project. In order to
provide contrast between the later project where committers have established some stability
in comparison to the earlier project where the team stability would have been less, there
should be no time overlap in the commit activity of the two projects. This criteria is illustrated
in figure 5.11 below. The earlier project-focused collaboration analysis ensures that we
reliably identify these project pairs without the distortion that forking can bring.

The forge collaboration analysis discussed in section 5.2 enables the accurate and compre-
hensive mapping of committer project engagement throughout the forge. This facilitates
the identification of projects where committers have contributed to more than one project
alongside the same fellow contributors. This forms what is termed in this thesis a ’stable
partnership’; i.e. two or more committers contributing to two or more of the same projects.
This stable partnership is associated with a ’stable project pair’; this is to say that pair of
projects where the ’stable partnership(s)’ manifest. This is a simplification as there could be
more than two projects where these partnerships appear. For the purposes of ascertaining the
impact of stability this does not constitute a threat to validity, rather it is an opportunity for
further work as will be discussed in the next chapter.

The expansive nature of the GoogleCode forge enables the application of fairly specific
criteria to the identification of the inter-project analysis data set while retaining a statistically
significant sample size. As illustrated in figure 5.11, only project pairs where the commit
history of the earlier of the projects concludes before the later project commences are included
in the data set. This is to ensure that stable partnerships are captured rather than overlapping
partnerships which could detract from the impact of the team’s stability. Secondly, only those
project pairs with committer populations entirely made of stable partnerships are eligible for
inclusion; that is to say that the committers in the later project in the pair should be made
up entirely of contributors from the earlier project. This is to avoid considering projects
where the inter-project team stability is reduced by newcomers to the team. Finally, as
discussed earlier in this chapter, the population sample must be cleansed of forked projects
with duplicated commit history as this is essentially distorted information which would
constitute a threat to validity.

This comprehensive criteria enables the creation of two distinct data-sets which can then
be analysed relative to one another; projects where committers have previously partnered
together 0 to n times against those later projects where they have partnered 1 to n+1 times.
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Fig. 5.11 An illustration of the ’project pairs’ that are eligible for inclusion in the intra-project
stability analysis. While shedding team members from one project to the next is acceptable,
additional committers is not. Projects must not overlap.
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By contrasting the structural metrics of each of the earlier projects within a stable project
pair against the later project within that pair, it is possible to make some observations on the
impact of team stability on these structural attributes of these projects.

For simplicity, once the data set for the inter-project stability analysis is identified, that same
data set is leveraged to drive the intra-project stability analysis where projects are studied in
isolation as opposed to within a their project pair.

The execution of this analysis yields 411 project pairs - 822 projects in total. Figure 5.12
shows the committer counts across the sample, with the vast majority of projects exhibiting
single digit committer counts. This trend is consistent with the observed trends in the forge
analysis in the prior chapter as illustrated in figure 4.5.
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Fig. 5.12 Committer counts across the sample, with the vast majority of projects exhibiting
single digit committer counts.

5.5 Intra-project stability analysis

The earlier definition of team stability - the cumulative time that each team member works
with their fellow team members - is fairly broad and open to interpretation. This section
provides greater precision around this definition and proposes a calculation for intra-project
team stability - a measure capturing the degree of stability accrued by a team through the
course of a project.
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5.5.1 Determining a measure of intra-project stability

This research proposes a measure of stability, assigned at a project-level, to capture the degree
to which committers on a project accrue time working alongside their peers on the project.
The premise of this measure relates to the earlier definition of stability from Huckman et al.
which states that the greater cumulative time that a team of committers spend working with
each other, the more stable that team (Huckman et al., 2009).

Before delving into the specifics of how this measure is calculated, it is helpful to first explain
that, within this model, there are two main constructs. The first is the ’time-frame of activity’.
This applies both at level of the committer and the project and is defined as the window of
time stretching from the first and last commits for that entity; specifically only those commits
that impact Java source code, excluding for example, documentation changes. For instance,
if a project records its first commit on the first day of January and its final commit on the
final day of December of that same year, it would have a time-frame of activity spanning the
365 days of that year. Likewise, a committer recording commits on the first and last day of
January would have a time-frame of activity spanning the 31 days of that month.

The second construct relates to how stability (or lack thereof) accrues on a project. Figure
5.13 outlines three mechanisms through which a measure of stability can be derived. The
first method (labelled ’1’) is the most straightforward and is to directly capture the number
of days in each committers time-frame of activity through the course of the project. This is
the most simplest transposition of the Huckman definition onto this problem space. However,
it is also a measure that will closely track team size and does not capture the degree to which
time-frames of activity overlap. The second method does capture the cumulative number
of days that that these time-frames of activity overlap but will also be closely correlated
with team size. The third method captures the extent to which the committer time-frames
of activity do not align with that of the project’s time-frame of activity and therefore often
misaligning with their peers and failing to accrue stability. For the reasons outlined below,
this third method is chosen for this work and the measure is termed the ’Lack of Stability
Ratio (LSR).

• Avoiding tracking team size: As illustrated in Figure 5.13, the first two methods
risk primarily tracking team size rather than stability. LSR, however, calculates a ratio
which captures a particular aspect of committer time-frames of activity and therefore
avoids tracking team size.



5.5 Intra-project stability analysis 129

 

TIMESPAN FROM FIRST TO LAST COMMITS FOR A COMMITTER 

TIMESPAN FROM FIRST TO LAST COMMITS IN A PROJECT 

5 10 15 0 

Average ratio of the inverse 
of each committer timespan 
divided by project timespan 
= (10 + 6 + 10) / (15 * 3) 
= 26 / 45 = 0.58 

3 

10/15 

6/15 

10/15 

Cumulative day-count of 
overlaps between committer 
timespans 
= 2 + 2 + 2 + 2 
= 8 

2 

2+2 

2+2 

Cumulative day-count of 
each committer timespan 
= 5 + 9 + 5  
= 19 

1 

5 

9 

5 

Fig. 5.13 A hypothetical example showing three different approaches to calculating intra-
project stability.
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• Adhere to conventions: By measuring ’lack of stability’ rather than ’stability’, LSR
continues the convention set by the CK metric suite and other software metric suites
that favourable measures are lower in value (Lack of Cohesion being a pertinent
example).

5.5.2 Calculating LSR in practice

An example of how LSR is calculated on a project from the stability project sample is
illustrated in Figure 5.14. The LSR calculation is based on the Jaccard Index where
similarity is established between each and every committer time-frame of activity to the
overall project time-frame of activity.

The Jaccard index is the simplest of several similarity measures and was developed at the start
of the previous century to compare botanical data sets (Jaccard, 1901). The Jaccard Index has
some prior use in the field of mining software repositories. Kiefer et al. and Kpodjedo et al.
use this measure to calculate similarity between Java classes to observe evolution of software
projects through releases (Kiefer et al., 2007; Kpodjedo et al., 2013). Jermakovics et al.
used the measure to compute similarities among developers based on common file changes,
constructing a network of collaborating developers (Jermakovics et al., 2011). Alternative
similarity measures such as the Sørensen-Dice coefficient (Sørensen, 1948) or Euclidean
distance add complexity but it isn’t clear that either would better capture team stability given
that they are more suited to weighting certain factors and clustering respectively. The Jaccard
Index is defined as the size of the intersection divided by the size of the union of the sample
sets.

J(A,B) =
|A

⋂
B|

|A
⋃

B|

While the Jaccard Index is designed to establish the similarity between two finite data sets,
the LSR calculation is an adaptation of this approach to take into account the fact that there
can be more than two committer time-frames that need to be factored into the stability ratio.
It is essential that LSR is in the form of a ratio to avoid calculating a number which has a
strong direct correlation to committer count which would simply lead to tracking that factor
and, ultimately, confounding results. As expressed in the equation below, LSR is the inverse
of the simple mean of the Jaccard Indexes of each unique committer time-frame of activity
and the overall project time-frame of activity.:
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Fig. 5.14 A worked example showing the calculation of the Lack of Stability Ratio (LSR) in
a project called ’TeamAwesomeExpress’ from the stability project sample.

While the previous example is valid, it is also true that many software projects - particularly
larger ones - are commonly divided into ’modules’; a fact that should be factored in the
calculations. Each module represents a logical grouping of functionality with its source code
typically residing in its own folder within the project repository. The concept of modules
helps decouple sections of the codebase, providing the ability for specialisation amongst team
members and reducing the need for coordination between them. Where the definition of team
stability refers to team members ’working together’, this should be expanded to stipulate
that they work together on the same module, as otherwise there can be no assumptions on
the degree of coordination between members - coordination being crucial to the accruing of
stability in a team.

Figure 5.15 shows the prevalence of multi-module projects throughout the stability analysis
data set. Figure 5.16 illustrates a worked example of a stability ratio calculation of a
multi-module project.
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Fig. 5.15 The number of projects grouped by the number of distinct modules within their
codebase.
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Fig. 5.16 A worked example showing the calculation of the Lack of Stability Ratio in a
project called ’PipeDreamAgent’ from the stability sample comprising two distinct modules.
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Table 5.1 A matrix of Spearman correlation coefficients showing the relationship between
various project-level variables

 REVISION 

COUNT 

PROJECT 

DURATION 

MODULE 

COUNT 

LACK OF 

STABILITY RATIO 

REVISION COUNT 1.00    

PROJECT DURATION 0.16 1.00   

MODULE COUNT 0.10 0.32 1.00  

LACK OF STABILITY RATIO -0.13 0.01 0.04 1.00 

 

KEY 
+VE STRONG +VE MODERATE +VE WEAK NONE -VE WEAK -VE MODERATE 

0.7 - 1.00 0.40 - 0.69 0.01 - 0.39 0.00 -0.39 – -0.01 -0.40 - -0.69 

5.5.3 Validation of the Lack of Stability Ratio

In the previous chapter, one of the key considerations was to mitigate for the fact that
increasing team sizes can accompany an increase in functional complexity which could have
a confounding impact. LSR is, perhaps, a less intuitive and direct measure than team size
and, therefore, it is even more critical to quantify the relationship between this measure and
other key factors that may have a confounding impact on CK metrics. Table 5.1 shows that
LSR has negligible correlations to revision count, project duration and module count.

By way of qualitative validation, it is notable in Figure 5.18 that the visual representation of
the time-frames of activity of two outlier projects from the stability sample show features that
would be expected given their respective LSR values. The project named ’Dmdirc’ has a high
stability ratio and it is clear that the committers to this project work together for an extended
period of time with an almost total degree of overlap. Conversely, ’Cykelgarage’ shows an
early commit by one author followed by a lull in activity and a series of commits by five
other authors with some degree of overlap. While it is arguable that this measure inordinately
penalises projects with an early commit followed by a period with no committer activity, it is
also worth pointing out that this is quite a rare pattern and furthermore it is helpful to capture
the gap in time that elapses between periods of activity as those gaps may be associated
with a loss of knowledge from the team. In this particular example the commentary in the
commit logs reveal that the initial commit activity to Cykelgarage represented an substantial
check-in of code representing the first set of functionalities for the software. The subsequent
lull is therefore significant in that it creates distance between the initial committer and the
subsequent committers to the project - an aspect that is and should be captured by LSR.
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The probability distribution for LSR across the stability project sample is illustrated in Figure
5.17 and, while visually similar to a normal distribution, the Kolmogorov-Smirnov test
returns a P-value of 0.00 and a D-statistic of 0.50 revealing that half the observations reside
outside a normal distribution.
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Fig. 5.17 The probability distribution for the Lack of Stability Ratio (LSR) across the stability
sample.

5.5.4 Results

The initial set of results visualisations are represented as scatter diagrams showing the
mean CK metric values at a project level plotted against LSR for those projects. Averaging
CK metrics may be misleading as it can be heavily skewed by outlier values and thus
misrepresentative of the data set. That said, it can be helpful as a first step in determining if
there any clear trends manifest which can then be explored further. There are two observations
that can immediately be made. First, the majority of the data points exist on the left-hand-side
of the plots. This is a natural given that the majority of projects exhibit LSR values lower than
0.5 as confirmed by the probability distribution depicted in 5.17. The second observation is
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Fig. 5.18 Visualising the ’time-frames of activity’ for two outlier projects: Cykelgarage and
Dmdirc.
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that there is no clear and powerful relationship between LSR and the project averaged metric
values that manifest in these plots.
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Fig. 5.19 Scatter diagrams plotting metric values against stability ratios.

The charts in Figure 5.20 show mean metric values for projects exhibiting a range of stability
ratios. There is a noticeable upward trend across all metric types with the exception of CBO
and NOC, implying at this early stage of analysis that teams with greater stability produce
projects with higher cohesion and lower inheritance complexity.

Table 5.2 shows the results of a basic Ordinary Least Squares linear regression with LSR as
the sole independent variable. In a departure from the analysis in the prior chapter, it is not
necessary to include revision count into this model as the correlation analysis in Table 5.1
shows that LSR does not track any of the key project-level factors and therefore those factors
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Fig. 5.20 Mean project-level metrics grouped by stability ratio (rounded up to one decimal
place).
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should not have a confounding impact. The model can be expressed as follows where LSR is
multiplied by a coefficient (β ), γ is the intercept, and ε is the standard error:

MetricValue = βLSR LSR+ γ + ε

A number of observations can be made based on the results in Table 5.2.

• Rejection of null hypothesis H0,2: The R-Squared values show that LSR can explain
a high proportion of the variance observed in the DIT and LCOM metrics, a substantial
proportion of the variance of CBO, and a minimal element of the variance of RFC
and WMC. All regressions report a p-value < 0.005 - i.e. the Bonferroni corrected α

- and can be considered highly significant. CBO captures coupling and modularity,
DIT captures inheritance complexity and LCOM captures coupling. Consequently,
this model provides support for the alternative hypothesis H1,2.1 that ’less stable
development teams produce software exhibiting higher coupling, higher complexity,
lower cohesion and lower modularity’.

• Stability has a powerful impact on CBO, DIT and LCOM: The high coefficient
estimates show that LSR has a fairly powerful impact on the CBO, DIT and LCOM
metrics. For instance, the 8.67 coefficient reported in the CBO column indicates that a
movement of 0.1 in LSR would have a 0.87 impact on the CBO: a metric with a mean
of 3.55 within the stability sample. The low standard errors and high T-statistics show
that this linear model provides a reasonable fit.

While this result evidences the impact of LSR on CK metrics, the ’idiosyncratic’ project
features referred to in Chapter 4 (previously established to play a significant role in the
relationship between team size and CK metrics) is likely to play a role in determining how
LSR impacts the structural attributes of individual projects. To take a hypothetical but intuitive
example, if a software development team is geographically collocated and working on a highly
complex problem, stability should have greater predictive power than for a development
team that is geographically dispersed and working on a relatively simple problem solving
to established and documented design patterns. While individually establishing the impact
of these myriad of factors is well beyond the scope of this work, using the ’Linear Mixed
Models’ (LMM) statistical approach can, as demonstrated in Chapter 4, provide a linear
regression which factors in this idiosyncratic component to establish coefficients with greater
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Table 5.2 Results of the OLS linear regression with intra-project stability as a single indepen-
dent variable.

 CBO DIT LCOM NOC RFC WMC 

R-squared 0.23 0.61 0.44 0.01 0.12 0.06 

LSR Coefficient (βLSR)  8.67 4.03 105.70 0.84 37.31 22.75 

RMSE (ε) 5.97 1.17 43.17 2.86 37.53 55.64 

Intercept (γ) 3.29 1.65 45.78 0.31 10.06 6.99 

LSR Standard Error  0.07 0.02 0.54 0.03 0.47 0.40 

LSR T-Statistic  119.53 277.37 196.42 24.47 79.86 56.95 

  

P-values across all  displayed regressions = 0.00 

Degrees of Freedom = 49,616 

accuracy, reducing residual errors in the process. This can be expressed in a similar way to
the equation in the previous section where γp is now the project-specific intercept:

MetricValue = βLSR LSR+ γp + ε

Table 5.3 shows the results of the LMM regression and the following observations can be
made.

• Sample variance is substantially higher than group variance: As observed with the
LMM models of the previous chapter, the groups exhibit lower variance than the overall
sample confirming the significant influence that the project-specific idiosyncratic
characteristics have on CK metric values.

• Lower Residuals: Again, consistent with the application of LMMs in the previous
chapter, Table 5.3 shows substantially lower residuals across all metric regressions
when compared to the OLS results in Table 5.2.

• Lower coefficient estimates: The lower coefficient estimates in the LMMs indicate
that team stability has less impact on metric values than otherwise apparent in the OLS
regression. This is only noteworthy in the context of highlighting that LMMs revise
the coefficient estimates to reduce residuals given the flexibility of project-specific
intercepts.
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Table 5.3 Results of the ’random intercepts’ linear regression with intra-project stability as a
single categorical independent variable with observations grouped by project.

 CBO DIT LCOM NOC RFC WMC 

Statistics 
Sample variance 31.33 0.69 1348 7.57 1391.63 1020.44 

Group variance 2.92 0.74 784.84 0.04 46.28 14.20 

LSR Coefficient (βLSR) 5.90 3.33 100.49 0.65 23.60 17.85 

RMSE (ε) 3.20 1.01 31.03 1.54 21.41 17.72 

 

P-values = 0.00 

Degrees of Freedom = 49,616 

5.6 Inter-project stability analysis

While studying intra-project stability enables the quantitative analysis of the impact of
stability on the structural metrics of software, it is also informative to study at another key
dimension of team stability: namely the impact of inter-project stability on structural metrics;
that is the stability that is gained through a development team retaining a consistent set of
committers across multiple projects. This variant of stability intuitively can bear relevance to
those practitioners looking to understand how continuing with an unchanged development
team can bring benefits to internal and external attributes of the produced software. For this
analysis the same null and alternate hypothesis hold as in the previous section: H0,2 and
H1,2.1 respectively.

5.6.1 Analysis approach

As documented earlier in Section 5.4 of this chapter, there are a number of criteria that are
applied in order to obtain a dataset that lends itself well to contrasting by inter-project team
stability: namely that the project timelines should not overlap and that the chronologically
later project should not contain any committers that did not exist in the earlier project. The
nature of the subsequent analysis is twofold. First, the metrics of projects within ’stable
project pairs’ are compared to each other as depicted in Figure 5.21. The second analysis
is a linear regression to model the relationship between inter-project team stability and CK
metrics.
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To perform a linear regression, it is necessary to derive a categorical measure of lack of
stability which can serve as an independent variable acting on CK metrics as dependent
variables within the linear model. To achieve this the model assigns a binary with a value
of ’1’ assigned to the first (chronologically) of a stable project pair and ’0’ assigned to the
second project in the pair. This is an approach that attributes a total lack of team stability
to the earlier project and total stability to the later project of the stable project pair. This
is a simplification as it is entirely conceivable that any project team may have collaborated
previously on other projects outside the GoogleCode forge and thus not captured within our
data set and not reflected in this measure of lack of stability. Furthermore, in this analysis no
account is made of the intra-project stability that accrues through the course of the earlier
or the later project within a pair. These simplifications do not constitute a significant threat
to the validity of this analysis as there is certainly an accumulation of inter-project stability
from the earlier project to the later project within the stable project pair, enabling meaningful
observations to be made. However, this measure leaves some scope for refinement as will be
discussed in the Future Work in the next chapter of this thesis.
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Fig. 5.21 An illustration of the inter-project stability analysis approach.



142 The Impact of Team Stability on Structural Metrics

5.6.2 Results

Figure 5.22 shows the result of the first phase of analysis detailing the proportion of ’stable
project pairs’ where the structural metrics of the each member of the pair exhibit a significant
difference from the other with a 95% confidence interval; i.e. a Mann-Whitney test returning
p-values of < 0.05. Significant difference across a large proportion of projects are observed -
from a maximum of 38% for RFC to a minimum of 22% for NOC. Consistent with the inter-
project stability analysis, this is further rejection of null hypothesis H0,2 that ’Development
team stability does not impact the coupling, complexity, cohesion or modularity of the
produced software’. The nature of this difference is studied, as in the prior analyses in this
thesis, through linear modelling.
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Fig. 5.22 A chart showing the number of project pairs that show a significant difference (i.e.
p-values < 0.05) between the metrics of each project in the pair.

Table 5.4 details the results of an OLS linear regression with the categorical binary lack of
stability measure as a single independent variable. Table 5.5 shows the results of the LMM
Regression. The following observations can be made from these results.

• Further rejection of null hypothesis H0,2: The R-squared values show that a substan-
tial proportion of the DIT and LCOM metrics variance is explained by this inter-project
lack of stability. The positive coefficients along with the low standard errors relative
to those coefficients shows that CK metrics trend positively with inter-project lack of
stability; a result consistent with the observations in the earlier intra-project stability
analysis. This result provides further support for alternative hypothesis H1,2.1 that
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Table 5.4 Results of the ’ordinary least squares’ linear regression with inter-project stability
as a single categorical independent variable.

 CBO DIT LCOM NOC RFC WMC 

R-squared 0.12 0.35 0.29 0.01 0.04 0.02 

Binary Lack of Stability Coefficient 

(βILSR)  
3.33 1.62 46.19 0.31 12.04 8.06 

RMSE (ε) 6.17 1.23 39.70 1.89 39.59 50.57 

Intercept (γ) 3.63 1.70 44.22 0.33 16.33 10.33 

Binary Lack of Stability Standard Error  0.03 0.01 0.26 0.01 0.22 0.19 

Binary Lack of Stability T-Statistic  102.91 205.39 178.79 23.41 54.32 42.26 

 

P-values across all  displayed regressions = 0.00 

Degree of freedom = 79,057 

Table 5.5 Results of the ’random intercepts’ linear regression with inter-project stability as a
single categorical independent variable with observations grouped by project.

 CBO DIT LCOM NOC RFC WMC 

Statistics 
Sample variance 31.33 0.69 1348 7.57 1391.63 1020.44 

Group variance 5.80 2.24 2109.93 0.07 76.36 28.75 

Binary Lack of Stability Coefficient (βILSR)  0.77 0.04 2.51 0.21 5.69 5.44 

RMSE (ε) 5.56 0.82 36.93 2.50 40.48 35.53 

 

P-values for all shown regressions = 0.00 

Degrees of Freedom = 79,057 

less stable development teams produce software exhibiting higher coupling, higher
complexity, lower cohesion and lower modularity.

• LMM results consistent with previous results: When compared to the basic OLS
regression, as with the intra-project analysis, the coefficient estimates are lower (with
broadly lower residuals) given the project-specific intercepts of the LMM regression.
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Table 5.6 Loading coefficients of the Principal Component Analysis as applied to the team
stability analysis sample.

 
LOC 

Revision 

Count 

Lack of 

Stability Ratio 

Committer 

Count CBO DIT LCOM NOC RFC WMC 

PC-1 0.13 0.15 -0.01 0.08 0.40 0.35 0.25 0.36 0.54 0.44 

PC-2 -0.16 -0.38 0.19 -0.40 -0.14 -0.29 0.43 -0.37 0.20 0.41 

5.7 Results at a Project Level

5.7.1 Project Selection

Applying PCA to the team stability sample, a new set of loading coefficients emerge as
documented in Table 5.6. It is notable that LSR hardly features in the first principal
component. This can be explained by the fact that LSR explains a great deal of variance in
the CK metrics - variance which is captured through the substantial loading coefficients on
the CK metrics themselves. Figure 5.23 shows the sample scattered by the two principal
components.
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Fig. 5.23 A visualisation of the team size sample scattered across the two principal compo-
nents. The selection of Aviator and Precise for further study.

Through the intra-team stability analysis, the broad trends observed were that DIT, LCOM,
RFC, WMC trended positively with LSR. Two projects were selected with varying LSR
values exhibiting relative metrics trends similar to those broader trends. Wikipedia-map-
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reduce and Scapi have LSR values of 0.41 and 0.15 respectively indicating that the latter has
a project team which is substantially more stable. These particular projects were chosen as
have similar revision counts (129 and 157 respectively) and five unique committers each. The
two projects appear in distant positions from one another in Figure 5.23 with Scapi residing
close to the centre of the cluster while Wikipedia-map-reduce is very much an outlier owing
to its high RFC and WMC values.

Wikipedia-map-reduce is an API that allows analysis of Wikipedia using the Hadoop Map-
Reduce framework for parallel processing. Is is purely server-side software with no graphical
interface. Scapi is a loan administration system which forms the basis of a company called
Monteplus which operates as an online pawn shop, swapping various personal items or assets
for cash.

Although both projects share the same team size, a deeper analysis of committer behaviour
analysis depicted in Figure 5.24 shows that Wikipedia-map-reduce has a single prolific
contributor who is responsible for the majority of the codebase while Scapi’s five committers
more equitably distributed responsibility of the codebase amongst themselves. In the next
chapter more consideration will be given to the role of ’core’ committers versus that of
’peripheral’ committers and how this can present both a threat to validity and an opportunity
for further work.

5.7.2 Project Comparison

Through qualitatively reviewing the code in both Scapi and Wikipedia-map-reduce, the latter
emerges as the more structurally complex of the two projects. Although there is certainly
less to critique in Wikipedia-map-reduce than in the previously reviewed Precise project
- an observation which is consistent with the lower absolute LCOM and RFC numbers in
Wikipedia-map-reduce relative to Precise - there are still some examples of poor encapsulation
and inordinate structural complexity which will lead to poor cohesion, high coupling and
low modularity. The Encoder class is an example of this as the code snippet in Figure 5.26
highlights. It is an excessively large class at 1616 lines, 34 methods and four distinct inner
classes. This class is fairly anomalous within the broader codebase which is generally well
written.

In Wikipeda-map-reduce there is substantially more use of inheritance which confirms the
higher DIT compared to Scapi (1.36 and 1.16 respectively). This is largely driven by the fact
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projects.
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Fig. 5.25 Key structural attributes for Wikipedia-map-reduce compared against Scapi.

that Wikipedia-map-reduce has a substantial library of collections implementations which
functionally lend themselves well to sharing behaviour via inheritance.

Table 5.7 documents the intercept and residual values for the Scapi and Wikipedia-map-
reduce projects from the intra-project LMM regression. As was observed the similar analysis
of team size in Chapter 4, the project that is more distant from the centre of the cluster
exhibits higher residuals - in this case Wikipedia-map-reduce. This is attributable to the fact
that the coefficient estimates of the regression line will be dominated by those non-outlier
projects that make up the main cluster in the scatter plot and consequently show lower
residuals. The intercept values are more difficult to interpret and are influenced by two key
factors. The first is that Wikipedia-map-reduce has higher metric values which will influence
a higher intercept value. However, given that the LSR is higher for this project, the regression
line will have further to travel along the x-axis in order to intercept with the y-axis, which
causes a decrease in the intercept values. As a result, the intercepts are a mixed bag with
Wikipedia-map-reduce showing higher intercept values for CBO, DIT, NOC and RFC and
lower intercept values for LCOM and WMC.

While the team stability analysis has accurately identified project teams with a higher lack
of stability produces software with degraded structural attributes (from a maintainability
standpoint), there are other influencing factors given that stability cannot explain all the
variance in the structural metrics of the software. Of these project-specific ’idiosyncratic
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Table 5.7 The intercepts and residuals for the Scapi and Wikipedia-ma-reduce projects.

 CBO DIT LCOM NOC RFC WMC 

Intercepts (γp) 

Scapi -0.41 -0.06 12.24 -0.02 -0.07 0.41 

Wikipedia-map-

reduce 
1.76 0.65 -2.77 0.16 1.40 -0.01 

Residuals (εp) 

Scapi 2.08 1.89 72.64 0.00 9.91 9.91 

Wikipedia-map-

reduce 
13.09 2.19 68.28 7.59 44.73 27.95 

 

P-values across all regressions: 0.00 

factors’, such as relative experience levels or problem domain knowledge, further analysis
would be beneficial but is beyond the scope of this work.

5.8 Summary

A number of observations can be made as a result of the analyses in this chapter. The
intra-project stability analysis yielded clear trends with the introduction of the LSR measure
being central to the analysis. Those teams exhibiting greater stability exhibited structural
metrics that tended to be lower across measures of structural complexity and cohesion. The
trends on inter-project stability were similar. The approach of mining for ’stable project
pairs’ proved to be a useful approach in contrasting metric populations, showing significant
difference between the structural metrics of the project pairs across a large proportion of
the stability analysis data set. The linear regressions proved that a substantial portion of
the variance with the sample was attributable to the categorical measure of lack of stability.
However, the R-squared values were lower in comparison to the intra-project stability linear
model, possibly attributable to the lower precision associated with the inter-project binary
categorical lack of stability measure.

Given the negative correlation between these structural metrics and fault-proneness, it can be
confirmed that the observations within this chapter are consistent with the work of Huckman
et al. (Huckman et al., 2009) and Gardner et al. (Gardner et al., 2012) who found that
greater team stability was associated with lower fault-proneness. Referring, again, to table
2.4 (the survey of research correlating CK metrics to the sub-attributes of maintainability),
inferences can be drawn from the observed structural trends against the impact on the
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 Nested Conditional logic

 public class Encoder

 {
  class LiteralEncoder

  {

   class Encoder2

   {

    ...

   }

  };

  class LenEncoder

  {

   ...

  };

  class LenPriceTableEncoder extends LenEncoder

  {

   ...

  };

  class Optimal

  {

   ...

  };

  ...

  int GetOptimum(int position) throws IOException

  {

   ...

   while (true)

   {

    ...

    if (newLen >= startLen){

     ...

     for (int lenTest = startLen; ; lenTest++)

     {

      ...    

      if (lenTest == _matchDistances[offs])

      {

       if (lenTest < numAvailableBytesFull)

       {

        ...

        if (lenTest2 >= 2)

        {

         ...

         if (curAndLenPrice < optimum.Price)

         {

          ...

         }

        }

       }

       ...

      }

     }

    }

   }

  }

 }

1 

2 

3 

4 

5 

6 

7 

 Inner Classes
1 

2 

3 

4 

Fig. 5.26 A code snippet from Encoder class within the Wikipedia-map-reduce project.
Multiple inner classes and nested iterative blocks are numerically labelled.
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maintainability of the software. With the results in this chapter showing that lack of cohesion,
coupling and inheritance complexity tend to increase against a decreasing team stability, and
given the already established negative correlations between the impacted CK metrics and
maintainability in the prior literature, it can be deduced that lower team stability leads to
lower software maintainability. This is depicted in Figure 5.27 and allows for a rejection of
null hypothesis H0,2 and a confirmation of the alternative hypotheses H1,2.1 and H1,2.2.

a 
INTERNAL 

ATTRIBUTES 

MODULARITY 
[CBO] 

IN. COMPLEXITY 
[DIT] 

 

COUPLING 
[CBO] 

COHESION 
[LCOM] 

DEGRADED 
SUBATTRIBUTES OF 
MAINTAINABILITY 

TESTABILITY 

CHANGEABILITY 

UNDERSTANDABILTY 

STABILITY 

INCREASING 
TEAM STABILITY 

(Bruntink and van Deursen, 2006) 

(Badri et al., 2011) 

  
 

(Harrison et al., 1998b) 

(Elish and Rine, 2003) 
 

Fig. 5.27 Summary of the results of the Intra-project stability analysis. This analysis shows
similar trends to the team size analysis with Changability, Testability and Stability all
associated with a degradation inline with the observed trends within the structural metrics.

5.9 Chapter Review

This chapter studied the relationship between team stability and the CK metrics of the
produced software. As in the previous chapter, at the outset the sample extraction and
exploratory data analysis was presented. The two measures of Inter-project and intra-project
team stability were defined and modelled individually. The linear models were developed
and analysed in conjunction with specific projects from within the sample.

The next chapter is a discussion primarily covering the contribution to knowledge within this
thesis, threats to validity, and potential avenues of future work.



Chapter 6

Discussion

6.1 Introduction

This chapter is organised into five sections as illustrated in Figure 6.1. Section 6.2 reviews
the thesis objectives, hypotheses and research questions relative to the contribution of this
research. Section 6.3 reviews the contributions to knowledge contained within this research.
Section 6.4 details the limitations of this work in the context of the threats that they pose to
the validity of this research. Section 6.5 is a brief summary of the distilled conclusions of this
thesis. Section 6.6 considers some of the personal reflections of the author upon this work
and the state of the art. Finally, Section 6.7 documents future avenues of research within the
field of mining software repositories.
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6.2 Objectives, Hypothesis, Research Questions Revisited

In this section the objectives, hypotheses and research questions are reviewed, assessed and
discussed relative to the outcomes in the thesis.

Table 6.1 shows a restatement of the objectives of this research assessed against the outcomes
discussed in this thesis. Broadly the research objectives have been met and the results clearly
show a relationship between the team factors and the internal and external attributes of the
software.

Table 6.2 summarises how the hypotheses formulated at the outset of this research mapped
onto the results. The alternative hypotheses around the development team size analysis
(H1,1.1, H1,1.2) stated that larger development teams would produce software with essentially
degraded structural attributes resulting in degraded maintainability. The rationale of the
hypothesis was based on the prior work of Nagappan et al., Caglayan et al., Mockus and
Bell et al., all of whom observed that there was a negative correlation between development
team size and fault-proneness (Nagappan et al., 2008; Mockus, 2010; Bell et al., 2013;
Caglayan et al., 2015). Given that fault-proneness and structural metrics are correlated, and
in the absence of any code-level insights, it was considered a plausible hypothesis that all
structural attributes of software and team size would show a similar correlation which would
be indicative of lower maintainability.

The results showed that those attributes that had been established to correlate to fault-
proneness - coupling, cohesion, modularity - did, indeed, show degradation as team sizes
increased. This was consistent with prior research and a confirmation of the alternative
hypothesis. The drivers behind trends of degraded coupling and cohesion could be hypothe-
sised to be attributable to the difficulties of effective communication in a larger team leading
to developers with conflicting design patterns or alternate approaches causing degraded
structural attributes. Through qualitative analysis and engaging development team members,
the research community could shed more light as to the drivers behind the trends revealed in
this study.

The alternative hypotheses (H1,2.1, H1,2.2) that less stable teams exhibit degraded structural
metrics and lower maintainability was based on research by Huckman et al. that found
that greater team stability resulted in lower fault-proneness and higher budget adherence
(Huckman et al., 2009). The rationale then followed, as with the previous alternative
hypothesis (H1,1.1), that this was caused by a general degradation in the internal structural
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Table 6.1 Summary of objectives and outcomes.

Objective Outcome  

O1,1: Observe how 

structural metrics progress 

as software projects evolve. 

 

O1,2 Control for 

confounding factors. 

 
 

 

O1,3: Formulate a 
definition of the software 

development team size and 

analyse the impact of this 

factor on the structural 

metrics. 

 

O1,4: Deduce the likely 
result of the impact of team 

size on the maintainability of 

software. 

Established probability distributions of CK metrics and correlation matrices 

relating metrics to team factors. No clear metric trends against code volume. Clear 

trends against code revisions. 

 
Ruled out code volume as a confounding factor to the analysis in this research. 

Controlling for revisions by adopting an approach of bucketing metrics by revision 

count and team size such that populations with the same revision count are 

compared to one another.  

 

Defining development team size as the cumulative number of committers to 

commit to a project. Mann-Whitney tests on the bucketed metric populations, and 

linear  regression techniques observing that increasing team sizes yield decreasing 

measures of inheritance complexity, coupling, cohesion and modularity 
 

 

 

Increasing team sizes result in structural metrics that have been associated in prior 

research with degraded levels of the maintainability sub-attributes of testability, 

changeability and testability. 

O2,1: Identify and mitigate 

the pitfalls associated with 

mining software repositories 

for the purposes of team 

stability analysis  

 

 

O2,2: Formulate a 

definition of the software 

development team stability 

and analyse the impact of 

this factor on the structural 

metrics. 

 

O2,3: Deduce the likely 
result of the impact of team 

stability on the 

maintainability of software. 

A challenge to social network analysis in consistently tracking committers as they 

traverse through the forge as multiple user identifiers are occasionally used by the 

same committer. Strategy to rationalise to a single identifier.  Threat to validity 

emanating from forked projects distorting VCS log history. Developed a heuristic 

to searches for common commits across projects, identifying them as related as 

parent-fork and excluded from study. 

 
Proposal of a calculation to quantify intra-project team stability - a measure 

capturing the degree of stability accrued by a team through the course of a project. 

Observing that increasing team stability yield decreasing measures of structural 

complexity, coupling, cohesion and modularity.  

 

 

 

Analysis indicates that lower team stability causes structural attributes to trend in a 

direction that is associated with degradation in the sub-attributes of maintainability.  



6.2 Objectives, Hypothesis, Research Questions Revisited 155

Table 6.2 Summary of null hypotheses and results.

Null Hypothesis Result  

H0,1: Development team size does 

not impact the coupling, complexity, 

cohesion or modularity of the 

produced software. 

Projects developed by larger team sizes exhibited an increase in coupling 

(reflected by larger CBO values), an increase in inheritance complexity 

(reflected by higher DIT values) and a decrease in cohesion (reflected by 

larger LCOM values). This is a rejection of the null hypothesis H0,1. 

H0,2: Development team stability 
does not impact the coupling, 

complexity, cohesion 

or modularity of the produced 

software.  

There is a noticeable upward trend across DIT, LCOM, RFC, WMC 

metrics confirming that teams with lower stability produce projects with 
lower cohesion and higher structural complexity. This is a rejection of the 

null hypothesis. 

Table 6.3 Summary of research questions and answers.

Research Question Answer 

RQ1: What is the impact of 

team size on the structural 

properties of software and its 

resultant maintainability? 

Greater team sizes result in degraded measures of cohesion, coupling and structural 

complexity and enhanced measures modularity. These observations are consistent 

with degradation in maintainability. 

 
RQ2: What is the impact of 

team stability on the 

structural properties of 

software and its resultant 
maintainability? 

Greater team stability results in enhanced measures of cohesion and structural 

complexity. As a result, it can be inferred the maintainability will be enhanced. 

attributes of the software. Higher inter-team and intra-team stability was found to be
linked to higher measures of cohesion and modularity, and lower measures of coupling
and inheritance complexity. Again, through engaging development team members through
surveys in conjunction with a detailed analysis of individual commits, further insights could
be gained into the factors driving these observations.

Table 6.3 summaries the headline results against each of the research questions. Broadly
speaking, smaller development team sizes and greater team stability result in software with
enhanced structural attributes. However, larger team sizes were found to be linked to lower
functional complexity which is also associated with enhanced maintainability.
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6.3 Thesis Contributions

The contributions in this work span three broad areas: furthering the art in the field of mining
software repositories, the unique aspects of the linear modelling approach in this thesis and,
finally, insights into the impact of team factors on the structural attributes of software.

6.3.1 Open-Source Forge Analysis

As discussed in the ’Related Work’ chapter, the practical challenges of mining open-source
forges is well documented in existing research. Thematically this work covers tooling, pitfalls
and insights from the perspective of researchers. Separately to this there is work that performs
static analysis on selected open-source projects and, also, extracts insights which can help
process improvement in some fashion. This research focuses on a single open-source forge
and spans both of these areas of research with several specific contributions.

• GoogleCode forge analysis: This research studies an entire forge revealing several
insights which go to a greater level of granularity than existing open-source forge
research which tends to derive insights at the forge and project level (Howison et al.,
2009; Iqbal et al., 2012; Squire, 2017). Committer behaviour across the forge was
studied as it informed the approach to the team size and stability analysis. It was
possible, through this, to establish the population of unique committers (identity recon-
ciliation challenges notwithstanding as documented in Section 5.2.1) and track their
activity throughout the history of the forge. This enabled observations on the number
of projects that committers contribute to as well as the nature of their contributions
(number of commits, number of files per commit and timeframes of activity). With
this information it was possible to identify where committers collaborated on multiple
projects, crucial to the team stability sample identification.

This was a one of many potential use-cases for this type of data set and social network
analysis in open-source is an active field of research with plenty of other use-cases
(Hassan, 2008; Hemmati et al., 2013). For a representative sample of the forge it was
then possible to mine structural metrics and join those observations to the commit
meta-data (through the definition of a relational database schema). Through studying
observations from 173,190 class files in the team size sample it was confirmed that CK
metrics from projects of this forge follow heavily skewed non-normal distributions
in-line with the work of Succi et al. and Basili et al. who had conducted their research
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on a smaller disparate data sets (Basili et al., 1996; Succi et al., 2005). The reported
moderate collinearity between each of CBO (capturing cohesion and modularity) RFC
and WMC (capturing structural complexity) was also confirmed.

• Identifying forked projects: Forking presents a number of perils when not properly
considered. These perils can affect researchers extracting insights by mining VCS
histories, developers identifying projects to contribute to and end-users looking to
utilise a project artefact. This research is concerned with the first use-case and has,
for the first time, highlighted forking as a threat to the validity of network analysis in
open-source forges. Existing research focusses on project forking for the purposes of
studying the its motivations and outcomes (Robles et al., 2006; Nyman and Mikkonen,
2011). This research presents an approach to the automated identification of forks
avoiding the costly code clone analysis proposed by Ray and Kim (Ray et al., 2012)
and relying solely on VCS logs which are much less costly to mine.

The approach presented was practically applied to mining the entirety of the Google-
Code forge and the threat to validity that forking poses was quantified with 6.25%
of projects in the forge found to be forked and therefore showing commit history
which is misleading when taken out of context. The approach presented is not limited
to GoogleCode but can be generalised to all forges which use SVN or GIT as their
underlying VCS.

6.3.2 Modelling approach

There are several noteworthy aspects to the nature of the linear models used to capture the
trends observed in the GoogleCode forge that constitute a contribution to knowledge.

• Modelling CK metrics as a dependent variable: Existing research casts CK metrics
as the independent variable and models their relationship with the externally observable
attributes of software as documented extensively in the related work sections 2.3.3-
2.3.4. Within this research, for the first time, these CK metrics are treated as the
dependent variables and the impact of team factors on these variables are modelled.
This type of analysis allows existing models to be brought to bear in order to deduce the
likely impact of these team factors on the externally observable attributes of software.
For instance, this research concludes that LCOM has a positive linear relationship with
team size. Bruntink et al. and Badri et al. both found LCOM to be an inverse predictor
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of testability (Bruntink and van Deursen, 2006; Badri et al., 2011). It is therefore it is
reasonable to suggest that team size is likely to have an inverse relationship with the
testability of the produced software.

Through this modelling approach, it was discovered that revisions are a confounding
factor when studying the impact of team factors on CK metrics. This complements
both the work of Emam et al. and Zhou et al. who found that controlling for size was
essential when modelling CK metrics as the independent variable (El Emam et al.,
2001; Zhou and Leung, 2006).

• Definition of team stability: Huckman established a general approach to measuring
team stability using the cumulative time that team members worked together (Huckman
et al., 2009). In this thesis the Huckman approach was transposed onto a quantitative
measure of stability that can be derived through the analysis of VCS logs alone, lending
itself to open-source forge studies. This work presented a distinction between intra-
project and inter-project stability: respectively the stability accrued through the course
of an individual project and that gained through the collaboration of the project team
on multiple projects. Intra-project stability was captured through the formulation of
the Lack of Stability Ratio (LSR) and the practical application of this measure to a
representative sample from the GoogleCode forge was documented within this thesis.

6.3.3 Team Factor Analysis

At the core of this thesis lies the established relationship between the team factors of size and
stability and the structural metrics of software.

• Team size trends: Prior research established team size as a key determinant of
project success with models finding a relationship between team size and both lower
productivity and increased fault-proneness. This thesis contributes to the art by also
establishing team size as a significant predictor to CK metric values, shedding light on
the potential underlying effects that drive the externally observable attributes. Both the
correlation analysis and the linear models showed a positive relationship between team
size and all metrics with the exception of NOC. The effect of team size was particularly
marked in DIT and LCOM with team size accounting for almost half the variance
in these metrics. This work applies linear mixed models to a multi-project metrics
study for the first time finding a strong idiosyncratic ’project-specific’ aspect that
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outweighs the team size effect. Given the models summarised in Table 2.4, this implies
an inverse relationship between team size and the sub-attributes of maintainability
which is generally consistent with the prior literature in the field.

• Team stability trends: Huckman et al. studied a dataset comprising over 1000
projects and found that increased team stability yielded lower fault-proneness. Through
the course of this thesis it was established empirically that there is a positive correlation
between a lack of team stability and CK metrics which, in turn would be associated with
a deterioration in the sub-attributes of maintainability and fault-proneness. Through
the discovery of these trends this work sheds a light on the underlying effects that
could potentially have driven Huckman’s observations (or indeed those of Gardner et al.
who found that increased team stability was linked to an increase in client satisfaction
(Gardner et al., 2012)).

6.4 Threats to Validity

This section covers the internal and external threats to validity affecting this research.

6.4.1 Threats to External Validity

• Development models Open-source projects tend to have a particular dynamic which
sees a limited number of core contributors taking a central role while the majority of
contributors take a peripheral role and do not engage in projects for extended periods
of time (Howison et al., 2006). This can contrast with commercial software which
often is developed by a relatively engaged development team. In either development
approaches there could core contributors who act as gatekeepers into the version
control system and mandate a review and approval process prior to any commits
becoming part of the main source code repository. It can be hypothesised that this
could ultimately impact the structural attributes of the software. For instance, a central
core of experienced committers with a good knowledge of the system could provide
guidance on component reuse where such opportunities may otherwise have not been
exploited. Within the GoogleCode repository there is no project meta-data that can be
exploited to inform on these factors.
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• Physical locations Brooks posits that larger teams face greater difficulties in commu-
nication compared to smaller teams and hence productivity is impacted. However,
one significant factor that influences the efficiency of communication is the physical
location of the members of a team. Teasley argues that collocating a team can double
productivity (Teasley et al., 2000). Factoring in the physical setup of the development
teams contributing to the studied projects is beyond the scope of this research.

• Development languages It is important to re-state that this research only takes into
account observations that can be made of Java code, to the exclusion of all other
languages. It is possible that there may be factors that cause particular trends that are
observed in Java software to be absent from software developed in other object-oriented
languages. It could be argued that, as the results observed in this study are generally
consistent with the vast body of research (research which does span multiple OO
languages such as C++, Java and Smalltalk), it is unlikely to be a significant threat to
validity. However, nonetheless caution should be exercised when applying the lessons
learnt in this study to projects written in other languages.

• Generalisation to other forges While this work uses a large data set (certainly in
comparison to similar studies) there was no attempt to establish how the forge chosen
for this study, GoogleCode, could differ in nature to other forges. While there is no
indication that GoogleCode is, indeed, biased towards any particular influencing factor,
it cannot be ruled out as a threat to validity. It is also worth noting that, while this work
succeeded in observing broad trends across the forge, it is noted that not all projects
within the samples followed these trends. There are a number of factors that can impact
the structural attributes a particular project, not captured in this study, and which may
affect the generalisation of this work.

6.4.2 Threats to Internal Validity

• Linking structural attributes to external attributes Part of this research is to infer
the impact of the observations made of the structure of software on its externally
observable attributes. This inference draws on the work of prior researchers who
have established correlations between metric values and aspects of maintainability.
For that reason, any inferences drawn in this work inherit the threats to validity in
that prior research. Where we link CK metric observations to external attributes
of understandability and changeability, it is necessary to state the limitations of the
research conducted by Harrison et al, whose work first established correlations between
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metric values and these external attributes: namely that their use of small student
projects as a data set constitutes a threat to validity when applying these results to larger
commercial or open-source projects (Harrison et al., 1998b). Likewise Bruntink and
van Deursen, whose work established correlations between CK metrics and testability,
note that their criteria for evaluating testability may not be applicable to all projects
(Bruntink and van Deursen, 2006).

• Functional nature of projects This threat to validity concerns the mix of server-side
and client-side programming that exists, particularly, in those projects with a User
Interface (UI). Best practices dictate that the UI should be a thin layer with the business
logic existing in a server-side service layer. In a typical Java project, the server-side
programming would be in Java while the client side could be in any one of a number of
scripting languages such as JavaScript. As this UI layer is not studied in this research,
there is a ’blind spot’ whose size could vary according to degree of adherence to best
practices. For instance, if larger teams tend to adhere to the principle of ’separation of
concerns’ to a greater degree than smaller teams, it could be that greater complexity
observed in the server side is incorrectly attributed to the larger teams while, in fact, that
complexity also exists in the smaller team’s work - only that it exists in the client-side
scripting code. This is depicted, in basic terms in Figure 6.2.

• Team sizing model The project comparison analysis in Chapters 4 and 5 showed
that, while we attribute a single figure to the size of a development team based on the
cumulative number of project committers, the reality of the matter is more nuanced.
Individual committers or groups of committers are often responsible for a dispropor-
tionate contribution to the project and there is a loss of information when this behaviour
is reduced to a single number. In Section 4.1.1 it is argued that the contribution of
so-called ’peripheral’ committers could not be ignored as they are undoubtedly an
influence on the codebase of a project. However, it can be equally argued that not
quantifying or factoring in the nature of the committer contributions does not allow us
to draw a potentially important distinction between projects with differing proportions
of core and peripheral developers.

6.5 Conclusions

As mentioned in section 1.4 of this thesis, the overarching research problem that this work
aims solve for is the difficulty in appropriately sizing and resourcing software development
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Fig. 6.2 An illustration of how a larger team could produce software with a greater adherence
to the separation of concerns with more of the complexity residing on the server side.
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teams to achieve optimal performance and stakeholder satisfaction. It was discussed how
organisations often had multiple options available to them in this regard; for instance forming
new large teams or seconding existing small stable teams.

This work helps inform practitioner decision-making by providing greater insight into the
impact that team composition can have on the sub-attributes of maintainability. Rather than
simply observing a relationship between team factors and externally observable attributes,
this work provides an insight into how large or unstable teams lead to the degradation of
the internally observable attributes which consequently drive the degradation of externally
observable attributes including maintainability. As stated by Fenton and Bieman, practitioners
are accustomed to measuring and monitoring internal attributes throughout the development
process (Fenton and Bieman, 2014). Internally observable attributes of software can be
measured and monitored in real-time through tools such as Sonar enabling practitioners to
monitor and mitigate risks that may arise from unstable or large teams (SonarQube, 2018).

While the focus on team size and stability provided insights that it is hoped will be of value
to both the research community and practitioners, there were other significant contributions
within this work. A methodology was put forward to enable the study of externally observ-
able attributes of software through the internal structural attributes of software, leveraging
existing research to tie both strands together. In doing so, practitioners can focus on specific,
measurable structural attributes as a mitigation strategy against some of the observed negative
trends that can result from team factors. Furthermore, this work brings relevance to existing
research. By way of example, Chidamber et al. (Chidamber et al., 1998) find that higher
measures of coupling and lower levels cohesion are indicators of lower productivity, greater
rework and design effort. These structural attributes are side-effects of larger team sizes, so
it is reasonable to deduce that the aforementioned degradation in productivity, rework and
design effort are likely to also result from larger teams.

While studying the impact of team factors by studying the GoogleCode forge, many practical
difficulties were encountered in mining a large and diverse forge. In particular, performing
accurate and reliable committer collaboration analysis for the purposes of the team stability
analysis was particularly challenging and it is hoped that the work in this thesis to mitigate
these threats to validity will prove helpful to the broader research community.
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6.6 Reflections

The author has a number of personal reflections on this work from the vantage point of both
a researcher and an experienced practitioner.

• Challenges mining open-source forges: A significant proportion of the effort ex-
pended in this work has been in obtaining, cleaning and modelling the data set. This
is not unusual; a recent survey of data scientists reported that 70% of their time is
typically spent collecting, labelling, cleaning, organising and modelling data while
only 10% is spent mining data for patterns (CrowdFlower, 2017). The author was
struck by the logistical complexity of mining a large forge despite the clean interface
that Version Control Systems expose to make both code and meta-data available. For
instance, retrieval of revision logs across 236,787 projects necessitated several iter-
ations of the VCS mining scripts in order to parallelise the data retrieval process. It
was also necessary to host the mining software on a remote virtual server in order to
achieve the requisite download speeds to complete the retrieval process in a sensible
time-frame. Similarly, executing forge analysis on such a large data set presented its
own challenges in writing the software in a suitably memory efficient manner. Once the
data set was sampled and distilled to an easily consumable form, conducting statistical
tests was easier than the author had anticipated. This was due, in large part, to the ease
of use of data analysis tools such as the Anaconda data science workbench and the
many open-source python libraries with their active developer communities (Anaconda,
2018).

• Future roles for machine learning and big data: The vast quantities of data and
meta-data that are available within software repositories are arguably under-utilised
and should be leveraged to improve success rates of software projects in industry. As
discussed in this thesis, this data could be used to identify, in real-time, potential threats
to the externally observable attributes of software. While software metrics have seen
some industry adoption, particularly through the use of Sonar in enforcing so-called
’quality-gates’ that commits must pass become part of the software (Ampatzoglou et al.,
2018; SonarQube, 2018), the use-cases of management adoption of structural metrics
remain few and far between. There exists a gulf between the empirical approach to the
study of software by the research community and the approach of practitioners which
is often less structured and less empirical. One of the aims of this research is to help,
in whatever small way, bridge this gap. One key reflection that the author has from this
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thesis is that driving a more empirically-oriented approach to software development is
key to its continuing maturity as an engineering discipline.

• Reproducibility of results: While surveying the prior literature, it became evident
that reproducibility of results in the field of mining software repositories is a particular
challenge. Some academic research draws upon closed-source software, not available
to the research community, to research industrial case studies. Even where open-
source software is the subject of study, often the literature inadequately documents the
methodology; a real hindrance to anyone attempting to validate the work or, indeed,
replicate the study to serve as a baseline for their own study. Given the burgeoning
interest in data science, the research community would do well to make curated data
sets available to the broader community through GitHub or specialised data set sharing
and collaboration platforms such as Kaggle to crowd source efforts to uncover insights
and help drive greater interest in industry adoption of metrics (GITHub, 2018; Kaggle,
2018).

6.7 Future Work

To support the committer collaboration analysis that drove the team stability analysis, there
was effort to establish parent-fork project relationships throughout the GoogleCode forge.
This effort was limited to those relationships that had the potential to skew the inter-project
team stability analysis and therefore focused exclusively on those forks that had been
established through a direct clone of a repository from within the GoogleCode forge itself.
As a separate strand of research, there is value in a broader and more detailed study of
forking relationships. To support this broader study of forking relationships and to also drive
a more comprehensive study of open-source developer contributions, it is worthwhile to
consider what shape a cross-forge data mining study may take. In this section a Hadoop-
based architecture is proposed as a potential solution to analysing the vast data sets that a
cross-forge mining effort would yield.

6.7.1 Network Analysis

When studying open-source repositories, there are a number of perspectives from which data
about project forking relationships drive value. Capiluppi et al. proposed an approach to
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quantify committer contributions to open-source projects and assign a measure similar to the
H-index used in the academic world (Capiluppi et al., 2012). Any assessment of committer
contributions will be skewed if equal weight is assigned to commits that import work from
other projects versus a committer’s original work. This is particularly pertinent given that
there has been a recent upsurge in the use of open-source repositories such as GitHub for
identifying and recruiting software development talent. To a recruiter it is essential that
individuals are not being attributed credit for work that is simply imported from other projects
as bad hiring decisions can be very difficult to reverse.

Successful projects can garner a large number of forks and occasionally the fork can overtake
the parent in popularity such as in the case of Firefox forked from Mozilla and Ubuntu forked
from Debian. Clearly there will be some visibility on forks which garner a large amount of
activity but many forks fail to make a significant contribution at all. It will remain an open
question as to how many forks fail due to a lack of innovation and how many fail simply
through lack of visibility in the wider community but we believe that providing visibility on
the alternate development streams would help inform developer and user decision-making.
For example, a particular set of customisations present on a fork may make that project
more attractive to a certain user community. From a contributor’s perspective, a highly
productive, yet smaller, developer community may be more attractive to join. According to a
recent survey by Jiang et al. 42% of developers believe that there is value in an automated
recommendation tool to assist in choosing repositories to fork (Jiang et al., 2017).

Based on the lessons learnt from the narrow study of project relationships in this thesis a
broader solution is presented that aims to achieve several goals:

• Plug-in heuristics The committer collaboration analysis in the previous chapter used
a heuristic based on ’common commits’ to identify project forks. That particular
heuristic relied on the observation of multiple commits with identical meta-data across
projects as evidence of the forking relationship. This heuristic is particularly suited
to identifying projects which have the potential to skew VCS based analysis within
a single forge but this is by no means the only useful heuristic in the broader context
of mining. By way of example, adding additional mining commit comments or code
clone detection will yield a more comprehensive analysis.

• Directional relationships The forked project analysis in this thesis did not look at the
directionality of the relationship between related projects. There was no attempt to
discern the parent from the fork as this data was not relevant to the mining of ’stable
project pairs’. However, from the perspective of a project stakeholder, this information
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is relevant. A basic heuristic which could be applied to this problem could identify
the project with the greatest number of commits as the parent is likely to be the more
active project. However there are, of course, exceptions to this norm.

• Visualisations While the raw analysis mapping out parent-fork project relationships is
a useful input to those looking to conduct detailed forge analysis or measure developer
contributions, it is not an appropriate output for project stakeholders looking to select
a project for adoption as a user or a contributor. For this reason, a visualisation can
provide value for complex project network graphs.

To solve for these challenges a simple bespoke framework was prototyped which was based
on several of the design patterns and components in the toolchain that was presented earlier
in this thesis. Figure 6.3 presents a UML depiction of the class structure of the implementa-
tion. At the top-level a Controller is responsible for reading commit data from the various
implementations of CommitLoader - retrieved in the form of the object graph described in
the Commit interface and its dependencies - and passes them into the implementations of the
Heuristic which returns an instance of Result containing all the projects found to be forked
from others. The heuristic interface is flexible enough to allow for the capture of meta-data
such as a measure of the code volume of original content within a fork. For visualization, a
node network graph renderer can generate visualisations for the node relationships as illus-
trated in Figure 6.4. For this prototype the Arbor.js framework was used as it is open-source
and fairly basic, although there are several advanced network graphing tools.

There are a number of avenues that the research community could pursue by way of furthering
this work. The first is to consider the design of this framework and consider basing a tool
around this, creating additional heuristics to hone the detection of forks in an open-source
forge. In particular, there could be value in leveraging some of the research in the field of
code-clone detection for this purpose as there is significant overlap between the challenges
of code-cloning and the mapping project relationships. Furthermore, it is recommended
that open-source forges - particularly any newcomers entering the market - further their
web-based tools to provide visualisations on fork relationships between projects. This could
be made less of a burdensome task by mandating developers to provide data around the key
relationships upon project initiation.

It is worth noting that since the research in this thesis was conducted, Ren et al. have
produced a beta implementation of a GitHub fork visualisation tool called Forks Insight
which carries out some of what is described in this section, albeit against a single forge (Ren
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Fig. 6.3 UML Diagram illustrating structure of the prototype of heuristics framework
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Fig. 6.4 An example network graph using the example of the Lineage project which is an
online multiplayer role playing game which is particularly popular in Korea and Japan. The
projects illustrated are mostly language variants of Lineage server emulators. There are a
number of additional forks on the periphery of the diagram which represent development
streams which did not garner much activity.
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et al., 2018). It will certainly be exciting to see if this project gains adoption in the wider
community.

6.7.2 Cross-Forge Data Mining

While this and other research shows that there can be significant value derived through
studying an individual forge, it is worth also drawing attention to some of the limitations of
narrowly focusing on a single forge. Relationships between those projects within the forge
to projects outside of the forge cannot be captured which could lead to incomplete network
analysis or incorrect assessments of committer contributions. Similarly, the code cloning
research discussed in Chapter 5 relies on traversing multiple forges to capture data from the
major hubs of open-source activity.

Mining multiple forges also opens opportunities to observe trends of community engagement,
committer traversal and product quality, potentially highlighting where particular forges
can improve or benefit from offering richer toolsets to their customers. This may have
implications for an end-users choice of forge or indeed to the forge’s business model. For
example, if established that a particular forge attracts a more experienced and committed
development community than their peers, they might prefer the GitHub business model
of offering paid hosting plans to individuals and businesses rather than the SourceForge
ad-supported business model.

A number of challenges arise when attempting to mine across forges. While the toolchain
presented in this thesis provides cross-VCS support, cross-forge support would be required
in those components that drive the VCS mining. Specifically, the FlossMole artefacts would
need to be added or updated for the additional forges to be included in the analysis. Crowston
and Squire have recently documented the challenge facing FlossMole to ’continually pro-
vide broader access and more sophisticated and relevant data and analyses’ (Crowston and
Squire, 2017). Furthermore, any data that would need to be mined from the forge webpages
themselves would necessitate the encoding of particular parsing logic. In the case of this
research, the VCS repository links were parsed from the project homepages in GoogleCode.
If this were to become a pattern, one could envisage a rules-driven mining tool that enables
the addition of forges for mining without the need for software build effort.

A greater challenge arises from the vast volumes of data that mining multiple forges would
produce. By way of example, if we were to add the contents of GitHub, SourceForge and
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GoogleCode this would amount to approximately 20 million projects. If each project were
to take up 500KB of data storage - which would equate to the size of a fairly modest VCS
log - the total storage required would be over a terabyte. This is well into the realms of
what is commonly termed ’Big Data’. With these types of data sets, relational databases
can prove inefficient and costly. Kononenko et al. created a framework based on an Apache
Cassandra-based big data solution to aid rapid open-source code searching (Kononenko et al.,
2014). An industry standard approach to enable the storage and deep analysis of large data
sets of this nature is a Hadoop-based architecture.

Hadoop is an open-source framework designed to distribute computing and data storage using
cheap off-the-shelf commodity hardware eliminating the need for costly vendor-specific
machines (Apache, 2018a). Underlying Hadoop is the core concept of ’data locality’ which
encourages essentially combines both the data and processing layer avoiding costly shifting
of data to bring it to the computing logic. The Hadoop ecosystem is built on the Hadoop
Distributed File System (HDFS) and provides frameworks such as Spark which facilitate rapid
and rich distributed data processing (Apache, 2018b). Figure 6.5 depicts a basic interaction
between Spark and a Hadoop cluster illustrating the role of the resource manager in delegating
computing to the individual Data Nodes where Spark workers execute processing directly on
the data.

The research community should consider pooling effort and resourcing to implement such
architecture to facilitate cross-forge mining.
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Fig. 6.5 A basic illustration of a Hadoop architecture.
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