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Abstract 

As advanced metering infrastructure (AMI) and wide area monitoring systems 

(WAMSs) are being deployed rapidly and widely, the conventional power grid is 

transitioning towards the smart grid at an increasing speed. A number of smart metering 

devices and real-time monitoring systems are capable to generate a huge volume of data 

on a daily basis. However, a variety of generated data can be made full use of to 

advance the development of the smart grid through big data analytics, especially, deep 

learning. Thus, the thesis is focused on data analysis for smart grids from three different 

aspects. 

 

Firstly, a real-time data driven event detection method is presented, which is quite 

robust when dealing with corrupted and significantly noisy data of phase measurement 

units (PMUs). To be specific, the presented event detection method is based on a novel 

combination of random matrix theory (RMT) and Kalman filtering. Furthermore, a 

dynamic Kalman filtering technique is proposed through the adjustment of the 

measurement noise covariance matrix as the data conditioner of the presented method in 

order to condition PMU data. The experimental results show that the presented method 

is indeed quite robust in such practical situations that include significant levels of noisy 

or missing PMU data. 

 

Secondly, a short-term residential load forecasting method is proposed on the basis of 

deep learning and k-means clustering, which is capable to extract similarity of 

residential load effectively and perform prediction accurately at the individual 

residential level. Specifically, it makes full use of k-means clustering to extract 

similarity among residential load and deep learning to extract complex patterns of 

residential load. In addition, in order to improve the forecasting accuracy, a 

comprehensive feature expression strategy is utilised to describe load characteristics of 

each time step in detail. The experimental results suggest that the proposed method can 

achieve a high forecasting accuracy in terms of both root mean square error (RMSE) 

and mean absolute error (MAE). 

 

Thirdly, an online individual residential load forecasting method is developed based on 
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a combination of deep learning and dynamic mirror descent (DMD), which is able to 

predict residential load in real time and adjust the prediction error over time in order to 

improve the prediction performance. More specifically, it firstly employs a long short 

term memory (LSTM) network to build a prediction model offline, and then applies it 

online with DMD correcting the prediction error. In order to increase the prediction 

accuracy, a comprehensive feature expression strategy is used to describe load 

characteristics at each time step in detail. The experimental results indicate that the 

developed method can obtain a high prediction accuracy in terms of both RMSE and 

MAE. 

 

To sum up, the proposed real-time event detection method contributes to the monitoring 

and operation of smart grids, while the proposed residential load forecasting methods 

contribute to the demand side response in smart grids. 
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1.1 Background 

An increasing number of efforts are being made across the world towards the promotion 

of clean sustainable energy for environmental protection and low carbon economy in 

order to meet its growing demand. The modern power system is being upgraded and 

transitioned to a more advanced power system to achieve this goal [1]. As the future 

development trend of the modern power network, the smart grid has great potentials to 

largely integrate renewable energy sources, reasonably control energy consumption 

patterns, and reliably ensure grid security. To be specific, the key benefits of the smart 

grid include uninterrupted power supply for all households, reduced transmission and 

distribution loss, high penetration of distributed renewable energy, large scale energy 

storage, flexibility for electricity customers to interact with electricity markets, market 

based electricity pricing, and demand side management (DSM) [2]. As a result, both 

developed and developing countries are paying great efforts to advance the development 

and implementation of the smart grid, such as Australia, Canada, Great Britain (GB), 

United States, Japan, Korea, and China. 

 

1.1.1 Definitions of Smart Grid 

In spite of this, there are a variety of definitions of Smart Grid all over the world, 

because different countries attempt to realise their own smart grid. Hence, there is no 

universal concept for Smart Grid at present [3]. The first official definition of Smart 

Grid was provided by the Energy Independence and Security Act of 2007, which was 

approved by the US Congress in January 2007. In addition, the concept of Smart Grid 

was developed in 2006 by the European Technology Platform for Smart Grids, and 

concerns an electricity network that can intelligently integrate the actions of all users 

connected to it, including generators, consumers, and those that do both, in order to 

efficiently deliver sustainable, economic, and secure electricity supplies. In China, State 

Grid Corporation of China interprets a smart grid as a strong robust electric power 

system, which is 1) supported by ultra-high voltage networks; 2) based on the 

coordinated development of power networks at different voltage levels; 3) aided by 

information and communication infrastructure; 4) characterised as an informationalised, 

automated, and interoperable power system; 5) a rational integration of electricity, 

information, and business flows. 
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Although there are various versions of definitions of Smart Grid in different countries, a 

common significant element for most definitions is the application of digital processing 

and communication to the power network, making data flow and information 

management central to the smart grid, as various capabilities mainly result from the 

deeply integrated use of digital technology with the power network [4]. 

 

1.1.2 Features of Smart Grids 

Despite a wide range of diverse factors resulting in no agreement on a universal 

definition of Smart Grid, the main features of the smart grid can be summarised as 

follows: 

 

1) Reliability 

The smart grid makes full use of technologies, for example, state estimation, that 

improve event detection and allow self-healing of the grid without the intervention of 

electrical technicians. So, this will ensure more reliable power supply and reduce 

vulnerability to natural disasters and attacks to a large extent [5]. 

 

2) Flexibility in network topology 

Smart grid infrastructure will be able to better handle possible bidirectional energy 

flows, allowing for distributed generation, such as photovoltaic panels, wind turbines, 

hydroelectric power, usage of fuel cells, and charging batteries of electric vehicles. Also, 

the smart grid aims to deal with those situations where a local sub-network generates 

more power than it is consuming and a reverse power flow appears [6]. 

 

3) Efficiency 

Numerous contributions to overall efficiency improvement of energy infrastructure are 

expected from the application of smart grid technology, especially DSM, for instance, 

turning off air conditioners during short-term spikes in electricity price. The overall aim 

is less redundancy in transmission and distribution lines and greater utilization of 

generators, finally leading to lower electricity prices. 

 

4) Load adjustment/balancing 

The total load connected to the power network can probably change significantly over 
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time. Traditionally, load balancing strategies are designed to change customer 

consumption patterns to keep demand more uniform. However, in the smart grid, energy 

storage and distributed generation will enable load balancing without affecting customer 

behaviours. 

 

5) Peak curtailment/levelling and time of use pricing 

To motivate electricity users to reduce demand during the high cost peak usage period 

and perform peak curtailment or peak levelling, electricity prices are increased during 

the high demand period and decreased during the low demand period [7]. 

 

6) Sustainability 

The enhanced flexibility of the smart grid enables greater penetration of highly variable 

renewable energy sources. Accordingly, smart grid technology is a necessary condition 

to realise a large scale integration of renewable electricity into the grid. 

 

7) Market enabling 

The smart grid allows for systematic communication between electricity suppliers and 

consumers, and enables both suppliers and consumers to be more flexible in their 

operational strategies. The overall effect is high energy efficiency and sensitive energy 

consumption patterns to time varying limitations of electricity supplies [8]. 

 

8) Demand response support 

In the smart grid, demand response support permits generators and loads to interact in 

an automated way in real time, therefore coordinating demand to flatten spikes. This can 

also help users to cut their electricity bills by advising them to consume electricity when 

prices are lower [9]. 

 

With these main features, a further agreement on the definition of Smart Grid may be 

reached in the future, and new smart grid technologies can be developed on the basis of 

these characteristics. 

 

1.1.3 Challenges and Issues of Smart Grids 

Nowadays, the conventional power system is still transitioning towards the smart grid, 
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because smart grid technologies have not been advanced and mature enough to achieve 

this goal so far, which requires more academic and industrial researchers to focus on 

this research field. These main possible challenges and issues, which should be 

addressed in the future in order to completely implement the smart grid, can be outlined 

below [10]: 

 

1) Self-healing action 

As a crucial feature of the smart grid, self-healing is expected to recover the system and 

supply electricity to as many customers as possible, when a contingency happens. 

However, the major problem of self-healing action is uninterrupted power supply, 

which is closely involved with real-time monitoring of network operation, system state 

prediction, timely event detection, and rapid fault diagnosis [11-12]. 

 

2) Integration of renewable energy sources 

Complex fluctuation and unpredictability of renewable energy sources, like wind power 

and photovoltaic power, require more sophisticated technologies to connect renewable 

generation to the power network in a more secure fashion. In addition, complex power 

electronic devices for integration bring harmonics to the power network, therefore 

affecting power quality negatively. 

 

3) Energy storage 

Although energy storage systems are capable to help to balance between supply and 

demand, their installation requires plenty of space and investment costs. On the other 

hand, due to diverse electricity consumption patterns of customers, energy storage 

devices are randomly used, some of which even remain unused for a long time, 

resulting in a waste of costs. Thus, effective energy management schemes are supposed 

to be developed in order to deal with this issue [13]. 

 

4) Customer participation 

The smart grid motivates electricity consumers to actively participate in the energy 

management of the grid, and a wide range of demand response programs have been 

widely adopted to support consumers [14]. But, numerous consumers have not still 

raised enough awareness to get involved in these programs so far. Besides, during the 

communication between utilities and consumers, privacy invasion and data security may 
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be a major concern for both of them. 

 

5) Reliability 

High reliability is expected from the smart grid to ensure continuous power supply to 

electricity consumers. To meet this requirement, two potential challenges may be 

encountered. One is network automation, for instance, protection and control schemes, 

and the other one is network reconfiguration. 

 

6) Interoperability and cyber security 

The diversity of evolving smart grid technologies and applications is likely to bring 

significant challenges to network interoperability, as this interoperability involves a 

large number of monitoring and control activities, making possible bidirectional flows 

of electricity and information for generation, transmission, distribution, and 

consumption of various electric energy [15]. Meanwhile, information communication 

within the grid could probably be disrupted by such events as denial of service attacks, 

false data injection attacks, and cyber-physical switching attacks [16]. So, relevant 

information and communications technology (ICT) should be further researched and 

applied in the smart grid to enhance its cyber security. 

 

With more efforts put on this series of potential challenges within the academic and 

industrial communities, the technological issues of the smart grid will be resolved 

gradually. Besides, the government should provide necessary political and technological 

support to boost the development of the smart grid. 

 

1.2 Big Data Analytics 

1.2.1 Overview of Big Data Analytics 

During recent years, big data has increasingly obtained attention from both academia 

and industry all over the world. Due to its broad influence, the development of big data 

has profoundly changed our society and daily life and will continue to attract growing 

efforts from academic researchers and industrial experts in the future. As a well-known 

term in this information era, a uniform definition of big data has not still been achieved 

to date, because big data essentially means not only a huge volume of data, but also 

other unique characteristics that differentiate it from the concept of massive data. 
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However, International Data Corporation, a pioneer in researching big data and its 

impacts, gives a commonly recognised definition of big data. It describes big data 

technologies as new generation technologies and architectures aiming to economically 

extract valuable information from a huge amount of various data through enabling high-

velocity capture, discovery, and/or analysis [17]. This definition indicates the four 

obvious features of big data, which are volume, variety, velocity, and value respectively. 

Accordingly, this 4V definition has been widely used to characterise big data nowadays. 

 

In the meantime, with the rapid development of big data, big data analytics has 

gradually emerged and become increasingly popular in a majority of industries, such as 

health care, education, social media, finance, and information technology [18]. It is 

commonly believed that big data analytics can provide significant advantages to make 

timely and effective decisions relevant to time, cost, product development, service, 

optimization and so forth [19]. In general, big data analytics refers to applying 

analytical algorithms on powerful supportive platforms to uncover potentials within big 

data, for example, hidden patterns or unknown correlations. It normally consists of four 

consecutive phases, which are data generation, data acquisition, data storage, and data 

analysis respectively. Moreover, in terms of processing time, it can be classified into 

two categories. One is stream processing where data is analysed in real time as it arrives 

in a stream, and the other one is batch processing where data is firstly stored and then 

analysed later [17]. There are a few differences between these two processing methods, 

such as input, size, and storage. Despite its great advances, big data analytics are still 

faced with many challenges and issues, including algorithmic interpretation, modeling, 

prediction and simulation. These problems will have to be solved by the academic and 

industrial communities in order to bring more significant benefits to society and 

individuals in the future. 

 

1.2.2 Contributions of Big Data Analytics to Smart Grids 

Likewise, big data analytics has also been applied in the smart grid to develop a wide 

range of various applications over the past few years. Big data of the smart grid is 

generated from a series of different data sources, such as supervisory control and data 

acquisition (SCADA) systems, wide area monitoring systems (WAMSs), phasor 

measurement units (PMUs), smart meters, energy markets, weather, and geographic 
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information systems (GISs) [20-21]. According to these data sources, big data in the 

smart grid can be classified into two categories. One is internal data, such as WAMS 

data, PMU data, and energy management system (EMS) data, and the other one is 

external data, such as weather data, GIS data, and electricity user data [22]. As a result, 

based on vast amounts of data from the smart grid, the main contributions of big data 

analytics to the smart grid can be briefly summarised as the following aspects [23-28]: 

 

1) Fault/Event detection 

Real-time monitoring and control is crucial for reliability and operational efficiency of 

the smart grid, which is a strong driver for applications of big data analytics in the smart 

grid. The relevant applications include fault classification, fault location, anomaly 

alarming, and anomaly diagnosis. On the other hand, due to the rapid deployment of 

advanced monitoring devices across the power network, particularly PMUs, massive 

data is generated on a daily basis, therefore enabling these applications to significantly 

enhance reliability and operational security of the power network. 

 

2) Integration of renewable energy 

As renewable energy generation has great uncertainty and complex correlations with 

many factors, for example, wind speed of wind generation and solar irradiation of 

photovoltaic generation, big data analytics can be utilised to predict generation output in 

order to further increase the penetration of renewable energy generation. In addition, it 

is capable to conduct the simulation of renewable energy generation for power network 

planning and operation, such as average output and maximum output. 

 

3) Integration of electric vehicles 

Integrating electric vehicles into the smart grid plays a quite important role in 

environmental protection, owing to much less emission of pollution gas from them 

compared with traditional vehicles. However, integration of electric vehicles into the 

grid has still faced a great many problems so far, such as real-time dispatching of 

electric vehicles, charging pattern optimization, and battery consumption prediction. So, 

big data analytics can be applied to address these problems based on different kinds of 

data, e.g. battery information, journey information, and charging station information. 

 

4) Demand side response 
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An increasing number of smart meters are being installed across the power network, 

therefore generating huge amounts of detailed electricity consumption data. As this 

massive smart meter data is capable to provide rich information on electricity 

consumption behaviours of consumers, it largely enhances the interaction between 

consumers and electric utilities and enables demand side response. More specifically, on 

the basis of smart meter data, big data analytics can be employed to develop demand 

response applications, e.g. short-term load forecasting, time-of-use pricing, and energy 

disaggregation (namely, non-intrusive load monitoring). Then, these demand response 

programs can provide electricity consumers with customized services and encourage 

them to actively participate in network operational management and finally reduce the 

costs of both consumers and utilities. 

 

5) Smart grid cyber security 

Advanced information and communications infrastructure has brought a wide range of 

great benefits to the smart grid. However, in the meantime, cyber security threats have 

extended to the smart grid and had severe impacts on the network operation. Hence, it is 

very important to realise cyber security situational awareness of the network. As 

network components, e.g. switches and routers, and security components, e.g. intrusion 

detection systems and access control systems, can generate a huge amount of security 

related data in the smart grid, then the cyber security issues of the network can be 

resolved by taking full advantage of big data analytics and security related data. 

 

Obviously, the potential contributions of big data analytics to the smart grid are not only 

restricted to the ones discussed above. With the rapid advances of big data analytics, 

more big data analytical applications will be developed to boost the implementation of 

the smart grid. 

 

1.3 Research Challenges and Objectives 

Although many researchers have already made great efforts in the research field of 

applications of big data analytics in the smart grid, there are still a series of diverse 

challenges and issues to be resolved urgently. In the thesis, two aspects of research 

challenges are discussed in detail and then further solved through big data analytical 

techniques, in particular, deep learning. 
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1) Event detection 

Situational awareness is a crucial function to provide an accurate understanding of 

power system dynamics in order that proper actions can be taken promptly to ensure 

secure and reliable operation of the power system. Event detection is regarded as very 

important part of situational awareness [29]. At present, event detection methods are 

mainly classified into model driven, e.g. neural network based approaches, decision tree 

based approaches, and principal component analysis based approaches, and data driven, 

e.g. wavelet based approaches, and rule based approaches. However, for model driven 

methods, it is generally accepted that if the training dataset is selected inappropriately or 

insufficiently, it will have a significantly negative effect on the performance of the 

method when it is applied online. Considering this fact, much more attention should be 

paid to the application of data driven methods in this research area. As a result, the 

first objective of the thesis is to develop a data driven event detection method, 

which is particularly robust when applied to applications involving significantly 

polluted power system data. 

 

2) Residential load forecasting 

Load forecasting has played a rather important role in the electrical power industry. 

Electrical power companies rely on short-term and long-term load forecasting at the 

feeder level to support network planning and operation, while electricity retailers make 

time-of-use pricing, procurement, and hedging decisions on the basis of load forecasting 

of electricity customers [27]. In reality, the load profile becomes much smoother as the 

load level increases. As a consequence, it is a quite challenging issue to forecast load at 

the residential level, due to high volatility of residential load. 

 

A large number of research works on load forecasting at both medium voltage and high 

voltage levels have been presented up to now. For example, linear regression, least 

absolute shrinkage and selection operator (LASSO) regression, artificial neural 

networks (ANNs), and support vector machines (SVMs), have been explored and 

applied to perform load forecasting. It has already been verified that these methods are 

capable to achieve a satisfactory forecasting accuracy at medium voltage and high 

voltage levels. But, these traditional machine learning methods are not very suitable for 

residential load forecasting, because electricity consumption behaviours of household 
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residents are much more random. Considering this fact, some researchers have 

attempted to employ deep learning techniques to perform residential load forecasting, 

for instance, deep recurrent neural networks (RNNs). Although deep learning has great 

potential to extract more complex patterns of residential load, it is noted that it tends to 

incur overfitting, which has a seriously negative influence on its performance, if the 

training data is insufficient. As a result, the second objective of the thesis is to 

develop a short-term residential load forecasting method, which is capable to avoid 

overfitting and achieve a high forecasting accuracy. 

 

In addition, numerous research works on residential load forecasting have been focused 

on offline applications. To be specific, existing residential load forecasting models are 

trained offline and applied online. However, if they are well trained offline and then 

applied online, they are very likely to have significantly poor performance, because 

residential load tends to change dramatically over time. Considering this fact, in order to 

support demand response programs, it is quite necessary to forecast residential load in 

real time (e.g. once every half an hour or once every a couple of hours) with online 

learning. As a result, the third objective of the thesis is to develop an online 

residential load forecasting method, which is able to adjust the forecasting error in 

real time in order to improve the forecasting precision. 

 

1.4 Research Contributions 

Based on the research challenges and objectives mentioned above, the main 

contributions of the thesis are detailed as follows: 

 

1) A data driven event detection method based on random matrix theory and 

Kalman filtering 

A real-time data driven event detection method is developed based on random matrix 

theory (RMT) and Kalman filtering, which is particularly robust when dealing with 

corrupted and significantly noisy samples of PMU data. Both simulated and real PMU 

data are utilised to verify its validity, and the experimental results show that it is very 

robust when applied in practical situations. 

 

2) A dynamic Kalman filtering technique 
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A dynamic Kalman filtering technique is proposed through the adjustment of the 

measurement noise covariance matrix in order to condition PMU data. Simulated PMU 

data is used to testify its effectiveness, and the experimental results show that it is 

capable to perform noise reduction and data recovery effectively. 

 

3) A short-term residential load forecasting method based on deep learning and k-

means clustering 

A short-term individual residential load forecasting method is presented on the basis of 

deep learning and k-means clustering, which is able to overcome overfitting and 

improve the forecasting accuracy. A real-life residential load dataset from Ireland is 

utilised to evaluate its performance, and the experimental results show that it can 

forecast residential load accurately. 

 

4) An online residential load forecasting method based on deep learning and 

dynamic mirror descent 

An online individual residential load forecasting method is designed based on deep 

learning and dynamic mirror descent (DMD), which is capable to adjust the forecasting 

error in real time. A real-life residential load dataset from Ireland is used to assess its 

performance, and the experimental results show that it can significantly improve the 

forecasting accuracy. 

 

1.5 Thesis Layout 

The remainder of the thesis is organized as follows: 

 

Chapter 2 conducts a comprehensive literature review on applications of deep learning 

in power systems. To be specific, a brief overview of big data analytical techniques is 

firstly given from three major aspects, which are machine learning, deep learning, and 

high performance computing respectively. Then, a detailed review on deep learning 

applications in power systems is provided in terms of five major application fields, 

including load forecasting, demand response, renewable energy generation forecasting, 

event detection, and network operation and control. 

 

Chapter 3 presents a data driven event detection method. It employs RMT as the 
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theoretical basis and mean spectral radius as an event indicator. Besides, as the data 

conditioner of the presented method, a dynamic Kalman filtering technique is developed 

in order to condition PMU data. The presented event detection method is tested on the 

standard IEEE 118-bus network and the GB transmission system to validate its 

effectiveness and robustness. 

 

Chapter 4 proposes a short-term residential load forecasting method. It firstly makes use 

of k-means clustering to divide residential load into different groups according to load 

similarity, and then utilises deep learning to obtain a forecasting model for every group. 

The proposed residential load forecasting method is tested on an Irish residential load 

dataset from the Smart Metering Electricity Customer Behaviour Trials to evaluate its 

forecasting performance. 

 

Chapter 5 designs an online residential load forecasting method. Different from the 

method proposed in Chapter 4, it is devoted to online residential load forecasting. More 

specifically, it firstly takes advantage of deep learning to build a well-trained 

forecasting model, and then applies the built model to forecast residential load with 

DMD adjusting the forecasting error in real time. The designed method is tested on an 

Irish residential load dataset to assess its ability to improve the forecasting precision. 

 

Chapter 6 summarises the key findings of the research and the major contributions of 

the thesis, and provides a few potential research topics in the future work. 
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Chapter 2 

Review of Applications of Deep Learning  

in Power Systems 
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2.1 Introduction 

During the past few years, big data analytic techniques have been researched and 

developed at an increasing speed within both academia and industry. Due to a growing 

amount of various data from modern power networks, they have also played a vital role 

in the transition from modern power grids to future smart grids. As important part of big 

data analytic techniques, machine learning has already been widely applied in power 

systems up to now. However, as a huge amount of data is generated in modern power 

systems on a daily basis, deep learning is being adopted increasingly to develop a series 

of diverse big data applications for power systems because of its superior ability to 

extract extremely complex patterns of numerous data to that of machine learning. 

 

So, with big data analytic techniques introduced briefly in the first place, this chapter 

aims to review common applications of deep learning in modern power systems, which 

are load forecasting, demand response, renewable energy generation forecasting, event 

detection, and network operation and control respectively. 

 

2.2 Big Data Analytic Techniques 

Admittedly, big data analytic techniques have been applied in a wide range of different 

industries and sectors in order to bring great benefits to society, business, and daily life 

in the big data era, as they are considered to be an extremely powerful tool to extract 

valuable information from big data. In general, big data analytic techniques consist 

mainly of three important components, namely, machine learning, deep learning, and 

high performance computing. 

 

2.2.1 Machine Learning 

Machine learning is a field of artificial intelligence that uses statistical techniques to 

give computer systems the ability to learn from data without being explicitly 

programmed. Within the area of data analytics, machine learning is a method used to 

devise complex models and algorithms, which allow researchers, analysts, engineers, 

and data scientists to produce reliable and repeatable decisions and results and uncover 

hidden insights through learning from historical relationships and trends within data. 
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In general, machine learning is typically classified into six categories, which are 

classification, regression, clustering, association analysis, density estimation, and 

dimensionality reduction respectively [30]. Classification and regression belong to 

supervised learning, while clustering, association analysis, density estimation, and 

dimensionality reduction belong to unsupervised learning. To be specific, classification 

algorithms consist mainly of k-nearest neighbors, decision trees, support vector 

machines, naive Bayes, and logistic regression; regression algorithms consist mainly of 

linear regression, ridge regression, LASSO regression, and regression trees; clustering 

algorithms involve k-means clustering and hierarchical clustering; association analysis 

algorithms involve Apriori and frequent pattern growth; density estimation algorithms 

include kernel density estimation and vector quantization; dimensionality reduction 

algorithms include principal component analysis (PCA) and singular value 

decomposition (SVD). 

 

There have been a great many applications of machine learning in a wide range of 

research areas, such as image recognition, video processing, speech recognition, text 

processing, medical diagnosis, and renewable generation prediction. For example, 

reference [31] developed a new feature extraction method and combined it with 

machine learning methods to classify melanoma thickness. Reference [32] employed an 

SVM and a one-against-others decomposition method to perform texture classification 

without extra feature extraction. What is more, reference [33] presented a novel 

Bayesian classification approach to text classification, based on higher order 

dependencies between features and naive Bayes. Reference [34] proposed a smart 

board-level functional fault diagnosis method, which effectively combined SVMs and 

multiple kernel functions and incremental learning. 

 

2.2.2 Deep Learning 

Deep learning is part of a broader family of machine learning, which uses a cascade of 

multiple layers of nonlinear processing units for feature extraction and transformation 

and learns multiple levels of representations corresponding to different levels of 

abstraction [35]. Specifically, within deep learning, each current layer uses the output 

from the previous layer as its input and learns to transform its input into a slightly more 

abstract and composite representation. More importantly, a deep learning process can 
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learn which features to optically place at the most suitable level on its own. 

 

Besides, deep learning models are vaguely inspired by information processing and 

communication patterns in biological nervous systems, but they have a variety of 

differences from the structural and functional properties of biological brains, therefore 

making them incompatible with neuroscience evidences. So far, a range of different 

deep learning structures have been developed and applied widely, such as deep 

Boltzmann machines (DBMs), deep belief networks (DBNs), deep feedforward neural 

networks (DFNNs), convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), long short term memory (LSTM) networks, and generative adversarial 

networks (GANs). Among all these structures, CNNs and RNNs (including LSTM 

networks) are the two most popular and common structures. It is generally accepted that 

CNNs are extremely suitable for dealing with spatial distribution data while RNNs have 

significant advantages in handling time series data [38-39, 46, 48, 55, 65]. 

 

Similar to machine learning, deep learning has also been applied to numerous research 

fields, including computer vision, automatic speech recognition, audio recognition, 

natural language processing, and machine translation, where they have produced 

desirable results comparable to and in some cases superior to human experts and 

machine learning because of its extraordinary learning capability. For instance, 

reference [36] proposed a novel acoustic modeling framework for speech recognition, 

combining multiple DFNNs with a hidden Markov model and a clustering technique. 

Reference [37] designed a sophisticated method to perform sentiment classification, 

based on a combination of DBNs and information geometry. In addition, reference [38] 

employed a CNN to conduct automatic segmentation of magnetic resonance images for 

quantitative analysis of brains. Reference [39] presented a new greedy layer-wise 

unsupervised pretraining strategy and used it to train a deep CNN to classify remote 

sensing images. 

 

2.2.3 High Performance Computing 

High performance computing (HPC) techniques normally refer to making use of 

multiple processors or a cluster of computers to process or analyse a huge amount of 

data. The main advantage of HPC techniques is that they are able to significantly speed 
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up the processing of numerous data with only a cluster of cost effective computers. 

 

Among a few common HPC software frameworks, Hadoop and Spark are the two most 

popular software frameworks both in academia and industry at present, mainly because 

they are open source, freely available online, and well supported and maintained. To be 

specific, Hadoop has two core parts, which are the Hadoop distributed file system 

(HDFS) and MapReduce. HDFS provides users with the distributed file system for 

storing huge files easily, while MapReduce provides users with the distributed 

programming framework for fast computing. When a job is processed by Hadoop, 

MapReduce reads input data from disk, maps a function across the data, reduces the 

result of the map, and stores the reduction result on disk. However, different from 

Hadoop, Spark is a parallel computing framework aiming to process data and store 

intermediate results in distributed shared memory, as it has an essential distributed data 

framework, called the resilient distributed dataset (RDD), which makes Spark much 

faster than Hadoop in terms of data processing speed. RDDs have two types of 

computing operators, transformation and action. Transformation operators transform an 

RDD to another RDD, while action operators trigger Spark to submit jobs and output 

results. In addition, Spark has already included some helpful projects to enable users to 

develop applications conveniently, such as SparkSQL, Spark Streaming, GraphX, and 

MLlib. 

 

Nowadays, a number of HPC applications have been developed to solve real-life 

problems. For examples, reference [40] introduced a new feature descriptor, namely, 

adaptive local motion descriptor, and combined it with a random forest to recognize 

human actions and deployed them in Spark. Reference [41] implemented a simple 

method in Hadoop to perform traffic demand prediction and designed an optimization 

module to improve the efficiency of Hadoop. Moreover, reference [42] proposed a 

practical massive video management platform using Hadoop, which is capable to 

process videos fast, e.g. video encoding and decoding, with desirable usability, 

performance, and availability. 

 

2.3 Applications of Deep Learning in Power Systems 

During the past few years, deep learning has been explored constantly in the electrical 
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power community to develop a variety of different applications, contributing 

substantially to the rapid advancement of power systems. The main applications of deep 

learning in power systems are reviewed in detail from five different aspects below [43]. 

 

2.3.1 Load/Demand Forecasting 

Due to high penetration of distributed energy generation, scheduling and operation of 

modern power systems are faced with increasing challenges of uncertainty. As a result, 

accurate load forecasting at different levels becomes particularly important and helpful 

to address these challenges. 

 

In reference [44], CNNs are combined with k-means clustering to forecast hourly 

electricity load. K-means clustering is firstly applied to group a large dataset containing 

more than one million of load records into subsets, and then these subsets are used to 

train CNNs. The experimental results show that the proposed approach is very effective. 

Reference [45] proposed a DBN embedded with parametric copula models to predict 

hourly load of a power network, using one year data from an urban area in the US. Both 

day ahead and week ahead predictions are performed, and the experimental results 

suggest that the proposed method is able to predict power load more accurately than 

classic artificial neural networks (ANNs), support vector regression (SVR), extreme 

learning machines (ELMs) in terms of mean absolute percentage error (MAPE) and root 

mean square error (RMSE). Likewise, reference [46] and reference [47] employed 

RNNs and DBNs respectively for short-term load forecasting of a power network. 

Different from reference [44-47], reference [48] presented a novel probabilistic 

forecasting approach combining LSTM networks and copula sampling, which is capable 

to predict intervals and densities of multiple variables, including power load, 

photovoltaic generation, wind generation, and electricity prices. This approach consists 

of two consecutive steps: firstly, determine the probabilistic forecasts for every variable 

during the whole forecasting period using LSTM networks; secondly, sample the 

resulting distribution of every variable using copula sampling. As a result, it takes both 

temporal information and cross-variable dependency into consideration so as to improve 

the prediction performance. In addition, reference [49] explored the application of deep 

neural networks (DNNs) with different activation functions and their combinations to 

load forecasting. Three activation functions, namely, sigmoid units, rectifier linear units 



 

Page  20 
 

(ReLUs), and exponential linear units (ELUs), are selected and tested, and the 

preliminary results demonstrate that DNNs with ELUs outperform DNNs with others. 

 

Overall, in existing research works, deep learning techniques are mainly applied 

together with other methods to obtain effective and accurate models for load forecasting. 

Besides, some external uncertain factors, for example, weather, could be considered and 

incorporated properly into forecasting models in order to further improve the 

forecasting precision. According to the references mentioned above, it can be also 

concluded that deep learning methods tend to outperform traditional machine learning 

methods, because they have a superior capability of dealing with large volumes of data 

and complex patterns. More relevant works on load forecasting will be introduced 

concretely in Chapter 4 and Chapter 5. 

 

2.3.2 Demand Response 

Identifying and forecasting energy flexibility on the demand side plays a crucial role in 

implementing demand response in power systems. The rapid and large-scale 

deployment of smart meters enables us to easily monitor energy consumption of 

electricity customers through real-time non-intrusive load monitoring (NILM). 

Reference [50] employed factored four way conditional restricted Boltzmann machines 

(FFW-CRBMs) and disjunctive FFW-CRBMs to conduct energy disaggregation on a 

real-life reference dataset. The experimental results suggest that disjunctive FFW-

CRBMs perform slightly better than FFW-CRBMs for energy estimation, while both of 

them are almost comparable for energy identification. Reference [51] adopted three 

different DNN architectures for energy disaggregation, which are LSTM networks, 

denoising autoencoders, and vanilla DNNs respectively. A comprehensive comparison 

is made on a real-life aggregate power dataset from five domestic appliances between 

these three architectures and two baseline models using seven metrics. Similarly, 

reference [52] investigated the application of LSTM networks and gated recurrent unit 

(GRU) networks to NILM, and tested both on the UK domestic appliance level energy 

dataset using three different metrics. 

 

Besides, deep learning techniques can be applied to perform classification of electricity 

customers, thus helping to analyse electricity consumption behaviours of customers. In 
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reference [53], RNNs are used to classify electricity users, and the experimental results 

prove that RNNs have better performance than some existing methods, such as k-

nearest neighbors and hidden Markov models. In reference [54], a CNN is combined 

with an SVM to identify socio-demographic information of customers. The CNN firstly 

extracts features from load profiles and the SVM then classifies these extracted features. 

A comprehensive comparison is conducted on a real-life Irish smart meter dataset 

between this method and a few advanced machine learning methods. 

 

Load prediction and control is also an important task of demand response, playing a 

crucial role in dynamic electricity pricing. Reference [55] utilised LSTM networks to 

forecast individual residential load, and the experimental results indicate that LSTM 

networks are very suitable for volatile residential load prediction. In addition, reference 

[56] explored deep Q-learning (DQL) and deep policy gradient (DPG) respectively for 

online building energy optimization, including building energy consumption and cost. 

The experimental results show that DPG is more suitable for online scheduling of 

energy resources than DQL, although both of them are able to successfully perform 

either minimization of energy cost or flattening of network energy profiles. Reference 

[57] proposed a novel approach to residential load control, based on deep learning and 

reinforcement learning. A CNN is used as a function approximator to estimate the Q-

function within the fitted Q-iteration, and the experimental results validate its feasibility 

and effectiveness. 

 

Demand response is a complex research topic for the smart grid, which is involved with 

consumption behaviours and social attributes of electricity customers, governmental 

policies, and so forth. Due to its extraordinary ability to extract hidden information, 

deep learning is regarded as a very promising technique to support demand response. 

But, it is still necessary to further explore effective combinations of deep learning and 

other techniques for energy flexibility analysis, load analysis and control, and decision 

making. 

 

2.3.3 Renewable Energy Generation Forecasting 

Renewable energy generation forecasting has a very important effect on secure 

integration of renewable energy sources into modern power networks and stable 
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network operation. Reference [58] used an LSTM model to predict wind power on the 

basis of numerical weather prediction data, and utilised PCA to extract the main input 

features fed to the LSTM model. The experimental results prove that the LSTM model 

has a higher prediction accuracy compared with the ANN and SVM models. Reference 

[59] presented a new multiscale wind power forecasting approach by establishing a 

multi-to-multi mapping network and an ensemble of stacked denoising autoencoders 

(SDAEs). Multiple numerical weather predictions are firstly corrected through an 

SDAE to generate better inputs, and a series of SDAEs and the generated inputs are 

then integrated into an ensemble of SDAEs to predict the individual wind power 

generated by different wind farms in a region. The experimental results of two real-

world datasets testify the validity of the presented approach. Differing from reference 

[58-59], reference [60] investigated the application of DNNs to photovoltaic power 

forecasting, such as DBNs and LSTM networks. The experimental results show that the 

DNN models can achieve a higher prediction accuracy than a few reference models. 

Similarly, reference [61] and reference [62] applied LSTM networks and DBNs 

respectively to perform photovoltaic power generation forecasting. 

 

Obviously, various deep learning methods have been increasingly developed and 

applied to renewable energy generation prediction, because deep learning has a number 

of superior characteristics, for example, high-level flexibility and excellent self-adaptive 

learning. However, it is expected that prediction precision can be further improved 

through combining deep learning with more data sources. 

 

2.3.4 Event/Fault Detection 

Event or fault detection, regardless of electrical equipment or networks, plays a very 

important role in ensuring secure power network operation. Nowadays, a large number 

of sensors and monitoring systems, such as SCADA systems and PMUs, are installed 

across the power network, enabling event or fault detection through taking full 

advantage of deep learning techniques. 

 

Reference [63] designed an event detection method for power line insulators, which 

combines a CNN and an SVM to identify the power line insulator status. The CNN 

extracts features from aerial images of power line insulators, and then the SVM 
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classifies the extracted features. The experimental results on a real-world dataset of 

aerial images of power line insulators testify the validity of the designed method. 

Similarly, reference [64] applied a deep restricted Boltzmann machine jointly with an 

autoencoder to conduct fault detection for power transformers and circuit breakers. Both 

images and structured data with massive attributes are used as multiple inputs of the 

proposed model. The experimental results demonstrate that the proposed model 

outperforms some existing models in terms of accuracy. 

 

Differing from reference [63-64], reference [65] introduced a novel deep learning based 

fault detection approach using power flow to identify topology changes in the power 

network. Power flow is firstly computed numerically, and then transformed to a 

computer-visualised image. After generating a number of power flow image samples of 

diverse system states and topologies, a CNN is trained and applied to perform fault 

detection. The experimental results suggest that the presented approach is capable to 

identify network faults effectively. Likewise, reference [66] and reference [67] 

employed SDAEs and LSTMs respectively to detect network events, and the 

experimental results prove their feasibility. Moreover, in reference [68], a new method 

to classify power quality events of the power network is presented based on deep 

learning techniques. Instead of voltage data, images of power quality event data are 

used as the input samples of the deep learning model. A real-world power quality event 

dataset from four different substations is utilised to test the presented method, and the 

experimental results validate its effectiveness. In reference [69], the potential of deep 

learning is explored in order to identify a series of power quality disturbances. For the 

purpose of understanding various deep learning architectures, a comprehensive 

comparison is made among different DNNs, such as CNNs, RNNs, LSTM networks, 

and GRU networks. 

 

According to the references mentioned above, it can be easily summarised that both 

structured electrical data and images can be used as input samples by deep learning 

techniques to detect events or faults for electrical equipment or networks. But, there are 

still a number of problems to be resolved urgently, e.g. learning from a small dataset, 

selecting proper sample space, and identifying minor differences between normal and 

prefault conditions. More relevant works on event detection will be introduced in detail 

in Chapter 3. 
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2.3.5 Network Operation and Control 

Frequency control, system security assessment, and stability analysis are very 

fundamental and important to ensure power network reliability. Therefore, WAMSs 

provide huge amounts of data to allow power network operators to have an accurate 

understanding of the network status via a wide range of deep learning applications 

based on WAMS data. 

 

In reference [70], a load frequency control method is proposed to minimize frequency 

deviation, based on deep reinforcement learning (DRL) and continuous action search. 

The simulation results verify the superiority of the proposed method to a few existing 

methods. In reference [71], a novel deep learning based feature extraction framework is 

presented to assess power system security. Deep autoencoders are used to transform 

conventional state variables into a small number of abstract features, and an R-vine 

copula based model is proposed to sample historical data and generate massive system 

states for training. The superior performance of the presented framework is testified 

through a series of comparisons on a real-world dataset from the French transmission 

system. In addition, reference [72] designed a robust real-time load profile management 

framework for efficient power system operation. SDAEs are utilised to encode load 

profiles, and a locality sensitive hashing algorithm is implemented to cluster the 

encoded load profiles. The designed framework is tested on a real-world dataset of 

anonymous customers. 

 

As for stability analysis, reference [73] proposed a DRL based load shedding scheme to 

improve short-term voltage stability, making use of two CNNs. One CNN is utilised to 

evaluate the quality of load shedding actions, and the other CNN is utilised to determine 

the time, location, and amount of load shedding. The simulation results on the modified 

IEEE 39-bus system validate the performance of the proposed scheme under different 

scenarios. Reference [74] presented a novel representational learning approach to 

transient stability assessment using PMU data. SDAEs firstly perform representational 

learning for crucial features, and a CNN is then added to the SDAEs to classify the 

system status. The simulation results on the IEEE 39-bus system demonstrate that the 

presented approach has a higher classification accuracy and greater robustness against 
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noisy PMU data compared to a few reference approaches. What is more, reference [75] 

combined a DBN with a simple linear classification model to identify network transient 

stability, while reference [76] employed a CNN to analyse network transient stability on 

the basis of the voltage phasor. 

 

As modern power systems are becoming increasingly complex due to widespread 

integration of various new elements into power systems, e.g. wind generators, solar 

generators, flexible loads, and electric vehicles, deep learning is considered as a very 

promising alternative to conventional analysis methods for power network operation 

and control, because of its excellent ability to discover complicated patterns. On the 

other hand, as deep learning based methods are mostly regarded as model driven, their 

performance relies on sample selection and size to a large extent. As a result, it is 

generally suggested that combining model driven methods with data driven methods 

properly is very likely to improve analysis performance further. 

 

Apparently, apart from the five common aspects detailed above, there are still some 

other uncommon applications of deep learning in power systems, including cyber 

security [77-80], electricity theft detection [81], dynamic energy management of 

microgrids [82], and energy trading behaviour modeling [83]. For example, reference 

[77] exploited deep learning techniques to identify the features of false data injection 

(FDI) attacks with historical measurement data and used the extracted features to detect 

FDI attacks in real time. The proposed detection mechanism is able to effectively relax 

the assumptions on potential attack scenarios and achieve a satisfactory accuracy. 

Besides, reference [81] presented a novel electricity theft detection approach based on a 

wide and deep CNN model, which consists of a wide component and a deep CNN 

component. The wide component captures the global features of one-dimensional 

electricity consumption data, while the deep CNN component recognises the 

nonperiodicity of electricity theft and the periodicity of normal electricity usage with 

two-dimensional electricity consumption data. The experimental results on a real-world 

dataset indicate that the presented approach outperforms other existing approaches. 

 

2.4 Chapter Summary 

This chapter firstly introduced big data analytic techniques briefly, in terms of machine 
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learning, deep learning, and high performance computing. Afterwards, it gave an 

overview of applications of deep learning in power systems from five main aspects, 

which are load forecasting, demand response, renewable energy generation forecasting, 

event detection, and network operation and control. At present, deep learning 

applications in power systems are mainly based on different effective combinations of 

deep learning techniques and other models in order to achieve desirable performance. 

However, there are still a series of challenges and issues to be addressed timely so that 

deep learning can be applied in more aspects of modern power systems. 
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Chapter 3 

Robust Data Driven Event Detection Based on  

Random Matrix Theory and Kalman Filtering 
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3.1 Introduction 

The development and increasing complexity of modern power systems is causing 

growing concerns over power system operational security, with network management 

and analysis becoming increasingly challenging. Traditional monitoring devices, 

employed in supervisory control and data acquisition (SCADA) systems, have already 

become quite impractical and inefficient for this challenge [84]. As a result, phasor 

measurement units (PMUs) are being deployed to measure phasors of bus voltages and 

currents, enabling real-time state monitoring in power systems [85-86]. Due to PMUs’ 

higher sampling rates and accurate time synchronization, a huge amount of synchronous 

data is now being collated from power systems globally [87-88], making online 

monitoring possible through the detection of events. 

 

At present, event detection methods are mainly classified into model driven 

(supervised) and data driven (unsupervised). For example, model driven methods 

involve neural network based approaches [89-90], decision tree based approaches [91-

92], and principal component analysis based approaches [93-97]. However, for 

supervised learning, it is accepted that if the training dataset has been selected 

inappropriately or insufficiently, it will have a significantly negative effect on the 

performance of the method when it is applied online. Therefore, much attention has also 

been paid to the application of unsupervised learning in this field [98-101], including 

wavelet based approaches, energy function based approaches, and frequency difference 

based approaches. 

 

Most recently, as a novel data driven approach, random matrix theory (RMT) was 

introduced and applied to early event detection in power systems [102]. In this case, as 

the statistical basis, random matrix models (RMMs) are first formed via the raw data 

from power systems. Then, several linear eigenvalue statistics (LESs) are designed 

through different test functions as indicators. Finally, by comparing the practical with 

theoretical values of LESs, event detection is conducted. However, in reality, as a major 

data source in modern power systems, PMU data is generally collected with significant 

noise levels and plenty of missing measurements, due to communication issues between 

PMUs and phasor data concentrators [103-104] and further issues in the measurement 

processes. When such an approach is faced with significantly noisy and missing data, it 
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will be unable to accurately detect abnormal events. 

 

This chapter presents an event detection method which improves the performance of the 

RMT based method [102], making it much more robust when dealing with corrupted 

and significantly noisy samples of PMU data. To be specific, a real-time event detection 

method is developed based on a novel combination of RMT and Kalman filtering. 

Furthermore, a dynamic Kalman filtering technique is proposed through the adjustment 

of the measurement noise covariance matrix as the data conditioner of the presented 

method in order to condition PMU data. Finally, the presented event detection method is 

tested on the standard IEEE 118-bus network and the transmission system of Great 

Britain (GB) using the PMU data following actual transmission events in order to 

validate its feasibility and effectiveness. The experimental results show that the 

presented method is indeed much more robust in such practical situations that include 

significant levels of noisy or missing data. 

 

3.2 Overview of Event Detection Methods 

A large amount of research has been presented in the field of event detection for power 

systems. In reference [90], an approach to transmission line fault classification was 

presented on the basis of a combination of an adaptive resonance theory (ART) neural 

network and fuzzy logic. It applies a fuzzy decision rule to the output of the ART neural 

network to improve algorithm selectivity for a variety of real events. Reference [92] 

presented a new method, which is able to effectively classify traditional power system 

contingencies and cyber-attacks in real time. Specifically, it combines Hoeffding 

adaptive trees (HATs) with a drift detection method (DDM) and adaptive windowing 

(ADWIN), and involves a mechanism to forget old inferences and add new inferences to 

update the model continuously, because HATs are capable and suitable to process PMU 

data streams online and ADWIN and DDM can be used for change detection. 

 

In addition, during recent years, principal component analysis (PCA) has become a 

popular and common approach to early event detection in power systems. For example, 

Xie analysed the dimensionality of PMU data under both normal and abnormal 

conditions, and employed PCA to detect abnormal events, based on the change of core 

subspaces of PMU data at the occurrence of an anomaly [93]. Meanwhile, this model 
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has an adaptive training mechanism, updating the model according to whether any event 

happens. Besides, linear dynamic system theory is introduced to prove the feasibility 

and validity of this algorithm. A similar work was carried out in reference [94], which 

uses a moving window PCA to detect and classify multiple events, including islanding, 

loss of load, and loss of generation. But, different from the one in reference [93] 

updating the PCA model on the basis of whether there is an event occurring, this 

method uses a moving window to update the PCA model in real time in order to adapt 

to the time varying behaviour of power systems. Moreover, it relies on the Hotelling’s 

T2 and Q statistics to determine if the power system is in an abnormal condition, while 

the method in reference [93] detects events based on the error between the predicted and 

measured values essentially. Another similar event detection method was developed by 

Guo in reference [95], only focusing on islanding detection for distributed generation 

systems. In contrast to the method in reference [94], Guo employed a recursive PCA 

algorithm to overcome the time varying behaviour of power systems for the purpose of 

reducing false alarms. Although a wide range of different machine learning techniques 

have been applied to event detection and classification, almost all the methods are 

supervised learning. In other words, most methods are based on models gained after 

training. But, as mentioned above, when the sample space is chosen improperly or 

insufficiently, an ill-trained model may be obtained. 

 

In order to address this disadvantage of supervised learning, a few researchers have 

considered unsupervised learning techniques in this research area. For instance, Kim 

designed a wavelet based detection algorithm using PMU data [98]. The key idea of this 

algorithm is to monitor the energy of detail coefficients within the moving window in 

real time, and to determine whether the energy value exceeds the threshold or not. 

According to this idea, a modified wavelet energy function is defined to calculate the 

root mean square value of detail coefficients in the moving window, and the threshold is 

determined on the basis of the confidence level of event detection. Apart from this 

work, another data driven analytics method, which relies on the rules created by PMU 

data, was proposed for power system fault detection in reference [101]. It is comprised 

of the following three steps: 1) Identifying the fault bus; 2) Determining the fault type; 

3) Detecting the fault line. Besides, fault thresholds are introduced in the rules and 

determined based on theoretical values and recorded PMU data during fault events. 
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However, it should be noted that the above unsupervised approaches need some 

thresholds to make decisions with respect to the occurrence of events. Admittedly, once 

thresholds are set up inaccurately, it will affect detection performance severely. 

Although the RMT based event detection approach was recently developed without 

setting any thresholds [102], it still did not take PMU data quality into consideration 

like the supervised and unsupervised approaches mentioned above. As a result, 

considering these drawbacks, this chapter proposes solutions to them. 

 

The remainder of this chapter is organized as follows. Section 3.3 introduces random 

matrix theory. Section 3.4 formulates a dynamic quadratic prediction model based 

Kalman filtering technique. Section 3.5 details the combination of random matrix theory 

with Kalman filtering for event detection. Section 3.6 uses both simulated and real PMU 

data to evaluate the dynamic Kalman filtering technique and the proposed event 

detection method. Finally, the conclusions are presented in Section 3.7. 

 

3.3 Random Matrix Theory 

RMT has already proven to be effective for power system analysis, and a wide range of 

laws and theorems, such as Ring Law and Marchenko-Pastur Law, are included in 

RMT, which have been applied in power systems for different purposes [102, 105-106]. 

However, in this chapter, for the purpose of event detection, Ring Law, as the 

theoretical basis of data processing of event detection, and mean spectral radius (MSR), 

as the event indicator, will be briefly introduced, and then data processing of Ring Law 

will be formulated in detail. 

 

3.3.1 Ring Law 

Let Xs ∈ C
N×T

 be a standard non-Hermitian random matrix, whose entries are 

independent and identically distributed (i.i.d.) variables with 

𝜇(xs,i) = 0, 𝜎2(xs,i) = 1     (i = 1, 2 , ⋯ , N)                            (3-1) 

where xs,i is the ith row vector of Xs, 𝜇 denotes the mean, and 𝜎2 denotes the variance. 

For L standard non-Hermitian random matrices Xs,i (i = 1, 2 , ⋯ , L), a matrix product is 

defined as 



 

Page  32 
 

Z = ∏ Xu,i
L
i=1                                                     (3-2) 

where Xu,i  is the singular value equivalent of Xs,i . The matrix product Z can be 

transformed to the standard matrix product Zs, whose 𝜎2(zs,i) = 1/N in each row. Thus, 

the empirical spectral density of Zs converges almost surely to the limit given by 

𝑓(𝜆Zs
) = {

1

πcL
|𝜆Zs

|
2

𝐿
−2

     (1 − c)
L

2 ≤ |𝜆Zs
| ≤ 1

0                          otherwise

                            (3-3) 

as N, T → ∞ with a constant ratio c = N/T ∈ (0, 1]. 

 

3.3.2 Mean Spectral Radius 

Linear eigenvalue statistics indicate the statistical features of random matrices. An LES 

of a random matrix X is defined as 

Sn(𝜑) = ∑ 𝜑(𝜆i)
n
i=1                                                (3-4) 

where 𝜆i (i = 1, 2, ⋯ , n) are eigenvalues of X, and 𝜑(∙) is a test function. 

 

Mean spectral radius, as a special LES, is used to suggest the eigenvalue distribution of 

a random matrix. For the standard matrix product Zs (as mentioned above in Ring Law), 

MSR is formulated as 

MSR =
1

N
∑ |𝜆Zs,i|
N
i=1                                               (3-5) 

where 𝜆Zs,i (i = 1, 2, ⋯ , N) are eigenvalues of Zs, and |𝜆Zs,i| is the radius of 𝜆Zs,i on the 

complex plane. 

 

3.3.3 Data Processing of Ring Law 

Within a raw data source Ω, a raw random matrix X ∈ C
N×T

 can be formed through a 

split window. Then, X can be transformed to a standard non-Hermitian matrix Xs ∈

C
N×T

 row by row as follows: 

xs,i = (xi − 𝜇(xi))
𝜎(xs,i)

𝜎(xi)
+ 𝜇(xs,i)     (i = 1, 2 , ⋯ , N)                     (3-6) 

where xi  and xs,i  are the ith  row vectors of X and Xs  respectively, and 𝜇(xs,i) = 0 , 

𝜎2(xs,i) = 1. 
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Afterwards, the matrix Xu ∈ C
N×N

 is introduced as the singular value equivalent of Xs 

by 

Xu = √XsXs
T
U                                                  (3-7) 

where Xs
T is the transpose of Xs and U ∈ C

N×N
 is a Haar unitary matrix, XuXu

T ≡ XsXs
T. 

 

However, for a series of arbitrary non-Hermitian random matrices Xi (i = 1, 2 , ⋯ , L) 

from the raw data source Ω, the matrix product Z = ∏ Xu,i
L
i=1 ∈ C

N×N
 is obtained. Then, 

it is converted to the standard matrix product Zs ∈ C
N×N

 through the following formula: 

zs,i =
zi

√N𝜎(zi)
                                                    (3-8) 

where zi and zs,i are the ith row vectors of Z and Zs respectively. 

 

3.4 Dynamic Kalman Filtering 

As a state estimation technique, Kalman filtering has been one of the most common 

methods for conditioning PMU data in power systems. Many researchers have 

presented a wide range of works on applications of Kalman filtering to PMU data 

conditioning [107-109]. Most recently, a quadratic prediction model based Kalman 

filtering technique was proposed [110]. It is able to cleanse and recover PMU data 

easily with the quadratic prediction model reflecting the quadratic relationship between 

the past, present and future states. However, within this method, the measurement noise 

covariance matrix R is constant, and thus unable to condition PMU data accurately in 

some situations. As a result, in this chapter, this technique is improved by making the 

measurement noise covariance matrix R dynamic to adapt to the conditioning process. 

 

The classic model of Kalman filtering is shown as follows: 

{
x(t + 1) = Φ(t + 1, t)x(t) + Γ(t + 1, t)w(t)

z(t + 1) = H(t + 1)x(t + 1) + v(t + 1)       
                           (3-9) 

where x(t)  and x(t + 1)  are the system states at time t and time t+1 respectively, 

z(t + 1) is the actual measurement at time t+1, w(t) is the zero-mean Gaussian process 

noise at time t, v(t + 1) is the zero-mean Gaussian measurement noise at time t+1, 
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Φ(t + 1, t)  is the state transition matrix from time t to time t+1, Γ(t + 1, t)  is the 

disturbance transition matrix from time t to time t+1, and H(t + 1) is the measurement 

matrix at time t+1. 

 

For the purpose of optimization, the classic model of Kalman filtering can be expressed 

in the recursive way as 

{
x̂(t + 1|t + 1) = Φ(t + 1, t)x̂(t|t) + K(t + 1)(z(t + 1) − ẑ(t + 1|t))

ẑ(t + 1|t) = H(t + 1)x̂(t + 1|t)                                                                  
      (3-10) 

where K (t + 1) is the Kalman gain matrix at time t+1, ẑ(t + 1|t)  is the a priori 

measurement of time t+1 given time t, x̂(t + 1|t) is the a priori estimate of time t+1 

given time t, and x̂(t|t) is the a posteriori estimate of time t given time t, which is also 

regarded as the final optimal estimate of the system state at time t. 

 

According to reference [111], the quadratic prediction model is formulated by 

x̂(t + 1|t) = 3x̂(t|t) − 3x̂(t − 1|t − 1) + x̂(t − 2|t − 2)                   (3-11) 

it can be known that two adjacent state vectors share two of the three state variables. 

Specifically, each state vector is formed by a moving window, which contains three 

successive snapshots of the system states and moves forwards only one snapshot at a 

time generating the next state vector. Thus, in order to estimate the next state, the state 

vectors x̂(t|t) and x̂(t + 1|t) are respectively expressed as follows [110]: 

x̂(t|t) = [
x̂(t|t)

x̂(t − 1|t − 1)

x̂(t − 2|t − 2)
]                                        (3-12) 

x̂(t + 1|t) = [
x̂(t + 1|t)

x̂(t|t)

x̂(t − 1|t − 1)
]                                     (3-13) 

where x̂(t + 1|t) , x̂(t|t) , x̂(t − 1|t − 1) , and x̂(t − 2|t − 2)  are all complex values, 

including magnitude and phase angle. 

 

As for Φ(t + 1, t) and H(t + 1), they can be expressed as constant matrices shown in 

(3-14) and (3-15) [110]: 
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Φ(t + 1, t) = [
3 −3 1

1 0 0

0 1 0

]                                       (3-14) 

H(t + 1) = [1 0 0]                                          (3-15) 

 

The Kalman gain matrix K(t + 1) is specified by the following formulas [110]: 

{
K(t + 1) = P(t + 1|t)HT(t + 1) × [H(t + 1)P(t + 1|t)HT(t + 1) + R(t + 1)]

−1

P(t + 1|t) = Φ(t + 1, t)P(t|t)ΦT(t + 1, t) + Γ(t + 1, t)Q(t)ΓT(t + 1, t)              

P(t + 1|t + 1) = [I − K(t + 1)H(t + 1)]P(t + 1|t)                                                    

(3-16) 

where P(t + 1|t) is the a priori error covariance matrix of time t+1 given time t, P(t|t) is 

the a posteriori error covariance matrix of time t given time t, I is the identity matrix, 

H
T, ΦT, and ΓT are the transposes of H, Φ, and Γ respectively, and R and Q are the 

measurement noise covariance matrix and process noise covariance matrix respectively, 

both of which are scalar values in this method. Furthermore, it is assumed that the 

Kalman filtering process starts at t=3 and x̂(3|3) and P(3|3) are the matrix of ones and 

the matrix of zeros respectively. The purpose for this practice is to make the Kalman 

filter track the optimal estimate fast within a short period. 

 

As the measurement noise covariance matrix R has a significant influence on the 

performance of Kalman filtering, this parameter will be adjusted dynamically in this 

chapter. First of all, a residue between the a posteriori estimate and the actual 

measurement is calculated at each time t as follows [112]: 

r(t) = x̂(t|t) − z(t)                                              (3-17) 

where r(t) is the residue at time t, and z(t)=z(t). For a period, a residue vector is formed 

as shown in (3-18): 

r(t + 1) = [r(t − W + 1) r(t − W + 2)   ⋯   r(t − 1) r(t)]            (3-18) 

where r(t + 1) is the residue vector at time t+1, and W is the time length. Then, the 

variance of the residue vector is calculated as the measurement noise covariance matrix 

shown below: 

R(t + 1) = Var(r(t + 1))                                        (3-19) 

where R(t + 1) is the measurement noise covariance matrix at time t+1. Here, it is 
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noted that Var(r(t + 1)) is the variance of a series of complex values. According to (3-

18) and (3-19), it can be easily seen that R(t + 1) is obtained on the basis of W previous 

residues, namely, from time t-W+1 to time t. 

 

Instead of keeping the measurement noise covariance matrix R constant, the dynamic 

Kalman filtering technique adjusts it continuously to reduce noise more effectively. To 

be specific, when the noise is heavier, the difference between the a posteriori estimate 

x̂(t|t) and the actual measurement z(t) becomes greater, therefore causing the residue 

r(t) to become greater, which finally leads to a greater measurement noise covariance 

matrix R(t + 1). In this situation, as can be inferred from (3-10) and (3-16), to calculate 

the next a posteriori estimate x̂(t + 1|t + 1), the actual measurement z(t + 1) is trusted 

less, while the a priori estimate x̂(t + 1|t) is trusted more. 

 

However, when the noise is weaker, the measurement noise covariance matrix R(t + 1) 

approaches 0. As a result, when the a posteriori estimate x̂(t + 1|t + 1) is calculated, the 

actual measurement z(t + 1) is almost trusted fully, while the a priori estimate x̂(t + 1|t) 

is hardly trusted, thus failing to reduce noise effectively. To solve this problem, Rmin is 

introduced as the lower bound for R(t + 1): 

Rmin = 𝛼                                                      (3-20) 

where 𝛼 is a quite small value. Once R(t + 1) is less than Rmin, R(t + 1) is set as Rmin 

by default. Also, it is supposed that R(t + 1) = Rmin within the initial period W. 

 

Similarly, when the missing data exists (in this chapter, it is supposed that the actual 

measurement for the missing data is 0), Rmax is defined as the upper bound for R(t + 1) 

to enhance the trust in x̂(t + 1|t): 

Rmax = 𝛽                                                     (3-21) 

where 𝛽 is a quite large value. Specifically, in the presence of missing data at time t+1, 

R(t + 1) is set as Rmax by default to recover the missing data much better. This practice 

is based on the fact that z(t + 1) is quite far from the real value at time t+1, hardly 

worth trust. 

 

In general, the dynamic quadratic prediction model based Kalman filtering technique is 
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performed with (3-10)-(3-21). In the following section, the dynamic Kalman filtering 

technique will be combined with RMT for event detection. 

 

3.5 Methodology Procedure 

Due to the high sampling frequency of PMUs, PMU data, including voltage, current, 

and frequency, provides an enhanced snapshot of the dynamics of power systems, and 

thus much greater insight into power systems can be gathered from it after data 

conditioning, compared to SCADA data. Hence, in this chapter, as voltage does not 

need the network topology, voltage magnitude, pointing to more local phenomena, and 

voltage phase angle, pointing to more wide area behaviours, are selected to conduct 

real-time event detection respectively. 

 

To perform real-time analysis, an N × T real-time split window is utilised to obtain the 

raw matrix X from the raw data source Ω. N denotes the number of state variables, 

namely, voltage magnitude and phase angle, and T denotes the time period. More 

specifically, at time t, the raw matrix X(t) is formed as follows: 

X(t) = [x(t − T + 1) x(t − T + 2)   ⋯   x(t − 1) x(t)]               (3-22) 

where x(t) = [x1(t) x2(t)   ⋯   xN(t)]T is the measurement data at time t. 

 

In order to add white Gaussian noise into the original data source O to obtain the raw 

data source Ω, the signal-to-noise ratio (SNR) is defined as 

SNR = 10 log
10

(
Tr(OOT)

Tr(GGT)×m2
)                                      (3-23) 

where Tr(∙) denotes the trace of matrix, G is the white Gaussian noise matrix, whose 

entries obey the standard normal distribution, m is the magnitude of white Gaussian 

noise, and G
T
 and O

T
 are the transposes of G and O respectively. Thus, during a study 

period Tmax, the raw data source Ω is obtained through the following formulas: 

Ω = O + mG                                                 (3-24) 

m = √
Tr(OOT)

Tr(GGT)×10
SNR 10⁄                                            (3-25) 

where Ω, O, and G are all N × Tmax matrices. 
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In the proposed method, as the event indicator, MSR is calculated at each time and 

finally visualized to detect events. For simplicity, we set L=1 when forming the matrix 

product Z. 

 

To mitigate against false positives, the dynamic Kalman filter also serves as the data 

conditioner. Thus, after data conditioning, the conditioned raw matrix X̂(t) is formed as 

follows: 

X̂(t) = [x̂(t − T + 1) x̂(t − T + 2)   ⋯   x̂(t − 1) x̂(t)]               (3-26) 

where x̂(t) = [x̂1(t|t) x̂2(t|t)   ⋯   x̂N(t|t)]T  is the conditioned data at time t. As a 

result, the procedure of real-time event detection based on random matrix theory and 

Kalman filtering is shown in Table 3-1. 

 

Table 3-1  Procedure of real-time event detection based on  

random matrix theory and Kalman filtering 

Kalman 

Filter 

1) Initialization 

2) Calculate x̂i(t|t) using (3-10), 1 ≤ i ≤ N 

3) Update Ri(t) using (3-19)-(3-21) 

4) Update Ki(t) using (3-16) 

Event 

Detector 

5) Form X̂(t) using (3-26) 

6) Transform X̂(t) to Xs(t) using (3-6) 

7) Transform Xs(t) to Xu(t) using (3-7) 

8) Form Z(t) using (3-2) 

9) Transform Z(t) to Zs(t) using (3-8) 

10) Calculate MSR using (3-5) 

11) If t < Tmax , repeat 2)-10) at the next 

time t+1; otherwise, go to 12) 

12) Visualize MSR 

 

 

3.6 Case Studies and Results 
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In this section, the improved event detection method is tested and compared with the 

original method using both simulation data and real PMU data. More specifically, a 

performance comparison is first made between the dynamic and original Kalman filters. 

After that, the improved event detection method is compared with the original one from 

the perspectives of both heavy noise and data loss. Besides, voltage magnitude (in p.u.) 

and phase angle (in rad) are used respectively to validate the feasibility and 

effectiveness of the improved event detection method. 

 

In addition, the simulation data is generated based on the standard IEEE 118-bus system 

[113], while the real PMU data is from the GB transmission system. For event 

detection, there are generally two types of signals in power systems, namely, white 

Gaussian noise and small random fluctuations, and events and faults. It is also assumed 

that the SNRs of voltage magnitude and phase angle are the same in the specific 

situation. 

 

For all cases, let Γ = 0.3I (I is a 3 × 3 matrix of ones), Q = 1 × 10
−2

, 𝛼 = 1 × 10
−2

, 

𝛽 = 1 × 10
6
, W = 50, N = 118, and T = 240. 

 

3.6.1 Data Conditioning 

1) Noise reduction 

A comparison is performed between the dynamic and original Kalman filters. During 

the whole period Tmax = 1500, there is a discrete event (an increase of active power 

demand at bus 60) happening at t = 601. In this case, the constant R of the original 

Kalman filter is 1 × 10
−2

. The results are shown in Table 3-2. 

 

Table 3-2  Performance comparison of noise reduction  

between the dynamic and original Kalman filters (Tmax = 1500) 

SNR 

RMSE of Voltage Magnitude 
RMSE of Voltage  

Phase Angle 

Raw 

Values 

Original 

KF 

Dynamic 

KF 

Raw 

Values 

Original 

KF 

Dynamic 

KF 

5 17.519 8.6245 3.7744 6.6207 4.7591 3.9543 
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15 5.6129 2.7867 2.3817 2.1212 1.0869 0.9555 

25 1.7739 0.8944 0.8906 0.6704 0.3405 0.3385 

35 0.5534 0.2807 0.2765 0.2091 0.1089 0.1070 

45 0.1738 0.0886 0.0877 0.0657 0.0426 0.0424 

55 0.0550 0.0278 0.0276 0.0208 0.0278 0.0277 

65 0.0174 0.0090 0.0088 0.0066 0.0260 0.0259 

75 0.0055 0.0029 0.0027 0.0021 0.0258 0.0257 

85 0.0018 0.0010 0.0009 0.0007 0.0257 0.0257 

95 0.0006 0.0006 0.0005 0.0002 0.0257 0.0257 

 

In Table 3-2, root mean square error (RMSE) is used to make a performance 

comparison between the dynamic and original Kalman filters in terms of noise 

reduction. In order to eliminate the effect of the error at the beginning stage (namely 

initialization) on RMSE, RMSE is calculated during t = 501 − 1500. It is clearly shown 

that RMSE of voltage magnitude of the dynamic Kalman filter is almost the same as 

that of the original Kalman filter when SNR is greater than or equal to 25, while RMSE 

of voltage magnitude of the dynamic Kalman filter is less than that of the original 

Kalman filter when SNR is less than or equal to 15. Similarly, RMSE of voltage phase 

angle of the dynamic Kalman filter is almost the same as that of the original Kalman 

filter when SNR is greater than or equal to 25, while RMSE of voltage phase angle of 

the dynamic Kalman filter is less than that of the original Kalman filter when SNR is 

less than or equal to 15. In other words, when the noise in PMU data is heavy, the 

dynamic Kalman filter performs noise reduction much better than the original one, 

regardless of voltage magnitude or phase angle. However, when the noise is weak, there 

is no significant difference between these two. The reason for this practice is that the 

dynamic Kalman filter enhances the trust in the a posteriori estimate through adjusting 

the measurement noise covariance matrix R dynamically, therefore reducing noise more 

effectively, when there is heavy noise in PMU data. 

 

2) Missing data recovery 

A further comparison is performed between the dynamic and original Kalman filters in 

terms of missing data recovery, as shown in Table 3-3. In this case, the same discrete 

event happens to bus 60 as above, and RMSE is still calculated during t = 501 − 1500 
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and the constant R of the original Kalman filter remains 1 × 10
−2

. 

 

Table 3-3  Performance comparison of missing data recovery  

between the dynamic and original Kalman filters (Tmax = 1500) 

Percentage 

of Missing 

Data 

RMSE of Voltage  

Magnitude (SNR = 95) 

RMSE of Voltage  

Phase Angle (SNR = 35) 

Raw 

Values 

Original 

KF 

Dynamic 

KF 

(× 10
−4

) 

Raw 

Values 

Original 

KF 

(× 10
−2

) 

Dynamic 

KF 

(× 10
−2

) 

5% 6.96 3.08 6 2.63 18.22 16.82 

10% 10.02 4.62 7 3.71 18.27 16.84 

15% 12.08 6.17 8 4.62 18.46 17.40 

20% 14.12 7.50 9 5.33 18.63 17.87 

25% 15.63 8.84 9 5.95 18.78 18.29 

30% 17.17 10.37 10 6.52 18.90 18.79 

35% 18.46 11.74 11 7.05 19.52 19.11 

40% 19.85 12.96 12 7.53 19.88 19.68 

45% 21.18 14.41 13 8.01 20.30 20.01 

50% 22.11 16.03 13 8.42 20.82 20.71 

 

In Table 3-3, as for voltage magnitude, it can be easily seen that RMSE of the dynamic 

Kalman filter is significantly lower than that of the original Kalman filter, no matter 

how much missing data there is. Besides, it is remarkable that as the percentage of 

missing data goes up, RMSE of the dynamic Kalman filter only increases slightly from 

6 × 10
−4

 to 13 × 10
−4

, while RMSE of the original Kalman filter increases dramatically 

from 3.08 to 16.03. The main reason for this fact is that the dynamic Kalman filter 

largely enhances the trust in the a posteriori estimate by setting the measurement noise 

covariance matrix R as a quite large value (e.g., in this case, it is 1 × 10
6
), therefore 

weakening the trust in the measurement (namely 0) and recovering missing data more 

accurately. 

 

However, it is shown clearly in Table 3-3 that RMSE of the dynamic Kalman filter is 

only slightly lower than that of the original Kalman filter in terms of voltage phase 
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angle. Moreover, when the percentage of missing data rises, both of them go up rather 

slowly. Specifically, the reason why the performance of the original Kalman filter is 

close to that of the dynamic one in terms of recovering voltage phase angle is as 

follows: when there is missing data at a certain time, the raw values of voltage 

magnitude and phase angle are both 0; however, the real value of voltage magnitude is 

much greater than that of voltage phase angle, and this leads to the fact that the 

difference of the real and raw values of voltage magnitude is much more significant 

than that of voltage phase angle; thus, for the particular constant R (e.g., in this case, 

R = 1 × 10
−2

), the recovered value of voltage phase angle of the original Kalman filter 

is almost as close to the real value as that of the dynamic one. Furthermore, this is the 

very reason why the dynamic Kalman filter performs even better in terms of voltage 

magnitude recovery, compared with the original Kalman filter. 

 

All in all, the dynamic Kalman filter outperforms the original one significantly, 

regardless of noise reduction or missing data recovery. This is the exact reason why the 

dynamic Kalman filter serves as the data conditioner of the proposed event detection 

method. 

 

3.6.2 Event Detection Using Voltage Magnitudes 

Event detection is conducted both in the situation with heavy noise and in the situation 

with missing data using voltage magnitudes. Different signals are used to test the 

performance of the improved and original event detection methods. The assumed 

signals are shown in Table 3-4. 

 

Table 3-4  Assumed signals for event detection 

Signal 
Bus 

Number 
Sampling Time 

Active Power Demand 

(MW) 

swell and 

sag 

signals 

60 

t = 1 − 600
 fluctuation around 80 

t = 601 − 700 fluctuation around 120 

t = 701 − 1050 fluctuation around 80 

t = 1051 − 1150 fluctuation around 40 

t = 1151 − 1500 fluctuation around 80 

others t = 1 − 1500 no change 
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multiple 

signals 

60 

t = 1 − 600 fluctuation around 120 

t = 601 − 700 fluctuation around 150 

t = 701 − 800 fluctuation around 180 

t = 801 − 900 fluctuation around 210 

t = 901 − 1000 fluctuation around 240 

t = 1001 − 1100 fluctuation around 270 

t = 1101 − 1200 fluctuation around 300 

t = 1201 − 1300 fluctuation around 330 

t = 1301 − 2000 fluctuation around 360 

99 

t = 1 − 600 fluctuation around 60 

t = 601 − 700 fluctuation around 100 

t = 701 − 1200 fluctuation around 60 

t = 1201 − 1300 fluctuation around 20 

t = 1301 − 2000 fluctuation around 60 

others t = 1 − 2000 no change 

 

1) Heavy noise 

Figure 3-1 shows the MSR-t curves of the improved and original event detectors. It is 

noted that event detection starts after a short period, because the split window needs to 

be filled up with samples and the dynamic Kalman filter takes a short time to track the 

real values. 

 

In Figure 3-1(a), according to the MSR-t curve of the improved event detector, signals 

can be detected easily. Specifically, during t = 260 − 600, MSR remains stable around 

0.77, which means that the system state is normal without any signals. During this 

period, as there is only noise and an active power demand fluctuation, which play a 

dominant role in MSR, there is a slight fluctuation of MSR. Then, at t = 600, MSR 

starts to decrease gradually until t = 770 (from 0.7733 to 0.7462). After that, MSR 

begins to increase to the original stable level (0.7674) until t = 940, then remaining 

almost constant. During this period, a U-shaped curve is observed, which lasts for 340 

instants. This indicates that there are signals changing the system state during t = 601 −

940. Besides, in this method, the effect of a signal on MSR extends T extra instants, due 

to historical data in the split window. So, the actual duration of the signals can be 
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calculated as 940 − 601 + 1 − T = 100 instants, and the occurrence time of the signals 

is the starting time of the U-shaped curve, which is t = 601 . That is exactly 

correspondent to the fact that there is an increase of active power demand at bus 60 

during t = 601 − 700. As a result, event detection is conducted in this way. Likewise, 

there is a second U-shaped curve from t = 1051 to t = 1390, which indicates that the 

signals occur at t = 1051, and the actual duration of the signals is 1390 − 1051 + 1 −

T = 100 instants. 

 

 

(a) Swell and sag signals (SNR = 75) 

 

(b) Multiple signals (SNR = 70) 

Figure 3-1  MSR-t curves of the improved and original event detectors  

in the situation with heavy noise 
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However, as for the original event detector, signals cannot be detected under the same 

situation. In other words, there is no clear U-shaped curve during the whole period. 

MSR changes slightly around 0.86 during t = 600 − 1390. This cannot be identified 

from the fluctuation of MSR, due to the fluctuation of active power demand and heavy 

noise. Hence, the original event detector is unable to discover any signals, when there is 

heavy noise in PMU data. 

 

Apart from single signals, multiple signals can be also discovered by the improved 

event detector in the situation with heavy noise, as shown in Figure 3-1(b). According 

to the MSR-t curve of the improved event detector, two types of signals can be detected 

as follows: firstly, two U-shaped curves are found during t = 601 − 940 and t = 1201 −

1540, and it indicates continuous signals during t = 601 − 700 and t = 1201 − 1300 

respectively; secondly, a third U-shaped curve is found during t = 601 − 1540, which 

indicates continuous signals during t = 601 − 1300. However, the same conclusion 

cannot be drawn from the MSR-t curve of the original event detector. 

 

The reason why the improved event detector is still able to discover signals even in the 

situation with heavy noise can be explained as follows: as the data conditioner of the 

improved event detector, the dynamic Kalman filter can reduce noise in PMU data 

effectively, enabling it to discriminate signals from noise and fluctuations; thus, it can 

perform event detection better. However, as the original event detector does not have a 

data conditioner to reduce noise, it is unable to identify signals from noise and 

fluctuations, when there is heavy noise in PMU data. 

 

2) Missing data 

Figure 3-2 depicts the MSR-t curves of the improved and original event detectors when 

the percentage of missing data is 30%. As the dynamic Kalman filter also needs to take 

a short time to track the real values in the situation with missing data, event detection 

starts after a short period. 

 

In Figure 3-2(a), according to the MSR-t curve of the improved event detector, signals 

can be detected in the same way mentioned above. To be specific, during t = 360 −
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600, MSR remains stable around 0.86, which means that there is no signal in the 

system. During this period, as noise and an active power demand fluctuation play a 

dominant role, MSR fluctuates slightly around the stable level. Then, at t = 600, MSR 

starts to decline fast until t = 770 (from 0.8648 to 0.739). Afterwards, MSR begins to 

rise to the original stable level (0.8484) until t = 940, then remaining almost constant. 

During this period, a U-shaped curve is observed between t = 601 and t = 940, which 

indicates that there are signals changing the system state during t = 601 − 940 . 

However, due to the extension effect of a signal on MSR, the actual duration of the 

signals is 940 − 601 + 1 − T = 100 instants, and the occurrence time of the signals is 

t = 601, which is exactly the starting time of the U-shaped curve. Furthermore, it can be 

seen easily that this inference is correspondent to the fact that there is an increase of 

active power demand of bus 60 during t = 601 − 700. Similarly, a second U-shaped 

curve can be observed from t = 1051 to t = 1390, which suggests that there are signals 

occurring at t = 1051 and lasting for 1390 − 1051 + 1 − T = 100 instants. 

 

However, the original event detector is unable to detect signals under the same situation. 

That is to say, U-shaped curves cannot be found during the signal occurrence period. It 

can be easily seen from the MSR-t curve of the original event detector that MSR 

remains almost constant with a tiny fluctuation around 0.86 throughout the whole 

period. So, the original event detector is incapable to discover signals, when there are 

missing samples in PMU data. 

 

 

(a) Swell and sag signals (SNR = 95) 
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(b) Multiple signals (SNR = 90) 

Figure 3-2  MSR-t curves of the improved and original event detectors  

in the situation with missing data 

 

In addition, as shown in Figure 3-2(b), multiple signals can be still discovered by the 

improved event detector in the situation with missing data. According to the MSR-t 

curve of the improved event detector, two types of signals can be detected as follows: 

firstly, two U-shaped curves are found during t = 601 − 940  and t = 1201 − 1540 , 

which indicates continuous signals during t = 601 − 700  and t = 1201 − 1300 

respectively; secondly, a third U-shaped curve is found during t = 601 − 1540 , 

indicating continuous signals during t = 601 − 1300. Here, it is remarkable that MSR 

remains around 0.75 with a slight fluctuation between t = 940 and t = 1200. During this 

period, MSR is lower than the stable level (appropriately 0.86), but higher than the 

bottom level (appropriately 0.69), because there are only signals of bus 60 during 

t = 940 − 1200, without signals of bus 99. By contrast, the same signals cannot be 

discovered by the original event detector. 

 

Based on the analysis above, it is obvious that the improved event detector is still 

capable to discover signals in the situation with missing data, while the original event 

detector fails to discover any signals. The reason for this is that the dynamic Kalman 

filter can recover missing samples in PMU data accurately, therefore enabling the 

improved event detector to identify signals. However, without a data conditioner, the 

original event detector is unable to recover missing samples and discover signals. 
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3.6.3 Event Detection Using Voltage Phase Angles 

Event detection is also conducted using voltage phase angles (with respect to the slack 

bus) to further compare the improved and original event detection methods, both in the 

situation with heavy noise and in the situation with missing data. However, as voltage 

magnitude based event detection is quite similar to voltage phase angle based event 

detection, only swell and sag signals (as shown in Table 3-4) are employed to test both 

methods. 

 

Figure 3-3(a) describes the MSR-t curves of the improved and original event detectors 

when SNR is 20, while Figure 3-3(b) shows the MSR-t curves of the improved and 

original event detectors when SNR is 35 and the percentage of missing data is 30%. In 

Figure 3-3(a) and Figure 3-3(b), regardless of heavy noise or missing data, a U-shaped 

curve can be observed from t = 601  to t = 940  and from t = 1051  to t = 1390 

respectively for the improved event detector. By contrast, as for the original event 

detector, there is no U-shaped curve found during the whole period in both situations. 

 

Based on the above results, the improved event detector conducts event detection still 

much better than the original one, even using voltage phase angles. The reason for this 

fact is that the dynamic Kalman filter is also capable to condition voltage phase angle 

effectively, apart from voltage magnitude. 

 

 

(a) Swell and sag signals (in the situation with heavy noise) 
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(b) Swell and sag signals (in the situation with missing data) 

Figure 3-3  MSR-t curves of the improved and original event detectors  

using voltage phase angles 

 

3.6.4 Event Detection Using Real PMU Data 

Real PMU data is utilised to further verify the effectiveness and robustness of the 

proposed event detection method. The PMU data is from 13 PMUs of the GB 

transmission system [114-115], and the sampling rate of the PMUs is 50Hz. Besides, 

the total time length of the PMU data is 1 minute, and thus there are totally 50 × 60 =

3000 samples. What is more, the missing samples in the PMU data take up 12.5%. In 

this case, N is 13 and T is 500. The results are shown in Figure 3-4 and Figure 3-5. 

 

In Figure 3-4(a) and Figure 3-5(a), it can be clearly observed that there is a U-shaped 

curve during t = 1777 − 2387 in the MSR-t curves of the improved event detector. This 

indicates that there are signals occurring at t = 1778 and lasting for 2387 − 1778 + 1 −

T = 110, which is 110/50 = 2.2 seconds. According to Figure 3-4(b) and Figure 3-5(b), 

the voltage magnitude and phase angle of a certain PMU change dramatically during 

t = 1778 − 1887, which confirms the above inference. In fact, there is indeed a tripping 

event from t = 1778 to t = 1887  across the GB transmission system. However, the 

original event detector fails to detect this event, because no U-shaped curve can be seen 

throughout the whole period. 
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(a) MSR-t curves of the improved and original event detectors 

 

 

(b) Voltage magnitude of a certain PMU 

Figure 3-4  Event detection using voltage magnitudes of real PMU data 
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(a) MSR-t curves of the improved and original event detectors 

 

 

(b) Voltage phase angle of a certain PMU 

Figure 3-5  Event detection using voltage phase angles of real PMU data 

 

 

3.7 Chapter Summary 

This chapter presented a real-time data driven event detection method based on random 
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matrix theory and Kalman filtering. In addition, as the data conditioner of the presented 

method, a dynamic Kalman filtering technique was developed through the adjustment of 

the measurement noise covariance matrix in order to reduce noise and recover missing 

samples in PMU data. The experimental results have shown that the dynamic Kalman 

filter outperforms the original one, in terms of both noise reduction and missing data 

recovery. Furthermore, the comparison results have shown that the improved event 

detection method is much more robust than the original one, especially in practical 

situations where PMU data is collected with significantly heavy noise and plenty of 

missing samples. 
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Chapter 4 

Short-Term Residential Load Forecasting Based on  

Deep Learning and K-means Clustering 
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4.1 Introduction 

As the modern power network is transitioning gradually towards the smart grid with 

high penetration of renewable energy generation, load forecasting is playing an 

increasingly important role in planning and operation of the future power network [116-

117]. A good understanding of electricity consumption patterns can also bring a great 

many economic benefits to power generators and network operators as well as 

electricity customers. Apparently, the rapid deployment of advanced metering 

infrastructure (AMI) across the power network, for example, smart meters, has already 

generated a huge amount of monitoring data and significantly facilitated load 

forecasting over the past few years. 

 

In general, load forecasting is divided into network-level (or system-level) load 

forecasting and residential load forecasting. During recent years, a number of 

researchers have mainly focused on network-level load forecasting methods. To be 

specific, these methods include support vector regression (SVR) [118-121], fuzzy 

inductive reasoning (FIR) [122], artificial neural networks (ANNs) [123-130], and deep 

neural networks (DNNs) [131-135]. All these methods have achieved a high prediction 

accuracy on network-level load forecasting, in particular, DNNs. However, as 

residential load is much more volatile and uncertain than network-level load, traditional 

forecasting methods, which are quite suitable for network-level load, cannot obtain a 

satisfactory prediction accuracy on residential load. As a result, a few researchers have 

attempted to apply deep learning to residential load forecasting [55, 136], for example, 

LSTM networks. But, deep learning methods need a huge amount of data to build a 

well-trained model, otherwise tending to incur overfitting. 

 

Most recently, a novel residential load forecasting method was presented based on deep 

learning [137]. It firstly divides residential customers into groups to generate a load 

profile pool for each group and then applies an LSTM network to build a forecasting 

model for each group, finally performing load forecasting for each resident. Obviously, 

this method takes advantage of load profile pools to overcome overfitting during 

training and enables forecasting models to learn correlation and interaction among 

residential customers. However, it is unable to sufficiently extract similarity within 

residential load of a customer group, because it simply divides residential customers 



 

Page  55 
 

into groups in a random way, easily resulting in significant differences in a load profile 

pool. 

 

Thus, this chapter develops a short-term individual residential load forecasting method 

on the basis of deep learning and k-means clustering, which is capable to extract 

similarity of residential load more effectively and perform load forecasting more 

accurately at the individual residential level. Specifically, it makes full use of k-means 

clustering to extract similarity among residential load and deep learning to extract 

complicated patterns of residential load. In addition, in order to improve the forecasting 

accuracy, a comprehensive feature expression strategy is utilised to describe load 

characteristics of each time step in detail. Finally, the developed short-term residential 

load forecasting method is demonstrated on a real-life residential load dataset from 

Ireland. The experimental results suggest that it can achieve a higher forecasting 

accuracy in terms of both RMSE and MAE. 

 

4.2 Overview of Load Forecasting 

There have been a large number of research works in the field of load forecasting at the 

network level. In reference [118], a new version of SVR was presented to predict 

network load, based on the modification of the risk function of SVR with using locally 

weighted regression while keeping the regularization term in its original form. Besides, 

the weighted distance algorithm, based on the Mahalanobis distance for optimizing the 

bandwidth of the weighting function, was proposed to improve the accuracy. Reference 

[121] developed a short-term multiregion load forecasting method for day ahead 

operation on the basis of SVR and weather and load diversity. The developed method is 

able to find the optimal region partition according to the load and weather 

characteristics and then generate more accurate forecasts for aggregated system load. 

Different from reference [118] and reference [121], reference [122] applied FIR to 

short-term load forecasting for a day in advance. The FIR model learns both past and 

future relations from load and temperature, and the proposed optimization model 

utilises an evolutionary algorithm based on a local random controlled search, simulated 

rebounding algorithm, to select the inputs for the FIR model. 

 

Besides, ANNs have been applied widely in the research area of network-level load 
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forecasting. For example, Chen presented a similar day based wavelet neural network 

method to predict system load for the next day [123]. It selects the load of the similar 

day as input and applies wavelet to decompose it into a low-frequency component and a 

high-frequency component, finally using separate neural networks to predict the two 

components of the load for the next day. Similarly, Nima proposed a hybrid method for 

short-term bus load forecasting, which combines a forecast-aided state estimator 

(FASE) and a multilayer perceptron (MLP) neural network [124]. The FASE forecasts 

the hourly load of each bus by the means of its previous data, and then the inputs and 

outputs of the FASE are fed to the MLP neural network to generate the final forecast for 

the bus load. Another short-term load forecasting method was developed for the 

distribution level in reference [127]. Within this method, the load of the root node of 

any user-defined subtree is firstly predicted through a wavelet neural network with 

appropriate inputs. Then, the load of its child nodes categorised as regular and irregular 

based on load pattern similarity is predicted separately. In addition, James investigated 

the use of weather ensemble predictions in the application of ANNs to load forecasting 

due to the importance of weather forecasts for load forecasting [129]. A weather 

ensemble prediction is comprised of multiple scenarios for a weather variable, which 

are employed to produce multiple load scenarios in order to estimate the uncertainty in 

the ANN load forecast and improve the prediction accuracy. 

 

Apart from applications of traditional machine learning to network-level load 

forecasting, many researchers have also attempted to apply deep learning to predict 

network load. Jatin proposed an empirical mode decomposition (EMD) based deep 

learning method, combining the EMD method with LSTM networks to estimate the 

electricity demand for the given season, day, and time interval of a day [133]. The EMD 

method decomposes a load time series signal into several intrinsic mode functions 

(IMFs) and residual, and then the LSTM networks are trained separately for each of the 

extracted IMFs and residual. Finally, the prediction results of all IMFs are summed to 

determine the aggregated output for the electricity demand. In reference [134], a short-

term load forecasting model was presented based on a modified deep residual network, 

and a two-stage ensemble strategy was utilised to enhance its generalization capacity in 

order to improve the prediction results. Similarly, reference [135] employed a time-

dependency CNN and a cycle based LSTM network respectively for short-term and 

medium-term load forecasting. 
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As for load forecasting at the residential level, only a few efforts have been made by 

researchers over recent years, mainly focusing on deep learning. Kong explored the 

application of LSTM networks to short-term residential load forecasting for a single 

electricity customer [136]. A comprehensive comparison is made to demonstrate that 

the LSTM model outperforms various benchmark models. Likewise, a residential load 

forecasting method was proposed in reference [55], which combines LSTM networks 

with resident behaviour learning. The proposed method uses both aggregated 

consumption data and appliance consumption sequences as inputs to train the LSTM 

networks. Although DNNs have a superior capability to extract complex patterns of 

residential load, they are prone to overfitting without enough training data. Hence, in 

order to avoid overfitting, reference [137] designed a novel pooling deep RNN 

(PDRNN) to perform residential load prediction. However, in spite of its ability to 

overcome overfitting, this method only separates residential load profiles into groups 

randomly, therefore likely to cause significant differences within the load profiles of 

each group and affect its prediction performance negatively. Considering these 

drawbacks, this chapter proposes a solution to them. 

 

The remainder of this chapter is organized as follows. Section 4.3 formulates LSTM 

networks in detail. Section 4.4 introduces k-means clustering briefly. Section 4.5 details 

the combination of deep learning with k-means clustering for short-term residential load 

forecasting. Section 4.6 uses a real-life Irish residential load dataset to evaluate the 

developed short-term residential load forecasting method. Finally, the conclusions are 

drawn in Section 4.7. 

 

4.3 Long Short Term Memory 

As a sequence based model to deal with time series problems, RNNs are fundamentally 

different from conventional feedforward neural networks. They are capable to establish 

excellent temporal correlation between previous and current information, which means 

that the decision an RNN makes at time step t-1 could influence the decision it makes at 

time step t. This characteristic makes RNNs an ideal candidate for short-term residential 

load forecasting, because the residential load consumption pattern has a strong and 

complex relationship between adjacent time steps [136]. However, in terms of the 
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specific implementation, a special RNN, called the LSTM network, is employed in this 

chapter, as it significantly improves the performance of the general RNN. So, in this 

section, the RNN architecture is introduced in the first place, and then the LSTM unit is 

explained. 

 

4.3.1 Recurrent Neural Networks 

In RNNs, the shared states are decomposed into multiple RNN layers for the purpose of 

gaining the desirable properties of RNNs. In Figure 4-1, the computational graph and 

the unfolded topological graph of an N layer RNN are shown to demonstrate the 

working process of RNNs [137]. 

 

 

Figure 4-1  Computational graph and unfolded topological graph  

of an N layer RNN [137] 

 

In the computational graph, the RNN aims to map the input sequence of x into 

corresponding sequential outputs y. As presented in the computational graph, the 

learning process conducts every single time step from t = 1 to t = 𝜏. For time step t, the 

network neuron parameters at the l
th

 layer update their shared states with the following 

equations [137]: 

a1

(t)
= b1 + W1 ∙ h1

(t−1)
+ U1 ∙ x(t)                                    (4-1) 

hl
(t)

= f
activation

(al
(t)

)          (l = 1, 2, ⋯ , N)                              (4-2) 
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al
(t)

= bl + Wl ∙ hl
(t−1)

+ Ul ∙ hl−1
(t)

          (l = 2, 3, ⋯ , N)                    (4-3) 

y(t) = bN + WN ∙ hN
(t−1)

+ UN ∙ hN
(t)

                                    (4-4) 

L = f
loss

(y(t), y
target
(t) )                                               (4-5) 

where x(t) is the data input at time step t, y(t) is the corresponding forecast, y
target
(t)  is the 

true output at time step t, hl
(t)

 is the shared states of the l
th

 layer at time step t, and al
(t)

 is 

the input of the l
th

 layer at time step t, which consists of three components: 1) the input 

x(t) at time step t or the shared states hl−1
(t)

 of the l-1
th

 layer at time step t; 2) the bias bl of 

the l
th

 layer; 3) the shared states hl
(t−1)

 of the l
th

 layer at time step t-1. Due to their 

shared states, RNNs are able to learn uncertainty repeated in previous time steps. 

 

4.3.2 LSTM Units 

RNNs are trained by backpropagation through time, but learning long-term dependency 

with RNNs is very difficult because of gradient vanishing or exploding [136]. 

Specifically, gradient vanishing refers to the exponential decrease of the norm of the 

gradient for long-term components to zero, therefore limiting the ability of RNNs to 

learn long-term temporal correlation, while gradient exploding refers to the opposite 

case. In order to overcome these two issues, the LSTM unit was firstly introduced, 

which included a memory cell, and further improved with an extra forget gate. As a 

result, the LSTM network has become the most popular structure of RNNs in many time 

series problems. 

 

Let {x1, x2, ⋯ , xT} denote a typical input sequence for an LSTM unit, where xt ∈ R
k 

represents a k-dimensional vector of real values at time step t. In order to establish 

temporal connections, the LSTM unit defines and maintains an internal memory cell 

state throughout the whole life cycle, which is the most important element of the LSTM 

unit. The memory cell state st-1  interacts with the intermediate output ht-1  and the 

subsequent input xt to determine which elements of the internal state vector should be 

updated, maintained, or erased according to the outputs of the previous time step and 

the inputs of the present time step. In addition to the internal state, the LSTM unit also 

defines the input node g
t
, the input gate it, the forget gate f

t
, and the output gate ot. The 
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formulations of all nodes in the LSTM unit are given below from (4-6) to (4-11) [136]: 

f
t

= 𝜎(Wfxxt + Wfhht−1 + bf)                                      (4-6) 

it = 𝜎(Wixxt + Wihht−1 + bi)                                       (4-7) 

g
t

= 𝛷(Wgxxt + Wghht−1 + bg)                                     (4-8) 

ot = 𝜎(Woxxt + Wohht−1 + bo)                                      (4-9) 

st = g
t
ʘit + st−1ʘf

t
                                             (4-10) 

ht = 𝛷(st)ʘot                                                  (4-11) 

where Wfx , Wfh , Wix , Wih , Wgx , Wgh , Wox , and Woh  are the weight matrices of the 

corresponding inputs of the network activation functions, ʘ denotes the element-wise 

multiplication, 𝜎  denotes the sigmoid activation function, and 𝛷  denotes the tanh 

activation function. The structure of an LSTM unit at a single time step is illustrated in 

Figure 4-2, and the structure of an unrolled LSTM unit at consecutive time steps is 

shown in Figure 4-3 [136]. It is noted that the weights of an unrolled LSTM unit are 

duplicated at every time step. 

 

 

Figure 4-2  Structure of an LSTM unit [136] 



 

Page  61 
 

 

 

Figure 4-3  Structure of an unrolled LSTM unit [136] 

 

In order to train a simple one layer LSTM network, the dimension n of the hidden 

output should be specified. In this case, the hidden output ht ∈ R
n at a given time step is 

an n-dimensional vector. Accordingly, st is also n-dimensional. In general, both ht and 

st are initialised as zero, namely, ht = 0 and st = 0. Besides, in an LSTM unit, there are 

three sigmoid functions with the output range from 0 to 1, serving as the soft switches to 

determine which signals should pass the gates. The decisions of the input gate it, the 

forget gate f
t
, and the output gate ot are all dependent on the current input xt and the 

previous output ht−1. The input gate controls what to preserve in the internal state, while 

the forget gate controls what to forget from the previous state st−1. With the internal 

state updated, the output gate decides which the internal state st  should pass as the 

LSTM output ht. This process then repeats at the next time step. All the weights and 

biases are updated through minimizing the difference between the final LSTM outputs 

and the actual output values. Based on this unrolled structure, the information of the 

current time step can be stored and maintained to affect the LSTM outputs of the future 

time steps. 

 

4.4 K-means Clustering 

Clustering is a common unsupervised learning task, which is intended for identifying 

the clusters of the similar data samples in a dataset [138]. Although numerous clustering 

methods have been developed, k-means clustering is still one of the most popular 

clustering methods in many fields due to its simplicity and robustness. As a result, k-

means clustering is adopted to cluster residential load profiles in this chapter. 
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Given a dataset X = [x1, x2, ⋯ , xn] ∈ R
p×n , the goal of k-means clustering is to 

partition the data into K clusters so that 𝝁k ∈ R
p is the prototype associated with the k

th
 

cluster for k = 1, 2 , ⋯ , K . A set of binary indicator variables cik ∈ {0, 1}  are also 

introduced to represent the assignments, where ci = [ci1, ci2, ⋯ , ciK]T  is the k
th

 

canonical basis vector in RK if and only if xi belongs to the k
th

 cluster. 

 

Let 𝝁 = {𝝁k}k=1
K  be the cluster centers and c = {ci}i=1

n  be the assignments of the data 

samples. K-means clustering attempts to minimize the sum of the squared Euclidean 

distances of all the data points to their assigned clusters [138]: 

J(c, 𝝁) = ∑ ∑ cik‖xi − 𝝁k‖2
2K

k=1
n
i=1                                     (4-12) 

where the objective function J (c, 𝝁)  is minimized by respectively updating the 

assignments c and the cluster centers 𝝁 in an iterative way. The update procedure is 

formulated as follows [138]: 

Step 1: Minimize J(c, 𝝁) over c while keeping 𝝁 fixed: 

∀i = 1, 2, ⋯ , n:     cik = {1     k = argmin
j
‖xi − 𝝁j‖2

2

0               otherwise             
                   (4-13) 

Step 2: Minimize J(c, 𝝁) over 𝝁 while keeping c fixed: 

∀k = 1, 2, ⋯ , K:     𝝁k =
1

nk
∑ xii∈Sk

                                (4-14) 

where Sk denotes the set of the data samples assigned to the k
th

 cluster, and nk denotes 

the number of the data samples Sk contains. 

 

Generally, in order to improve the performance of k-means clustering, the k-means++ 

algorithm is applied to initialise the cluster centers. Hence, the whole process of k-

means clustering is shown in Table 4-1 [139]. 

 

Table 4-1  Process of k-means clustering 

1) Initialise the k cluster centers by k-means++ 

2) Assign each data sample to the closest cluster center 

using (4-13) 

3) Update each cluster center using (4-14) 
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4) If no cluster members are reassigned to the new 

clusters or the decrease of the objective function J(c, 𝝁) 

is within the predefined limit, stop iterating; otherwise, 

repeat 2)-3) 

 

 

4.5 Implementation Procedure 

In this section, the methodological implementation of the proposed method, the 

experiment dataset, and the experiment setup are introduced in detail. 

 

4.5.1 Methodological Implementation 

As residential load is rather volatile and uncertain, a comprehensive feature description 

strategy is applied in this chapter to improve the forecasting accuracy. According to this 

strategy, the input features of a data sample St at a particular time step t are explained as 

follows [136-137]: 

1) the sequence of the residential load for the past T time steps 

Et = [et−T, ⋯ , et−2, et−1] ∈ R
T; 

2) the sequence of the time indexes for the past T time steps Dt ∈ R
T, where the range 

for each element is [1, 48], because the sampling frequency is once every half an hour; 

3) the sequence of the day indexes for the past T time steps Wt ∈ R
T , where each 

element ranges from 1 to 7, as there are 7 days in a week; 

4) the sequence of the holiday signs for the past T time steps Ht ∈ R
T, where each 

element is either 1 or 2, and 1 denotes non-holiday and 2 denotes holiday (in this 

chapter, it is assumed that weekdays are non-holiday and weekends are holiday); 

5) the sequence of the customer indexes in the corresponding cluster P ∈ R
T, where 

each element is the same and belongs to [1, L], and L is the number of the customers of 

the cluster. 

 

So, a data sample St = [Et
T, Dt

T, Wt
T, Ht

T, Pt
T] is a matrix of a concatenation of the five 

sequences. In order to speed up the convergence of the LSTM network and improve its 

generalization capacity, the input features are standardized to [0, 1] according to their 

nature. Specifically, the min-max standardization method is adopted for Et, while Dt, 



 

Page  64 
 

Wt, Ht, and P are encoded by a one-hot encoder. The one-hot encoder maps an original 

element of the feature sequence with M categories into a new sequence with M 

elements, where only the new element corresponding to the original element is one 

while the rest are all zero. Therefore, a standardized data sample 

St̂ = [Et
T̂, Dt

T̂, Wt
T̂, Ht

T̂, Pt
T̂] is a T × N matrix, where N = 1 + 48 + 7 + 2 + L. Each row 

of the standardized input sample St̂ is the detailed features for the corresponding time 

step. 

 

Table 4-2  Procedure of short-term residential load forecasting based on  

deep learning and k-means clustering 

K-means 

Clustering 

1) Select and preprocess residential load data to 

generate load profiles 

2) Set a value for K 

3) Perform k-means clustering T times, and 

according to the optimal clustering result, 

separate the load profiles into K clusters  

Residential 

Load 

Forecasting 

4) Generate a sample pool for a specific cluster 

and standardize every sample 

5) Set values for the hyperparameters for an 

LSTM network 

6) Train the LSTM network on the sample pool 

7) If the LSTM networks of all the clusters are 

obtained, go to 8); otherwise, repeat 4)-6) for 

another cluster 

8) Evaluate the prediction performance for each 

residential customer 

 

In order to learn both similarity and distinction of residential load effectively, k-means 

clustering is firstly employed to divide residential load profiles into K clusters for the 

purpose of generating a sample pool for each cluster, and the sample pool is comprised 

of the load profiles of the residents of the same cluster. Then, an LSTM network is 

trained on this sample pool and used to predict the load of every resident in this cluster. 
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As a result, the procedure of short-term residential load forecasting based on deep 

learning and k-means clustering is shown in Table 4-2. 

 

4.5.2 Dataset Description 

The dataset used in this chapter is from the Smart Metering Electricity Customer 

Behaviour Trials initiated by the Commission for Energy Regulation in Ireland [140]. 

The trials lasted from 01/07/2009 to 31/12/2010 with over 5000 Irish residential 

customers and small and medium enterprises participating. The full dataset is publicly 

available online, and consists of three main parts: 1) half-hourly sampled electricity 

consumption from each participant; 2) questionnaires and corresponding answers of 

surveys; 3) customer type and tariff and stimulus description. 

 

It is noted that there are different levels of missing intervals for a number of participants 

in this dataset. Hence, data preprocessing is very necessary for these participants before 

using their data. 

 

4.5.3 Experiment Setup 

It is a common practice for machine learning that a full dataset is divided into a training 

dataset and a test dataset with a ratio of 9:1. So, as for each residential customer, 90% of 

the data samples are used for training, while the rest of 10% are used for testing. In 

addition, as this chapter is not focused on improving the prediction accuracy via the 

optimal network structure, hyperparameter fine-tuning is not conducted on the LSTM 

network here. All the experiment parameters are presented in Table 4-3. 

 

Table 4-3  Experiment parameters of short-term residential load forecasting  

based on deep learning and k-means clustering 

RNN layer number 5 

Fully-connected layer number 1 

Neuron number of RNN layer 128 

Neuron number of fully-connected layer 128 

Batch size 128 

Time length of input 24 
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RNN unit LSTM 

Activation function of RNN layer tanh 

Activation function of fully-connected layer linear 

Optimization method AdamOptimizer 

Training epoch 15 

Learning rate 0.001 

Loss function RMSE 

 

 

4.6 Case Studies and Results 

In this section, a performance comparison is conducted between the proposed method in 

this chapter and the PDRNN developed in reference [137]. RMSE and MAE are utilised 

as the performance indexes for residential load forecasting. After that, the effect of k-

means clustering on the forecasting performance of the proposed method is 

investigated. Besides, 50 residents are selected randomly from the Irish dataset to verify 

the proposed method, and their IDs are shown in Table 4-4. In order to make an equal 

performance comparison, the parameter K of k-means clustering is set as 5, because the 

PDRNN divides the 50 residents equally into 5 groups each containing 10 residents. 

 

Table 4-4  IDs of the randomly selected residents 

No. ID No. ID No. ID No. ID No. ID 

1 1002 11 1316 21 1720 31 2529 41 3262 

2 1022 12 1440 22 1727 32 2732 42 3306 

3 1027 13 1492 23 1797 33 2789 43 3970 

4 1030 14 1494 24 1807 34 2793 44 4092 

5 1076 15 1507 25 1808 35 2811 45 4279 

6 1120 16 1530 26 1874 36 2967 46 4441 

7 1229 17 1532 27 1883 37 2968 47 4626 

8 1277 18 1624 28 2023 38 2971 48 5019 

9 1281 19 1660 29 2106 39 3077 49 5237 

10 1301 20 1670 30 2463 40 3080 50 5616 
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4.6.1 Performance Comparison of Short-Term Residential Load Forecasting 

A performace comparison is made between the proposed method and the PDRNN in 

terms of forecasting accuracy. As different initializations for k-means clustering may 

lead to different clustering results, a reasonable way to obtain a comparetively optimal 

clustering result is that k-means clustering is run on the experimental dataset a number 

of times and then the best clustering result with the lowest loss is selected. In this 

chapter, k-means clustering is run T = 25 times on the 50 residents in order to obtain the 

optimal clustering result. In addition, as for the PDRNN, the 50 residents are randomly 

partitioned into 5 groups each containing 10 residents. The results of k-means clustering 

and random partitioning are presented in Table 4-5 and Table 4-6 respectively. 

Furthermore, the forecasting results of the proposed method and the PDRNN are shown 

in Table 4-7 and Table 4-8 respectively. 

 

Table 4-5  Results of k-means clustering of the proposed method 

Cluster No. 
Number of 

Residents 
IDs 

1 9 
1229, 1660, 2789, 3077, 3080, 3306, 3970, 

4441, 4626 

2 21 

1002, 1022, 1027, 1030, 1120, 1277, 1316, 

1440, 1492, 1507, 1530, 1797, 1807, 1808, 

1874, 1883, 2106, 4092, 4279, 5237, 5616 

3 3 2793, 2811, 2971 

4 5 1494, 2732, 2968, 3262, 5019 

5 12 
1076, 1281, 1301, 1532, 1624, 1670, 1720, 

1727, 2023, 2463, 2529, 2967 

 

Table 4-6  Results of random partitioning of the PDRNN 

Group No. 
Number of 

Residents 
IDs 

1 10 
1120, 1281, 1492, 1530, 2106, 2811, 2967, 

3970, 4441, 5019 
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2 10 
1022, 1277, 1301, 1720, 1797, 1808, 1874, 

2529, 2793, 2968 

3 10 
1316, 1507, 1532, 1727, 1807, 1883, 2463, 

3080, 3306, 5616 

4 10 
1027, 1229, 1440, 1660, 1670, 2732, 3077, 

3262, 4626, 5237 

5 10 
1002, 1030, 1076, 1494, 1624, 2023, 2789, 

2971, 4092, 4279 

 

Table 4-7  Forecasting results of the proposed method 

Cluster No. RMSE (kWh) MAE (kWh) 

1 0.547 0.339 

2 0.279 0.16 

3 0.601 0.327 

4 0.556 0.329 

5 0.401 0.25 

All Residents 0.404 0.241 

 

Table 4-8  Forecasting results of the PDRNN 

Group No. RMSE (kWh) MAE (kWh) 

1 0.522 0.394 

2 0.459 0.294 

3 0.449 0.325 

4 0.531 0.372 

5 0.488 0.328 

All Residents 0.49 0.343 

 

It is noted that Table 4-7 describes the average RMSEs and MAEs of each cluster and 

all residents, while Table 4-8 describes the average RMSEs and MAEs of each group 

and all residents. In terms of the average RMSE of all residents, it can be easily seen 

from Table 4-7 and Table 4-8 that the proposed method performs residential load 

forecasting much better than the PDRNN, having a dramatic decrease of 
0.49−0.404

0.49
×
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100% = 17.55% . Likewise, compared with the PDRNN, the proposed method 

decreases the average MAE of all residents significantly by 
0.343−0.241

0.343
× 100% =

29.74%. The reason for the performance improvement is explained as follows. As k-

means clustering divides the residents into clusters based on their similarity, it is 

comparetively easier for the proposed method to learn the common energy 

comsumption characteristics within a particular cluster, meanwhile capturing the 

distinctive features of each single resident. However, the PDRNN simply seperates the 

residents into groups in a random way, very likely to incur the significant energy 

consumption differences within a single group. This largely impedes the PDRNN from 

extracting the energy consumption similarity of each group. As a result, the proposed 

method achieves a much higher prediction accuracy than the PDRNN. 

 

 

(a) Cluster 1 

 

(b) Cluster 2 
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(c) Cluster 3 

 

(d) Cluster 4 

 

(e) Cluster 5 

Figure 4-4  Load profiles of all the clusters of the proposed method 
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(a) Group 1 

 

(b) Group 2 

 

(c) Group 3 
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(d) Group 4 

 

(e) Group 5 

Figure 4-5  Load profiles of all the groups of the PDRNN 

 

Furthermore, Figure 4-4 shows the load profiles of the residents of each cluster of the 

proposed method from 18/01/2010 (Monday) to 24/01/2010 (Sunday), while Figure 4-5 

shows the load profiles of the residents of each group of the PDRNN over the same 

period. The bold black lines in both figures represent the average load profiles of the 

clusters and groups. 

 

According to Figure 4-4, it can be easily discovered that the average load profile of each 

cluster can represent the common energy consumption pattern of each cluster to a large 

extent. Besides, the average load profile of each cluster has a moderate pattern 

repetition during weekdays and weekends respectively. This is exactly in accordance 
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with a commonly accepted fact that household residents have different energy 

consumption behaviours over weekdays and weekends respectively. However, in Figure 

4-5, it is obviously seen that the average load profile of each group is unable to 

represent the residential load profiles of each group as a whole. Also, there is no pattern 

repetition in the average load profile of each group during both weekdays and 

weekends. The reason for it is elaborated as follows. As the PDRNN partitions the 

residents into groups at random, different energy consumption patterns are very likely to 

appear in the same group. Thus, a similar energy consumption pattern cannot be 

extracted from their load profiles. But, the proposed method employs k-means 

clustering to divide the residents into clusters on the basis of their similarity. As a result, 

the inherent common energy consumption characteristics of each cluster can be easily 

reflected, enabling the proposed method to achieve a much better forecasting accuracy. 

 

4.6.2 Effect of K-means Clustering on Forecasting Performance 

As different initialization results tend to lead to different clustering results, the effect of 

k-means clustering on the forecasting performance of the proposed method is further 

investigated. Table 4-9 presents the forecasting results of the proposed method when k-

means clustering is run for the tenth time, while Table 4-10 presents the forecasting 

results of the proposed method when k-means clustering is run for the fifteenth time. In 

these two cases, the overall losses of k-means clustering are both less than the 

corresponding overall loss of k-means clustering in Table 4-7. 

 

Table 4-9  Forecasting results of the proposed method  

(k-means clustering is run for the tenth time) 

Cluster No. Number RMSE (kWh) MAE (kWh) 

1 1 0.652 0.376 

2 11 0.412 0.255 

3 8 0.583 0.334 

4 8 0.554 0.344 

5 22 0.3 0.172 

All Residents 50 0.418 0.248 
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Table 4-10  Forecasting results of the proposed method  

(k-means clustering is run for the fifteenth time) 

Cluster No. Number RMSE (kWh) MAE (kWh) 

1 1 0.591 0.39 

2 1 0.65 0.381 

3 22 0.491 0.316 

4 21 0.28 0.159 

5 5 0.559 0.342 

All Residents 50 0.414 0.255 

 

It can be obviously observed that the average RMSEs and MAEs of all residents in 

Table 4-9 and Table 4-10 are both slightly higher than the corresponding indexes in 

Table 4-7. In addition, it is noted that cluster 1 only contains one resident in Table 4-9, 

while cluster 1 and cluster 2 both contain only one resident in Table 4-10. To be 

specific, whether k-means clustering is run for the tenth or fifteenth time, the clustering 

results both have the clusters with only one resident. This makes the other clusters have 

excessive residents and then results in the unobvious similarity for them. Consequently, 

the LSTM models are only able to learn the less similarity from them, finally leading to 

a slightly worse forecasting accuracy, regardless of RMSE or MAE. However, it can be 

also observed obviously that the average RMSEs and MAEs of all residents in Table 4-

9 and Table 4-10 are both much lower than the corresponding indexes in Table 4-8. 

This is because k-means clustering can still separate the residents more reasonably than 

random partitioning and extract the moderate similarity from them, even if one or two 

clusters have only one resident and several others have excessive residents. So, when 

selecting the clustering result after running k-means clustering a number of times, the 

cluster distribution should be carefully taken into account as well, although the overall 

loss of clustering plays a crucial role in the selection for the clustering result. 

 

4.7 Chapter Summary 

This chapter developed a short-term individual residential load forecasting method 

based on deep learning and k-means clustering. Besides, a comprehensive feature 

expression strategy is used to provide the developed forecasting model with sufficient 

information at each time step in order to increase the forecasting accuracy. The 



 

Page  75 
 

experimental results have shown that the developed short-term residential load 

forecasting method has improved the forecasting accuracy significantly in terms of 

RMSE and MAE, compared with the PDRNN. Moreover, the effect of k-means 

clustering on the developed method is further explored, and the comparison results have 

suggested that both the cluster distribution and overall loss of k-means clustering should 

be taken into consideration for the purpose of improving the forecasting accuracy, when 

combining the clustering result with the LSTM models. 
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Chapter 5 

Online Residential Load Forecasting Based on  

Deep Learning and Dynamic Mirror Descent 
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5.1 Introduction 

As advanced metering infrastructure (AMI) is being widely deployed in the modern 

power system, especially, smart meters, a growing number of granular data of 

residential electricity consumption has become easily available on a large scale [141]. 

This huge amount of data has enabled power network operators to motivate residential 

users to actively participate in demand side management (DSM) through a wide range 

of various demand response programs (DRPs), for example, time-of-use pricing [142-

143]. As part of DSM, residential load forecasting is a significantly important but 

challenging task for power network operators, due to great irregularity and uncertainty 

of residential load. Consequently, addressing the challenge of residential load 

forecasting plays a crucial role in DSM. 

 

Currently, residential load forecasting is generally categorised as aggregate-level and 

individual-level. More specifically, aggregate-level residential load forecasting methods 

mainly include support vector regression (SVR) [144-145], artificial neural networks 

(ANNs) [139, 146-149], and deep neural networks (DNNs) [150]. Besides, these 

methods tend to be combined with clustering techniques (e.g. k-means clustering) by 

many researchers for the purpose of improving the forecasting performance. In general, 

a series of different models based on these methods have obtained a desirable prediction 

accuracy for aggregate-level residential load forecasting. This is because a number of 

diverse behaviours of residential customers can smooth out the overall load profile of 

those residential customers at the aggregate level, therefore generating an easily 

identifiable pattern. 

 

However, compared to aggregate-level residential load forecasting, only a few 

researchers have so far attempted to explore individual-level residential load 

forecasting. Some traditional forecasting methods, for instance, ANNs, are still applied 

to forecast individual residential load [151-152]. During most recent years, DNNs have 

been largely adopted due to their superior capability to extract complex patterns, such as 

LSTM networks and RNNs [153-156]. Although the DNN models have mostly 

achieved a higher forecasting accuracy than the traditional models, they are still 

basically trained offline and then applied online. In other words, if the training data is 

not selected properly or sufficiently to train a DNN forecasting model and then the 
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obtained model is directly applied online, it is very likely to have a severely negative 

effect on its forecasting performance, because residential load tends to change 

significantly over time. 

 

Hence, different from Chapter 4, this chapter proposes an online individual residential 

load forecasting method based on an effective combination of deep learning and 

dynamic mirror descent (DMD), which is able to forecast residential load in real time 

and adjust the forecasting error over time in order to improve the forecasting 

performance. To be specific, it firstly employs an LSTM network to build a prediction 

model, and then applies it online with DMD correcting the prediction error. In order to 

increase the prediction accuracy, a comprehensive feature expression strategy is utilised 

to describe load characteristics of each time step in detail. Finally, the proposed online 

residential load forecasting method is evaluated on a real-life Irish residential load 

dataset. The experimental results indicate that it can obtain a higher prediction accuracy 

in terms of both RMSE and MAE. 

 

5.2 Overview of Residential Load Forecasting 

A number of research works have been presented in the area of aggregate-level 

residential load forecasting. Reference [144] designed a short-term cluster-based 

residential load forecasting strategy for the aggregate level. It firstly clusters residential 

customers, then forecasts the energy consumption of each cluster separately through 

SVR, and finally aggregates the energy consumption forecasts of all the clusters. 

Similar to reference [144], reference [145] developed a residential load forecasting 

method for the district level, which combines k-means clustering with SVR. 

 

Besides, ANNs have been commonly employed to forecast residential load at the 

aggregate level. For example, a new dynamic forecasting mechanism was proposed to 

actively monitor small-scale residential electricity demand and detect anomalous pattern 

changes in reference [146]. A self-organizing map is employed for anomalous day 

detection, and an ANN prediction model changes its input neurons according to a 

previously detected and recorded match in a database of anomalous days in order to 

conduct demand prediction for anomalous days. Franklin presented a three-step 

aggregate-level residential load forecasting approach, based on k-means clustering and 
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ANNs [139]. Firstly, this approach applies k-means clustering to group residential 

customers according to similarity in energy consumption behaviours. Then, an ANN 

model is used to conduct load forecasting for each group. Finally, the forecast of each 

group is summed to obtain the total residential load forecast. Reference [148] and 

reference [149] both made a comprehensive performance comparison between ANNs 

and some other prediction models, such as auto-regression and auto-regressive 

integrated moving average. Moreover, a GRU neural network based approach was 

developed to perform short-term load forecasting for residential community [150]. Also, 

it uses LASSO and partial correlation analysis to explore the influences of temperature, 

humidity, rainfall, and wind speed on residential load in order to determine the input 

variables for the forecasting model. In summary, aggregate residential load is 

comparatively easier to forecast than individual residential load, because a large number 

of different residential behaviours can cancel out the volatility and uncertainty of 

residential energy consumption to a large extent. As a result, existing forecasting 

models for aggregate residential load have obtained a satisfactory prediction accuracy. 

 

However, as for individual-level residential load forecasting, only a few efforts have 

been made by researchers during recent years. Xu proposed a novel k-nearest vector 

auto-regressive framework with exogenous input to spatial-temporally model 

household-level electricity demand [151]. In addition, Dinesh presented a forecasting 

approach to the power consumption of a single household, which is based on non-

intrusive load monitoring (NILM) and graph spectral clustering [152]. Within the 

approach, the aggregate power signal is decomposed into individual appliance signals, 

and then the power consumption of each appliance is forecasted respectively. Finally, 

the total power forecast of a single household is formed by aggregating the power 

forecasts of all the appliances. Different from reference [151] and reference [152], 

reference [153] developed a probabilistic forecasting model in order to describe the 

uncertainty of individual residential load using density-estimating ANNs. Two different 

types of probabilistic ANNs are implemented and compared, which are mixture density 

networks and softmax regression networks respectively. Similarly, reference [154] 

employed a quantile LSTM network to perform probabilistic residential load 

forecasting. Furthermore, different DNNs, including RNNs, LSTM networks, and GRU 

networks, were applied to short-term residential load forecasting at the individual level 

and a performance comparison was conducted among them [155]. In reference [156], 



 

Page  80 
 

automatic hyperparameter tuning was utilised to select an optimal hyperparameter 

combination for an LSTM network in order to improve the accuracy of individual 

residential load forecasting. Although a variety of forecasting models have been 

developed, these offline well-trained models are still quite likely to encounter many 

sudden changes, which are not seen during training, when applied online, because of 

high volatility and uncertainty of individual residential load. Considering this issue and 

very few efforts made on online residential load forecasting at the individual level, this 

chapter presents solutions to it. 

 

The remainder of this chapter is organized as follows. Section 5.3 introduces dynamic 

mirror descent in detail. Section 5.4 formulates the effective combination of deep 

learning and dynamic mirror descent for online residential load forecasting. Section 5.5 

evaluates the proposed online residential load forecasting method on a real-world Irish 

residential load dataset. Finally, the conclusions are given in Section 5.6. 

 

5.3 Dynamic Mirror Descent 

As a novel online learning method, dynamic mirror descent (DMD) is capable to 

incorporate a dynamic model in the learning process, compared to classical online 

learning methods. It can effectively minimize the loss and estimate time-varying system 

states [157-158]. So, in this chapter, the original DMD is introduced briefly in the first 

place, and then a few modifications are made to enable the original DMD to become 

applicable to residential load forecasting. 

 

Table 5-1  Learning process of DMD 

1) Given a non-increasing sequence of step size 𝜂t > 0, initialise 

𝜃1 ∈ Θ 

2) Observe xt and incur loss lt(𝜃t) (t = 1, 2 , ⋯ , T) 

3) Environment produces a dynamic model Φt 

4) Calculate 𝜃̃t+1 = arg min
𝜃∈Θ

〈∇f
t
(𝜃t), 𝜃〉 + 𝜂tr(𝜃) + D(𝜃||𝜃t) 

5) Calculate 𝜃t+1 = Φt(𝜃̃t+1) 

6) If t < T, repeat 2)-5) at the next time t+1; otherwise, end the 

learning process of DMD 
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DMD is executed by two main steps: 1) an observation-based update incorporates the 

new measurement into the parameter prediction; 2) a model-based update advances the 

parameter prediction to the next time step. The detailed learning process of DMD is 

presented in Table 5-1. 

 

In Table 5-1, 𝜃 is the system state; Θ is a convex set; x is the observed data point; 𝜂t is a 

step size parameter; Φt is a known dynamic model based on prior knowledge; lt(∙) is a 

convex loss function, and it is the composition of a convex function f
t
(∙) from the 

environment; r(∙) is a convex regularization function and does not change over time; 

∇f
t
(∙) is an arbitrary subgradient function of f

t
(∙); 𝜃t is the final prediction; 〈∙ , ∙〉 is the 

dot product operator; D (𝜃||𝜃̂t)  is the Bregman divergence measuring the distance 

between 𝜃 and 𝜃. 

 

In order to apply DMD to forecast residential load online, a few modifications are made 

to the original DMD. The idea is that the concept of the original DMD is still adopted 

but it is not a direct implementation of the original DMD. In other words, the modified 

DMD regards the prediction model as a black box and simply adjusts its output with the 

measured and forecasted values. More specifically, the modified DMD is formulated as 

follows [158]: 

k̂t+1 = arg min
𝜃∈Θ

𝜂〈∇lt(𝜃t), 𝜃〉 + D(𝜃||k̂t)                            (5-1) 

𝜃̌t+1 = Φ(𝜃̅t)                                                    (5-2) 

𝜃t+1 = 𝜃̌t+1 + k̂t+1                                                (5-3) 

where ∇lt  is an arbitrary subgradient function of lt(∙) ; k̂t  is the adjustment variable 

accumulating the deviation between the forecasted and measured values; 𝜂 is a constant 

step size; Φ is the residential load forecasting model; 𝜃̅t is the input sample of Φ. The 

model-based update (5-2) computes an open-loop prediction 𝜃̌t+1, which means that the 

actual measurement does not influence 𝜃̌t+1. The measurement-based update and the 

model-based prediction are combined in (5-3). Apparently, the modified DMD uses a 

closed-loop model-based update process, where the convex function (5-1) adjusts the 

parameter estimate into k̂t+1, which is used to compute 𝜃t+1 together with 𝜃̌t+1. 
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In this chapter, for simplicity, the loss function lt(𝜃t) is selected as lt(𝜃t) =
1

2
‖𝜃t − y

t
‖

2

2
, 

while the Bregman divergence D(𝜃||k̂t) is selected as D(𝜃||k̂t) =
1

2
‖𝜃 − k̂t‖2

2
. Thus, the 

convex function (5-1) can be simplified as [158] 

k̂t+1 = k̂t + 𝜂(y
t

− 𝜃t)                                             (5-4) 

where y
t
 is the actual measurement. 

 

As a result, the modified DMD is formed by (5-2)-(5-4) in order for it to become 

applicable to online residential load forecasting. In the next section, the combination of 

the modified DMD and deep learning will be elaborated. 

 

5.4 Methodology Formulation 

Similar to Chapter 4, this chapter still employs LSTM networks to build prediction 

models. However, as they have already been introduced in detail in Chapter 4, they are 

not included again in this chapter. Thus, the implementation process of the proposed 

online residential load forecasting method and the experiment setup are formulated 

respectively below. 

 

5.4.1 Implementation Process 

Due to high volatility and uncertainty of individual residential load, a comprehensive 

feature description strategy, which is similar to the strategy used in Chapter 4, is 

exploited in this chapter in order to improve the forecasting accuracy. So, the input 

features of a data sample St at a particular time step t are detailed as follows [136]: 

1) the sequence of the residential load for the past T time steps 

Et = [et−T, ⋯ , et−2, et−1] ∈ R
T; 

2) the sequence of the time indexes for the past T time steps Dt ∈ R
T, where the range 

for each element is [1, 48], because the sampling frequency is once every half an hour; 

3) the sequence of the day indexes for the past T time steps Wt ∈ R
T , where each 

element ranges from 1 to 7, as there are 7 days in a week; 

4) the sequence of the holiday signs for the past T time steps Ht ∈ R
T, where each 

element is either 1 or 2, and 1 denotes non-holiday and 2 denotes holiday (in this 
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chapter, it is assumed that weekdays are non-holiday and weekends are holiday). 

 

So, a data sample St = [Et
T, Dt

T, Wt
T, Ht

T] is a matrix of a concatenation of the four 

sequences. In order to speed up the convergence of the LSTM network and improve its 

generalization capacity, the input features are standardized to [0, 1] according to their 

nature. To be specific, the min-max standardization method is adopted for Et, while Dt, 

Wt, and Ht are encoded by a one-hot encoder. The one-hot encoder maps an original 

element of the feature sequence with M categories into a new sequence with M 

elements, where only the new element corresponding to the original element is one 

while the rest are all zero. Hence, a standardized data sample St̂ = [Et
T̂, Dt

T̂, Wt
T̂, Ht

T̂] is 

a T × N matrix, where N = 1 + 48 + 7 + 2 = 58. Each row of the standardized input 

sample St̂ is the detailed features for the corresponding time step. 

 

Table 5-2  Procedure of online residential load forecasting based on  

deep learning and dynamic mirror descent 

Offline 

Training 

1) Select and preprocess residential load data 

2) Generate a training dataset and a test dataset, 

and standardize every sample 

3) Set values for the hyperparameters for an 

LSTM network 

4) Train the LSTM network on the training 

dataset 

Online 

Forecasting 

with DMD 

5) Initialise the step size 𝜂 , the time length 

Tmax, and the adjustment variable k̂t 

6) Calculate 𝜃̌t using (5-2), t = 1, 2 , ⋯ , Tmax 

7) Calculate k̂t using (5-4) 

8) Calculate 𝜃t using (5-3) 

9) If t < Tmax, repeat 6)-8) at the next time step 

t+1; otherwise, go to 10) 

10) Evaluate the prediction performance on the 

test dataset 
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In order to perform online residential load forecasting, an LSTM network is well trained 

offline in the first place, and then it is applied online with DMD adjusting the forecast in 

real time. Hence, the procedure of online residential load forecasting based on deep 

learning and dynamic mirror descent is shown in Table 5-2. 

 

5.4.2 Experiment Setup 

The same residential load dataset from Ireland is used in this chapter as used in Chapter 

4, and the full dataset of a single resident is divided into a training dataset and a test 

dataset with a ratio of 9:1. So, for each resident, 90% of the data samples are used for 

training, while the rest of 10% are used for testing. In addition, as this chapter is not 

focused on improving the prediction accuracy via the optimal network structure, 

hyperparameter fine-tuning is not conducted on the LSTM network here. All the 

experiment parameters are presented in Table 5-3. 

 

Table 5-3  Experiment parameters of online residential load forecasting  

based on deep learning and dynamic mirror descent 

RNN layer number 3 

Fully-connected layer number 1 

Neuron number of RNN layer 64 

Neuron number of fully-connected layer 64 

Batch size 128 

Time length of input 12 

RNN unit LSTM 

Activation function of RNN layer tanh 

Activation function of fully-connected layer linear 

Optimization method AdamOptimizer 

Training epoch 50 

Learning rate 0.001 

Loss function RMSE 
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5.5 Case Studies and Results 

In this section, a performance comparison is made between offline and online individual 

residential load forecasting. It is noted here that offline means forecasting without 

online learning, while online means forecasting with online learning. RMSE and MAE 

are employed as the performance indexes for residential load forecasting. Afterwards, 

the effect of the parameter 𝜂 of the modified DMD on online residential load forecasting 

is further investigated. In addition, 30 residents are selected at random from the Irish 

dataset to validate the proposed method, and their IDs are shown in Table 5-4. The 

adjustment variable k̂1 is initialised as 0. 

 

Table 5-4  IDs of the randomly selected residents 

No. ID No. ID No. ID 

1 1076 11 2106 21 2971 

2 1277 12 2424 22 3262 

3 1281 13 2485 23 3314 

4 1301 14 2490 24 3337 

5 1440 15 2529 25 3536 

6 1492 16 2547 26 4176 

7 1507 17 2732 27 4441 

8 1607 18 2811 28 5019 

9 1670 19 2918 29 5551 

10 2055 20 2967 30 6240 

 

 

5.5.1 Performance Comparison of Offline and Online Residential Load Forecasting 

A performace comparison is performed between offline and online residential load 

forecasting in terms of prediction accuracy. In this case, the parameter 𝜂 of the modified 

DMD is set as 1.0 × 10
−2

. The results of offline and online residential load forecasting 

are shown in Table 5-5. 
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Table 5-5  Performance comparison between offline and online  

residential load forecasting 

No. 

MAE RMSE 

offline 

(kWh) 

online 

(kWh) 

improvement 

(%) 

offline 

(kWh) 

online 

(kWh) 

improvement 

(%) 

1 0.2 0.2 0 0.36 0.36 0 

2 0.21 0.2 4.8 0.4 0.37 7.5 

3 0.24 0.2 16.7 0.38 0.37 2.6 

4 0.28 0.23 17.9 0.44 0.43 2.3 

5 0.12 0.1 16.7 0.17 0.16 5.9 

6 0.2 0.11 45 0.28 0.17 39.3 

7 0.16 0.12 25 0.25 0.19 24 

8 0.06 0.02 66.7 0.1 0.04 60 

9 0.27 0.21 22.2 0.43 0.36 16.3 

10 0.21 0.16 23.8 0.39 0.28 28.2 

11 0.14 0.1 28.6 0.32 0.31 3.2 

12 0.07 0.05 28.6 0.09 0.08 11.1 

13 0.29 0.27 6.9 0.48 0.47 2.1 

14 0.21 0.16 23.8 0.36 0.32 11.1 

15 0.24 0.22 8.3 0.41 0.4 2.4 

16 0.31 0.29 6.5 0.52 0.48 7.7 

17 0.35 0.34 2.9 0.6 0.53 11.7 

18 0.29 0.31 -6.9 0.57 0.54 5.3 

19 0.1 0.08 20 0.16 0.15 6.3 

20 0.26 0.26 0 0.39 0.39 0 

21 0.33 0.34 -3 0.62 0.61 1.6 

22 0.3 0.28 6.7 0.51 0.45 11.8 

23 0.2 0.2 0 0.36 0.36 0 

24 0.27 0.23 14.8 0.39 0.38 2.6 

25 0.31 0.29 6.5 0.52 0.46 11.5 

26 0.18 0.16 11.1 0.44 0.45 -2.3 

27 0.38 0.34 10.5 0.6 0.55 8.3 
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28 0.36 0.35 2.8 0.58 0.59 -1.7 

29 0.13 0.11 15.4 0.26 0.25 3.8 

30 0.34 0.33 2.9 0.53 0.51 3.8 

 

In Table 5-5, it can be easily discovered that the proposed online method performs 

much better than the offline method for most residents, in terms of both MAE and 

RMSE. To be specific, the greatest improvement of MAE of the proposed online 

method is 66.7% (ID 1607), compared to the offline method. In contrast, the smallest 

improvement of MAE of the proposed online method is 2.8% (ID 5019). Likewise, the 

greatest improvement of RMSE of the proposed online method is 60% (ID 1607), while 

the smallest improvement of RMSE of the proposed online method is 1.6% (ID 2971). 

In summary, the online learning method, the modified DMD, is generally capable to 

effectively adjust the prediction error in real time, therefore improving the prediction 

accuracy to a different extent. 

 

But, there are also a couple of special cases, such as ID 2811 and ID 4176. In these 

cases, one of the two performance indexes of the proposed online method is lower than 

that of the offline method, while the other one of the two performance indexes of the 

proposed online method is higher than that of the offline method. This is because MAE 

and RMSE indicate forecasting performance from two different perspectives. In other 

words, MAE, which reflects the mean of errors, regards every error equally and 

averages all the errors, while RMSE, which reflects the fluctuation of errors, strengthens 

the large error and weakens the small error. 

 

Another interesting finding is that there is no performance difference between the 

proposed online method and the offline method for several residents, for example, ID 

3314. This suggests that the modified DMD fails to effectively adjust the forecast over 

time, mainly because of the great complexity of these residential load profiles. 

 

Furthermore, Figure 5-1 compares the MAEs and RMSEs of all residents between 

offline and online residential load forecasting, and Figure 5-2 depicts the actual and 

forecasted load profiles of a certain resident on 19/12/2010. 
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(a) MAEs of all residents 

 

(b) RMSEs of all residents 

Figure 5-1  Performance comparison between offline and online  

residential load forecasting 

 

 

Figure 5-2  Load profiles of ID 1492 
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According to Figure 5-1, it can be obviously seen that the proposed online method tends 

to adjust the forecast more effectively when the forecasting error is smaller, regardless 

of MAE or RMSE. In other words, when the MAE or RMSE is comparatively smaller, 

the accuracy improvement of the proposed online method is much greater, such as No. 6 

and No. 8. However, when the MAE or RMSE is comparatively larger, the accuracy 

improvement of the proposed online method is much smaller, such as No. 16 and No. 

30. The reason for this is that if the residential load pattern is easier to extract, the 

modified DMD is accordingly able to track the error and adjust the forecast more 

accurately. 

 

In Figure 5-2, the actual and forecasted load profiles of ID 1492 are taken as an example 

to demonstrate the superiority of the proposed online method. From time step 1 to time 

step 13 and from time step 37 to time step 48, the proposed online method forecasts 

much more precisely than the offline method, due to online learning. This indicates that 

the proposed online method outperforms the offline method substantially during the 

early morning and late evening. However, during the daytime of time step 14 to time 

step 36, the proposed online method performs similarly to the offline method. 

 

5.5.2 Effect of Parameter 𝜂 on Online Residential Load Forecasting 

As the parameter 𝜂 plays a rather important role in the modified DMD, its effect on the 

performance of online residential load forecasting is further investigated here. Three 

residents are selected to demonstrate the effect of the parameter 𝜂. Figure 5-3 illustrates 

the MAEs and RMSEs of the proposed online method when the modified DMD is 

applied with different values for the parameter 𝜂 , and Figure 5-4 describes the 

forecasted load profiles of the proposed online method on 02/12/2010 when the 

modified DMD is applied with different values for the parameter 𝜂. 

 

In Figure 5-3(a), it can be clearly seen that the proposed online method performs best 

for ID 1670 when 𝜂 is 1.0 × 10
−2

, in terms of both MAE and RMSE. This is because 𝜂 

effectively weighs the error between the actual and forecasted values, enabling the 

modified DMD to adjust the forecast accurately, which can be easily inferred from 

formula (5-4). Correspondently, in Figure 5-4(a), when 𝜂 is 1.0 × 10
−2

, the proposed 
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online method is capable to substantially decrease the error between the actual and 

forecasted values. But, it can be also observed in Figure 5-3(a) that the proposed online 

method performs even worse than the offline method when 𝜂 is 1.0 × 10
0
 or 1.0 × 10

−5
, 

in terms of both MAE and RMSE. This is because 𝜂 fails to properly weigh the error 

between the actual and forecasted values, when it is too large or small. Therefore, the 

modified DMD is unable to track the actual value precisely. Besides, in Figure 5-4(a), it 

is obvious that the forecast of the proposed online method is far away from the actual 

value, when 𝜂 is 1.0 × 10
0
 or 1.0 × 10

−5
. All in all, when the modified DMD is applied 

in real time with the forecasting model, it is very possible to find out an optimal value 

for the parameter 𝜂, accordingly obtaining the maximum accuracy improvement. 

 

 

(a) ID 1670 

 

(b) ID 1076 
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(c) ID 2971 

Figure 5-3  Effect of parameter η on online residential load forecasting 

 

 

(a) ID 1670 

 

(b) ID 1076 
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(c) ID 2971 

Figure 5-4  Load profiles of online residential load forecasting  

for different values of parameter η 

 

However, in Figure 5-3(b) and Figure 5-3(c), it can be easily discovered that the 

forecasting accuracy of the proposed online method is almost the same as that of the 

offline method, except that the proposed online method performs worse than the offline 

method when 𝜂 is 1.0 × 10
0
. The reason for that is briefed as follows. Due to the great 

complexity of the residential load profiles of ID 1076 and ID 2971, when 𝜂 is much 

smaller than 1.0 × 10
0
, the error between the actual and forecasted values is trusted 

much less while calculating the adjustment variable k̂t, according to formula (5-4). In 

other words, the adjustment variable k̂t is calculated as a very small value at all time 

steps, making the modified DMD fail to track the actual value. As a consequence, the 

forecasted load profile of the proposed online method is quite similar to that of the 

offline method. Furthermore, as Figure 5-4(b) and Figure 5-4(c) show, the forecast of 

the proposed online method is very close to that of the offline method, when 𝜂 is much 

smaller than 1.0 × 10
0
. In general, although the modified DMD fails to track the actual 

value with a comparatively smaller value of the parameter 𝜂 , it at least does not 

decrease the forecasting accuracy of the proposed online method, compared to the 

offline method. 

 

5.6 Chapter Summary 

This chapter proposed an online individual residential load forecasting method, based 
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on deep learning and dynamic mirror descent. A few modifications were made to the 

original DMD in order to apply it to online residential load forecasting. Besides, a 

comprehensive feature expression strategy is exploited to provide the proposed 

forecasting model with sufficient information at each time step for the purpose of 

increasing the forecasting accuracy. The experimental results have shown that the 

proposed online residential load forecasting method has improved the forecasting 

accuracy substantially in terms of both RMSE and MAE, compared to the offline 

method. In addition, the effect of the parameter 𝜂 of the modified DMD on the proposed 

online method is further explored, and the comparison results have indicated that an 

optimal value of the parameter 𝜂 is quite likely to be found out to achieve the maximum 

forecasting accuracy improvement, when applying the modified DMD to online 

residential load forecasting. 
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Chapter 6 

Conclusion and Future Work 
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6.1 Conclusion 

In this section, the conclusions are drawn by summarising the major contributions and 

key findings of the thesis. There are three main works in the thesis, which are concluded 

respectively as follows: 

 

Firstly, a real-time data driven event detection method was presented, based on random 

matrix theory and Kalman filtering. In addition, as the data conditioner of the presented 

method, a dynamic Kalman filtering technique was developed through the adjustment of 

the measurement noise covariance matrix in order to effectively reduce noise and 

recover missing samples in PMU data. Both simulated and real PMU data are used to 

validate the presented method. The experimental results have shown that the dynamic 

Kalman filter outperforms the original one significantly, regardless of noise reduction or 

missing data recovery. Furthermore, the comparison results have demonstrated that the 

improved event detection method is much more robust than the original one, especially 

in practical situations where PMU data is collected with significantly heavy noise or 

plenty of missing samples. 

 

Secondly, a short-term individual residential load forecasting method was proposed, 

based on deep learning and k-means clustering. Besides, a comprehensive feature 

expression strategy is utilised to provide the proposed method with sufficient 

information at each time step in order to improve the forecasting accuracy. A real-world 

residential load dataset from Ireland is used to verify the proposed method. The 

experimental results have shown that the proposed short-term residential load 

forecasting method has improved the forecasting accuracy significantly in terms of both 

RMSE and MAE, compared with the PDRNN. Moreover, the effect of k-means 

clustering on the proposed method is explored, and the comparison results have 

suggested that both the cluster distribution and overall loss of k-means clustering should 

be carefully considered for the purpose of improving the forecasting accuracy, when 

combining the clustering result with the LSTM models. 

 

Thirdly, an online individual residential load forecasting method was developed, based 

on deep learning and dynamic mirror descent. A few modifications were made to the 

original DMD in order to enable it to become applicable to real-time residential load 
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forecasting. In addition, a comprehensive feature expression strategy is exploited to 

provide the developed method with sufficient information at each time step for the 

purpose of increasing the forecasting accuracy. A real-world Irish residential load 

dataset is employed to testify the developed method. The experimental results have 

demonstrated that the developed online residential load forecasting method has 

substantially improved the forecasting accuracy, regardless of RMSE or MAE, 

compared to the offline method. Besides, the effect of the parameter 𝜂 of the modified 

DMD on the developed method is investigated, and the comparison results have 

indicated that an optimal value of the parameter 𝜂 of the modified DMD is very likely to 

be found out to obtain the maximum forecasting accuracy improvement, when applying 

the modified DMD to real-time residential load forecasting. 

 

6.2 Future Work 

Although the thesis has contributed to big data analysis for smart grids primarily via 

deep learning, there are still a number of research gaps to bridge in the research field of 

applications of deep learning to smart grids. For example, it is commonly accepted that 

deep learning needs a huge amount of data to build a well-trained model so that it has 

desirable performance. However, in practice, only a small amount of data is available 

for training a deep learning model in most cases, which tends to lead to overfitting and 

have a significantly negative influence on the generalization ability of deep learning 

models. So, as a common solution to this problem, data augmentation is supposed to be 

adopted to enrich data. During the past few years, a variety of different data 

augmentation techniques have been developed and applied to diversify data, such as, 

rotating, flipping, blurring, scaling, translating, and cropping [159]. But, these 

techniques tend to be applicable to image processing. In other words, they can hardly be 

applied to process power system data, because these techniques were originally 

designed to process images but power system data cannot be organised as image data 

intrinsically. As a result, a more general data augmentation technique should be 

urgently developed to solve this issue. 

 

Most recently, a novel smart data augmentation technique was presented to diversify 

data and improve the generalization capability of deep learning models [159]. To be 

specific, it aims to create a separate network to learn to generate augmented data during 
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the training process of a target network in a smart way in order to minimize the error of 

the target network and ensure its generalization capability. The separate network, 

namely the data augmenter, learns to merge two or more samples to generate a synthetic 

sample to feed to the target network for training. This smart data augmentation 

technique was originally developed for image processing, but its intrinsic idea is not 

confined to image data. In addition, it can be applied together with some traditional 

regularization methods to further improve the generalization ability of deep learning 

models, such as dropout and batch normalization. So, considering this fact, the research 

on applications of deep learning in smart grids will continue to be conducted in the near 

future from the following aspects: 

 

Firstly, short-term residential load forecasting with a small dataset will be 

explored. As accurate residential load forecasting is able to effectively support demand 

response programs, its performance plays an essential role in demand side response. 

But, at present, many publicly available practical datasets of residential load do not have 

enough data for training, because they only include a short period of sampling. Hence, 

smart data augmentation is a potential method to enrich these datasets and obtain a 

satisfactory forecasting accuracy of deep leaning models. 

 

Secondly, residential load classification with only a small amount of available data 

will be investigated. As a good understanding of residential energy consumption 

patterns is crucial for the provision of customized services to residents, precise 

residential load classification has a rather important influence on the quality of 

customized services. However, in practice, it is quite difficult to acquire a large number 

of load profiles from residents over a long time. Thus, smart data augmentation is a 

promising method to diversify residential load profiles and achieve a desirable 

classification accuracy of deep leaning models. 

 

In summary, as this novel smart data augmentation technique is very likely to be 

effectively combined with deep learning, the future work will be focused on the above 

two research topics to contribute to the development of smart grids. 
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