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Abstract		

Stainless	 steel	 is	 increasingly	popular	 in	 construction	projects	owing	 to	 its	 corrosion‐

resistance,	 excellent	mechanical	 and	physical	properties	 and	 its	 aesthetic	 appearance.	

The	 current	 paper	 is	 concerned	 with	 the	 use	 of	 these	 materials	 in	 steel‐concrete	

composite	beams,	which	is	an	entirely	new	application.		Current	design	codes	for	steel‐

concrete	composite	beams	are	based	on	elastic‐perfectly	plastic	steel	material	behaviour	

neglecting	 strain	 hardening.	Whilst	 this	 is	 a	 reasonable	 assumption	 for	 carbon	 steel,	

stainless	steel	is	a	very	ductile	material	which	offers	significant	levels	of	strain	hardening	

prior	to	failure.		Therefore,	current	design	provisions	typically	result	in	inaccurate	and	

overly‐conservative	 strength	 predictions	 when	 applied	 to	 stainless	 steel	 composite	

beams.	The	current	study	presents	for	the	first	time,	an	analytical	solution	for	predicting	

the	plastic	bending	capacity	of	stainless	steel–concrete	composite	beams	with	either	full	

or	partial	 shear	connection.	This	method	 is	a	development	of	 the	continuous	strength	

method	(CSM).	Since	the	analytical	analysis	requires	complex	mathematical	solution,	a	

simplified	 analytical	 solution	 is	 also	 proposed,	 utilising	 some	 of	 the	 assumptions	 in	

Eurocode	4.	There	are	no	 tests	 currently	available	 in	 the	 literature	 for	 stainless	 steel‐

concrete	composite	beams.	Therefore,	a	finite‐element	model	is	developed	and	validated	

against	a	number	of	experimental	results	for	composite	beams	made	from	normal	or	high	

strength	 carbon	 steel.	 	 The	 validated	numerical	model	 is	 then	used	 to	 investigate	 the	

accuracy	 of	 the	 proposed	 analytical	 solution.	 It	 is	 concluded	 that	 both	 the	 full	 and	

simplified	analytical	solutions	are	reliable	and	the	simplified	analytical	method	provides	

a	straight	forward	design	tool	for	practical	engineers.	



2 
 

Keywords:	Stainless	steel;	composite	beams;	finite‐element	analysis,	analytical	analysis;	

continuous	strength	method;	Eurocodes	

1‐ Introduction	

This	paper	 is	 concerned	with	 the	behaviour	of	 composite	beams	made	 from	 stainless	

steel.	Steel‐concrete	composite	members	are	widely	used	in	the	design	and	construction	

of	modern	structures	such	as	bridges	and	high	rise	buildings.	Depending	on	the	degree	of	

composite	action,	a	significant	increase	in	strength	and	stiffness	performance	is	gained	

compared	 to	 a	 bare	 steel	 or	 concrete	 section.	 This	 results	 in	 savings	 not	 only	 in	

construction	depth	but	also	in	terms	of	material	consumption,	which	means	also	lower	

environmental	impact	and	reduced	energy	consumption	[1].		Composite	beams	which	are	

subjected	 to	 positive	 bending	 (i.e.	 sagging)	 offer	 a	 particularly	 efficient	 use	 of	 the	

constituent	materials.	In	this	case,	the	steel	section	is	subjected	to	tensile	stresses	whilst	

the	 concrete	 slab	 acts	 primarily	 in	 compression,	 thus	 utilising	 the	 favourable	

characteristics	of	each	material.			

It	 is	 generally	desirable	 for	plastic	design	 that	 composite	beams	have	a	ductile	 cross‐

section,	 in	 which	 strain	 hardening	 develops	 in	 the	 lower	 flange	 before	 the	 collapse	

moment	is	reached	[2].	However,	for	calculating	the	load‐bearing	capacity	of	composite	

beams,	design	codes	such	as	Eurocode	4	[3]	generally	neglect	strain	hardening	effects	and	

employ	 a	 rigid‐plastic	 analysis	 of	 the	 cross‐section,	 thus	 providing	 conservative	

predictions	of	 the	 capacity	 in	many	cases,	particularly	when	ductile	materials	 such	as	

stainless	steel	are	employed.	

Stainless	steel	has	been	employed	in	construction	since	the	1920’s,	when	the	main	usage	

was	in	building	facades.	Nowadays,	stainless	steel	has	become	popular	in	a	wide	range	of	

construction	 and	 load‐bearing	 applications	 due	 to	 its	 excellent	mechanical	 properties	

such	as	higher	strength	and	ductility,	better	retention	of	strength	and	stiffness	at	high	

temperature	 [4]	 and	 excellent	 corrosion	 resistance	properties,	 compared	with	 carbon	

steel.	Stainless	steel	does	not	require	coatings	to	be	applied,	thus	leading		to	life‐cycle	cost	

savings	 relative	 to	 carbon	 steel	 especially	 for	 offshore	 steel	 structures	 [5],	 as	well	 as	

reducing	maintenance	and	rehabilitation	costs.	

In	 recent	 years,	 stainless	 steel	 has	 been	 the	 subject	 of	 intensive	 research	 in	 order	 to	

provide	useful,	efficient	and	reliable	design	guidance	for	engineers.	The	vast	majority	of	

research	into	stainless	steel	has	been	focussed	on	bare	steel	elements.	Researchers	have	
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investigated	the	flexural	behaviour	of	stainless	steel	columns	subjected	to	compressive	

loading	or	combined	compression	and	bending	moment	(e.g.	[6‐9])	and	beams	(e.g.	[10‐

13])	as	well	as	beams	and	columns	under	fire	conditions	(e.g.	[14]).				

The	use	of	stainless	steel	 in	composite	structures	has	hitherto	received	little	attention	

from	 the	engineering	 community	 and	 research	 studies	have	generally	been	 limited	 to	

investigating	 the	 behaviour	 of	 concrete‐filled	 stainless	 steel	 columns	 under	 different	

loading	conditions	using	experimental	and	numerical	analysis.	Lam	et	al.	[15]	conducted	

experiments	on	 the	behaviour	of	axially	 loaded	concrete‐filled	stainless	steel	elliptical	

sections	 made	 from	 normal	 and	 high	 strength	 concrete.	 Uy	 et	 al.	 [16]	 carried	 out	

experiments	on	concrete‐filled	stainless	steel	circular,	square	and	rectangular	sections	of	

short	 and	 slender	 columns	 subjected	 to	 combined	 axial	 compression	 and	 bending	

moment.	 The	 behaviour	 of	 concrete‐filled	 stainless	 steel	 circular	 and	 square	 tubular	

sections	 subjected	 to	 axial	 compression	 under	 fire	 conditions	 has	 also	 been	 studied	

through	a	series	of	experiments	 [17].	Moreover,	nonlinear	 finite‐element	analysis	was	

used	to	investigate	the	performance	of	concrete‐filled	stainless	steel	tubular	columns	of	

square,	L‐,	T‐,	and	+	shape	sections	under	axial	compression	or	combined	compression	

and	bending	moment	[18,	19].	To	date,	there	has	been	no	research	available	in	the	public	

domain	on	traditional	composite	beams	(i.e.	a	bare	steel	section	connected	to	a	concrete	

slab	through	shear	connectors)	using	stainless	steel.	The	following	section	describes	the	

context	in	which	these	members	are	highly	relevant	in	the	current	era.	

2‐ Research	significance	and	methodology	

Stainless	steel	provides	excellent	mechanical	properties,	durability	and	fire	resistance	for	

structural	 applications,	 and	 can	 also	 reduce	 the	maintenance	 costs	 required	 over	 the	

lifetime	of	a	structure,	 compared	with	carbon	steel.	However,	 it	 is	only	 in	very	recent	

years	 as	 the	 demands	 for	 more	 sustainable	 construction	 have	 been	 given	 higher	

prominence,	 that	 stainless	 steel	 has	 really	 become	 an	 attractive	 solution	 for	 certain	

applications.	This	growth	in	popularity	has	been	accompanied	by	an	increase	in	research	

although	most	of	the	studies	to	date	has	been	limited	to	bare	stainless	steel	elements	as	

well	as	a	few	studies	into	concrete‐filled	stainless	steel	tubular	sections.	There	has	been	

no	research,	at	least	in	the	public	domain,	into	the	behaviour	of	composite	beams	using	

stainless	 steel	 elements	 acting	 together	 with	 a	 concrete	 slab.	 	 Nevertheless,	 in	

appropriate	scenarios,	this	type	of	application	could	be	ideal	for	stainless	steel	owing	to	
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its	ductility	and	durability.	 In	particular,	stainless	steel	composite	beams	could	offer	a	

very	 valuable	 solution	 in	bridge	 applications,	where	harsh	 environments	 and	difficult	

maintenance	 requirements	 pose	 an	 ever‐increasing	 challenge	 to	 engineers.	 In	 such	

applications,	the	stainless	section	could	be	left	exposed	to	the	local	environment	without	

long‐term	maintenance	requirements,	thus	reducing	the	life‐cycle	costs	compared	with	

carbon	steel	and	also	utilising	the	significant	aesthetic	appeal	of	stainless	steel.		

In	 addition	 to	 its	 durability	 credentials,	 stainless	 steel	 also	 has	 excellent	 mechanical	

properties	especially	in	terms	of	ductility,	toughness	and	resistance	to	fatigue,	all	of	which	

are	particularly	relevant	in	bridges	and	structural	applications	in	harsh	environments.	

Stainless	steels	have	greater	ductility	and	capacity	for	work	hardening	compared	with	

carbon	steels.	A	ductile	cross‐section	is	necessary	for	plastic	design	and	highly	desirable	

for	 design	 in	 general	 so	 that	 warning	 is	 given	 before	 collapse	 and	 for	 moment	

redistribution	to	occur.	According	to	current	design	codes,	the	plastic	bending	resistance	

of	 composite	 steel‐concrete	 beams	 is	 determined	 by	 rigid‐plastic	 theory	 in	which	 the	

effective	area	of	the	steel	member	is	stressed	to	its	yield	strength,	neglecting	any	stain	

hardening	effects	in	the	steel.	Although	this	is	a	reasonable	assumption	for	carbon	steel	

which	 has	 an	 elastic	 response,	with	 a	 clearly	 defined	 yield	 point,	 followed	 by	 a	 yield	

plateau	and	a	moderate	degree	of	strain	hardening,	stainless	steel	has	a	nonlinear	stress‐

strain	response	from	very	early	stages	as	well	as	significant	 levels	of	strain	hardening	

prior	to	failure.	Therefore,	the	current	design	codes	for	composite	carbon	steel‐concrete	

beams	result	in	an	incorrect	plastic	bending	resistance	when	applied	to	members	made	

from	stainless	steel.		

In	 this	 context,	 the	 current	 study	 presents	 an	 analytical	 solution	 for	 estimating	 the	

bending	 resistance	 of	 composite	 stainless	 steel‐concrete	 beams	with	 either	 a	 full	 and	

partial	shear	connection,	which	are	subjected	to	sagging	moments.	The	proposed	method	

is	an	adaptation	of	the	continuous	strength	method	(CSM),	which	has	been	developed	and	

validated	extensively	in	recent	years	for	structural	steel	(e.g.	[20]),	structural	stainless	

steel	(e.g.	[21])	and,	more	recently,	for	carbon	steel‐concrete	composite	beams	[2].		Since	

there	 are	 no	 tests	 available	 on	 stainless	 steel‐concrete	 composite	 beams,	 a	 nonlinear	

finite	 element	 model	 has	 been	 developed	 to	 study	 the	 response	 and	 investigate	 the	

accuracy	of	proposed	analytical	solution.	Although	the	analytical	solution	yields	accurate	

strength	predictions,	it	requires	complex	mathematical	solution.	Therefore,	a	simplified	

analytical	solution	is	also	proposed,	utilising	some	of	the	assumptions	of	Eurocode	4	[3].	
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3‐ The	continuous	strength	method	(CSM)		

The	continuous	strength	method	(CSM)	is	a	relatively	recent	approach	for	calculating	the	

cross‐sectional	 resistance	of	metallic	members	using	 two	key	 components:	 (1)	 a	 base	

curve	which	 defines	 the	 continuous	 relationship	 between	 compressive	 local	 buckling	

strain	at	the	ultimate	load	and	the	cross‐section	slenderness	and	(2)	a	material	model	

that	allows	for	the	stain	hardening.	Gardner	and	Nethercot	[21]	originally	proposed	the	

design	method	 for	 stainless	 steel	 hollow	 sections	 loaded	 in	 compression,	 bending	 or	

combined	 compression	 and	 bending.	 The	 design	 method	 was	 further	 extended	 to	

calculate	 the	 cross‐sectional	 compression	 and	 bending	 resistance	 of	 other	 metallic	

materials	such	as	aluminium	and	high	strength	steel	[20]	as	well	as	open	stainless	steel	

cross‐sections	subjected	to	various	types	of	loading	[22].	It	was	found	that	the	method	

provides	 more	 accurate	 predictions	 of	 the	 cross‐sectional	 resistance	 compared	 with	

those	obtained	using	the	Eurocode	3	[23]	and	ASCE	[24]	design	codes.	In	2008,	the	term	

“continuous	 strength	 method”	 was	 introduced,	 based	 on	 a	 continuous	 relationship	

between	(inelastic)	 local	buckling	and	a	rational	exploitation	of	strain	hardening	[25].	

Earlier	versions	of	the	CSM	used	the	Ramberg‐Osgood	material	model	for	stainless	steel	

which	resulted	in	a	very	complex	solution	procedure.	In	later	developments,	a	bi‐linear,	

elastic,	linear	hardening	material	model	was	introduced	to	the	method	[26]	before	a	more	

detailed	quad‐linear	material	model	was	included	which	accounts	for	both	the	length	of	

yield	plateau	and	the	strain	hardening	behaviour	of	hot‐rolled	structural	steel	[2].	These	

modifications	make	the	CSM	more	straightforward	and	easy	to	apply	 in	exploiting	the	

benefits	 of	 strain	 hardening.	 Furthermore,	 the	CSM	method	was	 recently	 extended	 to	

incorporate	 composite	 construction	 for	 carbon	 steel‐concrete	 beams	 under	 sagging	

bending	moment,	accounting	for	strain	hardening	in	the	steel	element	[2].	This	proposed	

application	of	the	method	was	shown	to	provide	a	more	accurate	prediction	of	the	cross‐

sectional	capacity	compared	with	Eurocode	4	[3].	

4‐ Analytical	model	for	composite	beams	with	stainless	steel		

4.1‐General	

Stainless	 steel	 is	 usually	 divided	 into	 five	 different	 families	 in	 accordance	 with	 the	

chemical	 composition,	 including	 the	 austenitic,	 ferritic,	 martensitic,	 precipitation‐

hardening	 and	 duplex	 grades.	 Each	 group	 offers	 different	 mechanical,	 physical	 and	
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chemical	properties.	However,	 the	excellent	strength,	stiffness,	ductility	and	durability	

properties	of	the	austenitic	and	duplex	grades	make	these	the	most	common	in	structural	

applications,	with	the	ferritic	grades	also	being	used	in	appropriate	applications.			

Stainless	steel	exhibits	a	very	different	constitutive	response	compared	with	carbon	steel.	

Whereas	 carbon	 steel	 has	 a	 clear	 yield	 point,	 and	 relatively	 little	 strain	 hardening	

thereafter,	stainless	steel	has	a	predominantly	nonlinear	stress‐strain	relationship	even	

before	yielding	(see	Fig.	1)	with	significant	strain	hardening	in	the	post‐yield	range.	In	

the	absence	of	a	 clearly	defined	yield	point,	 the	stress	at	an	offset	 to	 the	0.2%	plastic	

strain,	 i.e.	the	0.2%	proof	strength	(σ0.2),	 is	typically	used	to	define	the	yield	stress	for	

stainless	steels.	This	 is	determined	by	drawing	a	 line	with	a	slope	equal	 to	 the	elastic	

modulus	 (E)	 between	 the	 0.2%	 strain	 on	 the	 x‐axis	 and	 the	 stress‐strain	 curve.	 	 The	

ultimate	tensile	strength	(σu)	is	typically	around	500‐700	N/mm2	for	austenitic	stainless	

steels	 and	 600‐1000	N/mm2	 for	 the	 duplex	 grades	 (including	 hot	 and	 cold	 rolled	

material)	[27].	In	terms	of	ductility,	the	most	common	austenitic	and	duplex	grades	have	

a	fracture	strain	(εu)	of	around	40‐60%	and	20‐30%,	respectively,	compared	to	around	

20‐25%	for	carbon	steel.	It	has	been	shown	[28]	that	before	yielding	occurs,	the	stress‐

strain	response	can	be	idealised	using	the	following	relationship	proposed	by	Ramberg‐

Osgood	[29]	and	modified	by	Hill	[30]:	

ε
σ
E

0.002
σ
σ .

	 (1)

where	n	is	a	strain	hardening	exponent.	Beyond	yield,	the	following	expression	proposed	

by	Mirambell	and	Real	[31]	and	Rasmussen	[28]	can	be	applied:	

ε ε .
σ σ .

E
ε∗

σ σ .

σ σ .
	

(2)
where		ε∗ ε ε .

. 	

where	 ε0.2	 is	 the	 total	 0.2%	 strain	 corresponding	 to	 σ0.2	 and	m	 is	 a	 strain	 hardening	

coefficient.	In	the	following	sub‐sections,	the	material	models	discussed	herein	are	used	

to	develop	both	a	full	and	simplified	analytical	model,	based	on	the	continuous	strength	

method	 approach,	 for	 stainless	 steel‐concrete	 composite	 beams	 with	 full	 and	 partial	

shear	connection.		

							4.2‐	Full	shear	connection	

													4.2.1‐	Basic	assumptions	in	the	full	analytical	model	
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For	 composite	 beams	 with	 full	 shear	 connection,	 where	 the	 shear	 connection	

deformability	is	very	small,	a	single	plastic	neutral	axis	(NA)	exists.	The	position	of	the	

neutral	axis	and	the	plastic	bending	moment	capacity	can	be	identified	by	applying	the	

equilibrium	of	 internal	 forces	equations	 to	 the	cross‐section.	The	 full	analytical	model	

developed	in	this	section	is	based	on	the	following	assumptions:	

‐ The	plastic	neutral	axis	is	located	within	the	concrete	slab.	Hence,	the	compressive	

force	in	the	concrete	is	larger	than	the	tensile	force	in	the	steel	element.	This	case	

is	very	common	and	desirable	in	composite	beams	to	avoid	any	local	buckling	in	

the	steel	member.	

‐ The	slip	that	occurs	between	the	steel	section	and	the	concrete	slab	is	assumed	to	

be	 negligible	 and	 therefore	 is	 ignored	 and	 the	 strain	 distribution	 over	 the	

composite	cross	section	is	linear	with	constant	curvature	κ.	

‐ Any	reinforcement	in	the	concrete	slab	is	ignored	in	the	calculations.	

Although	 the	models	 defined	 in	 this	 paper	 are	 presented	 in	 the	 context	 of	 composite	

beams	made	using	stainless	steel,	the	expressions	are	equally	relevant	and	applicable	to	

traditional	carbon	steel	composite	members,	with	an	appropriate	material	model.	

											4.2.2‐	Full	analytical	expressions	to	determine	the	bending	resistance	

The	 full‐range	 stress‐strain	 relationship	 for	 stainless	 steel	 illustrated	 in	 the	 literature	

(e.g.	[28])	typically	describes	the	strain	as	an	explicit	function	of	stress.	However,	in	order	

to	 use	 the	 CSM	 in	 conjunction	with	 an	 accurate	material	 law	 for	 stainless	 steel,	 it	 is	

necessary	to	obtain	the	stress	as	an	explicit	function	of	strain.	Abdella	[32]	proposed	an	

approximate	inversion	relationship	with	the	stress	(σ)	expressed	as	an	explicit	function	

of	strain	(ε),	as	follows:	

σ ε σ .

	
.

.

																											for				ε ε . 	 (3)

	

σ ε σ . 1
	

.

∗ 	 .

.

∗ 								for	ε ε . 	 (4)

where	the	material	parameters	are:	

ε .
σ .

E
0.002	 r

E ε .

σ .
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E
E

1 0.002	n/e
	 p r

1 r
r 1

	

e
σ .

E
	 m 1 3.5

σ .

σ
	

σ σ .
1 0.0375 n 5

0.2 185e
	 E

E
1 r∗ 1 m

	

r
E 	ε .

σ .
	 r

E ε ε .

σ σ .
	

ε min	 1
σ .

σ
, A 	 p∗ r∗

1 r
r∗ 1

	

r∗
E ε ε .

σ σ .
	

	

In	these	expressions,	ε 	is	the	ultimate	tensile	strain,	A	is	the	stainless	steel	elongation,	

E2	and	Eu	are	the	slope	of	the	stress‐strain	curve	at	ε . 	and	ε ,	respectively,	and	r,	r2,	r*,	

ru,	p,	p*	and	m	are	parameters	that	need	to	be	determined.	

Fig.	2	shows	the	strain	distribution	through	the	depth	of	the	cross‐section	for	composite	

beams	with	a	full	shear	connection	together	with	the	corresponding	stress	distribution	

obtained	using	the	material	model	presented	in	Eqs.	3	and	4.	In	this	figure,	ε 	and	ε 	are	

the	strain	at	the	bottom	fibre	of	the	stainless	steel	beam	and	top	fibre	of	the	concrete	slab,	

respectively.	Since	the	stress‐stain	relationship	of	stainless	steel	consists	of	two	unique	

expressions	(Eqs.	1	and	2	for	pre‐	and	post‐yield,	respectively),	these,	together	with	the	

compressive	region	in	the	slab,	result	 in	three	different	stress	distributions	across	the	

cross‐section,	 as	 illustrated	 in	 Fig.	 2.	 Assuming	 that	 y . 	 is	 the	 distance	 between	 the	

neutral	axis	(NA)	and	the	location	in	the	cross‐section	where	the	strain	in	the	stainless	

steel	section	is	ε . ,	it	can	be	determined	that:	

y .
ε .

κ
	 (5)

As	presented	in	Fig.	2,	three	possible	cases	are	considered.	Case	1	is	when		y . 	is	within	

the	 stainless	 steel	web	 (i.e.	 y . t y t ,	where	 y1,	 tc	 and	 tf	 are	 the	depth	 of	 the	

compressive	area	of	the	concrete	slab,	the	depth	of	the	concrete	slab	and	the	thickness	of	

the	 top	 flange	 of	 the	 stainless	 steel	 section,	 respectively),	 Case	 2	 corresponds	 to	 the	

situation	when	y . 	 is	within	 the	 top	stainless	 steel	 flange	(i.e.	 t y y . t t 	

while	in	Case	3,	y . 	is	within	the	concrete	slab	(i.e.	0 y . t y ).	

Based	on	the	strain	distribution	and	the	full	stainless	steel	stress‐strain	material	model,	

the	 internal	 axial	 forces	 within	 the	 concrete	 slab	 and	 each	 individual	 stainless	 steel	
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component	(i.e.	the	flanges	and	the	web)	can	be	calculated	for	all	three	cases.	These	are	

presented	in	Table	1,	in	which	fc	is	the	concrete	compressive	strength	and	bc	is	the	width	

of	the	concrete	slab	acting	compositely	with	the	stainless	steel	section;	σ1	and	σ2	are	the	

appropriate	stresses	in	the	stainless	steel	section	(as	defined	in	Eqs.	3	and	4);	and	bf	is	

the	width	of	the	stainless	steel	flange.		The	axial	forces	(i.e.	Ftf1,	Ftf2,	Ftf3,	Ftw1,	Ftw2	and	Fc)	

are	as	defined	in	Fig.	2	and	the	corresponding	moments	in	the	section	are	given	as	Mtf1,	

Mtf2,	Mtf3,	Mtw1,	Mtw2	and	Mc,	respectively.		

The	 initial	step	 in	calculating	the	plastic	bending	capacity	of	 the	composite	beam	is	 to	

locate	the	position	of	the	neutral	axis	at	failure	(i.e.	y1).	The	position	y1	can	be	obtained	

based	on	the	equilibrium	of	internal	forces,	and	is	given	as:	

F F F F F F 0	 (6)

In	order	to	calculate	the	internal	forces	in	Eq.	6	and	presented	in	the	Table	1,	and	hence	

y1,	direct	integration	is	required.	Since	the	internal	forces	depend	on	the	variable	y1,	Eq.	

6	is	a	nonlinear	problem	which	requires	an	iterative	method	to	obtain	a	solution.		In	the	

current	 analysis,	 the	 mathematical	 software	 Matlab	 [33]	 is	 employed	 to	 solve	 these	

complex	equations	and	determine	the	position	of	neutral	axis.	The	strain	at	any	point	in	

the	cross‐section	(denoted	as	the	position	y,	measured	from	the	NA)	is	calculated	from	

the	strain	distribution	and	is	determined	as:	

ε κ	y	 (7)

where	the	cross‐sectional	curvature	is	obtained	from:	

κ min	 κ 	, κ 	 (8)

In	this	expression,	κ 	is	the	limiting	curvature	for	concrete	failure	(i.e.	when	the	strain	at	

the	 outer	 concrete	 fibre	 reaches	 the	 ultimate	 strain	 of	 concrete,	 ε )	 and	 can	 be	

determined	from:		

κ ε y⁄ 	 (9)

The	nominal	ultimate	strain	of	concrete	(ɛcu),	as	a	percentage,	is	given	in	Eurocode	2	[34]	

as:		

ε 2.6 35 98 f /100 	for	f 50 N/mm ,		otherwise		3.5	 				(10)

κ 	is	the	limiting	curvature	for	steel	failure	(i.e.	when	the	strain	at	the	outer	steel	fibre		

reaches	the	ultimate	strain	of	stainless	steel)	and	can	be	determined	as:	

κ
ε

H y
	 			(11)
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where	H	is	the	overall	depth	of	the	composite	beam.		κ 	and	κ define	the	governing	failure	

mode	of	 the	 composite	member:	 if	 κ κ ,	 the	 composite	 beam	 fails	 due	 to	 concrete	

crushing	whereas	steel	failure	dominates	when	κ κ .	

Finally,	the	plastic	moment	capacity	of	the	composite	section	(Mpl)	can	be	obtained	from	

the	following	expression:	

M M M M M M M (12)

where	the	internal	bending	moments	in	each	component	of	the	composite	cross‐section	

are	calculated	with	respect	to	the	neutral	axis,	as	presented	in	Table	1.	

4.2.3‐	Simplified	analytical	analysis	

In	 the	 previous	 section,	 an	 accurate	 analytical	 solution	 to	 obtain	 the	 plastic	 bending	

moment	 of	 composite	 stainless	 steel‐concrete	 beans	 was	 presented.	 However,	 the	

analytical	 model	 requires	 numerical	 integration	 to	 obtain	 the	 internal	 forces	 and	

moments	 which	 may	 not	 be	 suitable	 for	 a	 straightforward	 design	 tool.	 Therefore,	 a	

simplified	analytical	solution	is	derived	and	proposed	in	the	current	section.	

The	main	assumption	of	the	simplified	analytical	method	is	that	the	effective	area	of	the	

steel	section	is	stressed	to	a	constant	value	of	σ ,	where	σ 	is	defined	as	the	stress	at	

60%	 of	 the	 steel	 beam	 height,	 as	 shown	 in	 the	 Fig.	 3.	 It	 is	 important	 to	 note	 that	 in	

Eurocode	4,	the	plastic	bending	resistance	of	a	composite	carbon	steel‐concrete	beam	is	

determined	by	assuming	that	the	effective	area	of	the	steel	member	is	stressed	to	its	yield	

strength.	

From	the	strain	diagram	 in	Fig.	3,	 it	 is	observed	 that	 the	distance	between	 the	plastic	

neutral	axis	and	the	location	of		σ 	(i.e.	y2)	is	determined	as:	

y t 0.6	h y 	 (13)

where	y1	is	the	height	of	compressive	area	of	the	concrete	slab.	

From	horizontal	equilibrium	of	the	internal	forces:	

F F 	→ 0.85	f 	y 	b A 	σ 	

or	

y
A

0.85	f 	b
σ 	 (14)

where	As	is	the	cross‐sectional	area	of	the	stainless	steel	member.	

It	is	assumed	that	y 	 y . ,	and	therefore:		
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σ σ . 1
r 	 ε

ε .
1

1 r∗ 1 	

ε
ε .

1
ε
ε .

1

∗ 	 (15)

in	which	ε 	is	the	strain	in	the	steel	section	at	y 	and	κ	is	the	cross‐sectional	curvature,	

determined	from	Eqs.	16	and	17,	respectively:	

ε κ	y κ	 t 0.6	h y 	 		(16)

κ min	 κ 	, κ 		where		κ ε y⁄ 		and	κ 	 (17)

Firstly,	the	position	of	the	neutral	axis	y1	can	be	determined	using	Eq.	14	together	with	

Eqs.	15‐17	using	a	trial	and	error	technique.	Finally,	the	plastic	bending	capacity	of	the	

composite	beam	can	be	calculated	as:	

M σ 	 H h 2⁄ y 2⁄ 	 (18)

The	 flow	 chart	 of	 the	 algorithm	 to	 calculate	 the	 position	 of	 the	 neutral	 axis	 and	 the	

bending	moment	capacity	is	shown	in	Fig.	4.	

4.3‐	Partial	shear	connection	using	simplified	analytical	analysis	

The	equations	presented	 in	Section	4.2.3	 to	calculate	 the	bending	moment	capacity	of	

composite	 beams	with	 full	 shear	 connection	 cannot	 be	 readily	 applied	 for	 composite	

beams	with	partial	shear	connection.	However,	a	similar	procedure	can	be	employed	to	

develop	 a	 new	 analytical	 solution,	 suitable	 for	 composite	 beams	 with	 partial	 shear	

connection.	In	these	members,	there	are	often	two	distinct	neutral	axes	lying	within	the	

concrete	slab	and	the	steel	section,	respectively,	as	shown	in	Fig.	5	(NA‐1	and	NA‐2	in	the	

figure).	

It	can	be	seen	from	Fig.	5	that	the	stress	distribution	through	the	depth	of	the	cross‐

section	is	nonlinear	and	therefore	a	complex	mathematical	solution	is	required	in	order	

to	calculate	the	plastic	bending	capacity.	Hence,	a	similar	approach	to	that	employed	in	

the	simplified	analytical	model	proposed	in	Section	4.2.3	is	adopted	herein	to	predict	

the	plastic	bending	moment	of	composite	beams	with	a	partial	shear	connection.		

The	analytical	model	developed	in	this	section	is	based	on	the	following	assumptions:	

1‐ The	material	model	for	stainless	steel	employed	in	the	CSM	is	approximated	

using	an	elastic,	multi‐linear	hardening	material	model,	as	shown	in	the	Fig.	6.	

An	acceptable	level	of	accuracy	can	be	achieved	by	considering	six	points	from	
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the	stress‐strain	curve	of	stainless	steel,	as	shown	in	the	figure.	It	worth	noting	

that	more	accurate	results	can	be	achieved	by	considering	a	larger	number	of	

points	from	the	material	stress‐strain	response.		

2‐ The	 nonlinear	 stress	 diagrams	 in	 the	 compressive	 and	 tensile	 areas	 of	 the	

stainless	steel	member	are	simplified	to	block	diagrams	with	a	constant	stress	

value	of	σ 	and	σ 	which	represent	the	stresses	at	60%	of	the	height	of	the	

compressive	 and	 tensile	 areas	 of	 the	 steel	member,	 respectively,	measured	

from	the	neutral	axis	of	the	stainless	steel	member	(NA‐2	in	Fig.	5).	

3‐ The	 slip	 strain	 (ε )	 at	 the	 concrete‐steel	 interface	 is	 assumed	 to	be	 a	 linear	

function	of	shear	connection	ratio,	β.	

Three	cases	are	considered,	depending	on	 the	position	of	 the	second	NA	(NA‐2	 in	 the	

stainless	steel	section),	as	shown	in	Fig.	7.	Case	1	represents	the	case	where	the	second	

NA	 is	within	 the	web	of	 the	stainless	steel	beam	element	(y h t ,	where	h	 is	 the	

height	of	the	stainless	steel	section	and	yoa	is	the	distance	from	NA‐2	to	the	bottom	fibre	

of	 the	 stainless	 steel	 section,	 as	 shown	 in	Fig.	 7),	 Case	2	 corresponds	 to	 the	 situation	

where	NA‐2	 is	within	 the	 top	 flange	of	 the	stainless	steel	beam	(h y h t )	and	

Case	3	is	when	there	is	no	second	NA	but	there	is	still	some	relative	displacement	between	

the	top	of	the	stainless	steel	section	and	the	concrete	slab	(y h).	

From	Fig.	7,	the	cross‐sectional	curvature	at	failure	of	the	composite	section	is:		

κ min κ 	, κ 	, κ 										for	Cases	1	and	2		

κ min κ 	, κ 																			for	Cases	3		
(19)

where		κ 	;	κ ;	and κ ε y⁄ .	

In	these	expressions,	yoc	is	the	distance	between	the	concrete	NA	(NA‐1)	and	the	bottom	

fibre	of	the	stainless	steel	section,	as	shown	in	Fig.	7(a).	The	slip	strain	at	the	concrete‐

stainless	steel	interface	(ε )	is	determined	as:	

ε ε ε 	 (20)

where	 ε 	 and	 ε 	 are	 the	 strains	 in	 the	 concrete	 and	 the	 steel	 at	 the	 interface,	

respectively.	These	can	be	obtained	from	the	following	expressions:		

ε κ y h 	 (21)

ε κ h y 	 (22)

The	slip	at	the	interface	can	be	found	using	Eq.	23	[35]:	
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ε 1 β
h
2

t
2

	κ α	κ	 (23)

where,	

α 1 β
h
2

t
2

	 (24)

Substituting	Eqs.	21,	22	and	23	into	Eq.	20,	it	can	be	established	that:	

y y α	 (25)

The	 distances	 y 	 and	 y ,	 as	 indicated	 in	 Fig.	 7(a),	 are	where	 constant	 stresses	 are	

assumed,	and	are	calculated	as:	

y 0.6 h y 						for	Case	1	and	2		 (26)

y 0.6y 																		for	Case	1	and	2		 (27)

y y 0.4h										for	Case	3		 (28)

It	is	noteworthy	that	the	distance	ym1	is	not	relevant	in	Case	3	as	the	whole	steel	section	

is	in	compression.	

The	corresponding	stresses	at	y 	and	y 	are	given	by	Eq.	29:	

If				y y y 	

σ σ E κ y ε 				 where i 1,2… ,6	 (29a)

If				y y y 	

σ σ E κ y ε 				 where i 1,2… ,6 	 (29b)

The	strains	shown	in	Fig.	6	are	assumed	to	be	as	follows:	

ε 0;	ε ε . ; 	ε 3ε . ; 	ε 5ε . ; ε 10ε . ; ε 0.3ε ; ε ε 	 (30)

Accordingly,	the	corresponding	stresses	can	be	calculated	as:	

σ 0	

σ σ . 	

σ σ . 1
	

.

∗ 	 .

.

∗ 										i 2,3,4,5		

σ σ 	

(31)

and		E 		and		y 	are	given	as:	

E 								i 1, … ,6			 (32)

y ε κ⁄ 																			i 0, 1, … . . ,6	 (33)
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As	before,	the	initial	step	to	calculate	the	plastic	bending	capacity	is	to	locate	the	positions	

of	the	neutral	axes	at	failure,	yoa	and	yoc.	The	position	yoa	can	be	obtained	based	on	the	

equilibrium	of	horizontal	forces,	given	as:	

F F F F F 								for	Case	1	 (34a)

F F F F F 								for	Case	2	 (34b)

F F 																																											for	Case	3	 (34c)

From	Fig.	7,	the	relationship	between	the	internal	forces	and	yoa	can	be	readily	obtained.	

Substituting	the	resulting	expression	of	the	internal	forces	into	Eqs	34a‐c,	the	following	

equations	are	obtained:	

y .

.
																			for	Case	1	 			(35a)

y .

.
																		for	Case	2	 (35b)

y H α
. 	

σ 																																																				for	Case	3	 (35c)

Firstly,	the	position	yoa	can	be	found	using	Eq.	35	together	with	Eqs.	26‐33,	by	adopting	a	

trial	and	error	approach.	Finally,	the	plastic	bending	capacity	of	the	composite	beam	can	

be	calculated	by	taking	the	moment	of	the	internal	forces	about	any	point	of	the	cross‐

section	of	the	composite	beam.	The	flow	chart	of	the	algorithm	to	calculate	the	position	

of	neutral	axes	and	the	bending	moment	capacity	is	shown	in	Fig.	8.	

5	‐	Development	of	the	numerical	model	

There	 are	 no	 tests	 available	 in	 the	 literature	 on	 the	 flexural	 behaviour	 of	 composite	

stainless	steel‐concrete	beams.	Therefore,	a	numerical	model	is	developed	in	the	current	

section	 to	 examine	 the	 proposed	 analytical	 solutions.	 Shamass	 and	 Cashell	 [36]	

previously	 developed	 a	 finite‐element	 (FE)	 model	 using	 the	 ABAQUS	 software	 for	

composite	 concrete‐steel	 beams	made	 from	 either	 normal	 or	 high	 strength	materials.	

This	numerical	model	was	shown	to	be	capable	of	accurately	predicting	the	behaviour	of	

composite	beams	in	terms	of	bending	moment	capacity,	initial	bending	stiffness	and	also	

the	 interaction	 performance	 for	 composite	 members	 with	 full	 or	 partial	 shear	

connections.	 The	 same	 numerical	 model	 is	 utilised	 herein	 to	 examine	 the	 proposed	

analytical	solutions	for	stainless	steel‐concrete	composite	beams.		A	brief	description	of	

the	model	is	included	in	the	current	paper	and	a	more	detailed	description	can	be	found	

elsewhere	[36].	
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The	model	is	developed	using	the	ABAQUS	finite	element	software	[37],	which	is	capable	

of	achieving	numerical	convergence	despite	the	geometric	and	material	nonlinearities	of	

the	 behaviour.	 The	 implicit	 dynamic	 solution	 method	 for	 quasi‐static	 behaviour	 is	

employed,	which	provides	good	convergence	behaviour.	 	This	method	uses	an	implicit	

time	integration	scheme	to	calculate	the	transient	dynamic	or	quasi‐static	response	of	a	

system.	The	 flat	 concrete	 slab	and	steel	beam	are	modelled	using	shell	 elements	with	

reduced	integration,	namely	the	S4R	element	in	ABAQUS.	This	element	is	widely	used	for	

construction	 applications	 because	 it	 provides	 accurate	 results	 for	 both	 thin	 and	 thick	

shells	in	an	efficient	manner.	The	shear	studs	are	modelled	using	Cartesian	connectors	

available	 in	 the	 ABAQUS	 library,	 which	 connect	 a	 node	 in	 the	 beam	 flange	 with	 a	

coincident	node	in	the	slab	at	the	connector	location.	The	nonlinear	load‐slip	relationship	

of	the	shear	connectors	is	modelled	based	on	the	relationship	proposed	by	Ollgaard	et	al.	

[38].		In	the	present	FE	model,	the	strength	of	the	shear	connector	is	equal	to	the	total	

compressive	normal	force	in	the	concrete	flange	divided	by	the	number	of	shear	studs	in	

the	shear	span	(i.e.	Pstud	=	Fc/NSC	where	NSC	is	the	number	of	shear	connectors	in	the	

shear	span).	A	hard	contact	without	 friction	 is	defined	between	 the	bottom	surface	of	

concrete	slab	and	the	top	surface	of	top	flange	of	the	steel	beam.	Load	is	applied	to	the	

beam	through	concentrated	point	loads,	operated	in	displacement‐control,	at	locations	

along	the	member	which	are	defined	by	the	user.		

In	terms	of	the	material	modelling,	the	nonlinear	stress‐strain	relationship	of	concrete	in	

compression	is	represented	using	Eq.	36,	in	accordance	with	Eurocode	2	[34]:	

σ
k	

ε
ε

ε
ε

1 k 2
ε
ε

f ,				0 ε ε 	
(36)

	

In	this	expression,	ɛcu1	is	the	nominal	ultimate	strain,	ɛc1	is	the	strain	at	the	peak	stress	

and	fcm	is	the	ultimate	compressive	strength	of	concrete,	given	by:	

f f 8	 (37)

where	fck	is	the	characteristic	cylinder	strength.	The	parameter	k	is	given	by:	

k 1.05	E
ε
f

	 (38)

while	Ecm	is	the	elastic	modulus	of	concrete,	determined	as:	

E 22 0.1	f . 	 (39)

The	concrete	strain	at	the	peak	stress,	ɛc1,	is	obtained	as	a	percentage	as:	
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ε 0.7 f . 2.8	 (40)

The	nominal	ultimate	strain	(ɛcu1),	as	a	percentage,	is	given	by:		

ε 2.8 27 98 f /100 	for	f 50 N/mm ,		otherwise		3.5	 (41)

On	 the	 other	 hand,	 the	material	model	 for	 the	 stainless	 steel	 beam	 in	 the	 composite	

member	 is	 represented	 using	 the	 two‐stage	 stress‐strain	 relationship	 proposed	

Mirambell	and	Real	[31]	and	Rasmussen	[28]	and	described	earlier	in	Section	4.1.	The	full	

material	model	is	presented	in	Eq.	42:	

ε

σ
E

0.002
σ
σ .

																	 for 0 σ σ .

ε .
σ σ .

E
ε∗

σ σ .

σ σ .
for σ . σ σ

	 (42)

where	ε∗ ε ε .
. 	and	ε	and	σ	are	the	uniaxial	strain	and	stress,	respectively.	

The	 true	stress‐strain	curve	calculated	 from	the	engineering	stress‐strain	relationship	

can	be	calculated	as	follows:	

σ σ 1 ε 	
(43)

ε ln	 1 ε 	

6‐	Validation	of	the	proposed	analytical	models	

						6.1‐	Full	shear	connection	

The	 plastic	 bending	 capacity	 results	 obtained	 numerically	 are	 compared	 with	 those	

obtained	using	the	full	analytical	analysis	proposed	in	Section	4.2.2.	Two	cross‐sections	

are	used	in	the	validation	and	their	geometries	are	presented	in	the	Table	2.	The	shear	

studs	are	located	uniformly	along	the	entire	span	of	the	composite	beam	and	the	total	

number	of	shear	studs	in	the	shear	span	is	25.	Six	different	grades	of	stainless	steel	are	

used	in	the	analysis,	and	their	material	properties	are	taken	from	Eurocode	3‐Part	1‐4	

[23]	and	presented	in	Table	3.	

Tables	 4	 and	 5	 present	 the	 bending	moment	 capacities	 obtained	 from	 the	 numerical	

analysis	 (MFE)	 as	 well	 as	 from	 the	 full	 and	 simplified	 analytical	 method	 (Man,full	 and	

Man,simp,	respectively)	for	beams	S1	and	S2.	It	is	observed	that	a	very	good	agreement	is	

achieved	between	the	ABAQUS	and	both	set	of	analytical	predictions.	For	beam	S1,	the	

full	 and	 simplified	 analytical	 expressions	 slightly	 underestimate	 the	 bending	moment	

capacity	in	all	cases	but	the	error	is	always	within	5%.	On	the	other	hand,	for	S2	which	is	

a	larger	section,	the	full	analytical	model	generally	overestimates	the	capacity	(all	cases	
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except	 one)	 but	 only	 by	 up	 to	 3%	 while	 the	 simplified	 analytical	 model	 generally	

underestimates	the	capacity	(in	all	cases	except	one)	but	only	by	up	to	2.5%.	Therefore,	

it	can	be	deduced	that	the	full	and	simplified	analytical	solutions	proposed	in	Section	4.2.2	

and	4.2.3	of	 this	paper,	 respectively,	provide	a	 reliable	and	accurate	prediction	of	 the	

bending	moment	capacity	of	composite	beams	made	from	stainless	steel	with	a	full	shear	

connection.		

In	the	following	analysis,	the	bending	moment	capacity	is	calculated	using	both	the	full	

analytical	 analysis	 proposed	 in	 Section	 4.2.2	 and	 the	 simplified	 analytical	 expression	

proposed	in	Eq.	18.	In	order	to	examine	the	accuracy	of	the	simplified	analytical	analysis	

for	a	wide	range	of	the	material	and	geometrical	properties,	various	stainless	steel	grades	

are	included	in	the	study	(austenitic,	duplex	and	ferritic	grades)	as	well	as	two	different	

concrete	strengths	(C40	and	C50)		and	different	cross‐section	geometries,	as	shown	in	

Table	 6.	 The	 bending	moment	 capacities	 predicted	 by	 the	 full	 analytical	 analysis	 are	

presented	together	with	those	obtained	using	the	simplified	expressions	in	Fig.	9.	It	can	

be	 seen	 that	 the	 predicted	 bending	 moment	 capacity	 obtained	 using	 the	 simplified	

analytical	analysis	are	in	very	good	agreement	with	the	corresponding	values	obtained	

from	 the	 full	 analysis.	 Generally,	 the	 average	 deviation	 is	within	 2%.	 In	 all	 cases,	 the	

simplified	 equation	 predicts	 slightly	 lower	 values	 than	 the	 more	 detailed	 model	 but	

nevertheless,	 given	 the	 data	 presented	 in	 Fig.	 9,	 it	 is	 concluded	 that	 the	 simplified	

analytical	analysis	developed	in	this	study	is	adequate	for	predicting	the	bending	strength	

of	 composite	 beams	 for	 specimens	 made	 from	 various	 concrete	 and	 stainless	 steel	

materials	 with	 a	 full	 shear	 connection.	 Moreover,	 given	 the	 significant	 additional	

complexities	 involved	 in	 achieving	 a	 solution	 for	 the	 full	 model	 compared	 with	 the	

straightforward	 solution	 of	 the	 simplified	 expressions,	 it	 is	 clear	 that	 the	 simpler	

expressions	provide	a	valuable	option,	particularly	for	designers	who	may	not	have	the	

time	or	expertise	to	solve	the	detailed	expressions.		

In	order	to	illustrate	the	stress	distribution	through	the	cross‐section,	Fig.	10	presents	

these	results	from	both	the	full	and	simplified	analytical	models	for	the	composite	beam	

with	full	shear	connection	using	a	S1	section	in	grade	1.4003	ferritic	stainless	steel	which	

acts	compositely	with	a	concrete	slab	made	from	C40	concrete.		It	is	clear	that	although	

the	shape	of	 the	stress	distributions	through	the	section	are	quite	different,	 the	stress	

values	at	key	locations	are	quite	similar.			

			6.2‐	Partial	shear	connection	
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In	Fig.	11,	the	bending	moment	capacity	results	obtained	using	finite	element	analysis	of	

composite	beams	with	partial	shear	connection	are	compared	with	those	obtained	using	

the	 analytical	 procedure	 developed	 in	 this	 paper.	 For	 illustration	 purposes,	 the	

comparison	 is	presented	 for	 composite	beam	S1	with	C40	 concrete	 and	grade	1.4003	

stainless	steel.	The	degree	of	shear	connection	ranges	from	0.4	to	1	in	the	analysis.		The	

results	show	a	reasonable	agreement	between	the	FE	and	analytical	prediction	with	the	

deviation	between	the	predictions	ranging	between	4%	and	7%.		These	errors	are	slightly	

larger	than	those	presented	for	beams	with	full	shear	connection	and	this	is	likely	to	be	

due	to	the	different	assumptions	that	are	made	regarding	the	stress	distribution	in	the	

cross‐section.	Nevertheless,	Fig.	10	shows	that	the	simplified	analytical	solution	provides	

conservative	bending	capacity	compared	to	the	numerical	results.		

	

7	‐Conclusions	

Current	design	codes	for	steel‐concrete	composite	beams	neglect	strain	hardening	of	the	

steel	member.	Although	this	is	a	reasonable	assumption	for	carbon	steel,	stainless	steel	

is	a	very	ductile	material	which	demonstrates	significant	levels	of	strain	hardening.	The	

current	research	presents	an	adaptation	of	 the	continuous	strength	method	(CSM)	 for	

composite	 beams	 made	 from	 stainless	 steel,	 to	 predict	 the	 plastic	 bending	 moment	

capacity	for	members	with	full	and	partial	shear	connection.	Two	different	models	are	

presented,	namely	a	full,	detailed	model	as	well	as	a	more	simplified	approach.	Since	no	

tests	 have	 been	 conducted	 on	 stainless	 steel‐concrete	 composite	 beams,	 a	 validated	

finite‐element	model	is	employed	to	investigate	the	accuracy	of	the	proposed	analytical	

approach.	 The	 analytical	 analysis	 in	 the	 full	 model,	 in	 particular,	 requires	 complex	

mathematical	 solution	 and	 therefore	 a	 simplified	 analytical	 solution	 is	 also	 proposed,	

utilising	the	assumptions	of	Eurocode	4.	It	is	concluded	that	both	the	full	and	simplified	

analytical	solutions	presented	in	this	study	provide	an	accurate	prediction	of	the	bending	

capacity.	Moreover,	the	simplified	analytical	approach	also	provides	a	straight‐forward	

design	tool	for	practical	engineers,	which	can	be	applied	for	composite	beams	with	full	or	

partial	shear	connection.	
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Fig.	1:	Typical	stress‐strain	relationship	of	stainless	steel	
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Fig.	2:	The	stress	and	strain	distribution	diagrams	for	composite	beams	with	full	shear	connection	
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Fig.	3:	The	strain	and	stress	distribution	diagrams	for	composite	beams	with	full	shear	connection	based	
on	the	simplified	approach	
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Fig.	4:	Flow	chart	of	the	solution	procedure	
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Fig.	5:	The	strain	and	stress	diagram	for	a	composite	beam	with	partial	shear	connection	
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Fig.	6:	CSM	elastic	and	multi‐linear	hardening	material	model	for	stainless	steel	
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(a) Case	1:	Second	NA	is	within	the	steel	web	

	
(b) Case	2:	Second	NA	is	within	the	steel	flange	

	
(c) Case	3:	No	second	NA	but	slip	strain	occurs	at	the	interface	between	the	steel	and	concrete	

Fig.	7:	The	strain	and	stress	distribution	diagrams	for	partial	shear	connection	composite	beams	based	on	
the	simplified	approach	
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Fig.	8:	Flow	chart	of	the	solution	procedure	
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Fig.	9:	Comparison	between	the	results	from	the	simplified	and	full	model	for	composite	beams	with	full	

shear	connection	
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Fig.	10:	The	stress	distribution	through	the	cross‐section	of	the	composite	beam	
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Fig.	11:	Comparison	between	FE	results	and	corresponding	analytical	results	for	beams	with	partial	shear	

connection	
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Table	1:	Expressions	for	the	internal	forces	and	bending	moments	in	the	cross‐section	for	the	three	cases	

	 Case	1	 Case	2 Case	3	
F 	 0.85	f 	b 	y 	 0.85 f b y 	

	

0.85	f 	b 	y 	

	
M 	

0.85	f 	b
y
2
	 0.85 f b

y
2
	

	

0.85	f 	b
y
2
	

	
F 	

b 	σ ε 	dy	 b σ ε
.

dy	

	

b 	σ ε 	dy	

	
M 	

b σ ε 	y 	dy	 b σ ε
.

y dy	

	

b 	σ ε y	dy	

	
F 	

b σ ε 	dy	

	

b σ ε dy	

	

b 	σ ε 	dy	

	
M 	

b σ ε y	dy	

	

b σ ε y dy	

	

b 	σ ε y	dy	

	
F 	 ‐‐‐‐‐	

t σ ε
. 	

dy	

	

‐‐‐‐‐	

M 	 ‐‐‐‐‐	
t σ ε

. 	
y dy	

	

‐‐‐‐‐	

F 	
t 	σ ε

.

	dy	

	

‐‐‐‐‐	 ‐‐‐‐‐	

M 	
t σ ε

.

	y	dy	
‐‐‐‐‐	 ‐‐‐‐‐	

F 	
t 	σ ε

.

	dy	

	

t σ ε dy	

	

t 	σ ε 	dy	

	
M 	

t σ ε
.

	y	dy	 t σ ε y dy	

	

t 	σ ε y	dy	
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Table	2:	Geometry	of	the	composite	beams	used	for	the	validation	study	

Section	name	 bc	(mm)	 tc	(mm)	 tw	(mm)	 h	(mm)	 bf	(mm)	 tf	(mm)	

S1	 1200	 100	 10.2	 304.8	 152.4	 18.2	

S2	 1500	 100	 12	 400	 190	 18.2	
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Table	3:	Material	properties	of	stainless	steel	[23]	

Type	of	stainless	steel	 Grade	 σ . 	

(N/mm2)	

σ 							

(N/mm2)	

n	 A						

(%)	

Ferritic	

1.4003	 280	 450	 7	 51	

1.4016	 260	 450	 6	 38	

1.4512	 210	 380	 9	 44	

Austenitic	
1.4571	 220	 520	 7	 40	

1.4406	 280	 580	 8	 40	

Duplex	 1.4362	 400	 630	 5	 20	
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Table	4:	Comparison	between	the	numerical	and	analytical	bending	moment	for	the	beam	S1		

Stainless	

steel	

grade	

Concrete	

grade	

FE	bending	

moment	

capacity,	

MFE	(kNm)		

Full	analytical	

bending	moment	

capacity,	Man,full	

(kNm)		

Simplified	analytical	

bending	moment	

capacity,	Man,simp	

(kNm)	

M ,

M 	
		

% 	

M ,

M
	

% 	

1.4003	 C40	 606.5	 588.9	 584	 ‐2.9	 ‐3.7	

1.4016	 C40	 585.0	 565.6	 559	 ‐3.3	 ‐4.4	

1.4512	 C40	 493.0	 476.3	 470.5	 ‐3.4	 ‐4.6	

1.4571	 C50	 567.0	 549.9	 538.6	 ‐3.0	 ‐5	

1.4406	 C50	 664.0	 643.7	 632.2	 ‐3.1	 ‐4.8	

1.4362	 C50	 836.5	 828.0	 818.5	 ‐1.0	 ‐2.2	
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Table	5:	Comparison	between	the	numerical	and	analytical	bending	moment	for	the	beam	S2		

Stainless	

steel	

grade	

Concret

e	grade	

FE	bending	

moment	

capacity,	MFE	

(kNm)		

Full	analytical	

bending	moment	

capacity,	Man,full	

(kNm)		

Simplified	

analytical	

bending	moment	

capacity,	Man,simp	

(kNm)	

M ,

M
	

% 	

M ,

M
	

% 	

1.4003	 C40	 967.2	 977.23	 965	 1.0	 ‐0.2	

1.4016	 C40	 930.0	 939.1	 925	 1.0	 ‐0.5	

1.4512	 C40	 791.0	 789.2	 777	 ‐0.2	 ‐1.8	

1.4571	 C50	 913.0	 916.0	 892	 0.3	 ‐2.3	

1.4406	 C50	 1058.1	 1062.0	 1047	 1.0	 ‐1.05	

1.4362	 C50	 1330.0	 1370.0	 1346	 3.0	 1.2	
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Table	6:	Range	of	material	and	geometrical	parameters	used	in	the	comparison	

n	 σ . 	(MPa) σ 	

(MPa)	

f 	(MPa)	 bc	(m)	 h	(mm)	 bf	(mm)	 tc	(mm)	

5‐21	 200‐400	 500‐660	 30‐50	 1.0‐3.0	 150‐400 100‐250	 80‐200	

 

	


