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Abstract

This work reports on the unstable region and the transition process of the boundary-layer flow

induced by a rotating cone with a half apex angle of 60 degrees using the probability density function

(PDF) contour map of the azimuthal velocity fluctuation, which was first used by Imayama et al.

(Physics of Fluids, vol.24, 2012, 031701) for the similar boundary-layer flow induced by a rotating

disk. The PDF shows that the transition behavior of the rotating-cone flow is similar to that on the

rotating disk. The effects of roughness elements on the cone surface have been examined. For the

cone with roughnesses, we reconstructed the most probable vortex structure within the boundary

layer from the hot-wire anemometry time signals. The results show that the PDF clearly describes

the overturning process of the high-momentum upwelling of the spiral vortices, which due to vortex

meandering cannot be detected in the phase-averaged velocity field reconstructed from the point

measurements. At a late stage of the overturning process, our hot-wire measurements captured

high-frequency oscillations, which may be related to secondary instability.
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I. INTRODUCTION

Flows induced by rotating cones and disks have been investigated as generic models of

three-dimensional boundary layers, e.g., flow over a swept wing [1], flow on turbomachinery

blades [2] and flows related to some chemical applications such as desalination [3] or conden-

sation [4]. The rotating-cone flow is the general case (Fig. 1) where the rotating-disk flow is

a special case with a cone angle of ψ = 90◦. When the cone angle is large (50◦ . ψ ≤ 90◦),

the laminar boundary layer developing from the apex (or center in the case of a disk) is

susceptible to an inviscid cross-flow instability, whereas for small cone angles (ψ . 30◦), the

flow is susceptible to centrifugal instability (ψ = 0◦ corresponding to the flow induced by

a rotating cylinder)[5]. Thus, the rotating-cone flow is a fundamental and interesting flow

manifesting different instabilities depending on the cone angle.

Here, we consider a cone rotating at a rotational rate Ω∗ in still fluid (∗ denotes a dimen-

sional quantity). An orthogonal coordinate system (x, θ, z) is defined as shown in Fig. 1,

where x and z are respectively the coordinates along the generating line of the cone and the

wall-normal direction with the origin located at the apex, and are non-dimensionalized by a

viscous length, δ∗ν =
√
ν∗/(Ω∗ sinψ), where ν∗ is the kinematic viscosity of the surrounding

fluid. θ is the azimuthal coordinate in a frame rotating with the cone surface. When the

cone is rotating a boundary layer forms where the fluid is forced to move with the cone in

the azimuthal direction due to the no-slip condition at the surface, but it is also transported

in the x-direction, hence the cone acts as a centrifugal pump. To compensate for the flow

in the x-direction, fluid is drawn towards the cone surface.

The flow on a rotating disk is known as the von Kármán disk flow. In his seminal paper [6],

von Kármán showed that there exists a similarity solution for the laminar boundary layer

on the rotating disk. A similarity solution can also be obtained for the rotating-cone case

as shown by Ref. [7], which (using the viscous length δ∗ν as a scaling parameter) gives the

same similarity equations as those derived by von Kármán for the rotating disk. The length

along the cone surface is non-dimensionalized as x = x∗/δ∗ν and the square of this value can

be seen as a Reynolds number,

Re =
Ω∗x∗2 sinψ

ν∗
.

On the wider cone (50◦ . ψ ≤ 90◦), the flow is susceptible to inviscid cross-flow in-

stability [8, 9] at sufficiently high Reynolds numbers. This instability gives rise to slightly
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FIG. 1. The coordinate system (x, θ, z) for the rotating cone. We also define a radius r = x sinψ.

The velocity in the azimuthal direction is denoted as V + v where V (x, z) is the averaged velocity

in θ (and time) and v(t;x, z, θ) is the deviation from V at a given position (x, z, θ) as function of

time. The time and θ average of v is zero, but the time average of v is not in general zero at a

fixed position in space.

inclined disturbances with respect to the azimuthal direction and grow with increasing x

to become co-rotating spiral vortices. The disturbances most often and easily observed are

stationary with respect to the rotating surface (i.e. fixed in θ for a specified x) because,

unless a particular time-dependent disturbance is artificially introduced, the disturbances

are primarily triggered continuously by unavoidable surface roughness. For increasing x (or

Re) the disturbance amplitude saturates and the stationary vortices “collapse” leading to

transition from a laminar to a turbulent boundary layer. These vortices are quite similar

to those observed in swept-wing boundary layer [10, 11]. In the recent work by Groot et

al. [11] a comprehensive collection of references to swept-wing boundary-layer stability and

transition can be found.

The stability of the boundary layer on the rotating disk was analyzed by Lingwood [12, 13]

who found an absolute instability, which was proposed to be responsible for the particular

transition Reynolds number found in different experimental studies at that time on smooth

disks, although on rough disks transition will occur at a lower Reynolds numbers [14].

This has led to further studies both through experiments (e.g. [15]) and direct numerical

simulations [16] of the disk flow (an extensive list of the relevant literature for the rotating

disk can be found in [15, 16] and also in a recent review [17]).
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The recent simulations by Appelquist et al. [16] were able to shed some further light

on the transition scenarios on the disk. In the simulations the disturbances were triggered

by a stationary forcing at the wall (imitating discrete surface roughness) and two different

transition scenarios were found, depending on the height of the surface roughnesses or rather

the amplitude of the stationary forcing. With low-amplitude forcing, the onset of secondary

instability was observed before the amplitude of the cross-flow vortices reached the saturation

level but the flow first became turbulent after the primary disturbance amplitude reached the

saturation level. In the case of high-amplitude forcing, the primary disturbance amplitude

reached the saturated level before the onset of the secondary absolute instability, and the flow

underwent transition at the critical Reynolds number for the secondary global instability.

In the latter case, compared with the former, the secondary instability was observed over a

wider range of Reynolds numbers, especially where the spatial gradients of the mean velocity

are large.

These cases with low/high-amplitude forcing correspond to experiments without/with

artificial roughness elements [15, 18], typically with a height of some micrometers, i.e. about

two orders of magnitude smaller than δ∗ν . However, the secondary instability has not been

directly observed in experiments although some flow visualization photographs indicate the

appearance of small wave-length disturbances on top of the stationary vortices (e.g., Fig. 8

in Ref. 19) and some kinks in measured time signals are reported (e.g., Fig. 11 in Ref. 18).

For the transition on the clean disk, an interesting method describing the transition

stages was proposed by Imayama et al [20]. The method graphically shows different flow

characteristics of the transition using the normalized probability density function (PDF)

contour map of the azimuthal velocity fluctuation. The PDF method clearly illuminates

changes in the wall-normal structure of the flow. They inferred that a topological change

in the PDF around 2.0 ≤ z ≤ 2.8 (Fig. 7 in Ref. 20) may represent a secondary instability.

However, as yet, it has not been shown conclusively whether this change corresponds to a

structural change in the spiral vortices or to a secondary instability.

This paper is the first experimental work to report on the detailed changes the cross-flow

vortices on the cone undergo as they develop. Through measurements of the azimuthal

velocity on a cone with ψ = 60◦, for which the inviscid cross-flow instability is expected to

be the primary instability (similar to the disk flow), this work aims to address the follow-

ing issues: (i) effects of the micrometer-sized artificial (regularly spaced in the azimuthal
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direction) roughness elements on the PDF; (ii) interpretation of the PDF, especially the

topological change of the PDF with respect to the vortex structure; (iii) reconstruction of

the vortex structure during its development in x; and (iv) exploration of the experimental

data to find signs of the secondary instability. In addition, the paper provides a comparison

of the cone case with the disk case and comparisons between the PDF and other common

measures describing the transition, e.g., root mean square (rms) and Fourier power spectra

of the velocity fluctuations.

The paper is organized as follows. Section II briefly describes the experimental setup and

methodology and section III describes and discusses the experimental results. It is divided

into four subsections: IIIA shows the mean flow and rms profiles on the cone, whereas

III B shows the PDF plots for two different cone cases and makes a comparison with two

previously measured disk cases. In III C, a method that allows the vortex structures to

be reconstructed from single point data are presented and the resulting vortex structures

are discussed in detail. IIID shows results where the secondary instability is detected in

the some velocity signals and how it is related to vortex meandering. Finally, section IV

gives the conclusion of the work. Appendix A describes in some detail a new calibration

procedure developed for the hot wires, Appendix B provides a comparison of two different

rotational speeds to verify that Reynolds number similarity is valid and Appendix C gives

some examples of merging and splitting of vortices on the clean cone.

II. EXPERIMENTAL SET-UP

The rotating-cone facility consists of a precision-made solid aluminium alloy cone

mounted on an air bearing and driven by a d.c.-motor. The cone has a base diameter

of 474 mm. The cone surface was smoothly finished (resulting in a surface roughness of

approx. 1 µm). The cone was accurately aligned and rotated on the vertical axis (the

rotational imbalance was approx. 10 µm at the edge). At the edge of the cone, a fixed,

horizontal wooden annular plate was positioned flush with the cone surface. The cone was

spun at a rotational speed of 900 rpm. This rotational speed was chosen so that transition

occurs far enough away from the edge of the cone (x = 629) while the vortex structures can

still be sufficiently resolved spatially within the boundary layer.

A single hot-wire probe with its sensing element parallel to the x-direction was used to
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roughness element

FIG. 2. The 60-degree cone with 24 artificial roughness elements that are uniformly mounted on

the cone surface at x∗ = 115.7± 0.5 mm. At the top of the figure, the hot-wire probe can be seen.

Cone rotation is anti-clockwise.

measure the azimuthal velocity component. The hot wire has a sensing length of approx.

0.5 mm and a diameter of 2.5 µm. The probe was moved by means of a two-axes traverse

system in the x- and z-directions. The velocity was measured at fixed points in the laboratory

frame. The signals from a Constant Temperature Anemometer (CTA) and the tachometer

of the driving system were recorded simultaneously during approx. 60 s at a sampling rate of

720 data points per cone revolution. In the following the measured velocity was normalized

by the local wall velocity V ∗
wall = Ω∗x∗ sinψ. From the simultaneous recordings, it is possible

to reconstruct stationary flow structures. For this kind of analysis the velocity signal was

post-processed using a high-pass filter (ω∗/Ω∗ > 15) for x < 510 on the clean cone and for

x < 430 on the cone with roughnesses, where ω∗ is the disturbance angular frequency (in

the lab frame). Note that if the vortices are fixed with respect to the cone surface, then

ω∗/Ω∗ = ω gives the azimuthal wavenumber.

Further details of the driving system and data acquisition can be found in Ref. 20 and

21. Compared with Ref. 20 and 21, two changes were made when the disk was replaced by

the cone: a) the traversing system was separated from the driving system and was placed

directly on the laboratory floor; and b) some electrical changes to the electrical configuration

were made (introducing ferrite cores and shielding the cables). These changes improved the
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noise-signal ratio and helped to better resolve the early development of the flow instability

when the amplitudes were low.

For accurate calibration and positioning of the hot wire in the boundary layer, a new

calibration methodology was developed. In the work on the rotating disk by Imayama et

al. [20] the calibration of the hot wire was completed using the laminar boundary layer

profile by first optically determining the position of the probe accurately with respect to the

disk surface. However, for the cone case the optical determination of distance from the wall

was less accurate due to the curved surface; instead the calibration curve and the distance

from the cone surface to the hot wire was simultaneously obtained based on a least-square

method from measurements in the laminar boundary layer. The details can be found in

Appendix. A.

In order to introduce reproducible stationary disturbance, artificial roughness elements

were mounted on the cone surface. As shown in Fig. 2, 24 artificial roughness elements

were mounted uniformly in the azimuthal direction (at angular intervals of 15 ± 0.3◦) at

x∗ = 115.7± 0.5 mm corresponding to x = 267. The number of 24 was chosen based on the

measurements taken for the clean cone (the results are discussed with Fig. 6) so that vortex

structures similar to those seen without roughness elements can be studied. The roughness

elements are located slightly upstream of the neutral stability point so that the harmonics

introduced by the roughness decay and the first-amplified disturbance consists entirely of

the fundamental component. Dry transfer lettering provided by LetrasetR© (Letraset Ref.

13045) was used to create the roughness elements, which was also the case for Ref. 15. Each

element has a circular shape with a diameter and height of approximately 2 mm and 4 µm,

which correspond to about 5δ∗ν and 0.01δ∗ν , respectively.

III. RESULTS AND DISCUSSIONS

A. Mean and rms profiles

The profiles of the time-averaged azimuthal velocity component V at different x-locations

are shown in Fig. 3. For the clean-cone case (a) and cone with roughnesses (b), the measured

mean profiles (circles) are seen to agree with the similarity solution (solid curves) up to

x = 498 and x = 461, respectively. Upstream of these positions, the 90% boundary-layer
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FIG. 3. Profiles of azimuthal mean velocity V (circles) in the laboratory frame (a) without and

(b) with roughnesses at x = 267. The solid curves show the similarity solution. The thick line

at z = 2.81 indicates the 90% boundary-layer thickness δ90 for the similarity solution, where V

becomes 0.10. The squares with the dashed lines show the measured 90% boundary-layer thickness.
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FIG. 4. Profiles of rms of azimuthal velocity vrms (circles) (a) without and (b) with roughnesses at

x = 267. The thick line at z = 2.81 indicates the 90% boundary-layer thickness for the similarity

solution, where V becomes 0.10. The squares with the dashed lines show the measured 90%

boundary-layer thickness. The dotted lines indicate the height z = 1.2 where measurements for

Fig. 5(b) and (c) were conducted.
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thickness δ∗90, where V becomes 10% of V ∗
wall, also agrees with that based on the similarity

solution, i.e. z = 2.81. Below x = 498 and x = 461 without/with roughnesses, the difference

between the measured mean velocity and the similarity solution does not exceed 5% of

the local wall velocity. The artificial roughnesses do not seem to affect the time-averaged

laminar profiles although the roughnesses promote transition. Beyond the laminar regime,

the boundary-layer thickness increases significantly and the profile approaches the typical

turbulent profile.

A corresponding behavior is also seen in the rms of the azimuthal velocity vrms in Fig. 4.

In the laminar regime, one peak of vrms is observed, which is caused by the spiral cross-flow

vortices. During the transition process the boundary layer thickens, and the peak of vrms

becomes broader and extends further into the outer layer. In order to further investigate the

process of transition to turbulence, we use the PDF approach in the same manner as Ref. 20

in section III B, where we compare the transition process on the cone with that on the disk

using the PDF map of v around the local maximum of vrms (as shown by the dotted line in

Fig. 4).

B. PDF and the vortex structure

Figure 5 shows four different cases (two disk cases based on data from Refs. 15 and 20

and two cases from the cone of the present study) where the PDF map is used to analyze

the transition scenario. We use Figure 5(a) to describe the general features of the PDF

map, as introduced by Ref. 20 to analyze the transition process. The data are taken from

case I01 and Fig. 6 in Ref. 20, and Fig. 5(a) here shows the PDF of the azimuthal velocity

fluctuation v at z = 1.3 for a case without any artificial roughnesses. At each x-location,

the PDF is normalized by the local maximum. In the early laminar stage, the PDF map

is narrow. Beyond x = 475 (this lower limit depends on the noise level and bin size of

the PDF), the transition process can be classified into four stages according to the PDF as

shown in Figure 5(a):

(i): linear/weakly non-linear stage (475 < x < 540): The PDF contours spread nearly

exponentially.

(ii): strongly nonlinear stage (540 < x < 565): At the beginning of this stage, the slope
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FIG. 5. The PDF of the azimuthal velocity fluctuation v: (a) clean disk at z = 1.3, 1400 rpm from

Ref. [20], (b) 60◦ clean cone at z = 1.2, 900 rpm, (c) 60◦ cone with roughness elements at z = 1.2,

900 rpm and (d) disk with 32 roughness elements at z = 1.3, 1013 rpm from Ref. [15]. In (c) and

(d), the roughness elements are located at x = 267 and 287, respectively. Filled contours indicate

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the local maxima of PDF. Dashed lines

(a) and (b) indicate transition locations reported in Ref. 22. The alphabetical symbols indicate

the sections shown in Fig. 7.

11



of the outer contour of the PDF changes suddenly and PDF begins to be skewed.

(iii): saturation/collapse stage (565 < x < 600): The skewness is positive and decreases

at the end of this stage. Around the middle of this stage, the width of the PDF reaches

its maximum.

(iv): turbulent stage (x > 600): The PDF gradually approaches fully developed turbu-

lent one.

This classification can be connected to characteristic stages of the transition process on

the disk, summarized in Fig. 14 of Ref. [18]. In stage (i), the mean flow is still close to

the similarity solution although the first harmonic in the spectrum has already appeared by

x = 510, indicating the onset of the non-linearity. In stage (ii), the mean flow begins to

change and nonlinear saturation of stationary disturbances occurs at x = 550. On the border

between stages (ii) and (iii), x = 565, the onset of secondary instability and rapid growth

of high-frequency components are reported. At x = 570, the onset of turbulent breakdown

occurs. Through the saturation of total disturbance at x = 585, the flow approaches fully

developed turbulence (x = 650) in stage (iv).

The other cases shown in Fig. 5 compare the PDF with the classification mentioned

above. Figure 5(b) shows the case for the clean cone (ψ = 60◦) rotating at 900 rpm. It

show a good agreement with the clean disk in (a) except for stage (ii) (the reason for the

sensitivity of the sign of the skewness will be explained by Fig. 7). Figure 5(c) and (d)

show cases for the cone and disk with artificial roughness elements mounted uniformly in

the azimuthal direction. The data for (d) were taken from Ref. 15, corresponding to the case

IP01R32, and has not been shown as a PDF map before. In Fig. 5(a) and (b), the transition

locations measured by Kobayashi and Izumi [22] are also shown by dashed lines as another

reference (x =
√
Re = 5.7 × 102 and 5.2 × 102). Both their work and our measurements

show that transition occurs earlier on the cone as compared to the disk. As is well known

for the rotating-disk case, stability and transition are functions of the Reynolds number and

not the rotational speed per se. The same holds for the cone as can be seen in Appendix B.

The effect of the artificial roughness elements can be seen clearly in stage (i) when com-

paring the different cases in Fig. 5. The roughnesses mounted uniformly in the azimuthal

direction give rise to uniform vortices resulting in a sinusoidal time signal, shown as sym-

metric double maxima for positive and negative v in Fig. 5(c) and (d). In contrast, the
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FIG. 6. Fourier power spectra E of azimuthal velocity component v at z = 1.2 for different x-

locations on (a) clean cone and (b) cone with roughness elements: ω∗ indicates the disturbance

angular frequency in the lab frame. Thus, for vortices fixed with respective to the cone surface,

ω∗/Ω∗ indicates the azimuthal wavenumber.

non-uniform roughnesses on the clean cone/disk result in an amplitude-modulated time sig-

nal, giving a single maxima around v = 0 in (b) and (a) (see Fig.9(a) in Ref. 18). In the later

stages (iii) and (iv), all cases show similar PDFs and no significant effect of the roughness

elements was observed in the PDF.
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FIG. 7. The PDF of the azimuthal velocity fluctuation v showing the z-structure at different x-

locations: (A) x = 498, (B) x = 516, (C) x = 535, (D) x = 554, (E) x = 591 on the clean cone (cf.

Fig. 5(b)), and (A′) x = 461, (B′) x = 479, (C′) x = 498, (D′) x = 516, (E′) x = 535 on the cone

with roughness elements (cf. Fig. 5(c)).

As another characterization, Fourier power spectra from time signals measured on the

cone at z = 1.2 are shown in Fig. 6. Here, we calculated the spectrum with a frequency reso-

lution of ∆ω∗/Ω∗ = 0.2 based on Welch’s method with a segment length of 5 cone revolutions

and 0% overlap (The time signal was split into segments and the spectrum was calculated

for each segment. Finally, these spectra were averaged.). The power spectral density E of

the fluctuation v (without high-pass filtering) is shown for different x-locations on the clean

cone (a) and the cone with roughness elements (b). On the clean cone, a broad peak for
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12 . ω∗/Ω∗ . 36 is observed at x = 328 for which the amplitude increases with x. This

broad peak contains spikes at integer values of ω∗/Ω∗, indicating the stationary disturbances

with respect to the cone surface, namely, the stationary spiral vortices. Similar spikes were

also observed on the clean disk in Ref. [18, 23]. Initially, the dominant wavenumber in the

peak changes within a range of 20 to 26 in repeated measurements with the same setup

(probably due to the slight change of the surface roughness on the clean cone). From this

observation, we determined the number of roughness elements as 24. At x ≈ 462, the first

harmonic (40 . ω∗/Ω∗ . 60) appears, indicating the onset of non-linearity. As x increases,

further higher harmonics appear. At x = 535, the higher harmonics at ω∗/Ω∗ > 140 begin

to disappear and the spectrum becomes smooth. On the cone with roughness,the sharper

peak initially appears at ω∗/Ω∗ = 24, which demonstrates the sensitivity of the initially

most-amplified wavenumber to the roughness on the surface. At x = 328, no harmonics are

observed. The first harmonic at ω∗/Ω∗ = 48 is seen at x = 382. As x increases, further

higher harmonics appear at multiples of ω∗/Ω∗ = 24. Thus, the basic trends between the

clean and artificially excited cones are similar although the transition location shifts and the

dominant wavenumber changes slightly.

To capture the flow structure normal to the wall, the PDF of v is calculated as a function

of z and the results are shown at some different x-locations in Fig. 7. The figure shows

PDFs at the sections marked by (A-E) for the clean cone in Fig. 5(b) and (A′-E′) for the

cone with roughness elements in Fig. 5(c).

Each column of Fig. 7 shows a similar PDF structure although the x-locations are shifted

to lower values for the cone with roughness elements. The x-positions for the roughness case

were chosen in order to show similar PDF structures in both cases. The spatial resolution

(in z) of the plots for the case with roughness is lower than for the clean cone case, which

is due to fewer measurement points. In Fig. 7(A), the PDF is symmetric around the mean

value within the boundary-layer. In (B) and (A′), the lower (z . 1.2) and upper parts

(z & 1.2) of the boundary layer show negative and positive skew, respectively, indicating

downwelling low-momentum fluid at low z and upwelling high-momentum fluid at high z

due to the spiral vortices. It should be noted that the symmetric PDF is observed only

in a narrow range around z ≈ 1.2. If the measurement position is slightly shifted toward

larger/smaller z, the PDF would have a positive/negative skewness. This sensitivity affects

the sign of the skewness in stage (ii) of Fig. 5.
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FIG. 8. Velocity fluctuation v for single revolutions (thin colored lines to the left; blue, green

and red lines indicate v for revolution numbers 300, 301 and 302, respectively.), phase-averaged

velocity ṽ (thick black line to the left) and v for the whole sample set (to the right) at x = 479 (B′

in Fig. 5 and Fig. 7). The line plots and contours (dark and light indicate negative and positive,

respectively) are scaled by 3 times the local rms of the azimuthal velocity vrms, corresponding to

(a) ±3vrms = ±2.4 × 10−1 at z = 0.6; (b) ±3vrms = ±2.8 × 10−1 at z = 1.2; and (c) ±3vrms =

±2.0 × 10−1 at z = 2.4. The detected location of the vortex is marked by the red line on the

right-hand plot (see 10◦ . θ . 30◦). 16



FIG. 9. Velocity fluctuation v for single revolutions (thin colored lines to the left; blue, green

and red lines indicate v for revolution numbers 300, 301 and 302, respectively.), phase-averaged

velocity ṽ (thick black line to the left) and v for the whole sample set (to the right) at x = 498 (C′

in Fig. 5 and Fig. 7). The line plots and contours (dark and light indicate negative and positive,

respectively) are scaled by 3 times the local rms of the azimuthal velocity vrms, corresponding to

(a) ±3vrms = ±3.7 × 10−1 at z = 1.2; (b) ±3vrms = ±2.6 × 10−1 at z = 2.4; and (c) ±3vrms =

±2.5 × 10−1 at z = 3.2. The detected location of the vortex is marked by the red line on the

right-hand plot (see 20◦ . θ . 45◦). 17



In (C), (B′) and (C′), double maxima appear for z & 1.2. In (D) and (D′), where the

breakdown has started, the branched maximum extends to the upper layer. In (E) and

(E′), the PDF becomes smoother. A similar structure is also observed in the clean disk case

(Fig. 7 in Ref. 20).

To further understand the origin of the double maxima in Fig. 7(C), (B′) and (C′), the

azimuthal velocity fluctuation v is assessed at two different x (x = 479 and 498) in Figs. 8

and 9 for the case with artificial roughness (corresponding to sections denoted by B′ and C′

in Figs. 5 and 7). The gray contour plots on the right-hand side of the figures show v for the

whole sample. Here, the ordinate gives the angle along the cone whereas the abscissa shows

the cone revolution number. The measured velocity is plotted vertically (with a black/white

color scale.) and for the next revolution the plotting is starting over. The left-hand curves

in the figures show both the phase-averaged signal for all revolutions (thick black line) and

velocity signals for three consecutive revolutions (for the revolution numbers 300-302; these

revolutions are picked more or less arbitrarily, similar results would be obtained for other

choices as well. They are shown by the thin colored lines.) at three different z. Note that

the signals for the different z are not simultaneous. In each figure, only data for a quarter

of a cone (0◦ ≤ θ ≤ 90◦) are shown.

The data for the three revolutions indicate that the branched maximum in z & 1.2 at

x = 498 in Fig. 7(C′) is caused by a plateau in the v-signal seen for the three revolutions in

Fig. 9(b) and (c). As z increases, the plateau is observed at higher values of v. Therefore,

the branched maximum in Figure 7(C′) shifts toward higher v. A similar plateau or small

kink is also shown in Fig. 8(b) although it is not as clear. According to Fig. 7, this feature

seems to be common both in the cases with and without roughnesses.

The gray contours on the right of Figs. 8 and 9 show that the spiral vortices actually move

in the azimuthal direction during the cone revolutions although they are usually denoted as

“stationary” vortices. Interestingly, all vortices shift in the same way simultaneously and

the number of vortices remains the same as the number of roughnesses, which is consistent

with the sharp peak in the spectra shown in Fig. 6(b). The red line on each contour plot of

Figs. 8 and 9 shows the location of the vortices. The location was detected in the following

way. First, the time signal was divided into 24 segments of 15 degrees each. Then, we

took the phase-average of the 24 segments, and found the minimum and the corresponding

angle, which is denoted as the vortex location. This vortex detection was completed for
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all revolutions. To make sure not to misinterpret a minimum that leaves the 15-degree

segment and enters on the other side of the segment, the distance between minima for two

consecutive revolutions is minimized. The shift can be of the order of ∆θ = 10◦ even though

the origin of each vortex is fixed by an artificial roughness. The typical timescale of this

vortex meandering is of the order of 10 to 100 revolutions. The location of the vortices is

used for the reconstruction of the most probable vortex structure in the next section.

In contrast, on the clean cone the number of vortices varies through merging and splitting

of the vortices (see Appendix B for details). In the clean case, the origins of the vortices are

not uniformly distributed in x or in θ. Furthermore, their amplitude (albeit small) can also

vary. This results in a broad spectral peak as seen in Fig. 6(a). Because of the meandering

of the spiral vortices, the plateau related to the branched maximum is smoothed out in the

phase-averaged velocity.

C. Reconstruction of the vortex structures

In order to understand what the plateau in the velocity signal (described in the previous

section) indicates, we reconstructed the most probable spiral vortex structure from the time

signal of the hot-wire measurements. The vortex detection mentioned above was conducted

for all z-positions. The gray contours in Fig. 10 indicate the probability density function

of the detected location of the vortices at different x-locations. At each wall height, the

mean location is marked by the cross. In order to reconstruct a smooth “snapshot” of the

most probable vortex structure, the most probable location of the vortex is determined by a

linear fitting to the mean locations based on the least-square method. The red straight lines

in Fig. 10 show the most probable location, leaning towards positive θ for all x-locations.

As can be seen the variation around the mean locations increases with x. We regarded 100

samples with the vortex located close to the fitting line as the most probable samples and

calculated the phase-averaged field from the 100-sample population to give a “snapshot” of

the most probable vortex structure. The variation of the detected locations within the 100

samples within 2.0 degrees. Thus, the reconstructed “snapshot” shows a quasi-frozen vortex

structure.

Figures 11, 12 and 13 show θz-planes from the reconstructed snapshots, based on the

100-sample populations discussed above. Three x-positions, x = 461, 479 and 498, are
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FIG. 10. Probability density function of the azimuthal location of the spiral vortex at (a) x = 461,

(b) x = 479 and (c) x = 498: the red cross shows the mean azimuthal locations of the whole

population (approx. 900 revolutions) at each wall height. The most probable location of the

vortex is determined by a linear fitting of the mean locations (shown by the straight lines). The

most probable 100 samples were extracted around the most probable location of the vortex.

20



shown (corresponding to sections A′, B′ and C′ in Fig. 5 and Fig. 7). Plot (a) in each figure

shows the phase average of the azimuthal velocity field V + 〈v〉 of the sample population,

where V (z;x) is the mean velocity shown in Fig. 3(b), and 〈v〉 denotes a phase average of

the velocity v(θ, z;x) of the 100-sample population. The fields are shown in the laboratory

frame (hence, V + 〈v〉 = 1 at the wall). All three figures show a wavy flow field as expected.

Plot (b) in each figure shows 〈v〉, i.e. the velocity with the mean subtracted, whereas (c)

and (d) show the spatial gradients of ∂(V + 〈v〉)/∂z and ∂〈v〉/(r∂θ), respectively. Finally

(e) shows the rms of the 100-sample revolutions (plots (c)-(e) will be discussed in the next

section). In each figure, only data for one sixth of the cone (0◦ ≤ θ ≤ 60◦, covering four

vortices) are shown. As discussed in relation to Fig. 5, the disturbances introduced by the

artificial roughnesses develop uniformly although the variation among the vortices increases

downstream.

Figures 11, 12 and 13(b) provide a clearer explanation of the z-structure shown in

Fig. 7(A′), (B′) and (C′). In Fig. 11(b), positive (negative) 〈v〉 occupies the wider area in

z . 1.2 (z & 1.2), corresponding to the maximum in the positive (negative) v in Fig. 7(A′).

A similar inclined structure is also observed in DNS for the disk case (Fig. 11 in Ref. 24).

In Fig. 12(b), the high-momentum upwelling region begins to be distorted and a spacing

appears between high- and low-momentum regions in 1.2 . z . 1.5 (12◦ . θ . 15◦,

27◦ . θ . 30◦ and 41◦ . θ . 45◦), corresponding to the branched maximum in Fig. 7(B′).

Further away from the wall, the branched maximum in the PDF indicates the top part of

the high-momentum upwelling. In Fig. 13(b), the distortion and spacing become more sig-

nificant and the branched maximum extends toward the outer layer in Fig. 7(C′). Thus, the

branched maximum in Fig. 7(B′) and (C′) indicates the distortion of the high-momentum

area, or overturning process of the high-momentum upwelling.

The detailed overturning process discussed above is not observable in the phase-averaged

velocity field ṽ. As observed in Fig. 8 and Fig. 9, the vortex meandering causes phase-shifting

of the waveforms and each plateau is smoothed out in the phase-averaged velocity. However,

the PDF extracts only the value of v without the phase and is, therefore, unaffected by the

phase-shifts. Thus, the PDF detects the overturning process from the point measurement

without any complicated vortex-location detection. The PDF can probably also detect the

overturning process (in a time-averaged sense) on the clean cone (see the similar branched

maxima in Fig. 7(C) and in Fig. 7(C′)), even when vortex splitting and merging occur
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and the reconstruction of the snapshot becomes more difficult. This is clearly a distinct

advantage of the PDF method.

D. Secondary instability and vortex meandering

To investigate the secondary instability, we evaluate the mean-flow distortion. In Figs. 11,

12 and 13(c), the stronger shear in the z-direction appears in the near-wall region (z ≤ 1.5),

where the low-momentum downwelling exists, while the shear becomes weaker but extends

toward the far-wall region on the high-momentum upwelling. In plot (d) of each figure, the

larger magnitude of (negative/positive) θ-gradients can be observed between the high- and

low-momentum areas. As x increases, the areas become more asymmetric and the positive θ-

gradient extends to the outer layer more significantly. These areas having a large magnitude

of z- and θ-gradients are marked by the isolines of ±0.2 in each plot (e).

The gray contours in Figs. 11, 12 and 13(e) show the rms of the most probable 100-sample

revolutions, indicating that the areas having the high rms overlap with the areas with large

spatial gradients. We also conducted this evaluation with different numbers of samples, e.g.,

20 and 50 samples although only results using 100 samples are shown here. We found the

same overlapping structures regardless of the number of samples. These results indicate

that the rms is mainly caused by non-stationary disturbances rather than the slight shift of

the meandering vortices within the sample population. A similar structure is also observed

around the breakdown in swept-wing boundary layers (e.g. Fig. 28 in Ref. 10).

Another point of interest is the relation between the secondary instability and vortex

meandering. Figure 14 shows the “sorted” azimuthal velocity fluctuation v at x = 498

for three different z; the same data as Fig. 9 are shown but all the revolutions are sorted

according to the detected vortex location, which is marked by the solid white curve. As

can be seen for all three z-positions all vortices are in phase across the entire cone. The

data on the left side of the figures correspond to the revolutions in which the vortices are

located upstream (smaller θ). Figure 14 indicates that irregular oscillations appear more

significantly on the right side of the figure (data where the vortices are located downstream)

than on the left side. These oscillations were not clearly observed at x = 461 and 479;

Taking a close look at Fig. 9, one can see the irregular oscillations, e.g., around the 700th

revolution in Fig. 9(a) but not in Fig. 8.
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FIG. 11. Reconstructed vortex structures based on the 100-sample population at x = 461 (A′

in Fig. 5 and Fig. 7): (a) phase-averaged azimuthal velocity V + 〈v〉; (b) 〈v〉; (c) z-gradient of

the phase-averaged azimuthal velocity ∂(V + 〈v〉)/∂z; (d) θ-gradient of the of the phase-averaged

azimuthal velocity ∂〈v〉/(r∂θ); and (e) rms of the 100 samples. The lines in (a), (c) and (d) are

the same and show contours with a spacing of 0.1. The lines in (b) show contours with a spacing

of 0.05. The green and red contours in (e) indicate isoline of ±0.2 in the z- and θ-gradients of the

mean flow. Negative contours are dashed.
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FIG. 12. Reconstructed vortex structures based on the 100-sample population at x = 479 (B′

in Fig. 5 and Fig. 7): (a) phase-averaged azimuthal velocity V + 〈v〉; (b) 〈v〉; (c) z-gradient of

the phase-averaged azimuthal velocity ∂(V + 〈v〉)/∂z; (d) θ-gradient of the of the phase-averaged

azimuthal velocity ∂〈v〉/(r∂θ); and (e) rms of the 100 samples. The lines in (a), (c) and (d) are

the same and show contours with a spacing of 0.1. The lines in (b) show contours with a spacing

of 0.05. The green and red contours in (e) indicate isoline of ±0.2 in the z- and θ-gradients of the

mean flow. Negative contours are dashed.
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FIG. 13. Reconstructed vortex structures based on the 100-sample population at x = 498 (C′

in Fig. 5 and Fig. 7): (a) phase-averaged azimuthal velocity V + 〈v〉; (b) 〈v〉; (c) z-gradient of

the phase-averaged azimuthal velocity ∂(V + 〈v〉)/∂z; (d) θ-gradient of the of the phase-averaged

azimuthal velocity ∂〈v〉/(r∂θ); and (e) rms of the 100 samples. The lines in (a), (c) and (d) are

the same and show contours with a spacing of 0.1. The lines in (b) show contours with a spacing

of 0.05. The green and red contours in (e) indicate isoline of ±0.2 in the z- and θ-gradients of the

mean flow. Negative contours are dashed.
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FIG. 14. Velocity fluctuation v (gray contour) sorted by the detected vortex location (shown by

the solid curve) at x = 498 (C′ in Fig. 5 and Fig. 7). The cross shows the mean location of the

vortex at each wall height: (a) z = 1.2, (b) z = 2.4 and (c) z = 3.2. The data between two squares

were used for the reconstruction. The contours are scaled in the same way as in Fig. 9. The dashed

lines indicate the data shown in Fig. 15.
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(a)

(b)

(c)

FIG. 15. Velocity fluctuation v at x = 498 (C′ in Fig. 5 and Fig. 7) on the cone with roughnesses for

different vortex locations during the vortex meandering: the curves from the bottom to top in each

figure show the velocity fluctuation v for the 20th, 150th, 300th, 600th, 750th, 870th revolutions

of the sorted data, corresponding to the data marked by the dashed lines in Fig. 14. The plots

are scaled by twice the local rms of the azimuthal velocity vrms, corresponding to (a) ±2vrms =

±2.5 × 10−1 at z = 1.2; (b) ±2vrms = ±1.7 × 10−1 at z = 2.4; and (c) ±2vrms = ±1.7 × 10−1 at

z = 3.2.
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(a)

(b)

(c)

FIG. 16. Velocity fluctuation v for typical single revolutions when the vortex is shifted (relative to

the mean vortex position) upstream (bottom), intermediate (middle) and downstream (top). All

data correspond to those marked by the dashed lines in Fig. 22 (x = 535 on the clean cone, C

in Fig. 5 and Fig. 7). Each plot is scaled by twice the local rms of the azimuthal velocity vrms,

corresponding to (a) ±2vrms = ±2.2× 10−1 at z = 1.2; (a) ±2vrms = ±1.6× 10−1 at z = 2.4; and

(a) ±2vrms = ±1.4× 10−1 at z = 3.2.
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For a clearer visualization of this trend, the velocity fluctuation v at some single revolu-

tions marked by the dashed lines in Fig. 14 is plotted as curves in Fig. 15; the sorted v for

the 20th, 150th, 300th, 600th, 750th, 870th revolutions corresponds to the curves from the

bottom to the top of each sub-plot in Fig. 15. Note that the most probable 100 samples

that were used for the reconstruction of the “snapshot” in the previous section correspond

to data between two squares in Fig. 14 and are located in the range between the 300th

and 600th revolutions. Figure 15 clearly indicates that v begins to contain high-frequency

oscillations at higher values of the sorted cone revolution, corresponding to that the vortex

is shifted downstream (larger θ in Fig. 14), at all wall heights. Especially, data for the 750th

and 870th revolutions contain waves, with a wavelength much shorter than the one of the

primary vortex (15◦ in θ). It should be mentioned that the waveforms for the 750th and

870th revolutions are similar to the ones shown in figures 18(b) and (c) in Ref. [16].

A similar evaluation was also made for the clean cone data and the velocity fluctuation

v for the typical single revolutions when the vortex is located (relative to the mean vortex

position) upstream (bottom), intermediate (middle) and downstream (top) are shown in

Fig. 16. Here, the data are extracted from the locations marked by the dashed lines in Fig. 22.

Because the vortices are splitting and merging (see Appendix B), the vortex location cannot

be detected by the minimum-searching algorithm and the data were selected manually.

Figure 16 shows that the amplitudes of the vortices in the clean cone case are quite

different depending on the azimuthal location because in this case the vortices are triggered

by non-uniform, random surface roughnesses. In contrast, the signal on the cone with the

artificial roughness elements is very uniform at least when the vortex is located upstream as

shown in the lower lines in Fig. 15. In Fig. 16, the disturbances with different amplitudes

on the clean cone indicate an amplitude dependency; the high-frequency oscillations appear

on the larger vortices (θ . 110◦) when the vortices are shifted downstream (top line in

each sub-plot) but not on the smaller vortices (θ & 120◦). This may be consistent with

the two transition scenarios shown by the numerical simulations on the disk [16], where

the secondary instability was observed in a wider area for the case with a larger stationary

forcing.

To characterize the effects of the vortex meandering on the spiral vortex structure, we also

consider the aspect ratio of the vortex cross section. Figure 17(a) shows the phase-averaged

velocity field ṽ at z = 1.2 on the cone with artificial roughnesses in a gray contour scale.
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The solid and dash-dotted lines indicate the mean vortex locations detected by searching

for the minimum of v for the 100 samples around the mean vortex location and for the

100 samples when the vortex are located farthest downstream (the last 100 revolutions in

Fig. 14(a), for example. For each case, no fitting was applied for this case). Here, we

define a new orthogonal curvilinear coordinate system (x′, y′, z′) on the detected vortex

locations as shown in Fig. 17(b). The x′- and y′-axes are normal and parallel to the vortex

axes. The z′-axis is normal to the cone surface (same as z). The angle ε is defined as the

angle of the y′-axis with respect to the azimuthal direction. We estimate the aspect ratio of

the spiral vortex in the x′z′-plane, AR = δx′/δ90, where the width of the vortex is defined

as δx′ = (2πx sinψ sin ε)/24. The vortex height is estimated as the 90% boundary-layer

thickness δ90. It should be noted that δ90 is a rough measure of the vortex height and tends

to underestimate the vortex height in the transition region (see Fig. 13: the high-momentum

upwell is located clearly beyond the 90% boundary-layer thickness, δ90 = 4.6.).

The effects of the vortex meandering on the vortex aspect ratio as a function of x are

shown in Fig. 18. In this figure we divide the vortices into three categories (with 100

revolutions each) depending on their azimuthal location relative to the mean vortex position

at each x- and z-position: those located upstream (having the vortex axis at smaller θ, i.e.,

the first 100 revolutions in Fig. 14, for example) are marked by black symbols; those located

downstream (having the vortex axis at larger θ, i.e., the last 100 revolutions in Fig. 14) are

marked by blue symbols; and those located around the mean are here called “intermediate”

(100 revolutions around the average) marked by red symbols. Figure 18(a) shows the 90%

boundary-layer thickness δ90 for the three cases as well as the time-averaged thickness,

whereas Fig. 18(b) shows the angle ε of the vortex with respect to the azimuthal direction

as shown in Fig. 17(b). In Fig. 18(c) the aspect ratio AR of the vortex in the x′z′-plane is

given. As a general trend for all vortex locations, AR increases almost linearly with x in the

laminar region (x ≤ 423). In the transition region (x ≥ 461), AR decreases with x because

δ90 increases and ε decreases. Beyond x = 498, namely in stage (iii) of Fig. 5(c), the vortices

begin to collapse and the location of the vortex cannot be detected. The effect of the vortex

meandering seems to resemble a shift in the x-location. As the vortex shifts downstream,

δ90 increases, ε decreases and AR decreases.

The effect of the vortex meandering on the aspect ratio of the spiral vortex might be

explained by the propagation length of the disturbance from the roughnesses. As shown in
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FIG. 17. Phase-averaged velocity ṽ on the cone with roughnesses at z = 1.2: The white dots are

at x = 267 and show the location of the roughnesses. The solid and dash-dotted lines mark the

detected most probable vortex location and shifted location downstream based on the tracking

of the local minimum of averaged v for the 100-sample population. The dashed lines indicate

the locations at x = 250, 300, 350, 400, 450, 500, 550. (b) Blow-up of (a) with the orthogonal

curvilinear coordinate system (x′, y′) fixed on the vortex. The angle ε is the angle of the vortex

(y′-axis) with respect to the azimuthal direction.
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FIG. 18. Effect of the vortex meandering on the 90% boundary-layer thickness and spiral vortices as

a function of x: (a) 90% boundary-layer thickness δ90, (b) angle of the vortex ε and (c) aspect ratio

AR of the vortex on the x′z′-plain. The black, red and blue markers show quantities calculated

by data for 100 revolutions, at which the vortex is located upstream of, intermediate to and

downstream of the mean, respectively. In (b), the dots correspond to the angle calculated based on

the detected vortex axis (shown in Fig. 17) at z = 1.2. The circles are interpolated angles at the

location where the profile measurements were conducted. The squares in (a) show the time-averaged

90% boundary-layer thickness, shown in Fig. 3(b) as a reference. Sections at x = 461, 479, 498 are

denoted by A′, B′, C′ in Fig. 5 and Fig. 7.

Fig. 17(a), the vortex that is shifted downstream has a slightly longer propagation length

(larger y′) at a given value of x. Therefore, the vortex develops further during a longer

propagation length and the aspect ratio becomes smaller and probably the vortex becomes

more sensitive to high-frequency oscillations, leading to its collapse.

There are still some ambiguities in this analysis. First, the cause of vortex meandering is

not clear. Secondly, we do not know whether or not there is a causal relation between the
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vortex meandering and the appearance of the secondary instability. Are the high-frequency

oscillations observed occasionally where the disturbance has traveled a longer distance and

developed further? Or, is there a mechanism by which the secondary instability causes the

meandering or is it that the meandering causes the secondary instability? It should be

noted that high-frequency oscillations due to the secondary instability and collapse of the

spiral vortex are hardly distinguishable in a point measurement in the laboratory frame. To

conclude these issues, further investigations are required, e.g., with numerical simulations

containing the vortex meandering or experimental data captured in the rotating frame.

In summary, our measurement captured high-frequency oscillations, which may be related

to a secondary instability. The high-frequency components appeared at the late stage of

overturning of high-momentum upwelling, especially where the vortex is located downstream

of the mean vortex position during vortex meandering. Also, disturbances introduced by the

non-uniform roughnesses on the clean cone show amplitude dependency; the high-frequency

oscillations appear on the vortices with the larger amplitude. However, the cause of vortex

meandering and the influence of/on the secondary instability are not clear.

IV. CONCLUSIONS

The present work reports on the unstable region and the transition process of the

boundary-layer flow on a rotating cone with a half angle of 60 degrees using the PDF

method introduced by Imayama et al. [20]. The PDF of the azimuthal velocity fluctuation

v shows the transition process in a consistent manner both on the rotating disk and on the

rotating cone, and in both cases with and without artificial roughness elements (Fig. 5).

For the early development stage of the spiral cross-flow vortices, the PDF shows the differ-

ence due to the uniformity of the initial disturbances; in the case with artificial roughness

elements mounted uniformly in the azimuthal direction, the PDF has two maxima corre-

sponding to positive and negative values of v. On the clean cone/disk, the PDF has only

one maximum around v = 0 because of the amplitude modulation of the v-signal. In the

transition stage, however, the PDFs show a similar pattern for both the disk and cone, with

and without the roughness elements.

In addition to the PDF, the velocity fluctuations were carefully examined and the most

probable vortex structure was reconstructed from the time signals measured by a single
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point hot wire (Figs. 11, 12 and 13). The results show that the PDF detects the overturning

process of the high-momentum upwelling of the spiral vortices (Fig. 7). This overturning

process cannot be detected in the phase-averaged velocity because of the meandering of the

spiral vortices. Thus, the PDFmethod has a distinct advantage when assessing the structural

nature and development of the cross-flow vortices from single-point measurements. The PDF

method easily detects the overturning process without any simultaneous plane measurement

such as PIV or complicated vortex reconstruction (which was undertaken in this work in

order to verify the method).

Also, our measurement captured the high-frequency oscillations, which may be related

to the secondary instability, in the velocity fluctuation. The high-frequency oscillations

appeared at the late stage of overturning of the vortices during the transition process (C

and C′ in Fig. 5 or Fig. 7). They appear particularly on vortices with a larger amplitude

when the spiral vortices shift downstream (relative to the mean vortex position) during the

vortex meandering (Figs. 14, 15 and 16).
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Appendix A: Hot-wire calibration and wall-position determination methods

In this section the hot-wire calibration method as well as the determination of the hot-

wire position relative to the wall are described. In the present work, the calibration of the

hot wire was done in-situ in the laminar boundary layer, where the similarity solution on a
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FIG. 19. Calibration voltages as a function of rotational speed for six different wall-normal

positions. The figure also illustrates how, for a given E∗
i , we can determine the corresponding

rotational speeds, N∗
i1 to N∗

i4.

rotating cone is known (see for instance Ref. [9]).

The calibration procedure is based on the velocity distribution within the boundary layer

being known as function of the wall-normal coordinate and the wall speed. If the wall

distance were known accurately, it would then be easy to find the calibration curve but,

in the present case, the absolute distance to the wall was not known accurately enough.

However, by taking calibration points at different rotational speeds at several fixed wall

distances, where the increments between the various wall distances were accurately known,

it was possible to estimate the position of the wall relative to the hot-wire sensor through

an error minimization procedure. Such a data set of calibration points is shown in Fig. 19

for five different rotational speeds and six different wall-normal positions.

The velocity at the position of the hot wire is given as

V ∗ = Ω∗x∗ sinψf [(z∗m + z∗0)/δ
∗
ν ], (A1)

where z∗m is the indicated wall distance of the traversing system (adjusted using the optical

camera technique) and z∗0 is the unknown error in the wall distance. Here, in order to
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regard z∗0 as a constant, we aligned the traverse system with the generating line of the

cone using a laser distance meter; the laser distance meter was mounted on the traversing

system in the same way as the hot-wire probe and it ensured the distance from the cone

surface remained in the range of ±10 micrometers (less than 0.1 in the non-dimensional z)

at different x-locations.

By choosing a specific voltage (say E∗
i ) and using Fig. 19 and interpolating to get

the corresponding rotational speed for the different heights (Ω∗
ij = 2πNij/60), we know

that for all heights we should have the same velocity. We illustrate this in Fig. 19 by

N∗
i1, N

∗
i2, N

∗
i3 and N

∗
i4. For each voltage E∗

i we calculate the variance of the fitting to Eq. A1

by varying z∗0 in 1 µm steps. We do that for all j values and then calculate the total rms

error by taking the square root of the sum of the variances. For the data in Fig. 19 we

use voltages in the range E∗
i = 4.1 to 5.0 Volt, with 0.1 Volt increments, i.e. ten different

voltages. Each voltage can be obtained from different heights z∗ij and corresponding different

rotational rates Ω∗
ij that are interpolated from the data as shown in Fig. 19. Given E∗

i is a

function of velocity independent of position and angular velocity, it is now possible to obtain

an estimate of the real distance from the wall. For a given E∗
i we can estimate the velocity

at each of the points j (1 ≤ j ≤ ni) for a given displacement z∗0 from Eq. A1 such that

V ∗
ij = Ω∗

ijx
∗ sinψf

[
(z∗ij + z∗0)/δ

∗
ν

]
.

However, since we do not know the value of z∗0 we sweep z∗0 over a certain range with small

steps (1 µm) and calculate V ∗
ij for each z

∗
0 . By calculating the average velocity for each value

of z∗0 , we obtain an estimate of the velocity, V ∗
i (z

∗
0) at that value of E

∗
i , and a corresponding

measure of the deviation for each value of z∗0 as

Dev∗i (z
∗
0) =

1

ni

ni∑
j=1

[
V ∗
ij − V ∗

i (z
∗
0)
]2
.

We do this operation for all values of E∗
i that we have chosen (1 ≤ i ≤M) and calculate

Dev∗(z∗0) =
1

M

M∑
i=1

Dev∗i (z
∗
0).

Finally, we find the value of z∗0 that gives the smallest total deviation (see Fig. 20 where

we have used M = 10) and assume that this displacement gives us the best estimate of the

distance to the wall as z∗m + z∗0 .

36



0 0.05 0.1 0.15 0.2 0.25 0.3

0.5

1

1.5

2

2.5

3

3.5
10

-3

FIG. 20. Results of the optimization procedure to find the position relative to the wall.

The result of the optimization procedure is found in Fig. 20, which shows a distinct error

minimum. The preliminary optical determination of the wall position is seen to be off by

approximately 96 µm. As can be seen, the rms error in velocity is less than 0.1% of the wall

velocity.

The resulting calibration curves are shown in Fig. 21, both with the approximate, optically

determined, wall position (left) and with the wall position determined from the optimization

procedure (right). The line is obtained from a least-square fit of the modified King’s law [25]

given by

V ∗ = k∗1(E
∗2 − E∗2

0 )1/n + k∗2(E
∗ − E∗

0)
1/2

where E∗ is the anemometer voltage at the velocity V ∗, E∗
0 is the voltage at zero velocity

taken when the cone is at rest, and k∗1, k
∗
2 and n are calibration constants. According to the

original King’s law n = 0.50 for an infinitely long cylinder, here we find a value of 0.48.

This kind of method to calibrate hot wires against laminar boundary profiles can be used

for different flows where the exact wall position is unknown. The methodology does not

only give a calibration curve but also gives a good estimate of the wall position.
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FIG. 21. Calibration curves including all data points in Fig. 19 where the optically determined

wall distance is used for the points in (a), whereas the calibration curve using the optimized wall

distance is shown in (b).

Appendix B: Effect of the rotational speed

In this paper we present results from the 60 degree rotating cone with a rotation speed

of 900 rpm. The instability and further development of the vortex structure should be

solely dependent on the Reynolds number and not on the rotation rate per se. However,

the rotation speed affects the viscous length scale of the flow (
√
ν∗/(Ω∗ sinψ)) so both the

length x∗ along the generatrix as well as the height of any roughness, which is inevitable

on the cone surface, in terms of the viscous length scale vary with the rotational speed. In

Fig. 22, the PDF plots of the disturbance as function of x for both the 1800 rpm (a) and

900 rpm (b) clean cone cases are shown; the latter shows the same data as in Fig. 5(b). It is

clear from the figures that there is almost no difference between the two cases showing that

the Reynolds number similarity holds as expected. It also shows that for these experiments

the different non-dimensional lengths from the apex to the rim of the cone do not influence
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FIG. 22. The PDF of the azimuthal velocity fluctuation v: (a) 60◦ clean cone at z = 1.2, 1800 rpm,

(b) 60◦ clean cone at z = 1.2, 900 rpm. Filled contours indicate 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, and 90% of the local maxima of PDF.

the transition process.

Appendix C: Vortex splitting and merging on the clean cone

In this section, we report the splitting and merging of the spiral vortices showing the

velocity fluctuation v in a similar way to that in Figs. 8 and 9. Figure 23 shows v for the

whole sample set at x = 535 on the clean cone (to show the splitting and merging, only half

of the cone is shown.). In the area occupied by the vortices with lower amplitude (θ & 75◦),

some vortices merge into one vortex and one vortex splits into two vortices. In Fig. 23(a), for

example, a vortex at θ = 90◦ splits into two around the 142nd revolution and two vortices

merge into one at θ = 105◦ around the 624th revolution. Because of the merging and

splitting, the number of vortices changes through the revolutions. In contrast, vortices with

larger amplitude (θ . 75◦) do not merge nor split although the vortex meandering occurs

in a similar manner to the case with the artificial roughness elements (Figs. 8 and 9).
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FIG. 23. Velocity fluctuation v for the full sample population at x = 535 on the clean cone (C

in Fig. 5 and Fig. 7). The contours (dark and light indicate negative and positive, respectively.)

are scaled by 3 times the local rms of the azimuthal velocity vrms, corresponding to (a) ±3vrms =

±3.3 × 10−1 at z = 1.2; (b) ±3vrms = ±2.4 × 10−1 at z = 2.4; and (c) ±3vrms = ±2.2 × 10−1

at z = 3.2. The three dashed lines from the left to right indicate where the vortex is shifted

upstream, intermediate and downstream: the 415, 564 and 831 revolutions for (a), the 105, 359

and 524 revolutions for (b), and the 402, 444 and 523 revolutions for (c) are examined in Fig. 16.
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