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Summary

Graphical lasso is one of the most used estimators for inferring genetic networks. Despite its

di↵usion, there are several fields in applied research where the limits of detection of modern

measurement technologies make the use of this estimator theoretically unfounded, even when

the assumption of a multivariate Gaussian distribution is satisfied. Typical examples are data

generated by polymerase chain reactions and flow cytometer. The combination of censoring and

high-dimensionality make inference of the underlying genetic networks from these data very

challenging. In this paper we propose an `
1

-penalized Gaussian graphical model for censored

data and derive two EM-like algorithms for inference. We evaluate the computational e�ciency
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of the proposed algorithms by an extensive simulation study and show that, when censored

data are available, our proposal is superior to existing competitors both in terms of network

recovery and parameter estimation. We apply the proposed method to gene expression data

generated by microfluidic RT-qPCR technology in order to make inference on the regulatory

mechanisms of blood development. A software implementation of our method is available on

github (https://github.com/LuigiAugugliaro/cglasso).

Key words: Censored data; Expectation-Maximization algorithm; Gaussian graphical model; Graphical

Lasso; High-dimensional Data.

1. Introduction

An important aim in genomics is to understand interactions among genes, characterized by the

regulation and synthesis of proteins under internal and external signals. These relationships can

be represented by a genetic network, i.e., a graph where nodes represent genes and edges describe

the interactions among them. Genetic networks can be used to gain new insights into the activity

of biological pathways and to deduce unknown functions of genes from their dependence on other

genes.

Gaussian graphical models (Lauritzen, 1996) have been widely used for reconstructing a ge-

netic network from expression data. The reason of their widespread use relies on the statistical

properties of the multivariate Gaussian distribution which allow the topological structure of a

network to be related to the non-zero elements of the concentration matrix, i.e., the inverse of

the covariance matrix. Thus, the problem of network inference can be recast as the problem of

estimating a concentration matrix. The graphical lasso (Yuan and Lin, 2007) is a popular method

for estimating a sparse concentration matrix, based on the idea of adding an `
1

-penalty to the

likelihood function of the multivariate Gaussian distribution. Nowadays, this estimator is widely
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used in applied research (e.g. Menéndez and others , 2010; Vinciotti and others , 2016) and widely

studied in the computational as well as theoretical (e.g. Friedman and others, 2008; Witten and

others, 2011; Bickel and Levina, 2008) literature. The interested reader is referred to Augugliaro

and others (2016) for an extensive review.

Despite the widespread literature on the graphical lasso estimator, there is a great number of

fields in applied research where modern measurement technologies make the use of this graphical

model theoretically unfounded, even when the assumption of a multivariate Gaussian distribu-

tion is satisfied. A first example of this is Reverse Transcription quantitative Polymerase Chain

Reaction (RT-qPCR), a popular technology for gene expression profiling (Derveaux and others,

2010). This technique is used to measure the expression of a set of target genes in a given sample

through repeated cycles of sequence-specific DNA amplification followed by expression measure-

ments. The cycle at which the observed expression first exceeds a fixed threshold is commonly

called the cycle-threshold (McCall and others, 2014). If a target is not expressed, the threshold

is not reached after the maximum number of cycles (limit of detection) and the corresponding

cycle-threshold is undetermined. For this reason, the resulting data is naturally right-censored

(Pipelers and others , 2017; McCall and others , 2014). Another example is given by the flow

cytometer, which is an essential tool in the diagnosis of diseases such as acute leukemias and

malignant lymphomas (Brown and Wittwer, 2000). A flow cytometer measures a limited range of

signal strength and records each marker value within a fixed range, such as between 0 and 1023.

If a measurement falls outside this range, then the value is replaced by the nearest legitimate

value; that is, a value smaller than 0 is censored to 0 and a value larger than 1023 is censored to

1023. A direct application of the graphical lasso for network inference from data such as these is

theoretically unfunded since it does not consider the e↵ects of the censoring mechanism on the

estimator of the concentration matrix.

In this paper we propose an extension of the graphical lasso estimator that takes into account
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the censoring mechanism of the data explicitly. Our work can be related to Städler and Bühlmann

(2012), who propose an `
1

-penalized estimator of the inverse covariance matrix of a multivariate

Gaussian model based on the assumption that the data are missing at random. As we shall

see in the following of this paper, failure to take into account the censoring mechanism causes

a poor behaviour of this approach when compared to our proposal. Our proposal can also be

related to the work of Perkins and others (2013), Ho↵man and Johnson (2015) and Pesonen

and others (2015), who provide a maximum likelihood estimator of the covariance matrix under

left-censoring. However, these works do not address the estimation of the precision matrix under

a sparsity assumption and for this reason they are applicable only when the sample size is larger

than the number of nodes in the network.

The remaining part of this paper is structured as follows. In Section 2, we extend the no-

tion of Gaussian graphical model to censored data and in Section 3 we propose the extension

of the graphical lasso estimator to a censored graphical lasso estimator and two Expectation-

Maximization (EM) algorithms for inference of parameters in the censored Gaussian graphical

model. Section 4 is devoted to the evaluation of the behaviour of the proposed algorithms and the

comparison of the proposed estimator with existing competitors. Finally, in Section 5 we study

a real dataset and in Section 6 we draw some conclusions.

2. The censored Gaussian graphical model

In order to describe the technical details of the proposed method, let X = (X
1

, . . . , X
p

)> be a

p-dimensional random vector. Graphical models allow to represent the set of conditional inde-

pendencies among these random variables by a graph G = {V, E}, where V is the set of nodes

associated to X and E ✓ V ⇥ V is the set of ordered pairs, called edges, representing the condi-

tional dependencies among the p random variables (Lauritzen, 1996).

The Gaussian graphical model is a member of this class of models based on the assumption
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that X follows a multivariate Gaussian distribution with expected value µ = (µ
1

, . . . , µ
p

)> and

covariance matrix ⌃ = (�
hk

). Denoting with ⇥ = (✓
hk

) the concentration matrix, i.e., the inverse

of the covariance matrix, the density function of X can be written as

�(x;µ,⇥) = (2⇡)�p/2|⇥|1/2 exp
⇢
�1

2
(x� µ)>⇥(x� µ)

�
. (2.1)

As shown in Lauritzen (1996), the pattern of non-zero elements in ⇥ defines the corresponding

graph, namely the undirected edge (h, k) is an element of the edge set E of the corresponding

conditional independence graph if and only if ✓
hk

6= 0.

Let X be a (partially) latent random vector with density function (2.1). In order to include

the censoring mechanism inside our framework, let us denote by l = (l
1

, . . . , l
p

)> and u =

(u
1

, . . . , u
p

)>, with l
h

< u
h

for h = 1, . . . , p, the vectors of known left and right censoring values.

Thus, X
h

is observed only if it is inside the interval [l
h

, u
h

] otherwise it is censored from below

if X
h

< l
h

or censored from above if X
h

> u
h

. Under this setting, a rigorous definition of the

joint distribution of the observed data can be obtained using the approach for missing data with

ignorable mechanism (Little and Rubin, 2002). This requires the specification of the distribution

of a p-dimensional random vector, denoted by R(X; l,u), used to encode the censoring patterns.

Formally, the hth element of R(X; l,u) is defined as R(X
h

; l
h

, u
h

) = I(X
h

> u
h

)� I(X
h

< l
h

),

where I(·) denotes the indicator function. By construction R(X; l,u) is a discrete random vector

with support in the set {�1, 0, 1}p and probability function

Prob{R(X; l,u) = r} =

Z

Dr

�(x;µ,⇥)dx,

where Dr = {x 2 Rp : R(x; l,u) = r}.

Given a censoring pattern, we can simplify our notation by partitioning the set I = {1, . . . , p}

into the sets o = {h 2 I : r
h

= 0}, c� = {h 2 I : r
h

= �1} and c+ = {h 2 I : r
h

= +1}

and, in the following of this paper, we shall use the convention that a vector indexed by a set

of indices denotes the corresponding subvector. For example, the subvector of observed elements
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in x is denoted by x

o

= (x
h

)
h2o

and, consequently, the observed data is the vector (x>
o

, r>)>.

As explained in Little and Rubin (2002), the joint probability distribution of the observed data,

denoted by '(x
o

, r;µ,⇥), is obtained by integrating X

c

+ and X

c

� out of the joint distribution

of X and R(X; l,u), which can be written as the product of the density function (2.1) and the

conditional distribution of R(X; l,u) given X = x. As shown in Schafer (2000), this results in

'(x
o

, r;µ,⇥) =

Z
+1

uc+

Z lc�

�1
�(x

o

,x
c

� , x
c

+ ;µ,⇥)dx
c

�dx
c

+I(l
o

6 x

o

6 u

o

)

=

Z

Dc

�(x
o

,x
c

;µ,⇥)dx
c

I(l
o

6 x

o

6 u

o

), (2.2)

where c = c� [ c+ and D
c

= (�1, l
c

�) ⇥ (u
c

+ ,+1). The density function (2.2) is used in Lee

and Scott (2012) inside the framework of a mixture of multivariate Gaussian distributions with

censored data. Using (2.2) the censored Gaussian graphical model can be formally defined.

Definition 1 Let X be a p-dimensional Gaussian distribution whose density function �(x;µ,⇥)

factorizes according to an undirected graph G = {V, E} and let R(X; l,u) be a p-dimensional

random censoring-data indicator defined by the censoring vectors l and u. The censored Gaussian

graphical model (cGGM) is defined to be the set {X, R(X; l,u),'(x
o

, r;µ,⇥),G}.

A closer look at Definition 1 reveals that the proposed notion of censored Gaussian graphical

model is characterized by a high degree of generality since it covers also the special cases of the

classical Gaussian graphical model (l
h

= �1, u
h

= +1 for any h), and the cases in which there

is only left-censored data (u
h

= +1 for any h) or right-censored data (l
h

= �1 for any h).

3. `
1

-penalized Estimator for Censored Gaussian Graphical Model

3.1 The censored graphical lasso estimator

Consider a sample of n independent observations drawn from the censored Gaussian graphical

model {X, R(X; l,u),'(x
o

, r;µ,⇥),G}. For ease of exposition, we shall assume that l and u are
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fixed across the n observations, but the extension to the cases where the censoring vectors are

specific to each observation is straightforward and does not require a specific treatment. If these

values are unknown we suggest to use the smallest and largest observed value for each variable

as possible estimates for l
h

and u
h

, respectively.

Let r
i

be the ith realization of the random vector R(X
i

; l,u). Then the ith observed data is

the vector (x>
ioi

, r>
i

)>, with o
i

= {h 2 I : r
ih

= 0}. Using the density function (2.2), the observed

log-likelihood function can be written as

`(µ,⇥) =
nX

i=1

log

Z

Dci

�(x
ioi ,xici ;µ,⇥)dx

ici =
nX

i=1

log'(x
ioi , ri;µ,⇥), (3.3)

where, as before, c
i

= c�
i

[ c+
i

, with c�
i

= {h 2 I : r
ih

= �1} and c+
i

= {h 2 I : r
ih

= +1},

and D
ci = (�1, l

c

�
i
) ⇥ (u

c

+
i
,+1). Although inference about the parameters of this model can

be carried out via the maximum likelihood method, the application of this inferential procedure

to real datasets, such as the gene expression data described in Section 5, is limited for three

main reasons. Firstly, the number of measured variables is larger than the sample size and this

implies the non-existence of the maximum likelihood estimator even when the dataset is fully

observed. Secondly, even when the sample size is large enough, the maximum likelihood estimator

will exhibit a very high variance (Uhler, 2012). Thirdly, empirical evidence suggests that gene

networks or more general biochemical networks are not fully connected (Gardner and others ,

2003). In terms of Gaussian graphical models this evidence translates in the assumption that ⇥

has a sparse structure, i.e., only few ✓
hk

are di↵erent from zero, which is not obtained by a direct

(or indirect) maximization of the observed log-likelihood function (3.3).

All that considered, in this paper we propose to estimate the parameters of the censored

Gaussian graphical model by generalizing the approach proposed in Yuan and Lin (2007), i.e.,

by maximizing a new objective function defined by adding a lasso-type penalty function to the

observed log-likelihood (3.3). The resulting estimator, called censored graphical lasso (cglasso),
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is formally defined as

{µ̂⇢, b⇥⇢} = arg max
µ,⇥�0

1

n

nX

i=1

log'(x
ioi , ri;µ,⇥)� ⇢

X

h 6=k

|✓
hk

|. (3.4)

Like in the standard graphical lasso estimator, the non-negative tuning parameter ⇢ is used to

control the amount of sparsity in the estimated concentration matrix b⇥⇢ = (✓̂⇢
hk

) and, conse-

quently, in the corresponding estimated graph bG⇢ = {V, bE⇢}, where bE⇢ = {(h, k) : ✓̂⇢
hk

6= 0}.

When ⇢ is large enough, some ✓̂⇢
hk

are shrunken to zero resulting in the removal of the corre-

sponding link in bG⇢; on the other hand, when ⇢ is equal to zero and the sample size is large

enough the estimator b⇥⇢ coincides with the maximum likelihood estimator of the concentration

matrix, which implies a fully connected estimated graph.

3.2 Fitting the censored graphical lasso model

Using known results about the multivariate Gaussian distribution, the conditional distribu-

tion of X

ci given X

oi = x

oi is also a multivariate Gaussian distribution with concentration

matrix ⇥
cici = (✓

hk

)
h,k2ci and conditional expected value equal to E

ci|oi(Xci) = µ

ci|oi =

µ

ci � ⇥�1

cici
⇥

cioi(xioi � µ

oi), where ⇥
cioi = (✓

hk

)
h2ci,k2oi . As we shall show in the next the-

orem, the conditions characterizing the cglasso estimator are based on the the first and second

moment of the Gaussian distribution �(x
ci ;µci|oi ,⇥cici) truncated over the region D

ci . To this

end we let

x
i,h

(µ,⇥) =

⇢
x
ih

if r
ih

= 0
E

ci|oi(Xih

| X
ici 2 D

ci) otherwise,

x
i,hk

(µ,⇥) =

8
>><

>>:

x
ih

x
ik

if r
ih

= 0 and r
ik

= 0
x
ih

E
ci|oi(Xik

| X
ici 2 D

ci) if r
ih

= 0 and r
ik

6= 0
E

ci|oi(Xih

| X
ici 2 D

ci)xik

if r
ih

6= 0 and r
ik

= 0
E

ci|oi(Xih

X
ik

| X
ici 2 D

ci) if r
ih

6= 0 and r
ik

6= 0,

where E
ci|oi(· | X

ici 2 D
ci) denotes the expected value computed using the conditional dis-

tribution of X
ici given x

ioi truncated over D
ci . Finally we let x̄

h

(µ,⇥) =
P

n

i=1

x
i,h

(µ,⇥)/n,

x̄(µ,⇥) = {x̄
1

(µ,⇥), . . . , x̄
p

(µ,⇥)}>, s
hk

(µ,⇥) =
P

n

i=1

x
i,hk

(µ,⇥)/n � x̄
h

(µ,⇥)x̄
k

(µ,⇥) and
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S(µ,⇥) = {s
hk

(µ,⇥)}. Using this notation, the next theorem gives the Karush-Kuhn-Tucker

conditions for the proposed estimator.

Theorem 1 Necessary and su�cient conditions for {µ̂⇢, b⇥⇢} to be the solution of the maximization

problem

max
µ,⇥�0

1

n

nX

i=1

log'(x
ioi , ri;µ,⇥)� ⇢

X

h 6=k

|✓
hk

|,

are
x̄
h

(µ̂⇢, b⇥⇢)� µ̂⇢

h

= 0

�̂⇢

hk

(µ̂⇢, b⇥⇢)� s
hk

(µ̂⇢, b⇥⇢)� ⇢v̂
hk

= 0

9
=

; (3.5)

where v̂
hk

denotes the subgradient of the absolute value function at ✓̂⇢
hk

, i.e., v̂
hk

= sign(✓̂⇢
hk

) if

✓̂⇢
hk

6= 0 and |v̂
hk

| 6 1 if ✓̂⇢
hk

= 0.

A proof of this theorem is reported in the supplementary material available at Biostatistics

online. The stationary conditions (3.5) show that, while in the standard graphical lasso the pa-

rameter µ can be estimated by the empirical average regardless of ⇢ and the inference about

the concentration matrix can be carried out using the profile log-likelihood function, inside our

framework the two inferential problems cannot be separated, since the tuning parameter also

a↵ects the estimator of the expected value. Furthermore, the conditions suggest that, for a given

value of the tuning parameter, the cglasso estimator can be computed using the EM algorithm

(Dempster and others, 1977). This algorithm is based on the idea of repeating two steps un-

til a convergence criterion is met. The first step, called E-Step, requires the calculation of the

conditional expected value of the complete log-likelihood function using the current estimates.

The resulting function, called Q-function, is maximized in the second step, i.e., the M-Step. As

explained in McLachlan and Krishnan (2008), the EM algorithm can be significantly simplified

when the complete probability density function is a member of the regular exponential family. In

this case the E-Step simply requires the computation of the conditional expected values of the

su�cient statistics. In our case, if we denote by {µ̂⇢

ini

, b⇥⇢

ini

} an initial estimate of the parameters,
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the E-Step reduces to the computation of x
i,h

(µ̂⇢

ini

, b⇥⇢

ini

) and x
i,hk

(µ̂⇢

ini

, b⇥⇢

ini

), for i = 1, . . . , n.

From this, conditions (3.5) can be written as

x̄
h

(µ̂⇢

ini

, b⇥⇢

ini

)� µ̂⇢

h

= 0

�̂⇢

hk

(µ̂, b⇥)� s
hk

(µ̂⇢

ini

, b⇥⇢

ini

)� ⇢v̂
hk

= 0

9
=

; (3.6)

which are the stationary conditions of a standard graphical lasso problem (Witten and others,

2011) with S(µ̂⇢

ini

, b⇥⇢

ini

) used as the current estimate of the empirical covariance matrix. The

conditions (3.6) imply that in the M-Step the parameter µ is estimated by x̄(µ̂⇢

ini

, b⇥⇢

ini

) while ⇥

is estimated by solving the following maximization problem:

max
⇥�0

Q(⇥ | b⇥⇢

ini

) = max
⇥�0

log det⇥� tr{⇥S(µ̂⇢

ini

, b⇥⇢

ini

)}� ⇢
X

h,k

|✓
hk

|, (3.7)

which is a standard graphical lasso problem. The following steps summarize the proposed EM

algorithm for the derivation of the cglasso estimator:

1. Let {µ̂⇢

ini

, b⇥⇢

ini

} be initial estimates;

2. E-step: Compute x̄(µ̂⇢

ini

, b⇥⇢

ini

) and S(µ̂⇢

ini

, b⇥⇢

ini

);

3. M-step: Let µ̂⇢ = x̄(µ̂⇢

ini

, b⇥⇢

ini

) and solve the problem (3.7) using S(µ̂⇢

ini

, b⇥⇢

ini

);

4. If a convergence criterion is met then return {µ̂⇢, b⇥⇢} else let µ̂⇢

ini

= µ̂

⇢ and b⇥⇢

ini

= b⇥⇢;

5. Repeat steps 2–4.

Although the maximization problem (3.7) can be e�ciently solved using, for example, the algo-

rithm proposed by Friedman and others (2008), by Rothman and others (2008) or by Witten and

others (2011), the previous steps reveal that the main computational cost of the proposed EM

algorithm comes from the evaluation of the moments of the multivariate truncated Gaussian dis-

tribution, which are needed to compute x̄(µ̂⇢

ini

, b⇥⇢

ini

) and S(µ̂⇢

ini

, b⇥⇢

ini

). These can be computed

using the methods proposed by Lee (1983), Leppard and Tallis (1989) or by Arismendi (2013),

but these methods require complex numerical algorithms for the calculation of the integral of
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the multivariate normal density function (see Genz and Bretz (2002) for a review), and they

are computationally infeasible also for moderate size problems. A possible solution is to approxi-

mate the moments using Monte Carlo methods. Our preliminary study, however, shows that the

Monte Carlo error causes an increment in the number of EM steps required for convergence of the

proposed algorithm, thus removing the gain from using the faster approach for the calculation

of the moments. Taking all of this into consideration, we propose a di↵erent approximate EM

algorithm. In particular, following the idea proposed by Guo and others (2015), we approximate

the quantities E
ci|oi(Xih

X
ik

| X
ici 2 D

ci), for any h 6= k, by:

E
ci|oi(Xih

X
ik

| X
ici 2 D

ci) ⇡ E
ci|oi(Xih

| X
ici 2 D

ci)Eci|oi(Xik

| X
ici 2 D

ci). (3.8)

As shown by Guo and others (2015), the approach works well when the real concentration matrix

is sparse or the tuning parameter is su�ciently large. The main advantage coming from the ap-

proximation (3.8) is that now, in order to evaluate the quantities x̄(µ̂⇢

ini

, b⇥⇢

ini

) and S(µ̂⇢

ini

, b⇥⇢

ini

),

we only need to compute E
ci|oi(Xih

| X
ici 2 D

ci) and E
ci|oi(X

2

ih

| X
ici 2 D

ci), for h = 1, . . . , p.

These quantities can be computed by using exact formulas (Johnson and others, 1994) and require

only the evaluation of the cumulative distribution function of the univariate Gaussian distribu-

tion. In the following of this paper, we denote by S̄(µ̂⇢

ini

, b⇥⇢

ini

) the approximate estimate of the

empirical covariance matrix resulting from this approach. By an extensive simulation study, in

Section 4.1 we shall study the behaviour of the proposed algorithm based on the usage of the

matrix S̄(µ̂⇢

ini

, b⇥⇢

ini

) in step 2 and 3.

As with graphical lasso, our proposed method requires a sequence of ⇢-values, which should

be suitably defined so as to reduce the computational cost needed to compute the entire path

of the estimated parameters. The next theorem gives the exact formula for the derivation of the

largest ⇢-value, denoted by ⇢
max

, and the corresponding cglasso estimator.

Theorem 2 For any index h define the sets o
h

= {i : r
ih

= 0}, c�
h

= {i : r
ih

= �1} and
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c+
h

= {i : r
ih

= +1} and compute the marginal maximum likelihood estimates:

{µ̂
h

, �̂2

h

} = arg max
µh,�

2
h

X

i2oh

log �(x
ih

;µ
h

,�2

h

) + |c�
h

|
Z

lh

�1
�(x;µ

h

,�2

h

)dx+ |c+
h

|
Z

+1

uh

�(x;µ
h

,�2

h

)dx.

Then ⇢
max

= max
h 6=k

|s
hk

(µ̂, b⇥)|, where s
hk

(µ̂, b⇥) are the elements of the matrix S(µ̂, b⇥) com-

puted using µ̂ = (µ̂
1

, . . . , µ̂
p

)> and b⇥ = diag(�̂�2

1

, . . . , �̂�2

p

). Furthermore, µ̂ and b⇥ are the

corresponding cglasso estimators.

A proof of this theorem is reported in the supplementary material available at Biostatistics

online. Theorem 2 shows how the maximum value of ⇢ can be e�ciently computed using p

optimization problems which do not involve the tuning parameter, and then calculating S(µ̂, b⇥).

Once ⇢
max

is calculated, the entire path of the cglasso estimates is calculated as follow:

1. Compute ⇢
max

as specified in Theorem 2 and let ⇢
min

be the smallest ⇢-value;

2. Compute a decreasing sequence {⇢
(k)

}K
k=1

of distinct ⇢-values starting from ⇢
max

to ⇢
min

;

3. for k = 2 to K do

4. Let µ̂
⇢(k)

ini

= µ̂

⇢(k�1) and b⇥⇢(k)

ini

= b⇥⇢(k�1)

5. Use the EM algorithm to compute {µ̂⇢(k) , b⇥⇢(k)} with {µ̂⇢(k)

ini

, b⇥⇢(k)

ini

} as starting values;

6. end for

The previous description shows that the entire path can be computed using the estimates obtained

for a given ⇢-value as warm starts for fitting the next cglasso model. This strategy is commonly

used also in other e�cient lasso algorithms and R packages (Friedman and others, 2010, Friedman

and others, 2014). In our model, this strategy turns out to be remarkably e�cient since using a

su�ciently fine sequence of ⇢-values, the starting values defined in Step 4 will be su�ciently close

to the estimates computed in Step 5, thus increasing the speed of convergence of the resulting

algorithm.
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3.3 Tuning parameter selection

The tuning parameter plays a central role in the proposed cglasso estimator since it is designed

to control the complexity of the topological structure of the estimated graph. In this paper we

propose to select the optimal ⇢-value of the cglasso estimator by using the extended Bayesian

Information Criterion (Foygel and Drton 2010). For our proposed estimator, this is given by:

BIC
�

(bE⇢) = �2
nX

i=1

log'(x
ioi , ri; µ̂, b⇥(bE⇢)) + a(⇢)(log n+ 4� log p),

where µ̂ and b⇥(bE⇢) are the maximum likelihood estimators of the Gaussian graphical model spec-

ified by bE⇢ = {(h, k) : ✓̂⇢
hk

6= 0}, and a(⇢) denotes the number of nonzero o↵-diagonal estimates

of b⇥⇢. The measure is indexed by the parameter � 2 [0, 1], with � = 0 corresponding to the clas-

sical BIC measure. Although a grid search can be performed to select the ⇢-value that minimizes

BIC
�

(bE⇢), the computational burden related to the evaluation of the log-likelihood function can

make this strategy infeasible also for moderate size problems. For this reason, following Ibrahim

and others (2008), we propose to select the ⇢-value by minimizing the following approximate

measure:

BIC
�

(bE⇢) = �n[log det b⇥⇢ � tr{⇥S(µ̂, b⇥(bE⇢))}] + a(⇢)(log n+ 4� log p),

which is defined by substituting the exact log-likelihood function with the Q-function used in the

M-Step of the proposed algorithm, which is easily obtained as a byproduct of the EM algorithm.

In the supplementary material available at Biostatistics online, a simulation study is reported

where we compare the behaviour of the BIC
�

(bE⇢) and BIC
�

(bE⇢) measures. The results show that

the two criteria are equivalent in terms of false discovery rate and true positive rate. Furthermore,

as suggested in Foygel and Drton (2010), the optimal results are obtained when � = 0.5.



14 L. Augugliaro and others

4. Simulation studies

4.1 Evaluating the behaviour of the approximate EM algorithm

In a first simulation, we evaluate the e↵ects of the approximation (3.8) on the accuracy of the

estimators obtained with the EM algorithm. As in the real dataset studied in Section 5, we

consider right-censored data and we set the right-censoring value u
h

equal to 40, for any h =

1, . . . , p. For this simulation, where we plan to use the full EM algorithm, we set the number of

variables p to 10 and the sample size n to 100. To simulate a sample from a sparse right-censored

model we use the following procedure. First, using the method implemented in the R package huge

(Zhao and others, 2015), we simulate a sparse concentration matrix with a random structure,

where we set the probability that a ✓
hk

is di↵erent from zero to 0.1. Then, the elements of the

parameter µ are selected to obtain a fixed probability of right censoring for any given random

variable. More specifically, we randomly draw a subset D from I = {1, . . . , p} and for each h 2 D

the value of the parameter µ
h

is such that Prob{R(X
h

;�1, 40) = +1} = 0.25 while for each

h /2 D the parameter µ
h

is such that the probability of right censoring is approximately equal to

10�11. The cardinality of the set D, denoted by |D|, is used in the study as a tool to analyze the

e↵ects of the number of censored variables on the behaviour of the proposed EM algorithm and

its approximated version. Finally, we draw a sample from a multivariate Gaussian distribution

with parameters given in the previous steps and we treat each value greater than 40 as a missing

(censored) value. We simulated 100 datasets from this model and for each simulation we compute

a path of cglasso estimates using the proposed EM algorithm and a path using the approximated

EM algorithm. In the following of this section, the estimates belonging to the two paths are

denoted by {µ̂⇢

e

; ⇥̂⇢

e

} and {µ̂⇢

a

; ⇥̂⇢

a

}, respectively. For each path, the largest value of the tuning

parameter was computed using the results given in Theorem 2 while the smallest value was set

equal to 1⇥ 10�3.

The first part of the Table 1 reports the average CPU times for computing the path. As
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expected, the computational time needed to compute a path is always an increasing function

of the number of the censored variables but, when we use the matrix S(µ̂⇢

ini

, b⇥⇢

ini

) in the E-

step, the figure reveals that the form of the relationship between the CPU time and |D| is almost

exponential implying that the computation of the cglasso estimator is infeasible also for relatively

small datasets. In contrast to this, when we use the matrix S̄(µ̂⇢

ini

, b⇥⇢

ini

) to approximate the

current estimate of the empirical covariance matrix, the figure shows an almost linear dependence

of the CPU time, which implies a significant reduction of the computational complexity compared

to the full EM algorithm. Although the results showed in Table 1 strongly suggest the use of the

approximated EM algorithm to compute the cglasso estimator, they do not provide information

about the di↵erence between the two estimates. For this reason, we also computed the largest

Euclidean distance between µ̂

⇢

e

and µ̂

⇢

a

, denoted as max
⇢

k�µ̂

⇢k2, and the largest Frobenius

distance between ⇥̂⇢

e

and ⇥̂⇢

a

, denoted by max
⇢

k�⇥̂⇢k2
F

. The average and standard deviations

of these values are reported in the second part of the Table 1. All the results clearly show that

the two estimators are su�ciently close to each other, and point to the use of the approximated

EM algorithm for the derivation of the cglasso estimator.

4.2 Comparison of methods on data simulated from a censored Gaussian graphical model

In a second simulation study, we compare our proposed estimator with MissGlasso (Städler

and Bühlmann, 2012), which performs `
1

�penalised estimation under the assumption that the

censored data are missing at random, and with the glasso estimator (Friedman and others , 2008),

where the empirical covariance matrix is calculated by imputing the missing values with the limit

of detection. These estimators are evaluated in terms of both recovering the structure of the

true graph and the mean squared error. We use a similar approach to the previous simulation for

generating right censored data. In particular, we set the right censoring value to 40 for any variable

and the sample size n to 100. We generate a sparse concentration matrix with random structure
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and set the probability of observing a link between two nodes to k/p, where p is the number of

variables and k is used to control the amount of sparsity in ⇥. Finally, we set the mean µ in such

a way that µ
h

= 40 for the H censored variables, i.e. Prob{R(X
h

;�1, 40) = +1} = 0.50, while

for the remaining variables µ
h

is sampled from a uniform distribution on the interval [10; 35].

At this point, we simulate a sample from the latent p-variate Gaussian distribution and treat all

values greater than 40 as missing. The quantities k, p and H are used to specify the di↵erent

models used to analyze the behaviour of the considered estimators. In particular, we consider the

following cases:

• Model 1: k = 3, p = 50 and H 2 {25, 35}. This setting is used to evaluate the e↵ects of

the number of censored variables on the behaviour of the proposed estimators when n > p.

• Model 2: k 2 {1, 5}, p = 50 and H = 30. This setting is used to evaluate the e↵ects of the

sparsity of the matrix ⇥ on the considered estimators when n > p.

• Model 3: k = 3, p = 200 and H = 100. This setting is used to evaluate the impact of the

high dimensionality on the estimators (p � n).

For each model, we simulate 100 samples from the right censored model and in each simulation

we compute the coe�cients path using cglasso, MissGlasso and glasso. Each path is computed

using an equally spaced sequence of 30 ⇢-values. Panel (a) in Figure 1 shows the precision-recall

curves for Model 1 with H = 25. The curves report the relationship between precision and recall

for any ⇢-value, which are defined by:

Precision(⇢) =
number of ✓̂⇢

hk

6= 0 and ✓
hk

6= 0

number of ✓̂⇢
hk

6= 0
, Recall(⇢) =

number of ✓̂⇢
hk

6= 0 and ✓
hk

6= 0

number of ✓
hk

6= 0
.

The curves show how cglasso gives a better estimate of the concentration matrix both in terms of

precision and recall, for any given value of the tuning parameter. Panel (b) shows the distributions

of the quantity min
⇢

MSE(b⇥⇢), which gives the minimum value of the mean squared error attained



`
1

-Penalized Censored Gaussian Graphical Model 17

along the path of solutions. These box-plots emphasize that, not only the cglasso has a mean

squared error much smaller than glasso and MissGlasso, but also that it is much more stable

than its competitors. The same behaviour was also observed in the other models used in our

numerical study, and can be found in the Supplementary Material available at Biostatistics online.

Table 2 reports the summary statistics from all the simulations. In addition to the quantity

described above (second meta-column), the first meta-column shows the mean squared error in

the estimation of the mean (denoted by min
⇢

MSE(µ̂⇢)) and the third meta-column reports the

Area Under the precision-recall Curve (AUC). Note that the considered measures allow us to

study the behaviour of the estimators along the entire path. The distribution of the minimum

value of the mean squared errors shows that, not only our estimator is able to recover the structure

of the graph but also outperforms the competitors in terms of both estimation of µ and ⇥. We did

not report min
⇢

MSE(µ̂⇢) for glasso since this method does not allow to estimate the parameter

µ. The results on the AUC suggest that cglasso can be used as an e�cient tool for recovering the

structure of the true concentration matrix of a Gaussian graphical model from censored data.

4.3 Testing the robustness of the method on more realistic biological data

In a third simulation study, we test the robustness of the method on more realistic biological

data. In particular, we consider expression data from Wille and others (2004) on the extensively

studied Arabidopsis thaliana biological system. The study reports data from n = 118 experiments

on p = 39 genes, whose regulatory network is of interest. Although the data are fully observed,

we test our method on a dataset where observations are made artificially right censored, similarly

to Städler and Bühlmann (2012). In particular, we produce three datasets at di↵erent levels of

right censoring, by recording as missing the 10%, 20% and 30% of the highest values, respectively.

Then, we compare our method, cglasso, with MissGlasso (Städler and Bühlmann, 2012) and

with three additional methods which impute missing values first and then infer the network
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using graphical lasso on the imputed values. As in Städler and Bühlmann (2012), we consider

k-nearest neighbour imputation, which we denote with missknn, and imputation using random

forests, which we denote with MissForest. These methods are based on a missing at random

assumption. We further consider a method which relies on multivariate Gaussian data under a

censoring mechanism which we denote with imputeLCMD (Lazar, 2015).

Table 3 shows the Euclidean norm between the true observed data and the imputed one

for the five methods considered and across the three di↵erent levels of censoring. The results

show how the performance of all methods decreases the higher the level of censoring and how

cglasso is overall superior to the other methods across all comparisons, followed closely in some

cases by imputeLCMD. The areas under the precision-recall curves of the networks inferred by the

five methods compared with the graphical lasso network selected by BIC
0.5(bE⇢) from the fully

observed data show how the proposed cglasso method leads to a significant gain in network

recovery over MissGlasso, missknn and MissForest even with 30% of censored data.

5. Application to single cell-data: megakaryocyte-erythroid progenitors

Recent advances in single-cell techniques have provided the opportunity to finely dissect cellular

heterogeneity within known populations and to uncover rare cell types. In a study about the

formation of blood cells, Psaila and others (2016) have recently identified three distinct subpop-

ulations of cells which are all derived from hematopoietic stem cells through cell di↵erentiation.

One of these sub-populations, denoted by MK-MEP, is a previously unknown, rare population

of cells that are bipotent but primarily generate megakaryocytic progeny. In this section we look

closely at this sub-population and investigate the molecular mechanisms of regulation within

these cells. To this end, we used data available from Psaila and others (2016) on 87 genes and 48

single human MK-MEP cells profiled by multiplex RT-qPCR.

As discussed in the Introduction, RT-qPCR data are typically right-censored. In this particular
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study, the limit of detection is fixed by the manufacturer to 40. Raw data have been mean

normalized using the method proposed in Pipelers and others (2017) and using the 2 housekeeping

genes provided. Panel (a) in Figure 2 shows the relationship between the proportion of right-

censored data and the mean of the normalized cycle-threshold. Two main conclusions can be

drawn from this figure. Firstly, the proportion of censored data is an increasing function of the

mean of the normalized cycle-threshold: this is expected and it means that the assumption of

missing-at-random is not justified on this dataset. Secondly, there are some genes with a very

high proportion of censoring (see the points above the dashed line): these may be genes whose

transcription failed to amplify, in which case they should be treated as missing rather than

censored. Following this explorative analysis and considering also the possible computational

problems caused by the inclusion of these genes, we filtered out the genes with a proportion of

censoring above 85% for subsequent analysis. The resulting data set contains the expression of

63 genes measured on 48 cells.

The normalized cyclic thresholds of the remaining genes are used to fit a right-censored

GGM by using the proposed cglasso estimator. Panel (b) in Figure 2 shows the path of the

BIC
0.5(bE⇢) measure and the vertical dashed line is traced in correspondence of the optimal ⇢-

value. The resulting estimated graph (see Panel (c) in Figure 2) contains about 0.6% of all possible

edges and about 19% of the considered genes. Consistent with the existing knowledge about this

subpopulation, the estimated graph shows the central role of two genes, CD42 (glycoprotein

1b) and MYB (Psaila and others, 2016). The first one, CD42, is a megakaryocyte gene whose

expression was found to be significantly high in the MK-MEP subpopulation. In particular, it

is expressed later during megakaryocyte di↵erentiation and has been associated with unipotent

megakaryopoietic activity in mouse models. The link between CD42 and VWF, another highly

expressed genes in this subpopulation (Psaila and others, 2016), was discovered by Chan and

others (2017) as well as other connections, such as the link between the genes CD42 and CD64
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and that between CD42 and TGFB1. The second central gene, MYB, is a transcription factor

that is known to enhance erythroid di↵erentiation at the expense of megakaryopoiesis.

6. Conclusion

In this paper, we have proposed a computational approach to fit Gaussian Graphical models in

the presence of censored data. The approach includes both the cases of right and left censored

data. Since classical Gaussian graphical models cannot be used in high-dimensional settings, we

also introduced `
1

-penalisation to produce sparsity (model selection) and parameter estimation

simultaneously. The resulting estimator is called censored graphical lasso (cglasso). The com-

putational problem of estimating the mean and conditional independence graph of a Gaussian

graphical model from censored data is solved via an EM-algorithm. An extensive simulation study

showed that the proposed estimator overcomes the existing estimators both in terms of parame-

ter estimation and of network recovery. The analysis of a real RT-qPCR dataset showed how the

method is able to infer the regulatory network underlying blood development under high levels

of censoring.

In addition, we have proposed an approximated EM-algorithm which is computationally more

e�cient and makes the method feasible for high-dimension settings. This approach relies on an

e�cient approximation of the mixed moments of the latent variables conditional on the observed.

The approximation is exact under conditional independence and has thus been found to work

well under sparse settings, as shown by Guo and others (2015) and our own simulations. Future

work will investigate the theoretical justifications for this as well as refining the scenarios under

which a good performance is to be expected.

Supplementary Materials

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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Fig. 1. Results of the comparative simulation study based on Model 1 with H = 25. Panel (a) shows

the average precision-recall curves; Panel (b) shows the box-plots of min⇢ MSE(b⇥⇢) for the considered
estimators.

Table 1. Results of the simulation study on evaluating the e↵ect of the approximation (3.8): first
part reports the average CPU time for computing a path whereas second part reports the average

of max
⇢

k�µ̂

⇢k2 and max
⇢

k�⇥̂⇢k2
F

. Standard deviations are shown in brackets.

Number of censored variables
2 3 4 5 6 7 8

Average CPU time (seconds)
Exact EM 9.60 25.87 68.36 104.77 140.01 249.40 374.34

(2.79) (7.39) (18.87) (28.53) (34.39) (57.13) (96.26)
Approx. EM 5.08 7.89 13.81 15.31 16.26 21.28 24.90

(1.02) (1.44) (2.23) (2.20) (2.33) (2.64) (3.10)

Di↵erence between the two estimates
max⇢ k�µ̂⇢k2 2.9⇥10�6 8.2⇥10�6 1.7⇥10�5 2.2⇥10�5 7.8⇥10�5 1.1⇥10�4 2.1⇥10�4

(8.6⇥10�6) (2.1⇥10�5) (3.7⇥10�5) (3.1⇥10�5) (1.0⇥10�4) (1.2⇥10�4) (2.3⇥10�4)

max⇢ k�⇥̂⇢k2F 3.0⇥10�5 8.3⇥10�5 2.0⇥10�4 2.6⇥10�4 2.3⇥10�3 2.6⇥10�3 6.6⇥10�3

(8.5⇥10�5) (2.0⇥10�4) (3.7⇥10�4) (3.8⇥10�4) (3.1⇥10�4) (2.4⇥10�3) (6.0⇥10�3)
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Fig. 2. Real data analysis: Panel (a): the proportion of right-censored data versus the mean of the
normalized cycle-threshold; the black line is obtained by fitting a logistic regression model while the
dashed line identifies the threshold used to filter out the genes from the study. Panel (b): path of the

BIC0.5(bE⇢) measure; vertical dashed line identifies the optimal value of the tuning parameter. Panel (c):
the estimated graph.
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Table 2. Comparison between cglasso and two existing methods on simulated data: for each
measure the table reports the average value and standard deviation between parentheses.

Model min⇢ MSE(µ̂⇢) min⇢ MSE(b⇥⇢) AUC
p H/p k/p cglasso MissGlasso cglasso glasso MissGlasso cglasso glasso MissGlasso

50 0.5 0.06 0.47 14.50 8.76 103.35 96.75 0.48 0.37 0.19
(0.11) (0.69) (0.64) (14.43) (16.01) (0.04) (0.03) (0.02)

50 0.7 0.06 0.48 21.00 10.11 139.76 131.99 0.47 0.33 0.15
(0.10) (0.76) (0.84) (15.94) (18.81) (0.05) (0.03) (0.02)

50 0.6 0.02 0.47 18.31 6.92 128.60 119.65 0.61 0.42 0.16
(0.10) (0.81) (0.82) (17.75) (17.38) (0.08) (0.05) (0.03)

50 0.6 0.10 0.46 17.39 12.02 113.84 105.70 0.43 0.34 0.20
(0.10) (0.92) (0.85) (14.79) (15.71) (0.04) (0.03) (0.02)

200 0.5 0.015 1.92 63.34 41.57 398.02 373.86 0.32 0.21 0.13
(0.19) (1.54) (1.52) (29.78) (32.46) (0.02) (0.02) (0.01)

Table 3. Comparison of methods on the Arabidopsis thaliana expression data: Euclidian distance
between the observed and imputed data (ED) and area under the precision-recall curve (AUC)

across the five methods and the three levels of censoring

% censored cglasso imputeLMCD MissGlasso missknn missForest

ED 10% 9.95 13.49 27.89 31.37 33.31
20% 15.22 18.60 37.73 40.16 46.21
30% 19.76 24.38 46.65 50.08 57.54

AUC 10% 0.93 0.88 0.78 0.79 0.77
20% 0.90 0.86 0.70 0.72 0.68
30% 0.87 0.85 0.63 0.70 0.61
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1. Evaluating the behaviour of the extended Bayesian Information Criteria

In this section we evaluate, by a simulation study, the behaviour of the two measures of goodness-

of-fit proposed in Section 3.3 to select the optimal value of the tuning parameter of the cglasso

estimator: the extended Bayesian information criterion based on the log-likelihood function and

that based on the Q-function, respectively. These are defined by:

BIC
�

(bE⇢) = �2
nX

i=1

log'(x
ioi , ri; µ̂,

b⇥(bE⇢)) + a(⇢)(log n+ 4� log p),

BIC
�

(bE⇢) = �n[log det b⇥⇢ � tr{⇥S(µ̂, b⇥(bE⇢))}] + a(⇢)(log n+ 4� log p).

⇤
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Our simulation study is based on a right-censored Gaussian graphical model with censoring value

fixed to 40. Similarly to the simulation study used in Foygel and Drton (2010) in the case of a

standard Gaussian graphical model, we vary the sample size n in the set {100, 200, 300, 400} and,

in each case, we fix the number of variables by p = n

k, with k = 0.5. As done in Section 4.1, the

elements of the parameter µ are used to fix the probability of right censoring. More specifically,

we randomly draw a subset D from I = {1, . . . , p} containing the 5% of the p indices then µ

h

is

set in such a way that Prob{R(X
h

;�1, 40) = +1} 2 {0.25, 0.50}, for each h 2 D. The remaining

elements of the parameter µ are such that the probability of right censoring is approximately

equal to 10�11. In order to evaluate the e↵ects of the probability of censoring on the behaviour

of the two considered criteria of goodness-of-fit, we model ⇥ as done in Section 3.1 of Foygel and

Drton (2010), i.e., we use the following two models:

• Model 1: ⇥ is a symmetric tridiagonal matrix with ✓

h(h+1)

= 0.3; the remaining o↵-

diagonal elements are equal to zero.

• Model 2: in this model we set ✓
h(h+1)

= 0.2, ✓
h(h+2)

= 0.1 and the remaining o↵-diagonal

elements are equal to zero.

The diagonal elements of the two concentration matrices are equal to 1. For each model, we

simulate 100 samples from the censored Gaussian graphical model and in each simulation the

cglasso model is fitted using a sequence of 100 evenly spaced ⇢-values, with values between

⇢

max

/100 and ⇢

max

. Then, we use BIC
�

(bE⇢) to select the best model in terms of goodness-of-fit,

i.e., the estimated model with the lowest BIC
�

(bE⇢) measure along the path; a second model is

selected as previously done, but by using BIC
�

(bE⇢). Finally, the behaviour of these criteria is

evaluated computing the true positive rate (TPR)

TPR =
number of ✓̂⇢

hk

6= 0 and ✓

hk

6= 0

number of ✓
hk

6= 0
,
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and the false discovery rate (FDR)

FDR =
number of ✓̂⇢

hk

6= 0 and ✓

hk

= 0

number of ✓̂⇢
hk

6= 0
.

Table 1 and 2 report the results of the simulation study for Model 1 and 2, respectively. A first

result arising from the analysis of these tables is that, for any combination of the parameters,

the two criteria have the same behaviour both in terms of TPR and FPR. In particular the

behaviour seems to be independent on the level of censoring probability. Focusing on the results

of the first model, we observe that, for large sample sizes, the recovery of non-zero coe�cients is

perfect or near perfect for any value of the parameter �. On the other hand, we have a significant

improvement in terms of FDR when we use a �-value greater than zero. In particular, when the

sample size is large, the extended Bayesian information criterion clearly outperforms the classical

BIC measure. This behaviour is also shown in Panel(a) of Figure (1). When we look at the results

from Model 2, as observed also in Foygel and Drton (2010), we have a noticeable reduction in

TPR as � increases, even if Panel (b) in Figure (1) shows that it is an increasing function of the

sample size. Finally, also in this case the classical BIC measure is characterized by an extremely

high FDR for any value of the sample size.

In conclusion, for any combination of the parameters, BIC
�

(bE⇢) and BIC
�

(bE⇢) tend to select

the same estimated model for any �-value. This result suggests that in practice the BIC
�

(bE⇢) mea-

sure is preferred to BIC
�

(bE⇢) since its computation requires only quantities that are a byproduct

of the EM algorithm. Furthermore, the simulation study seems to confirm what was originally

obtained in Foygel and Drton (2010) in the case of a standard Gaussian graphical model, sug-

gesting that the optimal asymptotic properties of the extended Bayesian criteria are mantained

also for the proposed cglasso estimator.
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2. Proofs

2.1 Proof of Theorem 1

We start by deriving the first equation in the system (3.6). Consider the derivative of the La-

grangian function

L
⇢

(µ,⇥) =
1

n

nX

i=1

log'(x
ioi , ri;µ,⇥)� ⇢

X

h 6=k

|✓
hk

|, (2.1)

with respect to µ

h

. Formally

@L
⇢

(µ,⇥)

@µ

h

=
1

n

nX

i=1

@

@µ

h

log

Z

Dci

�(x
ioi ,xici ;µ,⇥)dx

ici

=
1

n

nX

i=1

R
Dci

{@�(x
ioi ,xici ;µ,⇥)/@µ

h

}dx
iciR

Dci
�(x

ioi ,xici ;µ,⇥)dx
ici

. (2.2)

Writing �(x
ioi ,xici ;µ,⇥) as the exponential of the log-likelihood of the multivariate Gaussian

distribution, we have

@�(x
ioi ,xici ;µ,⇥)

@µ

h

= �(x
ioi ,xici ;µ,⇥)

pX

k=1

✓

hk

(x
ik

� µ

k

),

from which expression (2.2) can be written as

@L
⇢

(µ,⇥)

@µ

h

=

pX

k=1

✓

hk

1

n

nX

i=1

Z

Dci

(x
ik

� µ

k

)
�(x

ioi ,xici ;µ,⇥)R
Dci

�(x
ioi ,xici ;µ,⇥)dx

ici

dx
ici

=

pX

k=1

✓

hk

1

n

nX

i=1

Z

Dci

(x
ik

� µ

k

)
�(x

ici ;µci|oi ,⇥cici)R
Dci

�(x
ici ;µci|oi ,⇥cici)dxici

dx
ici

=

pX

k=1

✓

hk

(
1

n

nX

i=1

Z

Dci

x

ik

�(x
ici ;µci|oi ,⇥cici)R

Dci
�(x

ici ;µci|oi ,⇥cici)dxici

dx
ici � µ

k

)
, (2.3)

where (2.3) is obtained by writing �(x
ioi ,xici ;µ,⇥) as the product of the marginal distribution

of X
ioi and the conditional distribution of X

ici given X

ioi = x

ioi . Finally, by observing that

�(x
ici ;µci|oi ,⇥cici)/

R
Dci

�(x
ici ;µci|oi ,⇥cici)dxici is the density function of the truncated normal

distribution, resulting from the conditional distribution of X
ici given X

ioi = x

ioi over the region

D

ci , and using the notation introduced in the first part of the Section 3.2, expression (2.3) can
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be rewritten as

@L
⇢

(µ,⇥)

@µ

h

=

pX

k=1

✓

hk

(
1

n

nX

i=1

x

i,k

(µ,⇥)� µ

k

)
.

The first equation in the system (3.6) follows by simplifying the system with hth equation

pX

k=1

✓̂

⇢

hk

(
1

n

nX

i=1

x

i,k

(µ̂⇢

,

b⇥⇢)� µ̂

⇢

k

)
= 0,

for h = 1, . . . , p. The second equation in system (3.6) is derived using the same strategy previously

adopted to find expression (2.3) and by observing that the derivative of the Lagrangian function

(2.1) with respect to ✓

hk

is equal to

@L
⇢

(µ,⇥)

@✓

hk

= �

hk

�
(
1

n

nX

i=1

Z

Dci

x

ih

x

ik

�(x
ici ;µci|oi ,⇥cici)R

Dci
�(x

ici ;µci|oi ,⇥cici)dxici

dx
ici � µ

h

µ

k

)
� ⇢v

hk

= �

hk

�
(
1

n

nX

i=1

x

i,hk

(µ,⇥)� µ

h

µ

k

)
� ⇢v

hk

,

where v

hk

denotes the subgradient of the absolute value function at ✓

hk

, i.e., v
hk

= sign(✓
hk

)

if ✓
hk

6= 0 otherwise it is a value inside the closed interval [�1, 1]. Finally, the second equation

follows using the identity µ̂

⇢

h

= x̄

h

(µ̂⇢

,

b⇥) and the definition of s
hk

(µ̂⇢

,

b⇥⇢) in equation

�̂

⇢

hk

�
(
1

n

nX

i=1

x

i,hk

(µ̂⇢

,

b⇥⇢)� µ̂

⇢

h

µ̂

⇢

k

)
� ⇢v̂

hk

= 0.

2.2 Proof of Theorem 2

Let us suppose that we know the maximum value of the tuning parameter, which we denote as

⇢

max

. By definition, at ⇢
max

the cglasso estimator of the concentration matrix is a diagonal matrix,

implying that µ̂⇢

max

h

and ✓̂

⇢

max

hh

can be estimated through the maximum likelihood estimators of

the parameters of the marginal distributions, i.e.

{µ̂
h

, �̂

2

h

} = arg max
µh,�

2

h

X

i2oh

log �(x
ih

;µ
h

,�

2

h

) + |c�
h

|
Z

lh

�1
�(x;µ

h

,�

2

h

)dx+ |c+
h

|
Z

+1

uh

�(x;µ
h

,�

2

h

)dx,

where o

h

= {i : r

ih

= 0}, c�
h

= {i : r

ih

= �1} and c

+

h

= {i : r

ih

= +1}. Then µ̂

⇢

max

h

is

equal to µ̂

h

and ✓̂

⇢

max

hh

is equal to the inverse of �̂2

h

. Finally, ⇢
max

comes from the analysis of the



6 REFERENCES

second stationary condition reported in Theorem 1. Since b⇥⇢

max is a diagonal matrix we have,

for each h 6= k, that �̂⇢

max

hk

(µ̂⇢

max

,

b⇥⇢

max) = 0. Then the second equation of the system reported

in Theorem 1 can be written as follows:

s

hk

(µ̂⇢

max

,

b⇥⇢

max) = �⇢

max

v̂

hk

.

Considering the absolute value of both sides of this equation and remembering that |v̂
hk

| 6 1,

since ✓̂

⇢

max

hk

= 0 for each h 6= k, we have that

|s
hk

(µ̂⇢

max

,

b⇥⇢

max)| = ⇢

max

|v̂
hk

| 6 ⇢

max

.

The previous inequality is satisfied when we let ⇢
max

= max
h 6=k

|s
hk

(µ̂⇢

max

,

b⇥⇢

max)|.

3. Additional figures to Section 4.2

In this section, we report additional results to those presented in Section 4.2 of the paper, with

Models 1, 2 and 3 defined as in that section.
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Table 1. Results of the simulation study based on Model 1: for each measure used to evaluate the
behaviour of the extended Bayesian information criteria we report average values across the 100

iterations and the standard deviation between parentheses

BIC�(
bE⇢
) BIC�(

bE⇢
)

TPR FDR TPR FDR

� 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Prob{R(Xh;�1, 40) = +1} = 0.25

n 100 0.86 0.59 0.35 0.12 0.03 0.01 0.86 0.60 0.36 0.13 0.03 0.01

(0.11) (0.20) (0.20) (0.10) (0.06) (0.04) (0.11) (0.21) (0.20) (0.10) (0.07) (0.04)

200 0.98 0.93 0.80 0.09 0.01 0.00 0.98 0.94 0.80 0.10 0.02 0.00

(0.04) (0.07) (0.12) (0.08) (0.03) (0.02) (0.04) (0.07) (0.11) (0.09) (0.04) (0.02)

300 1.00 0.99 0.96 0.06 0.01 0.00 1.00 0.99 0.96 0.07 0.01 0.00

(0.01) (0.03) (0.05) (0.07) (0.02) (0.01) (0.01) (0.03) (0.05) (0.07) (0.02) (0.01)

400 1.00 1.00 0.99 0.07 0.01 0.00 1.00 1.00 0.99 0.07 0.01 0.00

(0.00) (0.01) (0.02) (0.07) (0.02) (0.01) (0.00) (0.01) (0.02) (0.07) (0.02) (0.01)

Prob{R(Xh;�1, 40) = +1} = 0.50

n 100 0.84 0.57 0.33 0.13 0.03 0.01 0.85 0.59 0.36 0.14 0.03 0.01

(0.13) (0.20) (0.20) (0.11) (0.07) (0.04) (0.12) (0.21) (0.21) (0.11) (0.07) (0.05)

200 0.98 0.93 0.78 0.09 0.02 0.01 0.98 0.92 0.80 0.10 0.02 0.01

(0.04) (0.07) (0.12) (0.09) (0.04) (0.02) (0.04) (0.08) (0.12) (0.09) (0.04) (0.02)

300 1.00 0.98 0.96 0.07 0.01 0.01 1.00 0.99 0.96 0.08 0.02 0.01

(0.01) (0.04) (0.05) (0.07) (0.03) (0.02) (0.01) (0.03) (0.05) (0.07) (0.03) (0.02)

400 1.00 1.00 0.99 0.07 0.01 0.00 1.00 1.00 0.99 0.07 0.01 0.01

(0.00) (0.02) (0.03) (0.07) (0.02) (0.01) (0.00) (0.02) (0.02) (0.08) (0.02) (0.01)
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ρ)

0%
20%
40%
60%
80%
100%

100 200 300 400

Sample size

Tr
ue

 P
os

iti
ve

 R
at

e

BIC0.0(Ê
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Fig. 1. True positive rate and false discovery rate as a function of the sample size. Panel (a) refers to

Model 1 with censoring probability equal to 0.25. Panel (b) refers to Model 2 with censoring probability

equal to 0.25.
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Table 2. Results of the simulation study based on Model 2: for each measure used to evaluate
the behaviour of the extended Bayesian information criteria we report average values across 100

iterations and the standard deviation between parentheses.

BIC�(
bE⇢
) BIC�(

bE⇢
)

TPR FDR TPR FDR

� 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Prob{R(Xh;�1, 40) = +1} = 0.25

n 100 0.23 0.06 0.01 0.18 0.06 0.00 0.23 0.06 0.01 0.18 0.07 0.00

(0.10) (0.05) (0.03) (0.18) (0.19) (0.00) (0.10) (0.05) (0.03) (0.17) (0.20) (0.00)

200 0.37 0.13 0.03 0.16 0.05 0.02 0.37 0.14 0.03 0.17 0.05 0.02

(0.10) (0.07) (0.04) (0.11) (0.15) (0.14) (0.10) (0.07) (0.04) (0.10) (0.15) (0.14)

300 0.47 0.19 0.07 0.14 0.02 0.00 0.48 0.19 0.07 0.15 0.02 0.00

(0.09) (0.07) (0.04) (0.08) (0.06) (0.00) (0.09) (0.07) (0.04) (0.08) (0.06) (0.00)

400 0.57 0.29 0.12 0.13 0.01 0.00 0.57 0.29 0.12 0.14 0.01 0.00

(0.08) (0.08) (0.05) (0.06) (0.03) (0.00) (0.08) (0.08) (0.05) (0.06) (0.03) (0.00)

Prob{R(Xh;�1, 40) = +1} = 0.50

n 100 0.23 0.06 0.01 0.18 0.07 0.00 0.24 0.06 0.02 0.18 0.07 0.00

(0.11) (0.05) (0.03) (0.18) (0.20) (0.00) (0.10) (0.06) (0.03) (0.18) (0.20) (0.00)

200 0.35 0.13 0.03 0.17 0.05 0.02 0.36 0.13 0.03 0.18 0.05 0.02

(0.10) (0.07) (0.03) (0.10) (0.15) (0.14) (0.10) (0.08) (0.04) (0.10) (0.14) (0.13)

300 0.48 0.19 0.07 0.15 0.02 0.00 0.48 0.19 0.07 0.15 0.02 0.00

(0.09) (0.07) (0.04) (0.08) (0.06) (0.00) (0.09) (0.08) (0.04) (0.08) (0.06) (0.00)

400 0.56 0.28 0.12 0.13 0.01 0.00 0.57 0.29 0.12 0.14 0.01 0.00

(0.08) (0.08) (0.05) (0.06) (0.03) (0.00) (0.08) (0.08) (0.06) (0.06) (0.03) (0.00)
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Fig. 2. Results of the simulation study based on Model 1: Panel (a), (b) and (c) refer to the setting with

H = 25 while Panel (c), (d) and (f) refer to the setting with H = 35.
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Fig. 3. Results of the simulation study based on Model 2 and 3: Panel (a), (b) and (c) refer to Model 2

with setting k = 1; Panel (d), (e) and (f) refer to Model 2 with setting k = 2; Panel (g), (h) and (k) refer

to Model 3.


