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Abstract  

A prerequisite for successful cell division is the generation of an accurate copy of the entire genome 

as well as faithful segregation into the daughter cells. In the bacterium Escherichia coli, replication of 

the circular chromosome is initiated at a single origin (oriC) where two replication forks are 

assembled and proceed bi-directionally until they converge within a defined termination region 

opposite oriC and fork fusion takes place. This region is flanked by ter sequences, which, when bound 

by Tus protein, form a replication fork trap that allows forks to enter but not to leave. While the events 

associated with initiation as well as the elongation of replication have been extensively studied, the 

molecular details associated with the fusion of two replisomes are far less well characterised. 

The data presented here significantly extend our understanding of the molecular mechanics 

associated with the fusion of two replisomes in E. coli. My results strongly support the idea that RecG 

is a key player in processing intermediates that arise as two replication forks fuse. In the absence of 

RecG, over-replication of the chromosome is initiated at fork fusion intermediates, a process that can 

take place outside of the native termination area if forks are forced to fuse in an ectopic location. RecG 

has also been implicated in processing recombination intermediates. Over-replication in the absence 

of RecG is dependent on recombination and my data support the idea that RecG is important in limiting 

replication that initiates at recombination intermediates, some of which arise as a consequence of fork 

fusion events. In contrast, my data do not support the notion that the over-replication of chromosomal 

DNA in cells lacking RecG is in any way triggered by R-loops, as suggested previously in the literature. 

The observation that over-replication is taking place in cells lacking exonuclease I strongly 

supports the idea that 3’ single-stranded DNA structures are a key intermediate of fork fusion events. 

My data demonstrate that 3’ flaps accumulating in the absence of ExoI can be converted into 5’ flaps 

and degraded by 5’ exonucleases such as ExoVII and RecJ. RecG helicase is likely to be involved in this 

conversion. Thus, the data presented in this thesis highlight the complexity of replication fork fusion 

events and demonstrate that multiple protein activities are required to process fork fusion 

intermediates in order to allow DNA replication to be completed with high accuracy and enable 

faithful segregation of complete chromosomes into daughter cells. 
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Introduction 

Understanding how a single cell can divide to become two cells is one of the most fundamental 

questions in biology. The genome must be duplicated for a cell to divide and as the chromosomes 

contain all the genetic information required to direct the growth and development of a cell, the 

resulting two copies must be identical. Maintenance of genomic stability is an essential task for all 

organisms. A number of different, interrelated processes combine to ensure accurate replication and 

division of the chromosomes, and precise distribution of the genomic material among the daughter 

cells. Mutations in the genome affect genomic stability, which can have serious consequences. In 

multicellular organisms, mechanisms exist in normal healthy tissues to prevent the survival or 

proliferation of cells that have accumulated genomic alterations (Zhivotovsky and Kroemer, 2004) 

highlighting the importance of managing genomic stability. In humans, genomic instability is a 

prominent feature of cancers (Negrini et al., 2010; Shen, 2011) and the cause of a number of diseases 

and genetic disorders (Aguilera and Gómez-González, 2008; Castel et al., 2010; Hou et al., 2017; Sasaki 

et al., 2010). Recent work by Tomasetti and colleagues (2017) suggests that replication errors are 

responsible for two thirds of the mutations that lead to cancers in humans (Tomasetti et al., 2017), 

which highlights how important it is to study the mechanistic details of DNA replication (Hsieh and 

Yamane, 2008). In addition, links between defects in a repair pathway (mismatch repair) that 

functions as part of DNA replication and the Lynch cancer syndrome or hereditary non-polyposis 

colorectal cancer have been reported (Wimmer and Etzler, 2008) 

In single-celled organisms such as bacteria, genomic instability can cause pathological problems 

including delayed or unsuccessful chromosome replication and cell division, which can threaten the 

viability of the cells. It was recently reported that the fusion of two replication forks has the potential 

to cause pathology (Rudolph et al., 2013). This is somewhat surprising considering replication fork 

fusion is an integral part of DNA replication. My research has focussed on furthering our 

understanding of the events at replication termination using Escherichia coli as a model organism. 

DNA replication in Escherichia coli 

The E. coli genome consists of a single, circular chromosome of 4.6 Mb, containing over 4000 protein-

coding genes that account for >80 % of the genome (Blattner et al., 1997). Bidirectional replication is 

initiated at a single, sequence-specific origin of replication, oriC, located at 84.6 min on the E. coli 

genetic map (Skarstad and Katayama, 2013). The replication machinery is assembled into two 
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replication forks that move in opposite directions around the chromosome until they meet in a defined 

region located approximately opposite oriC where replication terminates, inter-linked daughter 

chromosomes are resolved and segregation of the chromosomes to each cell half takes place before 

the cell divides. 

Cell cycle 

In all living cells, a number of different processes must be coordinated and managed for progression 

through the cell cycle, such as chromosome duplication, cell growth and cell division. The E. coli cell 

cycle in slow-growing cells appears relatively simple compared with that of eukaryotic cells, where 

there are numerous checkpoints that ensure progression through the cycle is not initiated until the 

previous step is completed (Cooper, 2000). It was thought that bacterial cells such as E. coli followed 

a relatively rigid cell cycle where achievement of a critical cell mass was the trigger for DNA replication 

initiation (Donachie, 1993). This concept has been increasingly challenged (Bates and Kleckner, 2005; 

Boye and Nordström, 2003; Nordstrom et al., 1991; Wold et al., 1994). More recent data suggest that 

the bacterial cell cycle is actually not such a simple step-by-step affair and consists instead of a series 

of cell cycle events that can be overlapping and are coordinated by multiple interactions between 

these events (Haeusser and Levin, 2008). These are divided in to three periods; B-, C-, and D-period 

(Figure 1). 

 

Figure 1: The bacterial cell cycle. The schematic diagram shows the three separate periods that are 

identifiable in slow-growing bacterial cells. The red dot indicates the origin of replication in the cell 

diagrams and the cytokinetic ring, on which the division machinery assembles, is shown in green. C-period 

covers DNA replication to termination and D-period covers cell division. Cell growth happens in B-period 

but continues throughout the cell cycle (figure reproduced from Haeusser and Levin, 2008 with 

permission). 

E. coli cells can grow at very different growth rates. When environmental conditions support fast-

growth, the time needed for DNA replication (C-period) can exceed the total doubling time (i.e. B + C 

+ D periods). This situation is possible as E. coli can grow with overlapping DNA replication cycles, 

where two or four origins are initiated in one generation whilst a round of replication is already 

underway through initiation from the previous generation. Replication is initiated at all origins 

simultaneously once per generation (Skarstad et al., 1986). Cell growth is continuous throughout the 

whole cell cycle (Bates et al., 2005). 
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Despite a large body of research over many years, the intricacies of the cell cycle and regulatory 

mechanisms of the processes involved are not fully understood, although progress is being made 

(Adiciptaningrum et al., 2015; Bates and Kleckner, 2005; Bates et al., 2005; Grant et al., 2011). Recent 

developments in single-cell research are starting to allow investigation in to the behaviour of single 

cells as opposed to population-based data, which are already challenging our understanding of the cell 

cycle (Osella et al., 2017) 

DNA replication initiation 

DNA replication in E. coli is initiated at a single, defined DNA sequence called oriC. The 245 bp oriC 

region contains multiple asymmetric 9-bp sites called DnaA boxes that have high or low affinity for 

binding of the DnaA initiator protein (dnaA). DnaA is bound to the high affinity sites for the majority 

of the cell cycle and only binds the lower-affinity sites at initiation. An AT-rich region to one side of 

the origin, called the DNA-unwinding element (DUE) and consisting of three 13-bp repeats, contains 

a third type of binding site that is similar to the weak-affinity boxes from oriC. DnaA is complexed with 

ATP (adenosine triphosphate) or ADP (adenosine diphosphate) at the origin and both complexes are 

able to bind the high affinity boxes but only ATP-DnaA can bind the low-affinity sites. ATP-DnaA is the 

active form of DnaA and is key for initiating replication at oriC (reviewed in Hansen and Atlung, 2018; 

Kaguni, 2006; Messer, 2002; Mott and Berger, 2007). 

As the DnaA:origin ratio increases prior to an initiation event, ATP-DnaA binds the lower affinity 

boxes. The binding of DnaA to the origin distorts the DNA and facilitates unwinding of the DNA within 

the DUE, resulting in single-stranded DNA (ssDNA) in this region (Figure 2) (Leonard and Grimwade, 

2005). 

 

Figure 2: DNA replication initiation in Escherichia coli (figure reproduced from Robinson and van Oijen, 

2013 with permission). 

Once the DNA in the AT-rich DUE region has been unwound, the stage is set for the assembly of the 

replisome components. The replisome is a large, multiprotein complex (see Figure 21) that contains 

all the components required for chromosome duplication (Beattie and Reyes-Lamothe, 2015; Johnson 

and O’Donnell, 2005; Kurth and O’Donnell, 2009; O’Donnell, 2006). The first replisome component to 
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be recruited is the replicative DnaB helicase. The single-stranded DUE regions will quickly be bound 

by single-stranded binding protein (SSB; page 19), which hinder DnaB binding. DNA-bound DnaA, 

aided by the DnaB loading factor DnaC, facilitates the loading of two circular homo-hexamer DnaB 

molecules on to opposite strands at the unwound region, one for each replication fork. DnaC then 

leaves, activating the DnaB molecules (reviewed in Costa et al., 2013; Leonard and Grimwade, 2005). 

DnaB helicase encircles the lagging template strand and uses energy released from ATP hydrolysis to 

translocate along the DNA in a 5’ to 3’ direction, which physically forces the two strands apart (Kurth 

and O’Donnell, 2009). Upon activation, the two DnaB helicases proceed in opposite directions and 

open up the loop further (Fang et al., 1999). This allows DnaG primase access to synthesise two leading 

strand primers. The β sliding clamp and the DNA polymerase III holoenzymes (page 102) are then 

loaded at each primed template, forming the replication forks. At this point, initiation proceeds 

immediately to elongation as the replication forks are established and set off around the chromosome 

(Fang et al., 1999; Messer, 2002; Mott and Berger, 2007; Nielsen and Løbner-Olesen, 2008). 

Regulation of replication initiation 

Accurate duplication and segregation of genomic material is important in all organisms and to achieve 

this, it is essential that the entire genome is replicated exactly once per cell cycle. In order to limit DNA 

replication initiation to once per generation and maintain replication at an appropriate time in the cell 

cycle, a number of regulatory strategies are employed in E. coli cells following a successful initiation 

event that prevent untimely replication reinitiations. Both oriC and DnaA are targeted in the control 

of replication initiation. These mechanisms ensure that replication is initiated at all origins present in 

a cell only once per cell cycle and that the initiation events occur simultaneously (Hansen and Atlung, 

2018; Katayama et al., 2017; Messer, 2002; Mott and Berger, 2007; Skarstad and Katayama, 2013). It 

has been suggested that initiation at multiple origins present in the cell due over-lapping cell cycles 

occurs as an initiation cascade, where DnaA released from the first origin to fire transiently increases 

the ratio of free DnaA to oriC sequences for the remaining old origins and promotes another initiation 

event by immediately binding to other origins present (Løbner-Olesen et al., 1994). 

Methylation and sequestration of the origin 

During the initiation cascade, a mechanism called sequestration is important in preventing immediate 

re-initiation of an origin that has just fired, which could occur while the initiation potential remains 

high until all origins have fired, and therefore directs successive initiations to the remaining ‘old’ 

origins. 

In addition to the four normal bases, E. coli DNA contains two bases modified by methylation; 6-

methyl-adenine and 5-methylcytosine. The Dam (DNA adenine methyltransferase) enzyme is 

responsible for adenine methylation. The target recognition sequence for Dam methyltransferase is 

5’-GATC-3’, which is palindromic in duplex DNA. The chromosome is normally fully methylated, which 
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means that this sequence is methylated throughout the chromosome on both strands of the DNA, but 

during DNA replication, there is a transient state of hemimethylation immediately behind the 

replication forks as the parent strand is methylated and the newly synthesised strand is not. This 

allows for discrimination between the two strands, which is of importance in the mismatch repair 

process (page 20) and in maintaining synchronous replication initiation, although it is not essential 

for viability of E. coli cells (Marinus and Løbner-Olesen, 2014). GATC sites on the nascent strand are 

very quickly targeted by Dam protein for remethyation, ≤1 min in most areas of the chromosome in 

exponentially growing cells, resulting once more in fully methylated DNA (Adhikari and Curtis, 2016; 

Marinus and Løbner-Olesen, 2014). 

Whilst studies involving analysis of DNA sequences indicate that the GATC sequence appears in 

the chromosome at an average of once per 243 nucleotides, close to the once per 256 expected for a 4 

bp sequence, the sequences are actually distributed unevenly around the chromosome and so there 

are a number of GATC-rich regions and conversely areas with fewer GATC sites than average (Barras 

and Marinus, 1988; Hénaut et al., 1996; Marinus and Løbner-Olesen, 2014). oriC and the promoter for 

dnaA contain a high number of GATC sites. The full methylation of the oriC region facilitates duplex 

opening at DNA replication initiation (Yamaki et al., 1988). Following replication of the origin, the 

resulting hemimethylated GATC sequences within oriC and the dnaA promoter remain 

hemimethylated for longer than the sequences in other parts of the chromosome due to the action of 

Sequestration A (SeqA) protein, which competes with Dam methyltransferase for access to GATC sites 

within these regions (Figure 3) (Lu et al., 1994; Marinus and Løbner-Olesen, 2014; Messer, 2002; 

Skarstad and Katayama, 2013). 

SeqA protein discriminates between an origin that is about to initiate replication (old origin) and 

an origin that has just been replicated (new origin) by the fully methylated or hemimethylated state 

respectively of the GATC sequences present in each origin region. SeqA preferentially binds to 

hemimethylated GATC sequences and following DNA replication initiation, SeqA rapidly binds to the 

hemimethylated origins. This is referred to as origin sequestration and the action of SeqA prevents 

immediate re-initiation of an origin that has just fired by preventing re-methylation by Dam and 

denying the DnaA initiator protein access to a number of low-affinity DnaA binding sites within oriC 

that contain the GATC sequence recognised by SeqA (Figure 3) (Kaguni, 2006; Nievera et al., 2006; 

Skarstad and Katayama, 2013). 
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Figure 3: The GATC sites within the origin region and the dnaA promoter undergo changes to their 

methylation status that enable modulation of replication initiation and sequestration by SeqA. 

These sites within a new origin remain inaccessible to DnaA for about one third of the cell cycle due 

to sequestration (Figure 3) (Slater et al., 1995), whereas DnaA binding at the three high affinity boxes 

R1, R2 and R4 is detected during the sequestration period, allowing resetting of the origin complexes 

(Nievera et al., 2006). Both Δdam and ΔseqA mutants are viable but show asynchronous replication 

initiation, consistent with the idea that methylation status and sequestration of origin regions are both 

important in promoting synchronous initiation of all replication origins within a cell and contribute 

to limiting initiation events at each origin to once per cell cycle (Løbner-Olesen et al., 1994; Lu et al., 

1994; Marinus and Løbner-Olesen, 2014). 
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Reducing DnaA availability 

By preventing re-initiation of newly replicated origins, origin sequestration is important in allowing 

time for the initiation potential to be reduced. A number of strategies are proposed to be involved in 

achieving this and they are centred around regulating the availability and activity of the DnaA initiator 

protein such that available active DnaA is reduced to levels that cannot sustain initiation until the cell 

is ready to begin the next round (Skarstad and Katayama, 2013). 

Regulatory inactivation of DnaA – DnaA has affinity for both ATP and ADP, but ADP-DnaA is 

considered the inactive form of DnaA as only ATP-DnaA is able to effect unwinding of the dsDNA at 

the origin to initiation replication (Leonard and Grimwade, 2011). Following an initiation event, DnaA 

protein is inactivated by hydrolysis of the DnaA-bound ATP to produce the inactive ADP-DnaA 

complex instead. This process is termed regulatory inactivation of DnaA (RIDA) (Katayama et al., 

1998) and involves an interaction between the β sliding clamp binding to DNA during replication 

initiation and the active ATP-DnaA, which promotes the conversion to ADP-DnaA. This interaction is 

mediated by Hda protein (Katayama, 2001; Katayama et al., 2001; Kato and Katayama, 2001). 

Titration of DnaA to reservoir sites – There are many DnaA-binding sites present in locations 

around the chromosome outside of the origin region. As replication progresses, the increasing number 

of DnaA-binding sites formed by duplication of the chromosome contribute to the titration of DnaA 

away from the origin, reducing the availability of free DnaA molecules in the cell. One of these sites 

that has a particularly high affinity for DnaA is the datA region, which is located near to oriC and so is 

replicated soon after initiation of replication. datA is estimated to bind approximately eightfold more 

DnaA molecules than the oriC region (Hansen et al., 2007; Kitagawa et al., 1996; Skarstad and 

Katayama, 2013). It has been proposed that datA therefore is key in providing a reservoir that titrates 

DnaA molecules away from the origin and in line with this, it was reported that in the absence of the 

datA locus, growth is normal but cells display an asynchronous initiation phenotype, indicating that 

datA is essential for maintaining timely replication initiation (Kitagawa et al., 1998; Ogawa et al., 

2002). 

Regulation of dnaA expression – The dnaA gene is located near oriC and as a consequence, the 

dnaA promoter is subject to sequestration by SeqA for a similar length of time as the origin (Campbell 

and Kleckner, 1990), and it has been shown that this contributes to maintaining initiation control and 

preventing asynchronous initiation events (Riber and Løbner-Olesen, 2005). 

In addition to sequestration, dnaA expression is regulated by the DnaA protein itself (Atlung et al., 

1985). dnaA is transcribed from two promoters (Messer, 2002). The promoter region contains DnaA 

boxes and the binding of DnaA protein to its own promoter region results in the negative regulation 

of both promoters and repression of the transcription of dnaA (Hansen and Atlung, 2018). Whilst both 

ATP-DnaA and ADP-DnaA can bind to this region, ATP-DnaA is much more effective in repressing dnaA 

expression (Speck et al., 1999). 
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Elongation 

Once the replisomes are established at each end of the initiation bubble, replication begins as the two 

replication forks move away from the origin in opposite directions, proceeding at high speed of 550 – 

750 bp s-1 (Pham et al., 2013) with the left-hand, anticlockwise fork often slightly ahead of the right-

hand fork (Breier et al., 2005). The two strands of the DNA template are separated by the replicative 

helicase DnaB (LeBowitz and McMacken, 1986). The presence of SSB at the replication fork protects 

the resulting single-stranded template DNA until it is duplicated. The replicative polymerase, DNA Pol 

III, is tethered to the DNA template by the β sliding clamp, which increases the speed and processivity 

of the polymerase (Burgers et al., 1981; Johnson and O’Donnell, 2005; LaDuca et al., 1986). The sliding 

clamp is actively assembled around the DNA by the clamp loader at primed sites generated by DnaG, 

a primase that is transiently recruited to the replication fork by DnaB and acts in a distributive fashion 

to synthesise short RNA primer sequences to provide a substrate for DNA polymerase to initiate DNA 

synthesis (Rowen and Kornberg, 1978; Wu et al., 1992). The replisome is a multi-subunit complex. 

The components of the replisome are described in more detail later (page 102). 

Coupling the duplication of each strand of the template causes a challenge for cells that results 

from the antiparallel nature of a DNA molecule. DNA Pol III moves in a 3’ to 5’ direction along the 

template strand and begins synthesising the nascent strand at the 3’-hydroxyl end of a primer. The 

leading strand synthesis occurs in the same direction as the replication fork is moving whereas the 

lagging strand is orientated in the opposite direction. As a result, the lagging strand is synthesised in 

short, discontinuous sections called Okazaki fragments, each of which is primed by DnaG as replication 

progresses (Balakrishnan and Bambara, 2013; Okazaki et al., 1968). The generally accepted view is 

that leading strand synthesis is continuous following a single priming event at the origin, although 

there is evidence for both continuous and discontinuous replication of the leading strand (Amado and 

Kuzminov, 2006; Graham et al., 2017; Langston et al., 2009; Wang, 2005); indeed, discontinuous 

synthesis of both strands was suggested very early on in the effort to elucidate the details of DNA 

replication (reviewed in Ogawa and Okazaki, 1980). The RNA primers needed for the lagging strand 

synthesis are subsequently replaced with DNA nucleotides by DNA polymerase I and the gaps between 

two Okazaki fragments are joined by ligase (Pomerantz and O’Donnell, 2007). 

Single-stranded DNA binding protein 

Whilst the normal conformation of the DNA that comprises the genome of E. coli is as a double-

stranded, helical molecule folded into a compact structure and organised into superhelical domains, 

the processes surrounding nucleic acid metabolism that are essential for life require access to the 

information contained within the dsDNA, which means that regions of unwound, ssDNA must be 

formed within the chromosome when necessary (Rocha, 2008; Toro and Shapiro, 2010). ssDNA is 

vulnerable to attack that might damage the DNA molecule. To protect the integrity of the genetic 

information contained within the DNA molecule and to prevent untimely reannealing of the single 
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strands, single-stranded DNA binding (SSB) proteins bind to ssDNA in a sequence-independent 

manner, and so SSB is targeted to sites of active replication, recombination and repair (Meyer and 

Laine, 1990; Shereda et al., 2008). In addition to providing protection to ssDNA, SSB has more recently 

been shown to interact with a number of proteins in order to target DNA metabolism proteins to 

appropriate regions of the DNA molecule, including Exonuclease I (ExoI) (Lu and Keck, 2008; Lu et al., 

2011), RecJ exonuclease (Han et al., 2006), RecG helicase, PriA (Yu et al., 2016) and other DNA 

metabolism proteins involved in replication, recombination and repair (Shereda et al., 2008), and 

additionally the interaction can stimulate the catalytic activity of a number of these enzymes (Shereda 

et al., 2008). 

Errors during Replication 

There are numerous factors that might affect the complete and accurate duplication of the E. coli 

chromosome and the replication forks must overcome these obstacles in order to avoid the risk of 

genomic instability. Two main problems that elongating replisomes must deal with are instances of 

polymerase-associated replication errors and blocks to progression, such as small lesions or protein 

roadblocks. 

Polymerase-associated replication errors 

The replicative polymerase Pol III has a relatively low error rate in nucleotide incorporation due to its 

ability to discriminate between correct and incorrect base pairing (Kunkel, 2004). Errors that are 

made can be resolved by the 3’ to 5’ exonuclease proofreading capability of Pol III, which is provided 

by the DnaQ subunit (Scheuermann and Echols, 1984). Despite the relatively high fidelity resulting 

from these combined actions of DNA Pol III (Kunkel, 2004; Loeb and Kunkel, 1982), occasionally an 

error such as a base-base mismatch or small insertion-deletion mutation is made during DNA 

replication that is not resolved by Pol III and instead is corrected by the DNA methyl-directed 

mismatch repair (MMR) pathway. The combined effect of all three steps results in high fidelity of 

replication with an overall error rate of DNA replication reported to be between 10–9 and 10-10 

(Fijalkowska et al., 2012). In addition, the MMR machinery has a role in regulating recombination 

through repairing mismatches and preventing recombination between homeologous sequences 

(Evans and Alani, 2000; Modrich and Lahue, 1996; Spies and Fishel, 2015). The combined effect of the 

activities of MMR is important in promoting genomic stability and the absence of a functional MMR 

system results in a mutator phenotype with increased spontaneous mutation rates (Schofield and 

Hsieh, 2003). 
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Figure 4: Schematic depicting the key steps of the MMR processing of a replication error. MutS is 

represented by the white and blue pierced circle and MutL is represented by the filled red circles. All other 

components are labelled within the diagram. The bidirectional nature of mismatch repair necessitates 

both exonucleases with 5’ – 3’ activity and exonucleases with 3’ – 5’ activity (reproduced from Marinus, 

2012; ©2012 American Society for Microbiology. Used with permission. No further reproduction or 

distribution os permitted without the prior written permission of American Society for Microbiology). 

MMR is initiated when MutS recognises and binds to a replication error such as a base pair mismatch 

(Su and Modrich, 1986; Su et al., 1988). MutS then recruits the MutL protein to the MutS-heteroduplex 

DNA complex. Once the mismatch has been identified, MutS-MutL complex interacts with MutH, a 

sequence-specific endonuclease that recognises GATC sites and introduces a ssDNA nick in the nascent 

strand of a hemimethylated GATC duplex (Welsh et al., 1987) such as that found transiently behind 

replication forks. The innate endonuclease activity of MutH is extremely weak (Welsh et al., 1987). 

Once activated by MutS-MutL, MutH activity was shown in vitro to be increased over 30-fold (Au et al., 

1992) and produces a single stranded nick at a GATC sequence on the nascent, unmethylated strand. 

The GATC site targeted in MMR can be either 3’ or 5’ to the site of the mismatch (Grilley et al., 1993; 

Modrich, 2016). MutL facilitates UvrD (DNA helicase II) loading at the site of the endonucleolytic 

incision created by MutH (Matson and Robertson, 2006). UvrD then unwinds the dsDNA starting from 

the nick and proceeding towards and beyond the site of the mismatch error, generating a ssDNA flap. 

UvrD helicase has 3’ – 5’ polarity and so must be loaded on to the parent strand when the nick is 5’ to 

the mismatch and on to the nascent strand when the nick is 3’ to the mismatch, resulting in a 5’ or 3’ 

ssDNA flap respectively, which indicates that MMR requires the ability to remove single-strand flap 

structures of both polarities (Matson and Robertson, 2006). This functionality is provided by ssDNA 
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exonuclease proteins. ExoI and Exonuclease X (ExoX) are 3’ ssDNA exonucleases that catalyse the 

degradation of the 3’ ssDNA generated when MutH nicks the DNA 3’ to a mismatch. RecJ and 

Exonuclease VII (ExoVII) are 5’ ssDNA exonucleases that catalyse the hydrolysis of the ssDNA 

generated when MutH nicks the DNA 5’ to a mismatch. ExoVII is also able to contribute to degradation 

of the 3’ substrate as it has 3’ – 5’ activity in addition to its 5’ – 3’ activity (Burdett et al., 2001; 

Viswanathan et al., 2001), although it was found in vitro to be much less effective in the 3’ – 5’ direction 

(Grilley et al., 1993). The resulting ssDNA gap is stabilised by the binding of SSB. The normal 

replication polymerase, Pol III, is responsible for re-synthesising the section of excised nascent strand 

DNA, and DNA ligase seals the nick, completing the restoration of the duplex to the parental genotype. 

The basic steps of MMR described here are shown in Figure 4 (Reviews on MMR include: Harfe and 

Jinks-Robertson, 2000; Kunkel and Erie, 2005; Marinus, 2012; Modrich, 2016). 

Cells lacking all four of the exonucleases involved in MMR were found to suffer from a loss of 

viability (Burdett et al., 2001), but the presence of any one of ExoI, ExoX, RecJ or ExoVII has been 

shown to be enough to support full mismatch correction and restore normal mutation rates 

(Viswanathan et al., 2001). 

Barriers to replication elongation 

In addition to managing misincorporations, replication forks will inevitably encounter blocks to 

progression, and it has been reported that in fact a significant portion of replication forks in normal 

chromosome replication stall or collapse due to obstacles such as lesions, protein-DNA complexes or 

DNA secondary structures (Cox et al., 2000; Lindahl, 1993; Maisnier‐Patin et al., 2001; Mirkin and 

Mirkin, 2007; Rudolph et al., 2007a; Sandler and Marians, 2000). The consequences of such 

impediments to replication fork progression depend on the type of obstruction encountered. 

Encounters between the replication machinery and transcription complexes have been shown to 

be a major cause of replication fork pausing but do not necessarily lead to replisome disassembly and 

fork inactivation (Gupta et al., 2013). 

There are many repair processes in place to deal with the lesions resulting from DNA damage that 

are continuously arising (Kisker et al., 2013; Lindahl, 1993), however some lesions are not repaired 

in time and so are encountered by replication forks. The cellular response to replication forks 

encountering DNA lesions in the template during replication is complex and an extensive body of work 

surrounding the events that follow such occurrences has been generated, with controversy 

surrounding the exact mechanisms employed by cells (for reviews see Bichara et al., 2011; Fuchs, 

2016; Lehmann and Fuchs, 2006; Lovett, 2017; McGlynn and Lloyd, 2002a and references therein). 

The response to a small lesion on the DNA differs depending on if it occurs on the lagging strand or 

the leading strand. There is plenty of evidence supporting the idea that the leading strand polymerase 

is blocked by lesions in its template strand and that replication cannot resume until the lesion has 

been repaired (Rudolph et al., 2007b). In contrast, it is generally accepted that a lesion occurring on 
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the lagging strand template does not pose such a problem to the progression of a replication fork and 

can be by-passed by the replisome skipping to the next Okazaki fragment. The resulting ssDNA gap 

containing the lesion is subsequently resolved through recombination with the sister chromosome 

(McGlynn and Lloyd, 2002a). Recently, the idea that the leading strand synthesis is able to re-initiate 

downstream of the site of a lesion and is only dependent on DnaG primase and not replication re-start 

proteins has garnered renewed interest (Lehmann and Fuchs, 2006; Yeeles and Marians, 2011); it 

remains to be determined exactly what occurs when a replication fork encounters a lesion in the 

leading strand template. 

PriA-mediated replication restart 

Regardless of the cause, if a stalled replication fork is unable to resume replication once the block to 

replication is resolved, chromosome duplication will be unsuccessful unless the DNA downstream of 

the stalled fork is replicated. The fork replicating the other replichore is blocked from progressing out 

of the termination region opposite oriC by the presence of the Tus/ter replication fork trap (page 24) 

and so is unable to rescue the stalled fork, and the DnaA-oriC initiation system is unable to catalyse 

the assembly of replication forks away from the origin of replication. It was recently reported that 

cells in which the replication origin has been moved to a location roughly 1 Mbp away from its original 

location (ΔoriC oriZ+) have a slow growth phenotype (Ivanova et al., 2015). The replichore 

arrangement has been disrupted in these cells and instead of replicating roughly equal halves of the 

chromosome, the anti-clockwise replication fork must replicate ¾ of the chromosome whilst the 

clockwise fork replicates just ¼ before it is blocked at a Tus/ter complex. The introduction of a tus 

deletion was found to be a good suppressor of the slow growth, which highlights the importance of 

this aspect of replication (Ivanova et al., 2015). 

Replication restart pathways enable the re-assembly of the replisome at the location of the stalled 

fork and the resumption of DNA synthesis. The stochastic nature of replication fork stalling means 

that unlike DnaA-mediated replication initiation, specific DNA sequences cannot form the basis of 

initiation and instead, restart proteins recognise specific DNA structures where replisome assembly 

is required (Heller and Marians, 2006). PriA is the main replication restart protein and ΔpriA mutants 

have a complex phenotype that includes slow growth and reduced viability (Lee and Kornberg, 1991) 

and rapidly acquire suppressor mutations, demonstrating the importance of the replication restart 

process (Sandler and Marians, 2000). PriA has been shown to recognise and load a replisome at 

multiple DNA structures, including various stalled fork structures and D-loops that might be formed 

via homologous recombination (Gabbai and Marians, 2010; McGlynn et al., 1997; Nurse et al., 1999; 

Tanaka and Masai, 2006). The major restart pathway proposed is referred to as the PriA-PriB-DnaT 

pathway (Michel and Sandler, 2017). PriA binding to a stalled fork structure is followed by the binding 

of PriB. DnaT is then required to facilitate DnaC in the loading of the replicative helicase DnaB (Michel 

and Sandler, 2017). DnaB encircles the lagging strand and so a single-stranded region on the lagging 
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strand template is required for DnaB loading. PriA has a 3’ – 5’ DNA helicase activity that is able to 

remodel stalled fork structures where necessary to accommodate this requirement, although this 

function is not essential for replication restart (Gabbai and Marians, 2010; Zavitz and Marians, 1992). 

In addition to the PriA-PriB pathway, E. coli cells have a second PriA-mediated replication restart 

capability, the PriA-PriC pathway. There is redundancy between these two pathways, demonstrated 

by the almost wild type phenotypes of either a priB or priC deletion and the fact that ΔpriB ΔpriC 

double mutants have very poor viability and slow growth phenotype (Sandler et al., 1999), although 

the PriA-PriB pathway is thought to be the dominant pathway in replication restart (Windgassen et 

al., 2018). PriC has been shown in vitro to bind preferentially to ssDNA and be most active on stalled 

replication forks that have a short stretch of ssDNA between the nascent leading strand and the fork 

junction (Windgassen et al., 2018). 

Termination 

Whilst replication initiation and elongation have been extensively studied and are generally well 

understood, the events that take place during the final phase of DNA replication, called termination, 

have received much less attention. The two replication forks traversing the circular chromosome in 

opposite directions approach each other. The area between the converging replisomes must be 

replicated in its entirety and with high accuracy and the two duplex DNA molecules generated by one 

replisome must be fused with the corresponding duplexes of the opposing replisome. Duplication of 

the chromosome is then complete (Dewar and Walter, 2017). 

The replication fork trap 

Given the circular nature of the E. coli chromosome and the fact that there is a single origin where 

replication is initiated bidirectionally, it follows that there will be a single fork fusion event per cell 

cycle where the two replisomes will meet each other head on. In E. coli, this termination event takes 

place in a region approximately opposite oriC. By introducing ectopic origins at different locations in 

the chromosome and supressing initiation at oriC, it was found that the termination location is not 

affected by the position of the origin of replication. The realisation that replication forks were unable 

to progress out of the terminus area led to the discovery of the replication fork trap in the area of the 

chromosome opposite oriC (reviewed in Neylon et al., 2005). This region is flanked by ten primary 

ter (termination) sites (terA–J). The sequence of each of the 23 bp ter sites is asymmetric and has a 

strictly conserved GC6 base pair followed by a very highly conserved consensus sequence forming the 

core region (Coskun-Ari and Hill, 1997; Duggin and Bell, 2009; Neylon et al., 2005). 

In addition to the ter sites, a DNA-binding protein encoded by the tus gene is involved in forming 

the replication fork trap (Hill et al., 1989). The terminus utilization substance, Tus protein, recognises 

and binds asymmetrically to ter sequences, and the resulting Tus/ter complex forms a barrier to the 

progress of replication forks in an orientation-specific manner. A replication fork is blocked when 
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approaching a ter-Tus complex from a non-permissive direction but is able to pass when approaching 

from the opposite direction. The ter sites are arranged into two opposing groups spanning 

approximately 45 % of the chromosome, as shown in Figure 5. All ten primary ter sites are orientated 

to allow replication forks to proceed when travelling in an origin to terminus direction but to block 

progression of forks in the terminus to origin direction, resulting in a region of over 260 kb between 

the innermost ter sites that replication forks can enter but cannot leave (Duggin et al., 2008; Neylon 

et al., 2005) (Figure 5). The presence of a block preventing replication fork progression out of the 

terminus region dictates that half of the chromosome is replicated by the fork moving clockwise from 

oriC and the other half is replicated by the fork moving anti-clockwise, dividing the chromosome into 

two approximately equal replichores (Reyes-Lamothe et al., 2012). 

 

Figure 5: Map of the E. coli chromosome showing the location of the primary ter sites (terA-J, triangles), 

the highly transcribed rrn operons A-D, G and H (green arrows) and the location of the chromosome dimer 

resolution site, dif. Numbers represent the minutes of the standard genetic map. Tus bound to a ter site 

forms a semi-permissive block to replication. Forks traversing the left hand replichore (red) from oriC are 

able to pass terJ, G, F, B and C but are blocked by terA. Conversely, terH, I, E, D and A are permissive to 

forks traversing the right hand replichore (blue) from oriC, but these forks are blocked at terC (figure 

reproduced from Dimude et al., 2016 with permission). 

The gene encoding Tus is located within the termination region just downstream of terB. The tus 

promoter and ribosome binding site overlap terB. As might be expected, it was found that the 

transcriptional start site is within terB and the expression of tus is autoregulated through the binding 

of Tus protein to terB, which inhibits transcription of tus (Neylon et al., 2005). 

Tus is a monomeric protein and a single Tus molecule binds to each ter site (Coskun-Ari et al., 

1994). The binding affinity of Tus to ter is very high; the in vitro equilibrium dissociation constant (Kd) 

of terB-Tus was reported as 3.4 × 10-13 mol L-1 (Gottlieb et al., 1992), but it does not bind to all the Ter 

sites equally. Moreau and Schaeffer (2012) reported that Tus binds strongly to terA-E and terG and 

less strongly to the remaining ter sites. Given that terA-D are the four innermost ter sites, it is not 

surprising that Tus forms a tight bond with these ter sites; they are the most likely to encounter 

replication forks from the blocking orientation (Figure 5). The data from Moreau and Schaeffer are in 

line with the work by Duggin and Bell (2009) on the fork pausing efficiencies of each ter-Tus complex, 
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which they found differed considerably between the different ter sites, and they observed that sites 

terA-D have the highest innate efficiency of fork pausing. 

Mechanism of polar replication fork arrest 

Following the identification of the ter sites and the ter-binding protein Tus as the components needed 

to form a polar block to replication fork progression, the next question was how a ter-Tus complex 

achieves this. Despite a large body of work, the mechanism of polar replication fork arrest has not yet 

been fully determined and there are conflicting reports on what the key interactions might be. 

One suggestion is that the presence of Tus bound to the DNA acts as a simple clamp and presents 

a non-specific but polar block to proteins translocating along the DNA, including the replisome. Using 

the oriC plasmid with ectopic terB sequences inserted in various orientations, Lee and colleagues 

(1989) showed that ter-Tus complexes can form a block to helicase-mediated strand separation, 

which includes Rep and UvrD helicases in addition to the replisome helicase, DnaB, in an orientation-

specific manner. Additionally, the strand displacement activity of PriA has also been shown in vitro to 

be inhibited by ter-Tus complexes (Hiasa and Marians, 1992; Lee and Kornberg, 1992). This means 

that the non-permissive end of the polar ter-Tus complex that arrests DnaB translocating in the 5’-3’ 

direction also inhibits progress of other helicases translocating on the other strand in the 3’-5’ 

direction (Neylon et al., 2005). It has also been shown that Tus-ter complexes blocks RNAPs in a polar 

fashion (Mohanty et al., 1998), and that Tus-ter complexes maintain functionality when engineered in 

the genome of Saccharomyces cerevisiae and cause a block to replication forks in a polar manner 

(Larsen et al., 2014). These findings are in line with the idea that a Tus-ter complex acts as a ‘molecular 

clamp’ and is non-specific in its inhibition of movement. 

However, many have challenged the idea that DNA binding alone can explain the mechanism of a 

Tus-ter block, and there are numerous reports that support a model of specific protein-protein 

interactions between a replisome component, presumably the DnaB helicase, with the non-permissive 

face of the Tus-ter complex. Mutations in tus have been identified that result in a reduced ability to 

block replication fork progression but do not affect the DNA-binding affinity of Tus and the mutant 

proteins form stable complexes with ter sites (Henderson et al., 2001; Mulugu et al., 2001; Skokotas 

et al., 1995). It has been reported that a Tus-ter complex inhibits translocation of DnaB in a polar 

fashion even in the absence of strand separation (Bastia et al., 2008), which is in contrast to the 

findings of Mulcair et al. (Mulcair et al., 2006) that a structural change in the DNA that occurs only 

when a helicase elicits strand separation from the non-permissive direction is responsible for the 

polar arrest of replication forks.  Additionally, it was shown that a tus mutant that retained normal 

DNA binding affinity but a reduced interaction of DnaB-Tus also resulted in defective arrest of the 

translocating DnaB (Bastia et al., 2008). 

The structural change identified by Mulcair and colleagues (2006) was shown to occur when 

strand separation exposed the strictly conserved C(6) residue at the non-permissive end of ter. Their 
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data indicate that the strand separation caused by the approaching replisome results in the C(6) 

residue flipping out of the double helix and binding to a specific location of the Tus protein, which 

results in the formation of a very stable ‘locked’ Tus-ter complex (C(6) lock complex), which they 

suggest provides an explanation for the polarity of the blocking action of Tus-ter complexes. More 

recent studies reinforce the importance of the C(6) residue in the formation of a robust block to 

replication fork progression (reviewed in Berghuis et al., 2018). 

Given the numerous studies in support of different models and presenting conflicting information, 

the interaction appears to be quite complex and it is likely that multiple effects contribute to the tight 

block in E. coli. Despite the work by Larsen and colleagues showing that E. coli Tus-ter complexes 

function in Saccharomyces cerevisiae (Larsen et al., 2014), they also revealed that the Tus-ter complex 

presents a far less effective block to replication in yeast compared to its activity in E. coli as three 

complexes in tandem were still overcome by the yeast replisome, whereas in E. coli, a single ter site is 

very effective (Bidnenko et al., 2002; Dimude et al., 2016; Ivanova et al., 2015). It has also been shown 

that while the functionally similar but unrelated RTP-Ter system of B. subtilis operates effectively in 

E. coli (Andersen et al., 2000; Kaul et al., 1994), the efficiency of replication fork arrest by Tus-ter 

complexes differed in the two organisms and was much higher in E. coli than in B. subtilis (Andersen 

et al., 2000). The crystal structure of the Tus-ter complex led Kamada and colleagues (1996) to suggest 

that the polar nature of the block to replication fork progression might be due to differing, orientation-

specific interactions between Tus and an approaching helicase protein. The ter-binding regions of Tus 

are inaccessible to the helicase at the non-permissive end of the complex due to bulky domains in this 

region of Tus. Tight binding of Tus to ter sequences would be required to form this steric block to fork 

progression. This steric block is not present when approaching from the permissive orientation, and 

so helicase unwinding could disrupt the DNA-binding of Tus and therefore is able to displace Tus and 

continue moving past the ter site (Kamada et al., 1996). Together, these observations support the 

suggestion that both protein-protein and protein-DNA interactions are important in ensuring an 

efficient and polar block to replication fork progression (for reviews, see Berghuis et al., 2018; Duggin 

et al., 2008; Neylon et al., 2005). 

The role of the replication fork trap 

Despite the fact that much of the work on termination systems so far has focussed on understanding 

how they operate, arguably the more interesting question is: what is the purpose of a defined 

termination area that allows replication forks to enter but not to leave this region? If, as has been 

reported, a significant portion of replication forks in normal chromosome replication stall or collapse 

due to impediments such as endogenous DNA damage, protein-DNA complexes or DNA secondary 

structures even in the absence of exogenous damage (Cox et al., 2000; Lindahl, 1993; Maisnier‐Patin 

et al., 2001; Mirkin and Mirkin, 2007; Rudolph et al., 2007a; Sandler and Marians, 2000), then it would 

make sense for whichever fork arrives first at the half way point opposite the replication origin to pass 
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through the terminus and meet the opposing fork that may have been delayed on its journey. Whilst 

this would reduce any delay to chromosome duplication and cell division, the replication fork trap 

ensures that this does not happen. Moreover, if a blocked fork fails to reach the termination region, 

replication of the chromosome will be incomplete and the cell might not survive (Maisnier‐Patin et al., 

2001; Sharma and Hill, 1995). This highlights the importance of the mechanisms that enable repair 

and restart of stalled replication forks in bacteria, such as PriA-mediated replication restart (Michel 

and Sandler, 2017) (page 23) in cellular DNA metabolism as part of normal bacterial growth (Cox et 

al., 2000). If the presence of a replication fork trap can pose a threat to the viability of the cell, there 

must be some advantage that outweighs the risks posed by preventing one replication fork from 

leaving the terminus to rescue a stalled fork. 

It is not immediately obvious what the role of the fork trap might be and there are a number of 

observations that confuse the matter. With almost no exception, all bacterial species have circular 

chromosomes like that in E. coli and yet a fork trap system has only been identified in a limited number 

of species, demonstrating that it is not an essential feature for successful replication termination in a 

circular chromosome (Neylon et al., 2005). On the other hand, the components of the functionally-

related RTP-ter replication fork trap of B. subtilis show no structural or sequence homology with the 

E. coli system, indicating that the two systems have evolved independently and that a fork trap fulfils 

an important physiological function (Neylon et al., 2005). Inactivation of the replication fork trap by 

the deletion of tus does not induce a particularly obvious phenotype (Roecklein et al., 1991); single 

mutant cells exhibit a slow growth phenotype, but the effect is very mild (Ivanova et al., 2015). In line 

with this, the location of replication fork fusion is unaffected by the presence or absence of the fork 

trap (Dimude et al., 2016; Ivanova et al., 2015; Rudolph et al., 2013). This was also shown to be the 

case in B. subtilis (Kono et al., 2014). 

Despite a lot of focus on replication forks stalling at Tus-ter complexes, the number of forks that 

terminate replication at a Tus-ter complex in vivo is relatively low in wild type cells (Duggin and Bell, 

2009). Recent data suggest that arrest of forks by Tus-ter can in fact lead to problems (Midgley-Smith 

et al., 2018). If one fork is significantly slower than the other in reaching the termination region, maybe 

following delay at a replication block, then the fork that arrives first will eventually encounter a Tus-

ter complex from the non-permissive direction. Whilst a fork being stably arrested at a Tus-ter 

complex might provide an advantage at first and allows the second fork time to catch up, in vitro and 

in vivo measurements of fork stability at obstacles including nucleoprotein roadblocks suggest a 

limited half-life of 4‒6 mins (Marians et al., 1998; McGlynn and Guy, 2008; Mettrick and Grainge, 

2016). This suggests that after a relatively limited period of time, forks become inactivated and can be 

processed by recombination proteins, which can have pathological consequences that result in 

destabilisation of the genome (Lambert et al., 2005; Midgley-Smith et al., 2018). In line with this, it has 

been reported previously that the termination region is a hotspot for recombination (Horiuchi et al., 

1994). Our work suggests that this might be an important reason why forks do not get held by Tus-ter 

as a general rule (Midgley-Smith et al., 2018). It seems therefore that the fork trap is not needed to 
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mediate fork fusion events in normal replication termination so there must be another reason for it to 

exist. 

Encounters between replication and transcription 

The polymerases that carry out replication and gene transcription share the same template and in the 

case of bacteria, there is no temporal separation of the two processes and so they occur 

simultaneously. To complicate matters further, the two complexes are often moving in opposing 

directions and they progress at very different rates, with transcription speed reported to be 10-20 

times slower than replication (Dennis et al., 2009; Gotta et al., 1991; Pham et al., 2013). Collisions 

between replication and transcription complexes are inevitable and have been shown to be 

problematic; in particular, head on collisions between the replication and transcription machineries 

have been shown to result in serious inhibition of replication fork progression (Ivanova et al., 2015; 

Kim and Jinks-Robertson, 2012; McGlynn et al., 2012; Mirkin and Mirkin, 2005; Poveda et al., 2010; 

Rudolph et al., 2007a). Given that there are over 4000 genes within the genome sequence of E. coli, 

distributed throughout the chromosome (Blattner et al., 1997), conflicts between replication and 

transcription must be unavoidable, especially in rapidly growing cells that not only exploit 

overlapping rounds of DNA replication, resulting in multiple replisomes operating on the DNA at once, 

but that also will require increased transcription to keep up with demand for cellular components. 

The strong indication that head-on conflicts are problematic provides a strong argument for the 

importance of maintaining co-directionality between replication and transcription. Maybe the 

function of the replication fork trap is to maintain co-directionality of replication and transcription by 

preventing movement of replication forks out of the terminus region and in to the opposite replichore 

(Brewer, 1988). This set up dictates that each replichore is always replicated in the same orientation. 

This creates a situation where it is possible to align transcription with this. Whilst encounters between 

replication and transcription machineries moving in the same direction can still cause problems 

(Ivanova et al., 2015; Merrikh et al., 2011), avoiding head-on collisions would undoubtably be an 

advantage to cells. 

In line with this, the large majority of highly transcribed genes in E. coli are located on the leading 

strand template and so are transcribed co-directionally with the movement of the replisome during 

replication. A similar situation is found in B. subtilis, which displays a particularly high co-orientation 

of the rrn operons with replication, but also substantial co-directionality in general with an over-all 

co-directionality of almost 75% (McLean et al., 1998). The overall co-orientation in E. coli however is 

much lower, with approximately 55% of genes aligned with replication (Blattner et al., 1997; Brewer, 

1988; McLean et al., 1998). An analysis of a number of different genes that are highly transcribed 

under fast growth conditions has recently been conducted. The findings suggest that while a high 

proportion of these genes have been found to display co-directionality with replication (Brewer, 1988; 

Ellwood and Nomura, 1982; Jin et al., 2012; McLean et al., 1998), the location of these genes should 
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also be taken in to consideration (Dimude et al., 2016). Both the rrn operons, which encode ribosomal 

RNA, and the ribosomal protein genes are highly skewed to the origin-proximal half of the 

chromosome. In order for the observed co-directionality to be relevant in explaining the presence of 

the fork trap, there must be a threat that replication forks escaping the termination area in the absence 

of Tus will reach these regions of the chromosome. It is unlikely that this situation would occur very 

often. Using strains carrying an ectopic replication origin, it was possible to investigate chromosome 

dynamics in the presence and absence of functioning replication fork blocks under conditions where 

the midpoint of replication (normally within the terminus) is skewed in one direction or the other 

(Ivanova et al., 2015). It was found that replication forks that are able to progress through the 

termination region and in to the opposite replichore were able to proceed with few problems (Dimude 

et al., 2018a; Ivanova et al., 2015). In line with this, tRNA genes, which are much more evenly 

distributed than rrn operons and the ribosomal protein genes, were found to have a high degree of co-

directionality when located in the origin-proximal half of the chromosome but those located in the 

origin-distal half showed a slight bias for the opposite orientation, which would see replication-

transcription encounters at these genes occurring head-on (Dimude et al., 2016). Whilst co-

orientation of replication and transcription may provide an advantage that exists as a result of the 

presence of the replication fork trap, it does not seem to be the driving force behind its existence, 

possibly in line with the observation that not all bacterial species have a fork trap. 

Over-replication at fork fusion locations 

Despite the presence of the replication fork trap, the fraction of forks stalled at Tus-ter complexes is 

relatively low (Duggin and Bell, 2009) and instead the majority of replication forks fuse freely in the 

region between the innermost ter sites and not at a Tus-ter complex, as outlined above. There have 

been a number of reports using various experimental approaches that have shown that over-

replication of the DNA can occur at fork fusion sites. 

Hiasa and Marians studied replication termination using an in vitro system of minichromosomes 

containing oriC for replication initiation and two ter sites arranged opposite the origin with a slight 

asymmetry, simulating the situation found in the chromosome (Hiasa and Marians, 1994). They found 

that in the presence of Tus, replication terminated at one or the other Tus-ter complexes. In the 

absence of Tus, termination occurring through free-fusing fork events led to over-replication of the 

DNA, resulting in double-stranded nascent DNA. The suggested pathway that could result in over-

replication at replication fork fusion was the displacement by DnaB helicase of the 3’ end of the 

nascent strand, which is unable to occur when a fork is blocked by a Tus-ter complex. A similar 

situation was observed in an in vivo investigation of replication, supporting this suggestion. When 

investigating replication intermediates arising in the R1 plasmid, which initiates unidirectional 

replication from a single origin, Krabbe et al (1997) found that in the absence of Tus, which ordinarily 

binds to two naturally occurring, oppositely orientated ter sites that are situated between the origin 
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and the DNA synthesis start site of the leading strand, the plasmid becomes very unstable. This is 

coupled with an accumulation of multimeric plasmid forms and rolling circle replication. The authors 

suggested that this might arise as a result of the replisome progressing past the origin and 

encountering the already replicated region of the plasmid, where the replicative helicase then 

proceeds to unwind the nascent strand, and which by strand switching of the leading strand 

polymerase becomes the new leading strand template (Krabbe et al., 1997). 

The absence of the terminator protein, RTP, from B. subtilis cells was shown to contribute to 

problems at replication termination when combined with mutations that hinder dimer resolution and 

chromosome partitioning following the fusion of replication forks (Lemon et al., 2001). Similarly, 

Markovitz (2005) combined Δtus with different polA alleles encoding mutant DNA polymerase I 

proteins and observed over-production of DNA. 

Origin-independent DNA synthesis at replication termination 

So far, all phenotypes of cells lacking Tus are very mild. Recent work has revealed a more conspicuous 

phenotype of Δtus cells than has been seen in the past. Rudolph and colleagues found that cells lacking 

RecG helicase took far longer than wild type cells to recover from DNA damage and formed long 

filaments with high incidences of initiation of DNA synthesis (Rudolph et al., 2009a, 2009b). They 

hypothesised that RecG might have a role in managing replication fork fusions, which normally take 

place within the defined termination region. When they investigated chromosome dynamics in 

exponential phase ΔrecG cells in the absence of DNA damage-induced synthesis, they found that 

pathological origin-independent over-replication occurs specifically within the termination region 

(Rudolph et al., 2013), which has been confirmed a number of times since (Azeroglu et al., 2016; 

Dimude et al., 2015; Wendel et al., 2014). This synthesis is robust enough to sustain cell growth in the 

absence of origin firing if fork traps are inactivated by the deletion of the tus gene, which allows the 

DNA synthesis initiated in the termination region to extend beyond this area and proceed back 

towards oriC (Dimude et al., 2015; Rudolph et al., 2013). Replication forks moving in a direction 

opposite to normal can cause problems for cells (Ivanova et al., 2015; Lang and Merrikh, 2018; Wang 

et al., 2011); it is therefore unsurprising that the origin-independent growth seen in the absence of 

RecG is improved further by the introduction of a point mutation in the RNA polymerase (Dimude et 

al., 2015; Rudolph et al., 2013) that reduces replication-transcription conflicts (Dutta et al., 2011). 

When these two mutations are combined in a ΔrecG background, the aberrant DNA synthesis seen in 

the termination area of ΔrecG cells is able to sustain robust cell growth in the absence of DnaA activity 

and the cells can tolerate the deletion of the entire oriC region (Rudolph et al., 2013). 

 The work by Rudolph and colleagues indicates that RecG is a key player in managing events at 

replication termination by processing intermediates generated at replication fork fusions (Rudolph et 

al., 2009a, 2009b, 2010a, 2013). Over-replication of the termination region is also observed in cells 

lacking 3’ exonucleases (Rudolph et al., 2010a, 2013; Wendel et al., 2014). A model to explain how the 
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over-replication might arise via the formation and subsequent exploitation of a 3’ ssDNA flap has been 

suggested (Dimude et al., 2016; Lloyd and Rudolph, 2016; Rudolph et al., 2009b, 2010b, 2013) (Figure 

6). As two replication forks meet, the DnaB helicase of one replisome may displace the leading strand 

polymerase of the opposing replisome and will encounter dsDNA; the parent strand and the newly 

replicated daughter strand. If DnaB unwinds the dsDNA, this will result in a 3’ ssDNA flap as the newly 

replicated daughter strand is displaced from the parent strand. 3’ flaps can be degraded by 3’ ssDNA 

exonucleases such as ExoI, ExoVII and SbcCD (Lovett, 2011) (page 36) but are also excellent substrates 

for RecG. In vitro, RecG is able to act on many branched DNA structures (Briggs et al., 2004; McGlynn 

and Lloyd, 2002b; Rudolph et al., 2010b) (page 34). RecG has a high affinity for 3’ single-stranded flap 

structures and has been shown to remodel such a structure into a 5’ flap as it can unwind the 5’ end 

at the branch point of a 3’ flap while simultaneously reannealing the 3’ single-strand flap (Bianco, 

2015; Briggs et al., 2004; McGlynn et al., 2001; Tanaka and Masai, 2006). In the absence of RecG or 3’ 

exonucleases, 3’ flaps can persist and can instead be targeted by PriA, which promotes oriC-

independent loading of DnaB and subsequent replication fork assembly, to re-start replication 

(Windgassen et al., 2018). The resulting DNA duplex on the leading strand will have a dsDNA end, 

which is a substrate for RecBCD to process and load RecA (Kowalczykowski, 2000), thereby promoting 

homologous recombination with the sister chromosome and generating a substrate from which PriA 

can establish another replication fork that moves in the opposite direction. 

 

Figure 6: Schematic representation of how the fusion of two replication forks at replication termination 

might lead to the initiation of origin-independent over-replication (reproduced from Rudolph et al., 2013 

with permission). 
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This over-replication is contained by the replication fork trap, which prevents forks established within 

the termination region from leaving. The threat to genomic stability in areas where replication forks 

normally meet would suggest that the termination area exists in order to limit the location of where 

these collisions are able to occur and to contain any problems that result from collisions, for example, 

over-replication of an already-replicated chromosome, thereby contributing to the maintenance of 

genomic stability. In line with this, the termination area has previously been described as a 

recombinational hotspot (Horiuchi et al., 1994) and the events outlined above provide additional 

explanation for why that might be. The molecular details of exactly what happens when two 

replication forks meet and fuse is not yet well understood in either prokaryotic or eukaryotic cells. 

The findings that replication fork fusion events have the potential to cause pathogenicity began to 

highlight some of the key players involved in protecting cells from the effects of fork collisions 

(Rudolph et al., 2009a, 2009b, 2013). 

Post-replicative processing of daughter chromosomes 

The converging of two replication forks at termination presents a number of potential challenges that 

must be overcome by the cell and as such, there are a number of processes in addition to the fusion of 

two replication forks that are localised to the termination region and that promote resolution of the 

daughter chromosomes. 

As DNA unwinds during replication, twisting tension builds up in the rest of the coiled molecule. 

This results in the DNA molecule twisting around itself to form positive supercoils to accommodate 

the helical tension. If no action is taken, it will become impossible to separate the strands of DNA any 

further as it will be too tightly twisted. Topoisomerases type I and type II are enzymes that manage 

the topology of DNA by either increasing the forming supercoils or releasing supercoils (Champoux, 

2001; Wang, 1996). As the replication forks converge, DNA gyrase, a type II topoisomerase that 

normally removes positive supercoils (Nöllmann et al., 2007), will at some point be unable to access 

the DNA. It has been shown that the over-winding ahead of a replication fork can force the fork to 

rotate, allowing the supercoils to diffuse behind the replication fork and resulting in an intertwining 

of the two daughter chromosomes (Cebrián et al., 2015). In addition to positive supercoiling, the two 

circular chromosomes are topologically intertwined (catenanes) due to the helical nature of DNA. All 

links must be resolved in order to allow separation of the chromosomes before cell division occurs, 

and this function is provided by topoisomerase IV, a type II topoisomerase that unwinds the linkages 

between the chromosomes by passing DNA though a transient dsDNA break (Zechiedrich and 

Cozzarelli, 1995; Zechiedrich et al., 1997). 

Homologous recombination that occurs during a round of DNA replication can result in the 

formation of a chromosome dimer, which is a structure formed when two fully replicated 

chromosomes are joined together as a single, large circle (Barre et al., 2001; Lesterlin et al., 2004). 

Dimer resolution occurs at the dif (deletion-induced filamentation) site where two site-specific 
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recombinases, XerC and XerD, are recruited and function in a sequential manner to introduce a 

crossover at this location, which resolves the dimer to two monomers. FtsK is a multifunctional DNA 

translocase that is targeted to the division septum and coordinates segregation of the chromosome 

with cell division (Bigot et al., 2007; Reyes-Lamothe et al., 2012; Sherratt et al., 2010). As part of this 

function, FtsK mediates Xer-dif site-specific recombination in the resolution of chromosome dimers. 

FtsK utilises polar sequences called KOPS (FtsK orientating polar sequences) to sort the DNA into 

daughter chromosomes on either side of the septum (Bigot et al., 2005). This activity results in the 

two dif sites co-localising to the septum region and the XerCD-dif complex undergoes resolution to 

chromosome monomers (Barre et al., 2001; Reyes-Lamothe et al., 2012). 

RecG 

The recG gene encodes the monomeric RecG protein (McGlynn et al., 2000; Singleton et al., 2001) and 

is not highly expressed (Lloyd and Sharples, 1991); one report suggests that RecG is present at 7 

molecules per cell (Taniguchi et al., 2010). RecG is classified as a Superfamily 2 (SF2) DNA helicase 

and in contrast to most other helicases, it unwinds DNA by translocating on double-stranded DNA 

(dsDNA) rather than on ssDNA (Singleton et al., 2007). RecG has been shown to target a variety of 

branched DNA structures in vitro (Briggs et al., 2004; McGlynn and Lloyd, 2002b; Rudolph et al., 

2010b). Although the gene for RecG was first discovered during a screen for recombination-deficient 

mutants of E. coli almost 50 years ago (Storm et al., 1971), it has proved difficult to determine exactly 

what its role in cellular metabolism is. In line with this, besides the significant role of RecG at 

replication termination outlined above (page 31), a number of other roles for RecG have been 

proposed. 

An investigation into recombination mutants 20 years after the initial characterisation of the gene 

resulted in further analysis of the recG locus, revealing that ΔrecG mutants have a mild sensitivity to 

UV light and mitomycin C and increased sensitivity to ionising radiation, indicating a reduction in DNA 

repair capability (Lloyd and Buckman, 1991). The extensive work carried out by the Lloyd laboratory 

also revealed that RecG can catalyse branch migration of Holliday junctions (Lloyd and Sharples, 

1993). The observation that cells lacking both RecG and the Holliday junction resolvase RuvABC show 

a synergistic sensitivity to DNA damage (Lloyd, 1991) led to the suggestion that both RecG and 

RuvABC might have overlapping functionalities. The reduced recovery of conjugational recombinants 

in Δruv ΔrecG double mutants further contributed to this idea (Lloyd, 1991). However, whilst RecG 

can catalyse branch migration of Holliday junctions, it cannot function in Holliday junction resolution, 

and a resolvase that works with RecG in a situation analogous to the RuvABC system (West, 1997) has 

not been found. 

Further in vitro studies showed that RecG is able to process R-loops by unwinding the DNA-RNA 

hybrid (Fukuoh et al., 1997; Vincent et al., 1996), and can unwind D-loops (McGlynn et al., 1997) 
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leading to suggestions that the function of RecG is to process these structures in order to avoid 

interference with DNA replication or transcription (McGlynn and Lloyd, 2002a). RecG has also been 

implicated as a key player in replication fork repair by promoting the regression of replication forks 

that have been stalled at a block of some kind, such as sites of DNA damage, protein-DNA complexes 

or DNA secondary structures, which allows repair or bypass of a lesion via a nonmutagenic process 

(Bianco, 2015; Cox et al., 2000; Gupta et al., 2014; Manosas et al., 2013; McGlynn and Lloyd, 2002a; 

McGlynn et al., 2001; Michel et al., 2001). More recently, work on the CRISPR-Cas adaptive immune 

system has shown that RecG is needed for primed adaptation to take place (Ivančić-Baće et al., 2015). 

In line with reports that show that the absence of RecG results in an increase in certain types of 

recombination (Lloyd and Rudolph, 2016; Lovett, 2006; Lovett et al., 1993), Azeroglu and colleagues 

(2016) recently proposed that RecG is important in managing replication initiated at branched 

intermediates of recombination associated with double-strand break repair (DSBR) to ensure that 

converging replication forks are established and over-replication via divergent replication is 

prevented (Azeroglu and Leach, 2017). 

It was recently reported that RecG co-localises with sites of active DNA replication (Upton et al., 

2014). RecG has previously been shown to interact with SSB in vitro (Buss et al., 2008; Shereda et al., 

2008; Zhang et al., 2010). It was recently shown that RecG binds to SSB in vivo (Yu et al., 2016) and 

that this interaction is mediated through the C-terminal tail of SSB (Bianco and Lyubchenko, 2017). 

This interaction localises RecG to ssDNA areas of the chromosome where SSB is bound, which, given 

that SSB is concentrated around active replisomes (page 19), results in RecG being localised to sites of 

DNA synthesis and allows access of RecG to the replication fork, which might be responsible for 

enabling RecG monomers to be present in the cell at such low frequencies (Taniguchi et al., 2010). 

The range of suggestions for what RecG is doing in vivo is reflected in the reported affinity of RecG 

for a variety of dsDNA substrates, which crucially contain a 3’ ssDNA branch (McGlynn et al., 2001; 

Tanaka and Masai, 2006), and the crystal structure reveals how RecG might process these substrates. 

The crystal structure of RecG protein bound to a synthetic DNA substrate is shown in Figure 7A. The 

interaction between the protein and the DNA revealed how it can unwind a forked DNA structure 

(Singleton et al., 2001), whereby the template strands run either side of a wedge-like structure that is 

part of Domain 1 in grooves that do not accommodate duplex DNA (Singleton et al., 2001). It has been 

proposed that the helicase activity provided by Domains 2 and 3 pulls the template strands through 

the grooves, resulting in the separation of the nascent strands from their corresponding template due 

of the channelling of the wedge domain, and the subsequent reannealing of the two parent strands 

(Singleton et al., 2001). 
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Figure 7: RecG at a lagging strand replication fork. A) E. coli RecG modelled onto the X-ray crystal structure 

of Thermotoga maritima RecG is shown bound to a lagging strand fork. The wedge of Domain 1 is 

highlighted in green. B) RecG has been shown to catalyse a number of reactions at branched DNA 

structures in vitro; (I) fork reversal leading to the formation of a Holliday junction, (II) unwinding a D- or R-

loop and (III) the conversion of a 3’ flap to a 5’ flap (reproduced from Rudolph et al., 2010b with 

permission). 

RecG homologues are present in most bacterial species (Rocha et al., 2005; Sharples et al., 1999) but 

have not been identified in other organisms. However, there are a number of studies that have 

identified potential functional homologues in the form of helicases in human and yeast cells that are 

able to remodel branched DNA structures similarly to RecG (Bétous et al., 2013; Killen et al., 2012; 

Ralf et al., 2006; Whitby, 2010). 

3’ exonucleases 

Nuclease enzymes are responsible for cleaving the phosphodiester bonds between nucleotide 

subunits of nucleic acids. Exonuclease enzymes process DNA molecules specifically from an end rather 

than cleaving DNA internally and can be further classified according to their preference to degrade ss- 

or dsDNA, and if they proceed in a 3’ to 5’ or 5’ to 3’ direction. They can be processive, catalysing many 

hydrolysis reactions before dissociating from the substrate molecule, or distributive, releasing a single 

nucleotide each time they bind their substrate (Lovett, 2011). 
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Exonuclease I (ExoI), encoded by the xonA gene (also designated sbcB) (Phillips and Kushner, 

1987) is a highly processive exonuclease specific to ssDNA. It digests ssDNA to nucleotide monomers 

(Lehman and Nussbaum, 1964; Thomas and Olivera, 1978) at a rate of up to 10,000 nucleotides per 

minute, and dissociates when it encounters dsDNA (Lovett, 2011). ExoI catalysis operates exclusively 

in a 3’ – 5’ direction (Lehman and Nussbaum, 1964; Lovett, 2011). 

Exonuclease VII (ExoVII) is composed of two non-identical subunits; a large subunit with the 

catalytic activity encoded by xseA and a smaller subunit encoded by xseB that is likely to regulate the 

activity of ExoVII (Lovett, 2011). It was proposed that the subunits formed a pentamer protein in the 

ratio of 1:4 XseA:XseB (Chase et al., 1986; Vales et al., 1982, 1983), although more recently Poleszak 

et al. (Poleszak et al., 2012) have reported results that support a heptamer structure for ExoVII with a 

stoichiometry of 1:6. ExoVII is a processive enzyme that initiates degradation of specifically ssDNA in 

both 3’ – 5’ and 5’ – 3’ directions, releasing oligonucleotides that vary in length depending on the 

substrate (Chase and Richardson, 1974a, 1974b). Strains lacking either xseA or xseB were found to be 

defective in exonuclease activity (Vales et al., 1983) and Jung et al (Jung et al., 2015) recently found 

that both subunits were needed for ExoVII to have enzymatic activity, which both suggest that a single 

gene can be deleted in order to remove ExoVII activity from cells. They also reported that expression 

of xseA in the absence of XseB resulted in cell death. ExoVII-deficient strains in the studies in this thesis 

were generated by deleting the xseA gene. 

The sbcC and sbcD genes are co- transcribed to form a heterodimer protein, SbcCD. The SbcD 

subunit provides the nuclease activity and the SbcC subunit is an ATPase (Lovett, 2011). It has been 

shown that SbcCD is a processive nuclease that can act on a variety of genetic substrates and digests 

DNA mainly in a 3’ – 5’ direction and has both ssDNA endonuclease and 3’ – 5’ dsDNA exonuclease 

activity, meaning it degrades the 3’ strand of the duplex (Connelly and Leach, 1996; Connelly et al., 

1997, 1999). SbcCD is able to cleave hairpin structures that can form at palindromic sequences or 

inverted repeat sequences during DNA replication, resulting in a double strand break that can be 

repaired by homologous recombination (Connelly et al., 1998; Darmon et al., 2010; Eykelenboom et 

al., 2008; Leach et al., 1997). 

The cellular function of 3’ exonucleases 

ExoI, ExoVII and SbcCD are all involved in aspects of DNA repair but their precise cellular function 

remains poorly understood and can be complicated by the fact that there often appears to be 

functional redundancy between the exonucleases (Lovett, 2011). ExoI has been shown to interact with 

SSB in order to function in DNA replication and repair (Lovett, 2011). The interaction between ExoI 

and SSB stimulates the catalytic activity of ExoI, possibly through the action of SSB in removing 

secondary structures that might otherwise hinder the processivity of ExoI, and also through stabilising 

ExoI substrate binding (Lu and Keck, 2008; Lu et al., 2011; Sandigursky and Franklin, 1994). As 

discussed above, ExoI and ExoVII have both been shown to function in the MMR system, degrading 
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ssDNA excised from the daughter strand behind a replication fork when a mismatch replication error 

is detected (Burdett et al., 2001; Marinus, 2012; Viswanathan and Lovett, 1998; Viswanathan et al., 

2001). SbcCD has been implicated in a role preventing the formation of inverted chromosome 

duplications by cleaving hairpin structures that form at palindromic sequences (Darmon et al., 2010; 

Eykelenboom et al., 2008) and, in conjunction with ExoI, in processing ssDNA ends to blunt dsDNA 

ends that RecBCD is then able to process, thereby promoting RecBCD-mediated recombination 

(Lovett, 2011; Zahradka et al., 2009). 

Stable DNA replication 

Despite the control mechanisms in place to ensure that replication initiates specifically at oriC and 

only once per cell cycle, replication can initiate via alternative mechanisms independently of both 

DnaA and oriC. This origin-independent replication was termed stable DNA replication (SDR) because, 

in contrast to DnaA-dependent initiation at oriC, SDR does not require concomitant protein synthesis 

to replenish an unstable factor (Kogoma and Lark, 1970, 1975). SDR found to be activated under the 

same conditions that induced the SOS response was named inducible stable DNA replication (iSDR) 

and a distinct mechanism of SDR initiation that appears transiently as cells enter stationary phase 

independent of SOS induction was nSDR (Kogoma, 1997). 

A third classification of SDR is observed in cells with defects in nucleic acid metabolism and was 

first identified in cells lacking RNase HI (Horiuchi et al., 1984; Ogawa et al., 1984). RNase HI, encoded 

by the rnhA gene, is an endonuclease that specifically degrades the RNA in a DNA:RNA hybrid such as 

an RNA-loop (R-loop) (Tadokoro and Kanaya, 2009). An R-loop is a structure in which ssRNA is bound 

to a complementary sequence on one strand of duplex DNA, thereby displacing the second DNA strand. 

It was shown that in the absence of RNase HI, SDR is constitutively active and so this was named 

constitutive stable DNA replication (cSDR) (Kogoma, 1997). cSDR in the absence of RNase HI was 

found to be sufficiently robust to sustain growth independently of oriC firing and this DNA synthesis 

does not require the DnaA initiator protein; indeed, ΔrnhA cells can tolerate the deletion of the entire 

oriC region (Dimude et al., 2015; Kogoma, 1997; Maduike et al., 2014; Rudolph et al., 2013). It was 

suggested by Kogoma and co-workers that the origin-independent replication seen in ΔrnhA cells 

initiates via the formation of R-loops, which are able to persist in the absence of RNase HI (Kogoma et 

al., 1985; Meyenburg et al., 1987; Kogoma, 1997), which suggests that RNase HI has a role in conferring 

specificity of replication initiation at oriC by denying initiation at other chromosomal locations by 

removing R-loops that might otherwise provide initiation substrates. SDR was later discovered in recG 

mutants, and cells lacking both RNase HI and RecG were found to be inviable (Hong et al., 1995; 

Rudolph et al., 2009a). Coupled with the fact that RecG was shown in vitro to be able to unwind the 

RNA from R-loops, this led to the suggestion that the SDR seen in both ΔrecG and ΔrnhA mutants arises 

via a common underlying mechanism (Gowrishankar, 2015; Hong et al., 1995; Kogoma, 1997). This 
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hypothesis is investigated further as part of the Results section of this thesis, and I revisit the 

suitability of the term SDR to describe origin-independent over-replication in light of my findings. 

Objectives 

DNA replication termination contributes to the successful duplication of an organism’s genome and, 

like initiation and elongation, is likely to be tightly regulated and managed to ensure that all areas of 

the genome are copied once and only once per cell cycle. Despite the fact that the occurrence of 

termination events is on par with initiations, as highlighted by Dewar and Walter (2017), the question 

of what happens when two replication forks meet has received relatively little attention in any 

organism. Rudolph and colleagues have identified that in E. coli, RecG is a key player at replication 

termination and in the absence of RecG, origin-independent over-replication of the termination region 

is seen (Lloyd and Rudolph, 2016; Rudolph et al., 2013). Their work supports the idea that this over-

replication arises as a result of pathological events at replication fork fusions, which generate 

intermediates that can be exploited in PriA-mediated replisome assembly (Rudolph et al., 2013). The 

absence of RecG is known to result in an increase in certain types of recombination (Lloyd and 

Rudolph, 2016; Lovett, 2006; Lovett et al., 1993) and in line with this, the origin-independent 

synthesis in cells lacking RecG is dependent on the function of both RecA and RecBCD (Rudolph et al., 

2013). Origin-independent over-replication within the termination area has also been observed in 

cells lacking 3’ exonucleases (Rudolph et al., 2013). These findings suggest that both RecG and 3’ 

exonucleases have a role in managing events at termination to ensure that a single copy of the 

chromosome is generated at each round of replication. 

Therefore, the objectives of my thesis have been: 

1. Further investigating the molecular mechanism of fork fusion events and how RecG is 

involved in processing the resulting intermediates 

2. Investigating and clarifying the role of 3’ exonucleases in replication termination 

3. Determining whether the increased numbers of recombination events in cells lacking 

RecG lead to a localised increase of the recombination frequencies in areas where 

replication forks fuse 
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Materials and Methods  

Materials 

All liquid media and agar used for microbial growth were autoclaved at 121°C and 103 kPa for 15 min 

at the time of making. 

Broth and plate media 

LB medium 

Broth: 1% bacto tryptone (BD Biosciences), 0.5% yeast extract (BD Biosciences), 0.05% sodium 

chloride (Fisher), 0.002 M sodium hydroxide (Fisher), pH~7.0. To make agar, the LB broth was 

distributed into 200 ml and 300 ml aliquots and 1.5% agar (Sigma Aldrich) was added (3 g and 4.5 g 

respectively). 

Mu medium 

Broth: 1% bacto tryptone (BD Biosciences), 0.5% yeast extract (BD Biosciences), 1% sodium chloride 

(Fisher), 0.002 M sodium hydroxide (Fisher), pH~7.0. To make agar, the Mu broth was distributed 

into 200 ml and 300 ml aliquots and 1% agar (Sigma Aldrich) was added (2 g and 3 g respectively). 

56 salts medium 

74 mM potassium phosphate monobasic (KH2PO4), 120 mM sodium phosphate dibasic (Na2HPO4), 1.7 

mM magnesium sulphate (MgSO4), 30.5 mM ammonium sulphate ((NH4)2SO4), 0.085 mM calcium 

nitrate tetrahydrate (Ca(NO3)2 ∙ 4 H2O), 0.0036 mM iron(III) sulphate heptahydrate (FeSO4 ∙ 7 H2O) 

(all chemicals from Sigma Aldrich). 100 × and 1000 × stocks were made of calcium nitrate tetrahydrate 

and iron(III) sulphate heptahydrate respectively and appropriate volumes of each were used in 

making the 56 salts medium. 

56/2: 56 salts were diluted 2-fold with sterile deionized water. For 56/2 growth medium, an 

appropriate carbon source (arabinose or glucose) was added and, if needed, casamino acids solution 

was added (final concentration 0.1%). 

56/2 agar: 200 ml of 56 salts was mixed with 200 ml of 3% water agar and the required supplements 

were added. 
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M9 minimal medium 

DifcoTM M9 Minimal Salts base (BD Biosciences) was used in the preparation of M9 minimal media. 

The powder makes a 5 × M9 minimal salts solution, which was distributed in to 50 ml aliquots and 

autoclaved. One 50 ml aliquot was diluted 5-fold, re-distributed in to 50 ml aliquots and autoclaved. 

M9 agar: A 50 ml 5 × M9 minimal salts aliquot was added to 200 ml molten 1.8% water agar (3.6 g 

agar). Final concentrations of 2 mM magnesium sulphate (MgSO4), 0.1 mM calcium chloride (CaCl2) 

(Sigma Aldrich), 0.4% glucose and 0.05% casamino acids were aseptically added to the M9 agar, 

ensuring that the bottle remained at 50°C to prevent it setting prematurely. 

M9 minimal medium: The 1 × M9 minimal salts was used for serial dilutions of bacterial cultures and 

bacteriophage P1 lysate cultures. 2 mM magnesium sulphate and 0.1 mM calcium chloride were 

aseptically added to a 50 ml aliquot of 1 × M9 salts. 

Antibiotics and other supplements 

Antibiotics and other supplements were made in deionized water*. Antibiotics (with the exception of 

trimethoprim) and other supplements were sterile filtered at the time of making using single use 

Ministart NML syringe filters (0.45 µm, Sartorius Stedim Biotech GmbH) and added to the media at 

the time of use. 

Table 1: Antibiotics used 

 
Stock 

concentration 

Storage of 

stock 

Final 

concentration 

Ampicillin (Melford) 5 mg/ml 4°C 50 µg/ml 

Apramycin (Sigma Aldrich) 4 mg/ml –20°C 40 µg/ml 

Chloramphenicol (Sigma Aldrich) 1 mg/ml 4°C 10 µg/ml 

Kanamycin (Melford) 4 mg/ml 4°C 10 - 40 µg/ml 

Rifampicin (Sigma Aldrich) 10 mg/ml –20°C 5 – 15 µg/ml 

Tetracycline (Sigma Aldrich) 1 mg/ml –20°C 10 µg/ml 

Trimethoprim (Sigma Aldrich) 50 mg/ml 4°C 10 µg/ml 

Arabinose (Sigma Aldrich) 20% w/v Room temp 0.05 – 0.2% 

Glucose (Sigma Aldrich) 20% w/v Room temp 0.2 – 0.32% 

IPTG (Melford) 0.1 M – 20°C 0.15 mM 

X-Gal (Melford) 20 mg/ml – 20°C 66.67 µg/ml 

*Rifampicin was made in ethanol. Trimethoprim and X-Gal were made in DMSO. 
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Buffers 

Elution buffer 

10 mM Tris base (Melford), 0.1 mM EDTA (VWR) pH 8.0 

Extraction of chromosomal DNA for deep sequencing and subsequent marker frequency analysis 

(page 59) was done using the GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich). The deep 

sequencing performed by Earlham Institute required a lower concentration of EDTA in the sample 

than was achieved using the elution buffer supplied with the GenElute kit. The following was used 

instead. 1 ml of Tris base and 20 µl of 0.5 M EDTA were mixed and the solution was made up to 100 

ml with deionized water. 

MC buffer 

100 mM Magnesium sulphate (MgSO4); 5 mM Calcium chloride (CaCl2) 

For 50 ml: A 500 mM CaCl2 stock solution was made by dissolving 5.549 g CaCl2 in 100 ml 

deionized water. 0.6 g MgSO4 was weighed and transferred to a measuring cylinder, which was then 

topped up to ~ 40 ml with deionized water. 500 µl of 500 mM CaCl2 stock was added and the contents 

of the measuring cylinder were mixed by covering the opening with parafilm and carefully inverting 

the measuring cylinder until the contents were dissolved. The volume was topped up to 50 ml with 

deionized water, mixed once again and then sterile filtered in to ~ 5 ml aliquots. 

TAE buffer 

2 M Tris base, 1 M acetic acid, 0.05 M EDTA pH 8 

For 1 litre 50 × TAE stock: 242 g Tris base, 57.1 ml acetic acid, 100 ml 0.5 M EDTA pH 8 

For use: 1 litre of 1× TAE was prepared by diluting 20 ml 50 × TAE in 980 ml water. 

TBE buffer 

 0.89 M Tris base, 0.89 M boric acid (Sigma Aldrich), 0.02 M EDTA 

For 1 litre 10 × TBE stock: 108 g Tris base and 55 g boric acid were dissolved in approximately 

900 ml of deionized water. 40 ml of 0.5 M EDTA (pH 8.0) was added and the solution was adjusted to 

a final volume of 1000 ml. 

For use: 1 litre of 1 × TBE was prepared by diluting 100 ml 10 × TBE in 900 ml water. 

TEE buffer 

10 mM Tris base • HCl, 10 mM EGTA, 100 mM EDTA, pH 8.0 

For 1 litre: 1.21 g Tris base, 3.80 g EGTA and 37.22 g EDTA were dissolved in approximately 900 ml of 

deionized water. The solution was then adjusted to a final volume of 1000 ml. 
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Strains and plasmids 

Table 2: Escherichia coli K-12 strains 

Strain 

number 

Relevant Genotypea Source 

General P1 donors 

DL729 ΔsbcCD::kan recD1009 supE supF David Leach 

RRL36 dnaQ-ypet-kan-frt David Sherratt 

RUC663 tnaA::Tn10 dnaA46 Tove Atlung 

STL2694 xonAΔ300::cat thr-1 leuB6 proA2 supE44 

kdg51 rfbD1 araC14 lacY1 galK2 xyl-5 mtl-

1tsx-33 rpsL31 rac- 

Susan Lovett 

WX296 oriZ-<cat> (Wang et al., 2011) 

MG1655 derivatives 

MG1655 F– rph-1 (Bachmann, 1996) 

AM1666 ΔrecA::apra (Mahdi et al., 2006) 

AM1775 Δtus::cat (Rudolph et al., 2013) 

AM1874 ∆xseA::dhfr (Rudolph et al., 2010a) 

APS345 attTn7::lacO240-kan zdd/e::tetO240-gen (Rudolph et al., 2007b) 

AS1059 dnaQ-YPet-<kan> MG1655 × P1.RRL36 to Kmr 

AS1103 ΔlacIZYA ΔsbcCD::spc ΔxseA::dhfr ΔxonA::apra 

pAM401 pAST116 

N7684 × pAST116 to Kmr 

AU1015 ΔlacIZYA<> ΔrecG::apra Plasmid‐free derivative of JJ1119 

AU1054 dnaA46 tnaA::Tn10 (Rudolph et al., 2007b) 

AU1066 ΔlacIZYA tnaA::Tn10 dnaA46 rnhA::cat (Stockum et al., 2012) 

AU1091 tnaA::Tn10 dnaA46 ΔrecG263::kan (Stockum et al., 2012) 

JD1104 ΔlacIZYA srgA1 argE86::Tn10 JJ1264 × P1.RCe300 to Tcr 

JD1107 ΔlacIZYA srgA1 rpoB*35 JD1104 × P1.RCe395 to Tcs Arg+ 

JD1152 priA300 rpoB*35 dnaA46 tnaA::Tn10 N5535 × P1.RUC663 to Tcr 

JD1153 ΔlacIZYA srgA1 rpoB*35 dnaA46 tnaA::Tn10 JD1107 × P1.RUC663 to Tcr 

JD1350 ΔlacIZYA oriZ-<cat> ∆xonA::apra ∆oriC::kan 

pAM488 

SLM1210 × P1.RCe576 to Kmr 

JD1351 ΔlacIZYA oriZ-<cat> ∆xseA::dhfr ∆xonA::apra 

∆oriC::kan pAM488 

SLM1215 × P1.RCe576 to Kmr 

JJ1119 ΔlacIZYA<> ΔrecG::apra pJJ100 (Zhang et al., 2010) 

JJ1261 ΔlacIZYA metB1 JJ1257 × P1.N4441 Arg+ Met– 

JJ1264 ΔlacIZYA srgA1 JJ1261 × P1.N3695 to Met+ 

JJ1359 ΔlacIZYA dam1::kan ΔrecG::apra tus1::dhfr (Rudolph et al., 2013) 

N3695 ΔrecG263::kan srgA1 (Al-Deib et al., 1996) 

N4560 ΔrecG265::cat (Meddows et al., 2004) 
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N4704 rnhA::cat (Rudolph et al., 2013) 

N4837 argE::Tn10 (Mahdi et al., 2006) 

N4849 rpoB*35 (Mahdi et al., 2006) 

N4934 recJ284::Tn10 (Rudolph et al., 2008) 

N5286 xonAΔ300::cat MG1655 × P1.STL2694 to Cmr 

N5296 xonAΔ300::cat ΔsbcCD::kan N5286 × P1.DL729 to Kmr 

N5535 priA300 rpoB*35 (Mahdi et al., 2006) 

N6576 ΔlacIZYA ΔrecG::apra (Zhang et al., 2010) 

N6796 tus1::dhfr (Stockum et al., 2012) 

N6798 ΔrecG265::cat tus1::dhfr N4560 × P1.JJ1359 to Tmr 

N6953 ΔxonA::apra ΔxseA::dhfr ΔsbcCD::kan (Rudolph et al., 2010a) 

N7684 ΔlacIZYA ΔsbcCD::spc ΔxseA::dhfr ΔxonA::apra 

pAM401 

(Rudolph et al., 2010a) 

RCe203 tnaA::Tn10 dnaA46 Δtus::kan (Rudolph et al., 2013) 

RCe262 rpoB*35 tnaA::Tn10 dnaA46 N4849 × P1.RUC663 to Tcr 

RCe267 rpoB*35 Δtus::cat dnaA46 tnaA::Tn10  (Rudolph et al., 2013) 

RCe268 rpoB*35 ΔrecG::apra Δtus::cat tnaA::Tn10 

dnaA46  

(Rudolph et al., 2013) 

RCe300 attTn7::lacO240-kan zdd/e::tetO240-gen 

argE::Tn10 

APS345 × P1.N4837 to Tcr Arg– 

RCe303 rpoB*35 tnaA::Tn10 dnaA46 rnhA::cat RCe262 × P1.N4704 to Cmr 

RCe309 rpoB*35 tnaA::Tn10 dnaA46 rnhA::cat 

tus1::dhfr 

RCe303 × P1.N6796 to Tmr 

RCe326 rpoB*35 ΔrecG::apra Δtus::cat dnaA46 

tnaA::Tn10 pDIM104 

RCe268 × pDIM104 to Apr 

RCe395 rpoB*35 dnaA46 tnaA::Tn10 ΔrnhA::cat 

tus1::dhfr ΔoriC::kan 

(Rudolph et al., 2013) 

RCe427 tos-kan (Rudolph et al., 2013) 

RCe504 oriZ-<cat> (Ivanova et al., 2015) 

RCe508 oriZ-<cat> ΔrecG::apra RCe504 × P1.AU1015 to Aprar 

RCe528  rpoB*35 Δtus::cat dnaA46 tnaA::Tn10 

ΔxonA::apra 

RCe267 × P1.AS1103 to Aprar 

RCe544 ΔlacIZYA oriZ-<cat> TB28 × P1.WX296 to Cmr 

RCe552 ΔlacIZYA tna::Tn10 dnaA46 rnhA::cat pECR22 AU1066 × pECR22 to Apr 

RCe553 rpoB*35 Δtus::cat dnaA46 tnaA::Tn10 

ΔsbcCD::kan 

RCe267 × P1.N5296 to Kmr 

RCe554 rpoB*35 Δtus::cat dnaA46 tnaA::Tn10 

ΔsbcCD::kan ΔxonA::apra 

RCe553 × P1.AS1103 to Aprar 

RCe557 ΔlacIZYA tna::Tn10 dnaA46 rnhA::cat pLAU17 AU1066 × pLAU17 to Apr 

RCe562 ∆sbcCD::kan MG1655 × P1.N5296 to Kmr 

RCe563 ∆xonA::apra MG1655 × P1.AS1103 to Aprar 

RCe569 ∆xonA::apra ∆sbcCD::kan RCe563 × P1.N5296 to Kmr 
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RCe576 rpoB*35 oriZ-<cat> tus1::dhfr ΔoriC::kan (Ivanova et al., 2015) 

RCe714 ter4.44<> oriZ-<cat> ter4.57-<kan> 

ΔrecG::apra 

SLM1197 × P1.AU1015 to Aprar 

RCe745 ter4.44<> oriZ-<cat> ter4.57-<kan> tus1::dhfr SLM1197 × P1.N6798 to Tmr 

RCe760 ter4.44<> oriZ-<cat> ter4.57-<kan> tus1::dhfr 

ΔrecG::apra 

RCe745 × P1.AU1015 to Aprar 

SLM1008 rpoB*35 ΔrecG::apra Δtus::cat tnaA::Tn10 

dnaA46 pECR22 

RCe268 × pECR22 to Apr 

SLM1010 rpoB*35 ΔrecG::apra Δtus::cat tnaA::Tn10 

dnaA46 pLau17 

RCe268 × pLAU17 to Apr 

SLM1037 kankanMX4-<cat>-narU This study 

SLM1039 kankanMX4-<cat>-yhjR This study 

SLM1042 kankanMX4-<cat>-narU MG1655 × P1.SLM1037 to Cmr 

SLM1043 kankanMX4-<cat>-yhjR MG1655 × P1.SLM1039 to Cmr 

SLM1048 kankanMX4-<cat>-narU ΔrecG::apra SLM1042 × P1.AU1015 to Aprar 

SLM1049 kankanMX4-<cat>-yhjR ΔrecG::apra SLM1043 × P1.AU1015 to Aprar 

SLM1051 oriZ-<> RCe504 × pCP20 to Cms Aps 

SLM1052 oriZ-<> ΔrecG::apra RCe508 × pCP20 to Cms Aps 

SLM1058 oriZ-<> kankanMX4-<cat>-narU SLM1051 × P1.SLM1037 to Cmr 

SLM1059 oriZ-<> ΔrecG::apra kankanMX4-<cat>-narU SLM1052 × P1.SLM1037 to Cmr 

SLM1060 oriZ-<> kankanMX4-<cat>-yhjR SLM1051 × P1.SLM1039 to Cmr 

SLM1061 oriZ-<> ΔrecG::apra kankanMX4-<cat>-yhjR SLM1052 × P1.SLM1039 to Cmr 

SLM1104 ΔlacIZYA tnaA::Tn10 dnaA46 rnhA::cat 

pDIM104 

AU1066 × pDIM104 to Apr 

SLM1107 priA300 rpoB*35 dnaA46 tnaA::Tn10 ∆tus::cat JD1152 × P1.AM1775 to Cmr 

SLM1108 ΔlacIZYA srgA1 rpoB*35 dnaA46 tnaA::Tn10 

∆tus::cat 

JD1153 × P1.AM1775 to Cmr 

SLM1109 priA300 rpoB*35 dnaA46 tnaA::Tn10 ∆tus::cat 

∆xonA::apra 

SLM1107 × P1.AS1103 to Aprar 

SLM1110 ΔlacIZYA srgA1 rpoB*35 dnaA46 tnaA::Tn10 

∆tus::cat ∆xonA::apra 

SLM1108 × P1.AS1103 to Aprar 

SLM1113 Δtus::cat ter4.44-<kan> This study 

SLM1115 Δtus::cat ter4.57-<kan> This study 

SLM1125 ΔterC-kan This study 

SLM1134 ΔterC-kan MG1655 × P1.SLM1125 to Kmr 

SLM1140 ΔterC-kan ΔrecG::apra SLM1134 × P1.AU1015 to Aprar 

SLM1142 dnaQ-YPet-<> AS1059 × pCP20 to Kms Aps 

SLM1144 ΔlacIZYA::dnaQ-mTagRFP-<kan> This study 

SLM1146 dnaQ-YPet-<>  

ΔlacIZYA::dnaQ-mTagRFP-<kan> 

SLM1142 × P1.SLM1144 to Kmr 

SLM1170 tnaA::cat This study 
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SLM1171 ΔlacIZYA srgA1 pAM488 JJ1264 × pAM488 to Apr 

SLM1172 ΔlacIZYA srgA1 ∆xonA::apra SLM1171 × P1.RCe563 to Aps Aprar 

SLM1174 tos-kan ∆xonA::apra RCe427 × P1.RCe563 to Aprar 

SLM1178 ∆xonA::apra recJ284::Tn10 RCe563 × P1.N4934 to Tcr 

SLM1182 ter4.44<kan> MG1655 × P1.SLM1113 to Kmr 

SLM1184 rpoB*35 ∆xseA::dhfr N4849 × P1.AM1874 to Tmr 

SLM1185 ∆xseA::dhfr MG1655 × P1.AM1874 to Tmr 

SLM1186 ΔlacIZYA srgA1 ∆xonA::apra ∆xseA::dhfr SLM1172 × P1.AM1874 to Tmr 

SLM1187 tos-kan ∆xonA::apra ∆xseA::dhfr SLM1174 × P1.AM1874 to Tmr 

SLM1188 ∆xonA::apra recJ284::Tn10 ∆xseA::dhfr SLM1178 × P1.AM1874 to Tmr 

SLM1189 dnaA46 tnaA::cat AU1054 × P1.SLM1170 to Cmr 

SLM1190 rpoB*35 ∆xseA::dhfr ∆tus::kan SLM1184 × P1.RCe203 to Kmr 

SLM1191 rpoB*35 ∆xseA::dhfr ∆tus::kan ∆xonA::apra SLM1190 × P1.RCe563 to Aprar 

SLM1192 ter4.44<> SLM1182 × pCP20 to Kms (Aps) 

SLM1193 ter4.44<> oriZ-<cat> SLM1192 × P1.RCe544 to Cmr 

SLM1194 rpoB*35 ∆xseA::dhfr ∆tus::kan ∆xonA::apra 

dnaA46 tnaA::Tn10 

SLM1191 × P1.RUC663 to Tcr 

SLM1195 rpoB*35 ∆tus::kan N4849 × P1.RCe203 to Kmr 

SLM1196 rpoB*35 ∆xseA::dhfr ∆tus::cat SLM1184 × P1.AM1775 to Cmr 

SLM1197 ter4.44-<> oriZ-<cat> ter4.57-<kan> SLM1193 × P1.SLM1115 to Kmr 

SLM1198 priA300 rpoB*35 dnaA46 tnaA::Tn10 ∆tus::cat 

∆xonA::apra ∆xseA::dhfr 

SLM1109 × P1.AM1874 to Tmr 

SLM1199 ΔlacIZYA srgA1 rpoB*35 dnaA46 tnaA::Tn10 

∆tus::cat ∆xonA::apra ∆xseA::dhfr 

SLM1110 × P1.AM1874 to Tmr 

SLM1201 rpoB*35 ∆tus::kan ∆xonA::apra SLM1195 × P1.RCe563 to Aprar 

SLM1202 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra SLM1196 × P1.RCe563 to Aprar 

SLM1203 ∆xseA::dhfr ∆xonA::apra SLM1185 × P1.RCe563 to Aprar 

SLM1204 ∆xseA::dhfr recJ284::Tn10 SLM1185 × P1.N4934 to Tcr 

SLM1205 ter4.44-<> oriZ-<cat> ter4.57-<kan> 

ΔrecG::apra 

SLM1197 × P1.AU1015 to Aprar 

SLM1206 ΔlacIZYA oriZ-<cat> ∆xonA::apra RCe544 × P1.RCe563 to Aprar 

SLM1208 ΔlacIZYA oriZ-<cat> ∆xseA::dhfr RCe544 × P1.AM1874 to Tmr 

SLM1209 ∆xseA::dhfr ∆sbcCD::kan SLM1185 × P1.RCe562 to Kmr 

SLM1210 ΔlacIZYA oriZ-<cat> ∆xonA::apra pAM488 SLM1206 × pAM488 to Apr 

SLM1211 ΔlacIZYA oriZ-<cat> ∆xseA::dhfr pAM488 SLM1208 × pAM488 to Apr 

SLM1212 tos-kan ∆xonA::apra ∆xseA::dhfr N15 lysogen SLM1187 × N15 to N15r 

SLM1213 ∆xseA::dhfr ∆xonA::apra N15 lysogen SLM1203 × N15 to N15r 

SLM1215 ΔlacIZYA oriZ-<cat> ∆xseA::dhfr ∆xonA::apra 

pAM488 

SLM1211 × P1.RCe563 to Aprar Apr 

SLM1217 ΔlacIZYA oriZ-<cat> ∆xseA::dhfr ∆xonA::apra Plasmid‐free derivative of SLM1215 
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SLM1218 rpoB*35 ∆tus::kan ∆xonA::apra  

dnaA46 tnaA::cat 

SLM1201 × P1.SLM1189 to Cmr 

SLM1219 rpoB*35 ∆xseA::dhfr ∆tus::cat  

dnaA46 tnaA::Tn10 

SLM1196 × P1.RUC663 to Tcr 

SLM1220 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra tos-

kan 

SLM1202 × P1.RCe427 to Kmr 

SLM1221 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra 

dnaA46 tnaA::Tn10 

SLM1202 × P1.RUC663 to Tcr 

SLM1222 rpoB*35 ∆tus::kan dnaA46 tnaA::cat SLM1195 × P1.SLM1189 to Cmr 

SLM1223 rpoB*35 ∆xseA::dhfr ∆tus::cat  

dnaA46 tnaA::Tn10 ∆sbcCD::kan 

SLM1219 × P1.RCe562 to Kmr 

SLM1224 rpoB*35 ∆tus::kan ∆xonA::apra dnaA46 

tnaA::cat recJ284::Tn10 

SLM1218 × P1.N4934 to Tcr 

SLM1225 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra tos-

kan dnaA46 tnaA::Tn10 

SLM1220 × P1.RUC663 to Tcr 

SLM1226 rpoB*35 ∆xseA::dhfr ∆tus::cat  

dnaA46 tnaA::Tn10 ∆sbcCD::kan ∆xonA::apra 

SLM1223 × P1.RCe563 to Aprar 

SLM1230 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra tos-

kan dnaA46 tnaA::Tn10 N15 lysogen 

SLM1225 × N15 to N15r 

SLM1232 rpoB*35 ∆xseA::dhfr ∆tus::cat ∆xonA::apra 

dnaA46 tnaA::Tn10 N15 lysogen 

SLM1221 × N15 to N15r 

SLM1233 rpoB*35 ∆tus::kan dnaA46 tnaA::cat 

recJ284::Tn10 

SLM1222 × P1.N4934 to Tcr 

SLM1236 rpoB*35 ∆xonA::apra N4849 × P1.RCe563 to Aprar 

SLM1238 rpoB*35 ∆xonA::apra ∆xseA::dhfr SLM1236 × P1.AM1874 to Tmr 

SLM1242 ∆xseA::dhfr ∆xonA::apra ∆tus::cat SLM1203 × P1.AM1775 to Cmr 

SLM1244 ∆xseA::dhfr ∆xonA::apra ∆tus::cat  

dnaA46 tnaA::Tn10 

SLM1242 × P1.RUC663 to Tcr 

SLM1245 rpoB*35 ∆xonA::apra ∆xseA::dhfr  

dnaA46 tnaA::Tn10 

SLM1238 × P1.RUC663 to Tcr 

SLM1246 ∆xseA::dhfr ∆xonA::apra dnaA46 tnaA::Tn10 SLM1203 × P1.RUC663 to Tcr 

TB28 ΔlacIZYA  (Bernhardt and de Boer, 2003) 

a – Only the relevant additional genotype of the derivatives is shown. The abbreviations apra, kan, cat and 

dhfr refer to insertions conferring resistance to apramycin (Aprar), kanamycin (Kmr), chloramphenicol 

(Cmr) and trimethoprim (Tmr). 
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Table 3: Plasmids used 

Plasmid Description Reference 

pAM401 pRC7 recG+. The entire sbcCD gene, 

including the native promoter area, 

was amplified with primers 

introducing ApaI sites at either end of 

the gene and cloned in to the ApaI 

site of pRC7. 

(Rudolph et al., 2010a) 

pAM488 pRC7 xonA+. Multiple cloning site of 

pGEM backbone was cloned into the 

ApaI site of pRC7. This allowed 

cloning of the entire xonA gene, 

including its promoter region, into 

the BamHI and HindIII sites of the 

integrated MCS. 

A.A. Mahdi and R.G. Lloyd, unpublished 

pAST116 Human mitochondrial FEN1 gene 

amplified from cDNA with primers 

introducing NcoI and XbaI sites at the 

ends was cloned in to pLau17 via 

NcoI and XbaI, thereby releasing the 

eCFP gene. The amplification has a 

point mutation at position 2017 (A-

>C) and encodes a catalytically 

inactive D223A version of Fen1. 

AS and CJR, unpublished 

pCP20 oriR101(ts), gene for FLP 

recombinase from Saccharomyces 

cerevisiae is under control of phage λ 

repressor. A temperature-sensitive 

variant allows FLP expression at high 

temperature. 

(Cherepanov and Wackernagel, 1995) 

pDIM104 recG expression plasmid. Escherichia 

coli recG expressed via para 

promoter. pBAD24 plasmid 

backbone. 

(Rudolph et al., 2009a) 

pDIM141 pBAD24 mRFP1-<kan> for 

generating protein fusions with RFP. 

The kanamycin resistance cassette  

is encoded within the HindIII 

fragment of this vector. 

T. Moore and R.G. Lloyd, unpublished.  

 

pECR22 pBAD24 ScRNH1 for expression of 

Saccharomyces cerevisiae RNase H1 

in E. coli. 

(Dimude et al., 2015) 



  Materials and Methods 

49 
 

pJJ100 pRC7 recG+. The entire recG gene, 

including the native promoter area, 

was amplified with primers 

introducing ApaI sites at either end of 

the gene and cloned into the ApaI site 

of pRC7. 

(Zhang et al., 2010) 

pKD46 oriR101, Red recombinase plasmid (Datsenko and Wanner, 2000) 

pLau17 pBAD24 eCFP for generating protein 

fusions with eCFP. 

(Lau et al., 2003) 

pRS316-

KanKanMX4 

colE1, ARS6, shuttle plasmid  

for yeast and E. coli, containing  

the KanKanMX4 fragment cloned via 

EcoRI and SalI  

from pFA6a-KanKanMX4. 

(Ede et al., 2011) 

pSLM001 pRS316-KanKanMX4 with added 

<cat> fragment via PCR amplification 

of the <cat> cassette, adding BglII at 

both ends. Cloning into pRS316-

KanKanMX4 via BglII. 

This study 
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Methods 

The optical density of cultures was measured using a Jenway 7300 spectrophotometer. Cultures were 

grown in glass tubes with an internal diameter of 1.5 cm and the spectrophotometer was set up to 

accommodate these tubes instead of a 1 cm cuvette. A culture of wild type E. coli cells grown to an 

optical density of A600 = 0.5 in a glass tube equates to A600 = 0.42 in a 1 cm cuvette, which equates to 6 

× 107 cells/ml. 

Genetic and genomic strain manipulation 

Mutational analysis of genes is an important approach in gaining insight in to their function. Gene 

disruptions were introduced to the chromosome using λ Red-mediated recombination and 

transduction using P1vir, and further genomic manipulation was achieved via cloning and 

transformation of strains with plasmids by electroporation. 

Recombineering 

To introduce a gene disruption, Datsenko and Wanner’s one step method of gene inactivation is used 

(Datsenko and Wanner, 2000) where a gene for an antibiotic resistance determinant is recombined 

directly in to the chromosome in the place of the target gene. Primers with homology to regions either 

side of the target gene are used in the PCR amplification of a template plasmid containing the antibiotic 

resistance gene. This marker gene allows for selection of cells that have successfully lost the gene of 

interest, and it can subsequently be lost itself if necessary. This method was first developed in 

Saccharomyces cerevisiae (Baudin et al., 1993). Datsenko and Wanner (Datsenko and Wanner, 2000) 

subsequently adapted this method for use in E. coli, which was necessary because the native 

exonuclease RecBCD hydrolyses linear DNA (Goldmark and Linn, 1972) and so would target the PCR-

amplified DNA fragment. To overcome this, the lambda red recombination system from the lambda 

red bacteriophage is used. The Red system gene products, Gam (γ), Bet (β) and Exo (exo), block 

RecBCD activity and promote recombination between the PCR product and the chromosome (Murphy, 

1991, 1998). 

A fresh overnight of a wild type strain carrying pKD46, a λ Red recombinase expression plasmid, 

was used to inoculate 11 ml LB. The LB was supplemented with ampicillin to select for cells carrying 

the plasmid, which contains a gene for ampicillin resistance, and with arabinose (0.2% final 

concentration) in order to induce expression of the lambda red genes. The culture was incubated in a 

shaking water bath at 30°C as pKD46 has a temperature sensitive replicon that is maintained at 30°C 

and lost at 37°C. The culture was grown to an optical density of A600 = 0.6. The cells were pelleted 

(5000 rpm, 4°C, 5 mins, Eppendorf 5804 R) and then washed four times in ice cold 10 % glycerol 

solution (see page 56 for a detailed description of the electroporation procedure), ensuring that the 

cells and reagents were kept on ice throughout. 100 – 200 ng of the PCR-amplified DNA was added to 
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the resuspended cells and incubated on ice for ~ 10 mins before being transferred to a cuvette for 

transformation by electroporation. Immediately after the shock was delivered, 2 × 800 µl of enriched 

LB was added to the cuvette and the cells were then allowed to recover in a tube rotator (8 rpm, Stuart 

rotator SB3) at 37 °C for 60 mins. 800 µl of the culture was spun down (Eppendorf Mini Spin or Stuart 

Microfuge, 3 mins, 13400 rpm) and the cell pellet was resuspended in ~ 100 µl of the supernatant. 

This was spread on an agar plate containing the appropriate antibiotic to select for recombinant cells 

and incubated overnight at 37°C; the pKD46 plasmid should be lost at 37°C. The remaining half of the 

culture was left on the bench overnight. If no transformants grew on the first plate within 24 hrs, it 

was spun down and plated in the same manner. Recombinant colonies were purified once non-

selectively and tested by a streak test (page 52) and a verification PCR. P1 liquid culture lysates of the 

correct recombinant strains were prepared and used to transfer the mutant construct to a clean wild 

type strain by P1vir transduction (see below) for further use. This final step is important because in 

the recombineering strains, it is possible that recombination events might have occurred in addition 

to those that were planned and so it is cleanest to transfer to a clean wild type background. 

Removing the selectable marker 

The primers used to PCR-amplify the gene for an antibiotic resistance determinant contain the 65-nt 

FRT site (FLP-recombination target) that is recognised by Flp recombinase from Saccharomyces 

cerevisiae. The gene for the recombinase, FLP, is present on pCP20 under thermal induction. The 

plasmid contains genes for ampicillin and chloramphenicol resistance and has temperature sensitive 

replication; it is maintained at 30°C and lost at 42°C (Cherepanov and Wackernagel, 1995). 

To remove the selectable antibiotic resistance marker from a recombinant strain, the strain was 

transformed (page 56) with pCP20. Following electroporation, the cells were allowed to recover at 

30°C for 60 mins. 50 µl were spread on an ampicillin plate and incubated at 30°C overnight. Routinely, 

four colonies were picked from the ampicillin plate and purified once non-selectively overnight at 

42°C, which simultaneously induces expression of FLP and represses plasmid replication. A streak test 

was carried out to confirm loss of both the FRT-flanked resistance gene and pCP20. 

Transduction 

Bacteriophage P1 – liquid culture lysate 

If the deletion or mutation of a particular gene has been done previously, the strain carrying this 

mutation or deletion was used as a donor. 

The E. coli phage P1vir was used to introduce specific genetic deletions and point mutations via 

transduction. A stock of bacteriophage grown on wild type cells (P1.MG1655) is kept available in the 

lab and this is used to generate any new strains of bacteriophage needed. 



  Materials and Methods 

52 
 

To prepare a new liquid culture lysate, an overnight culture of the donor strain was used to 

inoculate 11 ml Mu broth to an optical density of A600 = 0.05 and the culture was incubated in a shaking 

water bath at either 30°C or 37 °C until it reached an optical density of A600 = 0.3. The phage require 

calcium ions to be available in order to infect cells, so 200 µl of calcium chloride (CaCl2) solution (0.5 

M) were added and the culture was returned to the water bath for 10 min. 30 µl of the stock wild type 

P1vir was used to inoculate the culture and it was incubated at 30 °C/37 °C until lysis was complete, 

normally 3 – 4 hours. It is important to remove any uninfected and non-lysed cells as they would 

contaminate downstream applications so 0.5 ml chloroform was added and the culture vortexed after 

lysis to kill any remaining cells. 10 ml of the lysate was spun in 2 ml aliquots (Eppendorf Mini Spin or 

Stuart Microfuge, 8 min, 13400 rpm) to remove the bacterial cell components as well as unlysed cells 

and the supernatant was transferred to a glass tube and a further 0.5 ml of chloroform was added. The 

P1vir lysates were stored at 4 °C and can be used for several years. 

P1vir Transduction 

A fresh overnight culture of the recipient strain was used to inoculate 11 ml Mu and the culture was 

grown to an optical density of A600 = 0.8 or higher in a shaking water bath at either 30°C or 37°C. The 

cells were pelleted and re-suspended in 1 ml MC buffer (page 42), vortexed briefly and inoculated at 

room temperature for 10 min. 50 µl and 200µl aliquots of the appropriate P1 lysate were mixed with 

200 µl aliquots of the recipient strain and incubated in a water bath at 37 °C for 30 min. Control tubes 

containing the recipient strain only and P1 only were also set up and carried through for the rest of 

the protocol. Sodium citrate (C6H7NaO7 1 M, pH 6.8) was added to all tubes to prevent further 

infections of recipient cells by the phage after 30 min. The cultures were mixed with 3 ml molten 0.6% 

Mu top agar kept at 42°C, or 3 ml 0.6% molten water top agar when selecting for trimethoprim 

resistance, poured on to the relevant antibiotic plates and incubated at either 30 °C or 37 °C until there 

were visible transductant colonies (16 – 72 hrs). After primary selection, transductant colonies were 

purified on medium without an antibiotic. Streak tests (see below) were carried out to determine the 

antibiotic resistance profile and preliminary phenotype of the transductants compared with that of 

the original strain. One transductant culture showing the correct resistance profile was selected and 

a sample was frozen for further use. 

Streak test 

Four single colonies were picked from the non-selective colony purification plate for testing following 

a genetic manipulation procedure. The colonies were used to inoculate 5 ml LB broth and the cultures 

were grown overnight at 30°C or 37°C. 10 µl of each culture was plated on a selection of agar plates; 

routinely, two LB, ampicillin, apramycin, chloramphenicol, kanamycin, tetracycline and trimethoprim. 

One of the LB plates was exposed to 60 J/m2 UV for 60 s. Additional plates were sometimes used, such 

as LB incubated at 42°C when a temperature sensitive allele was involved, or plates containing 
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Mitomycin C. The original parent strain was plated alongside the 

recombinants/transductants/transformants to allow comparison of the resistance pattern of each. 

The plates were incubated overnight at 30°C or 37°C. 

When a dnaA46(ts) allele encoding a temperature sensitive DnaA initiator protein was introduced 

to strains that will grow in the absence of origin firing, the LB plate incubated at 42 °C would not show 

a definitive difference between the parent strain and the transductants. On these occasions, functional 

testing for the presence of the mutant dnaA46 allele was carried out. A P1 liquid culture lysate of a 

transductant strain was prepared and used to transduce the dnaA46 allele in to wild type cells to 

confirm that there were temperature sensitive transductants generated, which confirms the presence 

of the mutant allele in the strain used to generate the P1. 

Freezing a strain 

For long term storage of a bacterial strain, 900 µl of a fresh overnight culture was mixed with 900 µl 

of 80% glycerol solution in a cryotube (Nunc) and stored at –20°C. Strains were frozen in duplicate 

and stored in two separate freezers. 

Cloning 

Preparation of plasmid DNA from E. coli 

DH5ɑ is a general E. coli cloning strain which is designed to have high transformation efficiency, high 

plasmid yield from minipreps, increased DNA insert stability, and blue/white screening capability. 

Routinely, plasmids were stored in DH5ɑ at –20°C instead of using wild type cells in order to minimise 

plasmid degradation by endogenous nucleases, which can be a problem even at –20°C. When a plasmid 

was needed, a fresh culture of the DH5α strain containing the plasmid was inoculated in 5 ml LB with 

ampicillin present to select for cells carrying the plasmid, which contains a gene for ampicillin 

resistance. The culture was grown overnight at 30 °C if the plasmid had a temperature sensitive 

replicon and at 37°C if not. The entire 5 ml culture was spun down to pellet the cells and the 

NucleoSpin® Plasmid miniprep kit (Macherey-Nagel) was used to extract plasmid DNA according to 

the manufacturer’s instructions. 

Briefly, the cells were lysed in an SDS/alkaline buffer. The high pH conditions denature the DNA 

content of the cells. Once neutralised, the small, supercoiled plasmid DNA strands were able to 

reanneal. Due to the size of the chromosomal DNA, the denatured strands were unable to accurately 

reanneal and instead formed very large, insoluble conglomerates along with proteins and other cell 

components, which were removed by centrifugation. The supernatant containing plasmid DNA was 

loaded on to a Nucleospin® Plasmid column where the DNA bound to the silica membrane. After 

washing with an ethanolic buffer, the plasmid DNA was eluted and measured using a Biodrop micro-

volume spectrophotometer. 



  Materials and Methods 

54 
 

PCR 

DNA fragments for cloning and gene disruption via recombineering were amplified from a template 

using the polymerase chain reaction (PCR). PCR was also used in a verification capacity to confirm 

changes to the genome following genetic or genomic manipulation. MyTaq™ DNA polymerase 

(Bioline) was used for routine amplifications. When high-fidelity amplification was needed, VELOCITY 

DNA polymerase (Bioline) was used. Velocity possesses a proofreading capability that results in a low 

error rate and high PCR fidelity. When a colony was used as the template DNA, a Hot Start PCR was 

carried out instead (see below). 

All PCR reactions were set up on ice. Primers were manufactured by Eurofins Genomics and were 

supplied at 100 mM concentration. Primers were used at 10 mM concentration so working stock 

solutions were generated by a 10 dilution in sterile distilled water. MyTaq™ is supplied with an 

optimised buffer system that dNTPs and MgCl2 and so it was not necessary to add these components 

to the PCR reaction separately. Both MyTaq™ and VELOCITY were used according to the 

manufacturer’s recommendations. 

Hot Start PCR 

Hot-start PCRs were used when cells from a colony or a culture provided the template in the form of 

chromosomal DNA. Taq DNA Polymerase (NEB) was used for this type of PCR. To prepare the template 

DNA, a pipette tip was dipped in to a colony and the cells were then resuspended in 10 µl sterile 

distilled water. 1 µl of this dilution was used as the PCR template. When using cells in broth culture, 1 

µl of a 1:10 dilution of an overnight culture was used as the PCR template. 

A PCR tube containing appropriate volumes of buffer, colony suspension and sterile distilled water 

to a total volume of 30 µl was loaded in to the thermocycler. The other components were set up in 20 

µl a separate tube using appropriate volumes for 50 µl total reaction volume. The PCR programme ran 

an initial denaturation of 98° for 5 min. This breaks open the cells and releases the DNA in to the 

reaction mixture. The reaction was then cooled to 85°C and the mixture containing the remaining 

components was added. The remainder of the programme was run according to the polymerase 

manufacturer’s instructions. 

Gel electrophoresis 

In order to visualise the products following PCR amplification, DNA fragments were generally 

separated on a 1 % agarose gel (SeaKem® LE Agarose, Lonza) made with 1× TBE buffer. DNA 

fragments were loaded in to the wells after being mixed with 5 × loading dye. At least 100 ng of DNA 

is required for each well in a maximum volume of 20 µl. 10 µl of 2-log DNA ladder (NEB) was run on 

every gel for size confirmation. The gel was run at 100 V in a 15 cm chamber, equating to a gradient 

voltage of ~ 6 V/cm. To visualise the DNA, the gel was stained with 250 ml of 2 x GelRed® solution 

(Biotium) for 15 – 30 min (freshly made Gel Red solution stained the DNA more quickly) and visualised 
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using the Gel Doc Molecular Imager (Bio-Rad). To run a quick gel, 0.5 × TBE buffer was used both for 

gel and running buffer. These gels could be run at a higher voltage of 140V. 

1 × TAE gels were also used. Gels made with TBE can be run at higher voltage for less time than 

TAE gels, as TAE has a lower buffer capacity than TBE, but the boric acid interacts with downstream 

applications of the DNA so if the DNA was needed for further work, a TAE gel was used instead. TAE 

gels were run at 80 V in a 15 cm chamber, equating to a gradient voltage of ~ 5 V/cm. Instead of Gel 

Red, SYBR® Gold (Life Technologies) stain was used with TAE gels as it is excitable with blue light 

transillumination, which does not cause DNA damage. 3.5 µl of 10 x SYBR® Gold was added to each 

20 µl well. The DNA was then visualised using a blue-light transilluminator and the necessary bands 

were cut out using a new scalpel blade for each band and purified (see below). 

DNA extraction from agarose gels 

The bands containing the DNA required were purified using the NucleoSpin® Gel and PCR CleanUp kit 

(Macherey-Nagel) according to the manufacturer’s instructions. Briefly, the plugs cut out of a TAE gel 

were mixed with a chaotrophic salt-containing binding buffer and incubated at 50°C until the agarose 

gel plugs dissolved. The sample was loaded on to a NucleoSpin® Gel and PCR Clean-up Column where, 

in the presence of chaotrophic salt in the binding buffer, the DNA binds to the silica membrane. A 

number of washes were carried out with ethanolic buffer to remove any impurities and finally the 

DNA was released from the silica by eluting with a low ionic salt solution. The sample was measured 

using a Biodrop micro-volume spectrophotometer. 

The cloning process 

To clone a DNA fragment in to a plasmid vector, the DNA fragment was amplified by PCR using primers 

that contain a restriction site that is also present in the plasmid. 5 µl of each PCR reaction were run on 

a 0.5 ×TBE 1% agarose gel to check the PCR had been successful. The rest of the PCR products were 

then run on a TAE gel and the appropriate bands were cut out and purified. The plasmid and DNA 

fragment were digested separately with the appropriate restriction enzyme in 20 µl reactions 

containing DNA (PCR-amplified insert or plasmid vector), buffer, restriction enzyme and sterile 

distilled water according to the restriction enzyme manufacturer’s instructions. The digested DNA 

was purified using the NucleoSpin® Gel and PCR CleanUp kit (Macherey-Nagel; see above). This is 

important because it removes the restriction enzymes prior to ligation and prevents the DNA being 

recut each time a ligation event happens. 

The ligation and ligation control (vector only, no insert DNA) reactions were set up with a molar 

ratio of 1:3 vector:DNA fragment, T4 DNA Ligase (NEB), 2 µl 10 × T4 DNA Ligase Buffer and sterile 

distilled water to bring the reaction volume to 20 µl, although the reaction volume can be larger if 

necessary. The ligation reactions were incubated at 4°C overnight. The following day, each ligation 

reaction underwent microdialysis using Millipore membrane filters (0.025 µm) floated on Molecular 
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Biology Grade water (0.03 µm filtered, Fisher Bioreagents) for 30 mins. This removed the ions from 

the reaction mixture. 

The ligation and vector control were used to transform DH5α (see below). After the recovery 

phase, 100 µl of each culture was used to inoculate a spread plate containing ampicillin. The rest of 

the culture was spun down and plated on ampicillin. 

Transformation of bacterial strains 

Preparation of competent cells 

A fresh overnight culture of the recipient strain was used to inoculate 11 ml LB to an optical density 

of A600 = 0.05 and the culture was grown to an optical density of A600 = 0.6 in a shaking water bath. 

Once grown to the correct density, the cells and all reagents were kept on ice for the rest of the 

procedure (methodology of transformation reviewed in Aune and Aachmann, 2010). 

Due to the high voltage of electroporation, it is necessary for the culture of cells to have very low 

conductivity to prevent arcing of the electric current. To achieve this, the cells were washed four times 

in order to reduce the ionic strength of the culture; the cells were pelleted and then resuspended in 

10 ml ice cold 10% glycerol solution. This was repeated a further three times with decreasing volumes 

of glycerol solution (5 ml, 1 ml and 0.5 ml). After the final wash step, the cell pellet was resuspended 

in the drop that remained after discarding the final 0.5 ml of glycerol solution. 

Cell transformation via electroporation 

After washing, the plasmid was added to the cells and the mixture was incubated on ice for 10 min 

before being transferred to a chilled electroporation cuvette. Immediately after electroporation at 

1.75 kV for at least 4 ms (Eppendorf Eporator), the cells were mixed with 1.6 ml SOC and incubated at 

30°C or 37°C for one hour in a tube rotator (Stuart Rotator SB3, 8 rpm). This is to allow cells to recover 

from the electroporation and to have time to synthesise the antibiotic resistance determinant 

conferred by the plasmid before being incubated with this antibiotic. Following the recovery stage, 50 

µl of the transformation culture was plated on to the relevant antibiotic plates for selection of 

transformants and streaked to single colonies. The remaining transformation culture was left on the 

bench overnight. When cells were transformed with a DNA fragment, 100 µl of the culture was used 

to inoculate a spread plate containing the appropriate antibiotic. The remaining culture was spun 

down to pellet the cells, which were then re-suspended in ~ 150 µl of the supernatant and used to 

inoculate a second spread plate. The plates were incubated at 30°C or 37°C for at least 24 hours. 
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Chromosome Linearisation 

Linearisation of the E. coli chromosome 

The autonomy of the linearization system of the E. coli bacteriophage N15 was exploited by Cui and 

colleagues (2007) in the development of a simple and effective method to linearise the chromosome 

in E. coli cells (see page 161 for more detail). 

P1vir transduction (page 51) was used to introduce the phage DNA sequence tos in to the 

chromosome of the target strain at a location in the termination area near to dif. The tos sequence is 

linked to a gene for kanamycin resistance as a selection marker but the gene displays weak resistance. 

Therefore, the transduction cultures were plated on Mu agar plates with kanamycin at 20 µg/ml 

instead of the normal concentration of 40 µg/ml. Using the high salt medium, Mu, instead of LB, 

enhances the effectiveness of the weak kanamycin resistance determinant for unknown reasons. The 

transductants were infected with N15 bacteriophage and lysogens were subsequently isolated and 

tested with re-infection to confirm lysogenic state; lysogens cannot be re-infected. The N15 phage 

expresses the telN gene, which encodes the TelN telomerase protein. TelN processes a region within 

tos to linearise the chromosome and generate two termini with hairpin structures. Linearisation of 

the chromosome was subsequently confirmed using PCR and pulsed-field gel electrophoresis. 

Confirmation of linearisation by pulsed-field gel electrophoresis 

Conventional gel electrophoresis is not suitable for the separation of very large DNA fragments. In 

order to resolve DNA fragments larger than the 23 kb upper limit of this technique, a change of 

direction of the electric field in the electrophoresis tank is introduced periodically. Fragments will 

reorientate to the new direction at different rates according to their molecular weight and this causes 

the separation of fragments of different sizes (Nassonova, 2008; Southern et al., 1987) 

An overnight culture was used to inoculate 11 ml LB broth and the cells were grown in a shaking 

water bath to an optical density of A600 = 0.3 – 0.5. A 2 ml aliquot was transferred to a microtube and 

pelleted and the supernatant was discarded. The pellet was resuspended in 100 µl TEE buffer 

containing 0.05% lauroylsarcosine and 0.5% SDS. 1 % molten low melting point agarose (SeaPlaque™ 

GTG™ Agarose, Lonza) was prepared and 100 µl was added to each sample and mixed swiftly by 

pipetting up and down five times being careful not to create bubbles. Each sample was transferred to 

wells in a disposable plug former (Bio Rad) and put to 4°C to solidify. The plugs were removed from 

the wells and incubated for 2 hours at 42°C with 10 mg/ml lysozyme in 500 µl TEE containing 0.05% 

lauroylsarcosine and 0.5% SDS. The solution was removed after 2 hours and replaced with 500 µl TEE 

containing 1% SDS and 5 mg/ml proteinase K and put at 52°C overnight. The plugs were washed twice 

in 500 µl TEE at 37°C for 30 min then treated with 1 mM (5 µl) phenylmethane sulphonyl fluoride 

(PMSF) (freshly prepared as 100 mM stock solution in methanol) in 500 µl fresh TEE at 37°C for 30 

min. A further 5 µl of PMSF was added to the plugs and incubated for 1 hour at 37°C. The plugs were 
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washed three times with 500 µl aliquots of fresh TEE at 37°C for 30 min followed by a final wash with 

500 µl 0.1 x TEE at 37°C for 30 min. The plugs were transferred into 300 µl of 1 × 3.1 restriction buffer 

(NEB) and 3 µl of NotI restriction enzyme (NEB) were added to each tube. The plugs were digested 

overnight at 37°C. They were loaded in to a 1% agarose gel (Pulse field certified agarose, Bio-Rad) in 

0.5 x TBE and run on a CHEF Mapper PFGE system (Bio-Rad) for 20 hours at 14°C: 

Gradient voltage = 6.0 V/cm 

Included angle = 120° 

Initial switch = 1.7 s 

Final switch = 32.5 s 

The gel was stained with 2 x Gel Red solution (Biotium) and visualised using the Gel Doc Molecular 

Imager (Bio-Rad). 

Origin-independent DNA synthesis 

A temperature-sensitive allele, dnaA46, of the DNA replication initiator protein, DnaA, was utilised in 

investigating origin-independent DNA synthesis. This protein is active at 30°C but is inactive above 

37°C (Frey et al., 1981). Strains carrying the wild type dnaA allele are able to maintain ‘steady state 

balanced exponential growth’ between 30°C and 42°C (Frey et al., 1981) whereas cells that carry the 

dnaA46 allele and are able to grow at 42°C do so independently of oriC firing. This was an important 

tool for studying origin-independent DNA replication that occurs in some of the strain backgrounds 

where the genes for proteins of interest have been deleted. 

Spot dilution assay 

Fresh overnight cultures of the strains to be investigated were used to inoculate 11 ml LB to A600 = 

0.05. The cultures were grown to an optical density of A600 = 0.48 in a shaking water bath at 30°C. The 

cultures would normally grow at different rates and so they were stored on ice until all had reached 

the correct density. 100 µl of a culture was diluted in 56/2 salts or M9 minimal salts to 10-5 using serial 

dilutions of 10-1. 10 µl of the 10-5 dilution of the culture was plated as a single spot on two LB plates. 

This was repeated with the rest of the dilutions of the culture. One plate was incubated at 30°C 

(permissive temperature) overnight and the other at 42°C (restrictive temperature). The plates were 

incubated for 24 – 72 hours. Images were taken using a Gel Doc Molecular Imager and growth of a 

strain at 42°C was compared to relevant control strains to assess the effect of various genetic and 

genomic manipulations on origin-independent synthesis. Experiments were performed at least twice 

independently to confirm the reproducibility of the results. One set of images is presented. 

EdU Incorporation 

EdU Click-iT labelling of newly replicated DNA – Incorporation of EdU in to newly replicated DNA 

and preparation of samples for Click-labelling with fluor were carried out as described (Ferullo et al., 
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2009). Briefly, fresh overnight cultures of dnaA46 derivatives were used to inoculate 11 ml LB and the 

cultures were incubated in a shaking water bath at 30°C and grown to an optical density of A600 = 0.3. 

The cultures were then shifted to the restrictive temperature of 42°C and incubated for 90 min. This 

was to allow all current rounds of replication to finish whilst preventing new replication from 

initiating via DnaA. EdU was added to a final concentration of 30 µg/ml (132 µl of EdU in to 11 ml of 

culture) and the cultures were incubated at 42°C. After 15 min, a 2 ml sample was extracted and fixed 

in 13 ml 90% methanol. The Click-iT® Plus EdU Alexa Fluor 488 kit (Life Technologies) was used to 

label the EdU with Alexa Fluor 488. The components of the click labelling reaction were assembled in 

a specific order, according to the manufacturer’s instructions. Click-labelling with fluor was performed 

as previously described (Ferullo et al., 2009). 

Imaging flow cytometry – EdU incorporation in cells was visualised using the Amnis ImageStream 

Mark II. The settings used were 488 nm excitation with a green emission filter, 50 mW laser, 60 x 

magnification for bright-field microscopy, and it was set to capture at least 10,000 in focus cells, which 

was later gated to around 5000 in focus, single cells. The ImageStream data was analysed using the 

Amnis Ideas imaging flow cytometry software v6.1. 

Marker frequency analysis by deep sequencing 

A fresh overnight culture was used to inoculate 11 ml LB to A600 = 0.05. The culture was incubated in 

a shaking water bath at 37°C and grown to an optical density of A600 = 0.48. In order to allow for a 

robust number of divisions in exponential phase, the culture was diluted a second time by transferring 

100 µl in to 11 ml of fresh LB, pre-warmed to the appropriate temperature. This was then incubated 

in the shaking water bath until the culture once again reached an optical density of A600 = 0.48. The 

culture was swiftly transferred to a 15 ml Falcon tube and flash frozen in liquid nitrogen. This ensured 

that DNA replication was arrested whilst the cells were in exponential growth phase. The frozen 

culture was stored for a minimal time at -20°C before subsequent DNA extraction. A wild type 

exponential sample and a wild type stationary phase sample were prepared with every batch of 

samples sent for marker frequency analysis. Marker frequency analysis was performed using Illumina 

HiSeq 2500 sequencing (fast run) to measure sequence copy number. FastQC was used for a basic 

metric of quality control in the raw data. Bowtie2 was used to align the sequence reads to the 

reference. Samtools was used to calculate the enrichment of uniquely mapped sequence tags in 1 kb 

windows. Bioinformatics analysis was carried out by Earlham Institute. 

The data were presented as a marker frequency replication profile, as described previously 

(Ivanova et al., 2015; Müller et al., 2014; Skovgaard et al., 2011). To present the data as a marker 

frequency profile, the raw read counts of a sample were first divided by the average of all read counts 

across the entire genome. This compensates for variation in the absolute numbers of aligned reads in 

the various samples, which would otherwise affect the position of the data set on the y-axis when 

plotted as a marker frequency and instead enables all data from a single sequencing run to be plotted 
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with the same scale on the y-axis. The normalised read counts were then divided by the corresponding 

normalised read count from the wild type stationary sample. Data points that are outliers due to 

various technical reasons will occur similarly in both the exponential phase and the stationary phase 

sample and so in doing this division, these outliers are neutralised and the data set is ‘cleaned’ 

significantly. Graphs were then generated for each strain in Microsoft Excel and Adobe Illustrator. 

Marker frequency profiles for key constructs were generated independently twice. 

Chromosome extraction 

For replication profiling: The frozen culture was defrosted as swiftly as possible by rubbing in 

between hands. It was important to proceed quickly in order to minimise the potential for replication 

restarting. The 11 ml culture was centrifuged to pellet the cells and the GenElute Bacterial Genomic 

DNA Kit (Sigma-Aldrich) was used for chromosome extraction. The cells were lysed using a 

chaotrophic salt-containing buffer followed by RNase A and Proteinase K treatments. The DNA was 

then bound to a silica membrane in a spin column, washed to remove contaminants and finally 

released from the silica with elution buffer. The kit was used according to manufacturer’s instructions 

except that the second wash step was carried out twice and 200 µl of a low EDTA concentration elution 

buffer (page 42) was used instead of the kit elution buffer. 

 

For other purposes: when genomic DNA was needed as a PCR template for example, 2 ml of a fresh 

overnight culture was spun down to pellet the cells and the kit was then used according to the 

manufacturer’s instructions. 

Determination of reversion rates 

Lea and Coulson (Lea and Coulson, 1949) devised a system of statistical calculations to quantify the 

distribution of number of mutants in a culture of bacteria, taking in to account both the total number 

of mutants present in the culture and the number of spontaneous mutation events that took place in 

order to result in the total number of mutants. This approach was used to determine the reversion 

rate of a duplicated sequence to a single copy of the sequence in various strain backgrounds. The 

KanKanMX4 duplication is within a gene for kanamycin resistance (Ede et al., 2011). The reversion 

rate of the KanKanMX4 construct was estimated using a fluctuation assay based on the method of the 

median by Lea and Coulson (Foster, 2006; Lea and Coulson, 1949). 

To carry out a fluctuation assay, a number of cultures inoculated with a single cell should be grown 

in parallel, but this is not possible in practice as E. coli will not readily grow from such a low cell density 

in liquid broth. Using full single colonies extracted from a plate culture to inoculate LB broth cultures 

avoids this problem as each colony will have resulted from a single cell and the cell number present 

in a plate colony is enough to enable the culture to grow. A fresh overnight culture of each strain was 

used to inoculate 11 ml LB. The cultures were incubated in a shaking water bath at 37°C and grown to 
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an optical density of A600 = 0.48, at which point the cells were in mid-log phase growth. 50 µl aliquots 

of the cultures were transferred to 450 µl M9 minimal medium and diluted in 10-fold steps from 10-1 

to 10–5. 100 µl of each 10–5 dilution was spread on an LB agar plate to single colonies and incubated at 

37 °C overnight. Using a sterile scalpel, 9 single colonies were cut out of the agar of each plate and 

transferred to test tubes containing 5 ml LB. The tubes were vortexed to separate the cells and then 

incubated at 37°C for at least 24 hours. After 24 hours, a second serial dilution was carried out. Six 

cultures of each strain were diluted 100-fold to 10-2 and the remaining three cultures were diluted to 

10-7. 100 µl aliquots of the appropriate dilutions were spread on LB plates and Mu plates containing 

20 µg/ml kanamycin and put at 37°C overnight. Colonies were scored on LB (viable titre) and 

kanamycin for reversion frequency of each culture. The data from the fluctuation assay were used to 

calculate the most likely number of reversion events per culture using the Lea and Coulson method of 

the median (Foster, 2006; Lea and Coulson, 1949). 

Synthetic lethality assay 

A plasmid-based lethality assay developed by Bernhardt and de Boer (Bernhardt and de Boer, 2004) 

was used to establish whether cells lacking 3’ exonucleases can tolerate the deletion of the replication 

origin, oriC. A wild type copy of xonA under its native promoter was cloned into pRC7, a mini-F plasmid 

that is unstable and rapidly lost from cells (Bernhardt and de Boer, 2004). The plasmid was used to 

cover ΔxonA::apra in the chromosome of a Δlac background. Due to the presence of the lac genes in 

pRC7, loss of the plasmid can be detected using agar plates containing IPTG and X-gal. IPTG inhibits 

the action of the lac repressor LacI, thereby inducing expression of the lac operon (Marbach and 

Bettenbrock, 2012). This results in the production of β-galactosidase, which cleaves the synthetic 

substrate, X-gal, resulting in a dark blue precipitate. Cells lacking the plasmid will form white colonies 

whereas blue colonies show the presence of the plasmid. White sectors within blue colonies form 

when the plasmid was lost after plating. This system allows detection of synthetically lethal mutations 

by scoring numbers of blue and white colonies. 

ΔoriC::kan was introduced to ΔxonA pAM488 and ΔxonA ΔxseA pAM488 strains. Cultures of the 

resulting strains were grown overnight in LB broth containing ampicillin to maintain plasmid 

selection. These overnight cultures were used to inoculate 11 ml LB to A600 = 0.05, which were then 

grown without ampicillin selection to an optical density of A600 = 0.48 in a shaking water bath at 37°C. 

100 µl of each culture was diluted in M9 minimal salts to 10-5 using serial dilutions of 10-1. 50, 100 and 

200 µl aliquots of the 10-4 dilutions and 100 and 200 µl aliquots of the 10-5 dilutions were spread on 

LB agar or M9 glucose minimal salts agar supplemented with IPTG and X-gal. The plates were 

incubated at 37 °C for 48 hr (LB agar) or 72 hr (M9 agar), after which they were photographed and 

scored for blue and white colonies. 
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Fluorescence Microscopy 

A fresh overnight culture was used to inoculate 11 ml LB to an optical density of A600 = 0.05. The 

culture was incubated in a shaking water bath at 37°C and grown to an optical density of A600 = 0.3. 

Agar platforms were prepared on microscope slides. An adhesive gene frame (1.5 × 1.6 cm, Thermo 

Scientific) was applied to a glass microscope slide. 110 µl of molten 1% agarose solution in M9 0.2 % 

glucose minimal medium was pipetted in to the well, taking care to ensure no air bubbles were 

generated, and was immediately covered with a second slide to ensure a flat and even surface was 

achieved as the agarose set. After 10 mins, the slides were separated and allowed to dry for a further 

~20 mins. 1.5 µl of the culture was transferred to the agar platform on a microscope slide. The slide 

was rotated slowly a number of times to encourage the drop of culture to spread out, thereby ensuring 

good areas of a single cell layer of coverage. The agar platform is necessary because E. coli cells are 

motile and so need to be fixed to the microscope slide in order that they can be viewed in focus. Once 

the drop of culture had dried it was covered with a cover slip and examined using a Nikon Ti-U 

inverted microscope equipped with a DS-Qi2 camera (Nikon). 

Chromosomal recombineering 

Ectopic replication fork trap 

The ectopic termination area was created using the recombineering method described (page 50; 

Datsenko and Wanner, 2000). A kanamycin gene with the 34 bp FLP recognition target (FRT) 

sequence at either end was amplified from pDIM141 by PCR using two pairs of primers, with one 

primer in each pair containing the 23-bp sequence of terA (Duggin and Bell, 2009). The primer pairs 

also contained sequence homology for two different locations on the chromosome corresponding to 

the two integration locations of the terA PCR constructs; one at 4.44 Mbp with the terA sequence in an 

orientation that is permissive for replication forks coming from oriC (terA4.44), and the second at 4.57 

Mbp with the terA sequence in an orientation that blocks forks arriving from oriC (terA4.57). The 

pDIM141 PCR template plasmid was first digested with ScaI restriction enzyme in order to minimise 

false positives at later stages in the process caused by the plasmid reannealing and being present 

without the PCR fragment inserted. To further prevent this, the PCR products were purified on a TAE 

gel (page 55) before being used to separately transform a Δtus strain carrying pKD46, a lambda Red 

recombinase expression plasmid, which facilitated the recombination event inserting the DNA 

fragments in to the chromosome (page 50; Datsenko and Wanner, 2000). A Δtus background was used 

because in the case of the terA4.57 construct, the ter site is in the non-permissive orientation with 

respect to oriC and so it was essential to prevent Tus protein binding whilst the strain had only a single 

origin. Four colonies from each transformation plate were purified once non-selectively, and the 

integration of the terA4.44 and terA4.57 constructs was confirmed in all eight isolates by colony PCR 

(page 54). 
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Two isolates of each of the recombineering strains, Δtus terA4.44 and Δtus terA4.57, were selected 

to take forward. P1 liquid culture lysates of each of these were prepared. terA4.44 was introduced via 

P1vir transduction to the chromosome of a strain carrying two copies of oriC; the second copy, oriZ, is 

located approximately half way around the right hand replichore (Wang et al., 2011). pCP20, a helper 

plasmid expressing the FLP recombinase that processes FRT sites (Datsenko and Wanner, 2000), was 

then used to remove the kanamycin resistance marker, resulting in oriC+ oriZ+ terA4.44 cells with a 

single FRT scar in the place of the kanamycin resistance gene. Both ectopic ter constructs have 

kanamycin resistance as the marker gene and so it was necessary to remove the marker once the 

terA4.44 construct was inserted in to the chromosome in order that transductant colonies could then 

be selected when the terA4.57 construct was subsequently introduced. The streak test following 

pCP20 treatment showed that all transformed strains were sensitive to kanamycin, and PCR was used 

to further confirm the successful removal of the kanamycin resistance marker from two purified 

colonies following pCP20 treatment. 

The streak test also showed that the parent strain was resistant to chloramphenicol but that the 

transformants were sensitive, indicating that the FLP recombinase had removed the FRT-flanked gene 

for a chloramphenicol resistance that is linked to the ectopic origin, oriZ. The final step to complete 

the strain construction was to insert the terA4.57 construct in to the oriC+ oriZ+ terA4.44 strain, which 

was done via P1vir transduction and resulted in the final double origin strain with an ectopic 

termination area, oriC+ oriZ+ terA4.44 terA4.57. 

Functional analysis of ter sites 

To check the ectopic ter sites were functional, the terA4.57 construct was crossed in to wild type and 

oriC+ oriZ+ cells via P1vir transduction. Only the transduction in to the double origin strain background 

produced transductant colonies. Viability in this case is expected because replication forks from oriC 

blocked at the ectopic ter site will be met by replication arriving from oriZ, whereas in wild type cells, 

replication forks from oriC would reach terA4.57 and then be unable to progress further, resulting in 

over a quarter of the chromosome un-replicated. Chromosomal DNA from the origin recombineering 

strains was amplified using the following primers: 

5’terA4_4seq TCTGGTTAATGCAGGTTGCCA, 3’terA4_4seq TAAGGATGGTCGCGTGCAAT 

5’terA4_6seq ATCTGCCGGGTACAGGACAT, 3’terA4_6seq AGTGTCAGGGTGCGTGAGAA. 

Sanger sequencing was used to confirm that the sequences of both terA4.44 and terA4.57 were 

identical. 

Strain reconstruction 

The generation of the replication profiles from marker frequency data of the original oriC+ oriZ+ ter4.44 

ter4.57 strain created as outlined above revealed a chromosomal rearrangement (Figure 14). This is 

likely to be the result of the action of FLP recombinase (page 51), which was used to remove the FRT-
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flanked gene for kanamycin resistance linked to the terA4.44 construct. To reconstruct the strain and 

avoid this problem, the terA4.44 construct was transferred to a wild type background by P1vir 

transduction and the resulting strain was treated with pCP20 to remove the kanamycin resistance 

gene before any other FRT sites were present. The ectopic replication origin, oriZ, was then introduced 

to the terA4.44 strain via P1vir transduction and finally the terA4.57 construct was inserted, resulting 

in the oriC+ oriZ+ terA4.44 terA4.57 strain. ΔrecG, Δtus and ΔrecG Δtus derivatives of this strain were 

subsequently generated. 

Deletion of terC 

A gene for kanamycin resistance (<kan>) was amplified from pDIM141 by PCR using primers that 

introduced 40 bp homology to the DNA sequences on either side of terC. The resulting DNA fragment 

was recombineered in to the chromosome of wild type cells using the one-step gene inactivation 

method (page 50) (Datsenko and Wanner, 2000), resulting in the deletion of the terC sequence while 

the surrounding sequences remain intact. 

Fluorescently-labelled dnaQ in an ectopic location 

The dnaQ-mtag<kan> construct was amplified from strain RRL546 by PCR using primers that 

introduced homology to the chromosomal DNA sequences on either side of the lac operon. The 

resulting DNA fragment was recombineered in to the chromosome of wild type cells (MG1655) using 

the one-step gene inactivation method (page 50) (Datsenko and Wanner, 2000), resulting in the 

deletion of lacIZYA. Correct recombinants were those that were resistant to kanamycin and formed 

white colonies on IPTG X-gal containing agar plates. In cells in which the lac operon remains intact, 

(lac+), IPTG induces expression of the lac operon, which results in the production of β-galactosidase. 

This hydrolises X-gal and the product of this reaction produces a blue pigment, resulting in blue 

colonies on IPTG X-gal plates. Δlac cells in which the lac operon has been recombined with the dnaQ-

mtag-<kan> construct form white colonies on IPTG X-gal plates. P1 liquid culture lysates of the correct 

recombinant strains were prepared. 

The frt-flanked gene for kanamycin resistance associated with the dnaQ-ypet construct in AS1059 

cells was removed using the FLP/frt site-directed recombination system, resulting in strain SLM1142 

dnaQ-ypet. The P1 liquid culture lysates containing the ΔlacIZYA::dnaQ-mtag<kan> construct were 

used to transfer this construct in to SLM1142 dnaQ-ypet cells via P1vir transduction (page 51). An 

IPTG X-gal plate was included in the streak test to confirm the absence of the lac operon in the 

transductant strains. 
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RecG and DNA replication termination  

RecG is a multifunctional DNA translocase that has been shown to target a number of different 

branched structures in vitro, including D-loops and R-loops, Holliday junctions and a variety of 

replication fork structures (Bianco, 2015; Briggs et al., 2004; Fukuoh et al., 1997; Gupta et al., 2014; 

Lloyd and Sharples, 1993; Manosas et al., 2013; McGlynn and Lloyd, 2000; McGlynn et al., 1997; 

Rudolph et al., 2010b; Vincent et al., 1996). It has proven difficult to determine the role RecG has in 

vivo and seemed most likely that RecG might have multiple functions in nucleic acid metabolism within 

a cell. In line with this, the phenotype of cells lacking RecG is pleiotropic and introducing ΔrecG in to 

otherwise wild type cells results in multiple, but relatively modest, mutant phenotypes, such as mild 

sensitivity to UV light and ionising radiation, sensitivity to the DNA-damaging agent mitomycin C and 

a slight reduction in recovery of recombinants in Hfr crosses (reviewed in Lloyd and Rudolph, 2016). 

 

Figure 8: Replication profiles of E. coli cells in the presence and absence of RecG. Shown is the marker 

frequency analysis of exponentially growing cultures generated via deep sequencing. Read numbers 

(normalised against a stationary phase wild type control) are plotted against the chromosomal location. 

The schematic above the graphs is a representation of the E. coli chromosome, showing the position of 

oriC (green line) and ter sites (red lines for those in the left hand replichore and blue lines for those in the 

right hand replichore). Sequencing templates were isolated from MG1655 (wild type) and N6576 (ΔrecG). 

Figure reproduced from Rudolph et al., 2013 with permission. 

Rudolph and colleagues recently revealed a more pronounced phenotype of ΔrecG cells. Marker 

frequency analysis (MFA) via deep sequencing can be used to generate replication profiles and analyse 

the replication dynamics in various genetic backgrounds. Replication profiles are generated by 

plotting copy number (determined as the ratio of each sequence location in a replicating sample to 

that in a non-replicating control) against each chromosome location (in 1 kb fragments) (page 59). 
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This assay was used by Rudolph and colleagues to generate replication profiles of wild type cells and 

cells lacking RecG (Rudolph et al., 2013). 

The replication profile of wild type cells (Figure 8, panel I) shows that in an exponential phase 

culture, the chromosome location present in the highest frequency is the origin of replication, oriC, as 

previously reported (Skovgaard 2011). Conversely, the lowest point of the profile is near terC within 

the termination area of the chromosome. The replication profile of cells lacking RecG is different. The 

high point is still at oriC and the low point is within the termination area. However, there is a peak 

within the profile that is not seen in the wild type profile (Figure 8, panel II). This peak shows that the 

chromosomal locations represented within that section of the replication profile are present at a 

higher frequency in the ΔrecG culture than in the wild type culture; there is an amplification of the 

termination area (Rudolph et al., 2013). The peak shows that in a culture of ΔrecG cells, DNA synthesis 

initiates away from oriC. This over-replication of the termination area is not detected when RecG 

protein is present (Figure 8, panel I wild type profile), which suggests that RecG performs some 

function that inhibits this origin-independent replication. Rudolph and colleagues suggest that RecG 

may actually have a single important role in DNA metabolism that may account for the pleiotropic 

phenotypic traits seen in the absence of RecG, and that is in preventing re-replication of the 

chromosome by processing DNA substrates that arise as a result of replication fork fusion events 

(Lloyd and Rudolph, 2016; Rudolph et al., 2009a, 2009b, 2010b, 2013). 

Cells lacking RNase HI also show over-replication in the termination area 

Origin-independent over-replication was identified in cells lacking RNase HI (encoded by the rnhA 

gene) (Horiuchi et al., 1984; Ogawa et al., 1984), an endonuclease that specifically degrades the RNA 

strand in a DNA:RNA hybrid (an R-loop) (Tadokoro and Kanaya, 2009) and was termed cSDR (page 

38). It was suggested by Kogoma and co-workers that the origin-independent replication seen in 

ΔrnhA cells initiates via the formation of R-loops, which are able to persist in the absence of RNase HI 

(Kogoma et al., 1985; Meyenburg et al., 1987; reviewed in Kogoma, 1997). Further work revealed that 

cells lacking RecG also show SDR activity and that loss of both RNase HI and RecG activity is lethal to 

cells (Hong et al., 1995). It has been shown in vitro that RecG can also process R-loops (Fukuoh et al., 

1997; Vincent et al., 1996) and as a result, it has been suggested that the DnaA-independent replication 

seen in the absence of either protein might have a common underlying initiation mechanism (Hong et 

al., 1995). 

Replication profiling of ΔrnhA cells (Maduike et al., 2014; Dimude et al., 2015) reveal that, as seen 

in the absence of RecG, exponentially growing ΔrnhA cells show an amplification of the termination 

area, demonstrating that origin-independent over-replication initiates in this region of the 

chromosome in both ΔrecG and ΔrnhA cells (Figure 8 and Figure 9 respectively). 
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Figure 9: Replication profiles of E. coli cells in the presence and absence of RNase HI. Shown is the marker 

frequency analysis of exponentially growing cultures generated via deep sequencing. Read numbers 

(normalised against a stationary phase wild type control) are plotted against the chromosomal location. 

The schematic above the graphs is a representation of the E. coli chromosome, showing the position of 

oriC (green line) and ter sites (red lines for those in the left hand replichore and blue lines for those in the 

right hand replichore). Sequencing templates were isolated from MG1655 (wild type) and N4704 (ΔrnhA). 

Figure reproduced from Dimude et al., 2015 with permission. 

In the absence of RNase HI however, there were further deviations from the wild type profile. There 

are additional peaks along the profile outside of the termination area (Dimude et al., 2015; Maduike 

et al., 2014). Kogoma and colleagues first identified five sites of replication initiation in the absence of 

RNase HI and oriC, which were termed oriKs (Kogoma, 1997). The peaks seen in the replication profile 

of ΔrnhA cells suggest that origin-independent DNA synthesis is indeed able to initiate at multiple 

locations of the chromosome and they correspond with the original data as well as more recent 

experiments (Dimude et al., 2015; Maduike et al., 2014). Whilst it is clear that cells lacking RecG exhibit 

cSDR (Hong et al., 1995), the fact that the marker frequency profiling reveals that it is most prevalent 

in the termination area (Rudolph et al., 2013) and not at multiple defined chromosomal locations like 

that seen in ΔrnhA cells lead to questions about the similarities and differences of the over-replication 

in the two genetic backgrounds, with implications for the potentially different roles of RecG and RNase 

HI in DNA metabolism. 

Over-replication sustaining growth 

Despite the origin-independent over-replication seen in the replication profiles of both ΔrecG and 

ΔrnhA cells, it has been shown previously that while cells lacking RNase HI are able to grow in the 

absence of origin firing, cells lacking RecG are not. Normal DNA replication initiated at oriC is mediated 

by the main initiator protein, DnaA, encoded by dnaA. This initiation system can be manipulated 

through the introduction of a temperature sensitive allele of DnaA. dnaA46 (referred to as dnaA from 

here onwards) encodes a DnaA(ts) protein that is active at 30 °C and inactive at 42 °C (Frey et al., 

1981), meaning that origin firing can be prevented by incubating cells at the restrictive temperature. 
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A spot dilution assay was used to assess growth that arises as a result of origin-independent DNA 

synthesis in dnaA ΔrecG and dnaA ΔrnhA cells (Dimude et al., 2015; Rudolph et al., 2013). 

 

Figure 10: Cell growth in the absence of origin firing. A) A spot dilution assay was used to evaluate growth 

arising via origin-independent DNA replication in dnaA(ts) ΔrecG and dnaA(ts) ΔrnhA cells. The strains carry 

a temperature sensitive allele for the DnaA initiator protein, dnaA46, which produces a protein that is 

functional at 30°C but not at 42°C. Growth occurring at the restrictive temperature is achieved in the 

absence of oriC firing. The strains used were AU1054 (dnaA46), AU1091 (dnaA46 ΔrecG) and AU1066 

(dnaA46 ΔrnhA). Figure reproduced from Dimude et al., 2015 with permission. B) The replication fork trap 

in the termination area was inactivated in dnaA ΔrecG and dnaA ΔrnhA cells by deletion of the tus gene 

(Δtus) and an rpoB*35 point mutation was introduced (rpo*), which destabilises ternary RNA polymerase 

complexes. The experiment was carried out on LB agar plates. The strains used were RCe268 (dnaA46 

Δtus rpo* ΔrecG) and RCe309 (dnaA46 Δtus rpo* ΔrnhA). Figure is modified from Dimude et al., 2015 and 

Rudolph et al., 2013 with permission. 

This assay revealed that unlike cells lacking RecG, dnaA ΔrnhA cells can establish colonies at the 

restrictive temperature, confirming that the origin-independent over-replication seen in the absence 

of RNase HI (Figure 9) is robust enough to sustain cell growth, especially on minimal salts agar (Figure 

10A; Dimude et al., 2015; Kogoma, 1997; Maduike et al., 2014; Rudolph et al., 2013). dnaA ΔrecG cells 

that grew robustly at the permissive temperature were only able to grow at the restrictive 

temperature when a combination of two mutations were introduced; Δtus and rpoB*35 (Figure 10B; 

Rudolph et al., 2013). tus encodes the terminus utilization substance, Tus, which binds to ter 
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sequences that flank the termination area and forms a unidirectional block to replication fork 

progression (page 24; Duggin and Bell, 2009). Δtus inactivates the ter/Tus replication fork trap. 

rpoB*35 (referred to as rpo* from here onwards) is a point mutation in the β subunit of RNA 

polymerase that reduces conflicts between replication and transcription complexes by reducing the 

ability of RNAP to pause and backtrack (Dutta et al., 2011). That these two mutations allow dnaA ΔrecG 

cells to grow in the absence of origin firing is in line with the replication profile of ΔrecG cells (Figure 

8; Rudolph et al., 2013), which shows a high level of over-replication confined to the termination area, 

prevented from progressing further by the Tus/ter complexes. Once the replication fork trap is 

inactivated, the over-replication would then be able to escape from the termination area and so has 

the potential to maintain chromosome replication in the absence of origin firing. 

The work presented in this chapter builds on an extensive body of work (Lloyd and Rudolph, 2016; 

Rudolph et al., 2009a, 2009b, 2010b, 2010a, 2013) and forms part of a bigger study within the Rudolph 

lab to further characterise the origin-independent replication seen in ΔrecG cells with the aim of 

increasing our understanding of the role RecG plays in limiting genomic instability through DNA 

metabolism. With the exception of the terC deletion work (page 80), the data presented in this chapter 

have been published (Dimude et al., 2015; Midgley-Smith et al., 2018). 

Origin-independent synthesis in ΔrecG and ΔrnhA 

cells in the absence of origin firing 

To further characterise the origin-independent over-replication seen in cells lacking RecG or RNase 

HI, newly replicated DNA was visualised via pulse-labeling with 5-ethynyl-2’-deoxyuridine (EdU) in 

order to determine if origin-independent synthesis arises in all cells of a population of ΔrecG or ΔrnhA 

cells or if it is limited to a subset of the population.  

The dnaA46 allele was introduced to ΔrecG and ΔrnhA cells. Cultures of dnaA, dnaA ΔrecG and dnaA 

ΔrnhA strains were grown at the permissive temperature of 30 °C until the cultures reached 

exponential growth phase. The cultures were then shifted to the restrictive temperature for 90 

minutes to inhibit origin firing and allow all current rounds of DnaA(ts)-initiated replication to finish. 

Cells were pulse labelled with the nucleotide analogue EdU for 15 minutes at 42 °C before being fixed 

with ethanol, and a click-labelling reaction was used to fluorescently label EdU incorporated in to 

chromosomal regions where nascent DNA synthesis had taken place (Ferullo et al., 2009) (page 58). 

EdU was used as the nucleotide analogue in this assay instead of bromodeoxyuridine (BrdU) as the 

immunostaining technique used for detection of BrdU incorporation includes a denaturing treatment. 

EdU allows for quantification of the intensity and location of fluorescence, of both a sample population 

and individual cells, under non-denaturing conditions, and so allows the use of microscopy to visualise 

the fluorescent signal in individual cells (Ferullo et al., 2009). The fluorescently labelled samples were 
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visualised via high-resolution microscopy in flow using an Amnis Imagestreamx Mark II and a 

minimum of 5000 in-focus cells were analysed for each strain (page 59). 

 

Figure 11: Origin-independent -DNA synthesis in dnaA(ts) cells lacking RecG or RNase HI. A) Imaging flow 

cytometry was used to evaluate DnaA-independent DNA synthesis arising in dnaA, dnaA ΔrecG and dnaA 

ΔrnhA cells. The strains carry a temperature sensitive allele for the DnaA initiator protein, dnaA46, which 

produces a protein that is functional at 30°C but not at 42°C. Synthesis occurring at the restrictive 

temperature is achieved in the absence of oriC firing and was detected by pulse-labelling samples at 42 °C 

with the nucleotide EdU followed by labelling with Alexa Fluor 488. The fluorescent signal of each sample 

was analysed using the Amnis Imagestream˟ Mark II. A minimum of 5000 in-focus cells were analysed for 

each strain. The data plotted were from a single experiment. The experiment was repeated with a similar 

number of cells and was reproducible. B) 60 × magnification was used to observe the distribution of the 

fluorescent signal within the population and within individual cells; representative images are shown. The 

strains used were AU1054 (dnaA46), AU1091 (dnaA46 ΔrecG) and AU1066 (dnaA46 ΔrnhA). 

A dnaA single mutant was used as a control to establish a baseline result in the absence of origin firing. 

The graph of the total fluorescent intensity of the cells in each culture (Figure 11A) shows two distinct 
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data distributions; dnaA and dnaA ΔrecG cells show similar fluorescence intensity on a population 

level whilst dnaA ΔrnhA cells are distinct from those two strains. The vast majority of dnaA cells (96 

%) exhibited very little or no fluorescent signal, which means that DnaA(ts)-initiated replication had 

essentially finished after the 90-minute incubation at 42 °C and no further replication was initiated. 

In dnaA cells lacking RecG, 71 % of cells show comparable levels of fluorescence to that seen in dnaA 

single mutant cells, indicating that in the majority of dnaA ΔrecG cells, DNA synthesis ceases once 

ongoing rounds of replication from oriC terminate. However, there is a second population of cells 

within the dnaA ΔrecG sample that show high levels of fluorescence distributed along the whole cell 

or spots of intense fluorescent signal, suggesting high levels of DNA synthesis occurring and meaning 

that DnaA-independent synthesis is able to initiate in 29 % of dnaA ΔrecG cells (Figure 11B).  

In contrast to what is seen in cells lacking RecG, the majority of dnaA ΔrnhA cells showed a high 

frequency of strong fluorescent signal (Figure 11A). The image in Figure 11B is representative of 75% 

of the sample investigated and shows robust fluorescent signal distributed along the entire length of 

the cells, indicating high levels of EdU incorporation and therefore high levels of DNA synthesis taking 

place at multiple chromosome locations even in the absence of origin firing. The distinct spots of 

fluorescence are in line with the multiple initiation sites observed via the MFA of ΔrnhA cells, which 

shows a number of deviations from the wild type profile (Figure 9) (Dimude et al., 2015), as has been 

previously reported (Maduike et al., 2014). These peaks seen in other chromosomal locations in 

addition to that at oriC indicate amplification of the sequences in these locations, which implies that 

DNA synthesis initiates at these locations, and the number of peaks combined with our LOESS 

regression data suggest five main initiation sites in addition to the normal replication origin (Dimude 

et al., 2015). Only 4 % of dnaA ΔrnhA cells showed no fluorescent signal. 

Despite the high level of origin-independent synthesis detected in a portion of dnaA ΔrecG cells via 

the EdU pulse-labelling assay (Figure 11), it has been shown previously that dnaA ΔrecG cells are not 

able to grow in the absence of origin firing (Figure 10; Rudolph et al., 2013) and so this DNA synthesis 

is unable to sustain growth, in contrast to the synthesis and origin-independent growth seen in ΔrnhA 

cells (Figure 10; Dimude et al., 2015; Rudolph et al., 2013). 

Over-replication is likely to initiate from different 

substrates in cells lacking RecG or RNase HI 

It has been shown that both RecG and RNase HI can process R-loops and so it was thought that over-

replication seen in the absence of either protein initiates via the formation of R-loops that are able to 

persist in ΔrecG or ΔrnhA cells (Kogoma, 1997). If this is the case, RNase HI should be able to 

compensate for RecG and vice versa. To investigate if this is the case, the effect of an increased cellular 

concentration of RNase HI on the origin-independent growth phenotype of dnaA ΔrnhA and dnaA 
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ΔrecG Δtus rpo* cells was investigated. The Saccharomyces cerevisiae (S. cerevisiae) RNase H1 protein 

(encoded by the RNH1 gene) was used for this as it will degrade the RNA from an RNA:DNA hybrid 

and has been shown to reduce some of the phenotypes of E. coli ΔrnhA cells (Cerritelli and Crouch, 

2009), but will not interact with E. coli proteins. Using a protein from a different organism separates 

the structural and protein-protein interactions from functionality, which allows more certainty that it 

is indeed the degradation of RNA:DNA hybrids that causes any effect on the phenotypes observed. The 

RNH1 gene was cloned in to a high copy-number expression plasmid under the control of the ParaBAD 

promoter from the arabinose operon, which allows the expression of the gene to be controlled. When 

arabinose is present in the growth medium, expression is induced, and when glucose is present in the 

growth medium, expression is repressed (Guzman et al., 1995). dnaA ΔrecG Δtus rpo* and dnaA ΔrnhA 

cells were transformed with the yeast RNH1 expression plasmid and dnaA ΔrecG Δtus rpo* and dnaA 

ΔrnhA strains carrying pLAU17 (Lau et al., 2003) were generated as vector control strains. Using a 

spot dilution assay, the resulting strains were used to investigate if increasing the capability to deal 

with R-loops has an effect on the origin-independent growth phenotype seen in the absence of either 

RecG or RNase HI.  Briefly, samples of exponential phase cultures were spotted in duplicate on to two 

sets of minimal salts agar plates supplemented with ampicillin in order to maintain selection of 

plasmid-containing cells; one set contained arabinose as the carbon source to induce expression of 

RNH1 and the second set contained glucose as the carbon source in order to repress expression of 

RNH1. One of each plate type was incubated at 30 °C and the second at 42 °C to prevent replication 

initiating via DnaA(ts). Single colonies formed as a result of origin-independent over-replication (42 

°C) were scored as a fraction of the number of colonies on the corresponding control plate (30 °C), 

which were set to 1. 

 

Figure 12: Complementation of ΔrnhA and ΔrecG with S. cerevisiae RNase H1 and E. coli RecG. A spot 

dilution assay was used to evaluate the effect of over-expression of yeast RNH1 (pECR22) or E. coli recG 

(pDIM104) on origin-independent growth in dnaA(ts) ΔrecG Δtus rpo* and dnaA(ts) ΔrnhA cells. pLAU17 

was used as the vector control. Expression of the ectopic genes is repressed by glucose (0.2 %) and 
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induced by arabinose (0.05 %). The strains carry a temperature sensitive allele for the DnaA initiator 

protein, dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Viability was 

determined by growth at 30 °C and is set to 1 (dashed line) and the corresponding growth occurring at the 

restrictive temperature, in the absence of oriC firing, is shown as a fraction relative to this. The strains 

used were RCe557 (dnaA46 ΔrnhA pLAU17), RCe552 (dnaA46 ΔrnhA pECR22), SLM1010 (dnaA46 ΔrecG Δtus 

rpo* pLAU17), SLM1008 (dnaA46 ΔrecG Δtus rpo* pECR22), SLM1104 (dnaA46 ΔrnhA pDIM104) and RCe326 

(dnaA46 ΔrecG Δtus rpo* pDIM104). Data are means from at least 3 independent experiments (±standard 

deviation [SD]). 

As seen before, dnaA cells lacking RNase HI were able to sustain cell growth in the absence of origin 

firing (dnaA ΔrnhA cells in the S. cerevisiae sector of the graph in Figure 12). The presence of the vector 

without the yeast gene had no effect and similarly when the yeast gene was repressed (dnaA ΔrnhA 

ScRNH1 glucose repression column, Figure 12) there was no change to the fraction of cells growing at 

30 °C that were also able to grow at 42 °C. However, the expression of yeast RNH1 resulted in more 

than a twenty-fold reduction in growth seen in the absence of origin firing compared to that seen in 

the same strain at the permissive temperature (dnaA ΔrnhA ScRNH1 arabinose induction column, 

Figure 12). The suppression of this phenotype of ΔrnhA cells by RNH1 supports the idea that origin-

independent over-replication in ΔrnhA cells initiates via R-loops and demonstrates that yeast RNase 

H1 can compensate for E. coli RNase HI by processing R-loops and preventing over-replication of the 

chromosome. In contrast, expression of yeast RNH1 did not result in a reduction of origin-independent 

growth in dnaA ΔrecG Δtus rpo* cells (dnaA ΔrecG Δtus rpo* ScRNH1 arabinose induction column, 

Figure 12). It cannot be excluded that RecG is involved in R-loop processing. However, for the ability 

of dnaA ΔrecG Δtus rpo* cells to grow in the absence of origin firing, R-loops either do not play a role 

or, alternatively, they are for some reason structurally so different that they are not accessible to 

RNase H1. 

 Can RecG compensate for RNase HI? The assay was carried out again, this time using a high copy-

number expression plasmid containing the recG gene under the control of the ParaBAD promoter instead 

of the yeast RNH1 gene. dnaA ΔrnhA and dnaA ΔrecG Δtus rpo* cells were transformed with the 

plasmid, generated spot dilution plates and counted colonies formed after incubation at 30 °C and 42 

°C. The over-expression of E. coli recG reduced the growth of ΔrecG cells occurring in the absence of 

origin firing over 20-fold (dnaA ΔrecG Δtus rpo* EcrecG arabinose column, Figure 12), as would be 

expected, whereas the origin-independent growth in dnaA ΔrnhA cells was unaffected by the increase 

in RecG (dnaA ΔrnhA EcrecG glucose column, Figure 12). RecG is either unable to access R-loops in 

ΔrnhA cells for some reason and so cannot prevent replication from initiating at these structures, or 

R-loops do not contribute to origin-independent growth and so replication is able to initiate in the 

absence of RNase HI even when recG is expressed from a high copy-number plasmid. 
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Over-replication in ΔrecG cells occurs at fork 

fusion locations 

Cells carrying a second copy of the origin of replication have been used to further investigate over-

replication in the termination area of ΔrecG cells. The ectopic origin, called oriZ, is located 

approximately half way around the right hand replichore (Figure 13). Wang and colleagues (2011) 

showed that both origins in oriC+ oriZ+ cells functioned normally in initiating bidirectional replication 

and fired with equal efficiency. The introduction of oriZ will cause replication forks to meet and fuse 

outside of the normal termination region as replication forks moving clockwise from oriC and 

anticlockwise from oriZ will meet in the middle of the short interval between the two origins, which 

becomes an ectopic fork fusion region (Figure 13A). Replication profiles of oriC+ oriZ+ cells confirmed 

this, showing two distinct low points corresponding to the termination area and the ectopic fork fusion 

region (Ivanova et al., 2015; Rudolph et al., 2013). In the absence of RecG, there is a significant increase 

in the peak of over-replication seen in the native termination area compared to that seen in single 

origin ΔrecG strain. Crucially, there is also a change to the profile in the ectopic fork fusion region, 

which becomes noticeably shallower in the ΔrecG derivative. This is consistent with the notion that 

when replication forks meet, over-replication is able to initiate and will trigger forks moving back 

towards each origin, resulting in the broad amplification of the shorter region between the origins 

seen in oriC+ oriZ+ ΔrecG cells (Midgley-Smith et al., 2018; Rudolph et al., 2013). 

The effect of ΔrecG on the ectopic fork fusion region, whilst present, is not particularly 

conspicuous. If ter sites are inserted into this region in such a way that they form an ectopic fork trap 

around the new fork fusion area, does a peak of over-replication appear? 

To investigate this and to determine whether over-replication initiation in ΔrecG cells is co-

localised with fork fusion events and not specific to defined chromosomal locations, I created an 

ectopic replication fork trap in a double origin strain. Two ter sites were inserted into the chromosome 

between oriC and oriZ flanking the region where most replication forks meet, which is the low point 

of the profile of the short interval between the two origins (Ivanova et al., 2015). 
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Figure 13: The ectopic ter sites. A) Schematic representation of the chromosome in oriC+ oriZ+ cells that 

have two ectopic ter sites, indicated by orange triangles, located on either side of the ectopic replication 

fork fusion region. B) Schematic representation of the integration locations of the terA sequence at 4.44 

Mb and 4.57 Mb. 

The ectopic termination area was created using the recombineering method described (page 50; 

Datsenko and Wanner, 2000) to insert the terA sequence at two chromosomal locations, one at 4.44 

Mb with the terA sequence in an orientation that is permissive for replication forks coming from oriC 

(terA4.44), and the second at 4.57 Mb with the terA sequence in an orientation that blocks forks 

arriving from oriC (terA4.57) (Figure 13). The constructions were initially carried out in Δtus cells to 

prevent the interference of functioning Tus/ter complexes with chromosome replication in the single 

origin strain background used initially. The ter constructs were then transferred via P1 transduction 

in to oriC+ oriZ+ cells. As both terA constructs carried the same antibiotic resistance marker (kan), the 

two integrations were done separately, with the marker of the terA4.44 removed from oriC+ oriZ+ 

terA4.44 cells before the integration of terA4.57 was carried out (see page 62 for more detail of strain 

construction). 

Functional analysis of ter sites 

To check the ectopic ter sites were functional, the terA4.57 construct was crossed in to wild type and 

oriC+ oriZ+ cells via P1vir transduction. Only the transduction into the double origin strain background 

produced transductant colonies. Viability in this case is expected because replication forks from oriC 

blocked at the ectopic ter site will be met by replication arriving from oriZ, whereas in wild type cells, 

replication forks from oriC would reach terA4.57 and then be unable to progress further, resulting in 

over a quarter of the chromosome un-replicated. Sanger sequencing was used to confirm that the 

sequences of both terA4.44 and terA4.57 were identical. 

Over-replication in an ectopic termination area 

Does a peak of over-replication form in the fork fusion area of the shorter interval between the two 

origins in oriC+ oriZ+ ΔrecG cells when ectopic ter sites are inserted in this region to create a replication 

fork trap? Replication profiles of exponential phase oriC+ oriZ+ terA4.44 terA4.57 cells in the presence 
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and absence of RecG and Tus were established through marker frequency analysis by deep sequencing 

(Figure 14). 

 

Figure 14: Replication profiles of E. coli oriC+ oriZ+ cells with an ectopic replication fork trap. Shown is the 

marker frequency analysis of exponentially growing cultures generated via deep sequencing. Read 

numbers (normalised against a stationary phase wild type control) are plotted against the chromosomal 

coordinates, which are offset to start at 0.9 Mb to make it easier to see both replication origins. The 

schematic above the graphs is a representation of the E. coli chromosome, showing the position of oriC 

and oriZ (green line) and ter sites (red lines for those in the left hand replichore and blue lines for those in 

the right hand replichore) above and the seven rrn operons and dif below. Sequencing templates were 

isolated from SLM1161 (oriC+ oriZ+ terA4.44 terA4.57 Δtus) and SLM1132 (oriC+ oriZ+ terA4.44 terA4.57 ΔrecG). 

The section of the profile in panels I and II that deviates from the trend indicates an inversion. The data 

points for this section of the profile for oriC+ oriZ+ terA4.44 terA4.57 ΔrecG were subsequently inverted 

(panel III), which restored the continuity of the profile. 

It very quickly became clear when the profiles were generated that there was a problem with the 

double origin strain construction. Previously established profiles of double origin strains show two 

peaks of equal height coinciding with the replication origin chromosomal locations, demonstrating 

that both the original and ectopic origin fire at equal rates (Ivanova et al., 2015; Rudolph et al., 2013). 

The profile generated for oriC+ oriZ+ terA4.44 terA4.57 cells is so noisy as to render it unreadable (data 

not shown). The Δtus derivative in this case can substitute for that strain as it has been shown 

previously that the replication profile of Δtus cells is very similar to that of wild type cells (Ivanova et 

al., 2015; Rudolph et al., 2013). In a double origin strain, the profile of a Δtus derivative differs from 

the tus+ only in the region of the native termination area, where the low point of the profile is shifted 

to the midpoint between the two origins (Ivanova et al., 2015). 

The Δtus derivative of the oriC+ oriZ+ terA4.44 terA4.57 strain (Figure 14 panel I) shows that there 

is a peak of initiation at oriC but not at oriZ, which means that oriZ is not functional in this strain. There 

is a clear deviation from the downward trend of the replication profile from oriC in the right hand 

replichore, which indicates that this section of the chromosome has been inverted (Skovgaard et al., 

2011). The same anomaly is seen in the ΔrecG derivative in panel II, which indicates that the error 

occurred in the construction of the ectopic termination area. The ectopic replication origin construct, 

oriZ, consists of the origin sequence and a selectable marker, a chloramphenicol resistance gene, 

which is flanked by frt sites. It is likely that the FLP recombinase, which was used to remove the frt-
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flanked gene for kanamycin resistance linked to the terA4.44 construct, had a role in enabling an 

inversion event between the frt sites of the ectopic origin construct and one of the ectopic ter sites. 

The replication profile of the ΔrecG derivative in which the data points that span this area have been 

inverted reveals that the continuity of the profile is then restored (Figure 14 panel III). 

Strain reconstruction 

To reconstruct the strain and avoid the problems seen above, the terA4.44 construct was transferred 

to a wild type background by P1vir transduction and the resulting strain was treated with pCP20 to 

remove the kanamycin resistance gene before any other frt sites were present. The ectopic replication 

origin, oriZ, was then introduced to the terA4.44 strain via P1vir transduction and finally the terA4.57 

construct was inserted, resulting in the oriC+ oriZ+ terA4.44 terA4.57 strain. ΔrecG, Δtus and ΔrecG Δtus 

derivatives of this strain were subsequently generated. 

Over-replication in an ectopic fork fusion area 

Replication profiles of exponential phase oriC+ oriZ+ terA4.44 terA4.57 cells in the presence and 

absence of RecG and Tus were established through marker frequency analysis by deep sequencing. 

The reconstruction of the double origin ectopic ter strain was successful. The profile of oriC+ oriZ+ 

terA4.44 terA4.57 cells shows two clear peaks that correspond with oriC and oriZ and show that both 

the native and ectopic origins are functional (Figure 15, panel II). The peaks are a similar height, which 

means that the chromosomal locations represented by those data points are present in the library 

prep at similar frequencies and indicates that the origins are firing with equal efficiency on a 

population basis, in line with previous work on double origin strains (Ivanova et al., 2015; Rudolph et 

al., 2013; Wang et al., 2011). The low points in two regions of the profile correspond with fork fusion 

areas. 
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Figure 15: Marker frequency analysis of exponential phase E. coli cells with two replication origins and an 

ectopic termination area, in the presence and absence of RecG and Tus. Read numbers (normalised 

against a stationary phase wild type control) are plotted against the chromosomal coordinates, which are 

offset to start at 0.9 Mb to make it easier to see both replication origins. The schematic above the graphs 

is a representation of the E. coli chromosome, showing the position of oriC and oriZ (green lines) and ter 

sites (red lines for those in the left hand replichore and blue lines for those in the right hand replichore) 

above and the seven rrn operons and dif below. Orange lines represent the ectopic ter sites. The profiles 

from panel IV and V were overlaid in panel VI and were aligned using the origin peaks. See text for details. 

The strains used were RCe504 (oriC+ oriZ+), SLM 1197 (oriC+ oriZ+ ter4.44 ter4.57), RCe714 (oriC+ oriZ+ ter4.44 

ter4.57 ΔrecG), RCe745 (oriC+ oriZ+ ter4.44 ter4.57 Δtus) and RCe760 (oriC+ oriZ+ ter4.44 ter4.57 Δtus ΔrecG). 

These data have been published (Midgley-Smith et al., 2018). Replication profiles of oriC+ oriZ+ terA4.44 

terA4.57 and oriC+ oriZ+ terA4.44 terA4.57 ΔrecG cells have been generated independently twice; see page 

163 for the second data set. 

The profile of oriC+ oriZ+ terA4.44 terA4.57 is in essence the same as that for oriC+ oriZ+ cells (Figure 

15, panels I and II). There is a distinct step in the profile of double origin strains at the native 

termination area between terA and terC, which is due to the asymmetric nature of the chromosome 

with an ectopic origin inserted. On replication initiation, one replication fork from each origin will 

proceed towards the native termination area, but the fork from oriZ will reach it first and be blocked 

by the Tus/ter block at terC until the fork from the opposite replichore arrives from oriC. On a 

population basis, the quarter of the chromosome between oriZ and terC (Figure 13, right hand 

replichore) will be present at a higher frequency than the corresponding quarter in the left hand 

replichore, resulting in the step seen in the replication profile between the left and right hand 

replichores. 

This is not seen in the ectopic termination region in oriC+ oriZ+ terA4.44 terA4.57 cells (Figure 15, 

panel II) even though the slightly asymmetric shape of the valley indicates that on a population basis 

forks progress further towards oriZ from oriC than they do towards oriC from oriZ. However, it is 
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unlikely that the ectopic termination area will be as defined as the native termination area. The 

distance between the ectopic ter sites is less than the distance between the innermost ter sites of the 

native termination area, and there are only single ter sites inserted in each orientation, which is in 

contrast to the situation in the native termination area. In addition, the rrnH operon will be 

encountered by the replication fork from oriZ in the opposite direction to normal, giving rise to 

potential head-on replication-transcription encounters, which have previously been shown to cause 

problems for replication progression (Dimude et al., 2015; French, 1992; Ivanova et al., 2015; Mirkin 

and Mirkin, 2007; Wang et al., 2007). On average forks fuse near to the ectopic ter site at 4.57 Mb, as 

indicated by the low point between the origins, although it is likely to vary from cell to cell. Forks 

might get arrested at the 4.57 Mbp location, but the lack of distortion to the shape of the valley 

between the two origins compared to that seen in the native termination area suggests that any blocks, 

if they occur, are only very short-lived. 

There are in fact two low points in the native termination area of oriC+ oriZ+ and oriC+ oriZ+ terA4.44 

terA4.57 cells, one at terC and an even lower one at terB (Figure 15, panels I and II). The fact that there 

is a step in the profile at the terC location, combined with the results of 2-D gel analysis showing that 

terC is functional (JUD and CJR, unpublished results), confirm that a fork block is successfully 

established a terC. The observed shape of the profile between terC and terB can be explained by the 

understanding that a Tus/ter complex is not a perfect block. Recent work by Moolman et al. (Moolman 

et al., 2016) demonstrated that a replisome travelling in a clockwise direction is impeded by Tus/terC 

but it is capable of overcoming this block and so is not halted indefinitely. In the asymmetric double 

origin strain, the fork from oriZ will always arrive at the termination area before the fork from oriC, 

and so will proceed through the termination area until it is blocked by the Tus/terC barrier. If a fork 

blocked by terC is restarted, it will proceed to terB. 

As seen previously, there is a peak of over-replication in the native termination area in the double 

origin ectopic ter strain in the absence of RecG. As has previously been reported, there is a significant 

increase to this amplification of the termination region in ΔrecG cells that have two copies of the origin 

compared with that seen in the single origin ΔrecG strain (cf. Figure 8, panel II and Figure 15, panel III; 

Rudolph et al., 2013). 

As we suspected based on our data thus far, when recG is deleted from oriC+ oriZ+ cells and an 

ectopic replication fork trap is created in these cells (terA4.44 terA4.57), a peak of over-replication is 

seen in the ectopic fork fusion region (Figure 15, panel III). This peak of over-replication in the ectopic 

termination area is not seen when RecG is present (Figure 15, panel II). These data strongly support 

the idea that over-replication initiation in ΔrecG cells is co-localised with fork fusion events and not 

specific to a particular part of the chromosome. 

Whilst terA4.44 clearly forms a block to replication forks moving towards oriC, the peak of over-

replication in the ectopic termination region is able to extend out beyond the ter/Tus block on that 

side until it encounters rrn operons, where RNAP complexes halt progress of the replication forks. 

Having confirmed via sequencing and functional analysis that the terA construct is reliable, it is 
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possible that this situation is similar to that in the native termination area of double origin strains 

described above. In single origin ΔrecG cells, terC is entirely overcome by replication forks initiating 

in the termination area (discussed below; Figure 17). 

When the replication fork traps are inactivated by the deletion of tus, the peaks of origin-

independent synthesis in both the native and ectopic termination areas disappear. The valleys 

between the peaks are noticeably shallower compared with recG+ strains, as reported previously 

(Rudolph et al., 2013). Overlaying the oriC+ oriZ+ Δtus profile on to the oriC+ oriZ+ Δtus ΔrecG profile, 

aligned using origin peaks (Figure 15, panel VI), confirms this and is consistent with bidirectional 

origin-independent synthesis initiating in ΔrecG cells in the absence of forks being blocked at ter/Tus 

traps. Growth experiments were carried out to determine the doubling times of oriC+ oriZ+ Δtus cells 

in the presence and absence of RecG and confirmed that they are very similar (data not shown; 

Midgley-Smith et al., 2018). A similar doubling time strongly suggests that the frequency of origin 

firing is unlikely to be affected and if this is the case, the alignment via peak height is justified (Midgley-

Smith et al., 2018). 

Deletion of terC does not shift the low point of the 

peak of over-replication 

In cells lacking RecG, marker frequency analysis reveals a defined peak of over-replication within the 

termination region of exponentially growing cells (Figure 17, panel IV). The low point on the right-

hand side of the peak is at terA, the innermost ter site of the right hand replichore, but not at terC, the 

innermost ter site of the left hand replichore (Figure 16). Instead, the low point is at terB, the second 

innermost ter site of the left hand replichore, as was recently independently confirmed (Azeroglu et 

al., 2016). This was unexpected. Functional analysis of terC via 2-D gels confirmed that in principle, 

Tus protein is able to bind and form a block to replication forks (Duggin and Bell, 2009). It is possible 

that the terC construct within our bacterial strains might have a point mutation that inactivates the 

ability of terC complexed with Tus to form a block to replication forks. However, we have recently 

reported data demonstrating that terC does indeed represent a strong block to replication fork 

progression (Dimude et al., 2016; Ivanova et al., 2015) and so there is little doubt that terC is fully 

functional in the strains used in this study, which is also seen in recent work from Maduike and 

colleagues, who also use derivatives of MG1655 in their work (Maduike et al., 2014). The fact that terC 

is functional in wild type cells led to the question of what was happening to the Tus/ter trap at terC in 

the ΔrecG profile. As stated above, recent work by (Moolman et al., 2016) demonstrates that 

replisomes are not halted indefinitely at Tus/terC and can overcome the block. However, this is not 

the explanation in this case, as without even a distortion at the terC location in ΔrecG cells, which 
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would represent forks being stalled at a ter/Tus trap, there is no indication that forks get blocked at 

Tus/terC at all. 

 

Figure 16: Schematic representation of the E. coli chromosome. The E. coli chromosome is replicated by 

two replication forks moving in opposite directions from the origin, oriC. The ter sites (triangles and 

labelled A-J) of the left hand (red) and right hand (blue) replichores are orientated to allow replication 

forks (grey arrows) to move from oriC towards the termination region between terA and terC. The 

chromosome dimer resolution site dif within this region is also labelled. 

Tus protein is displaced from a ter site if a replisome arrives from the permissive orientation. In order 

for a replication fork to pass a ter site in the opposite direction to normal, Tus protein must not be 

bound. It is possible that a replication fork arrives at terC from the origin and displaces Tus protein. It 

meets a fork that has been initiated in the termination area and held at terC and new forks are 

established in each direction, one further in to the termination area and the other towards terB. Due 

to the number of proteins in the vicinity at the time, Tus protein would simply have no space to gain 

access and bind to terC and so there is no block until terB. This could potentially explain the perceived 

failure of Tus/terC to block replication forks from leaving the termination area in ΔrecG cells (Figure 

17). Whilst this might provide a temptingly simple explanation for the situation at terC, it is not clear 

why the same would then not be seen at the other end of the replication fork trap; replication profiles 

of ΔrecG cells indicate that terA represents a strong block to replication forks and prevents 

progression out of the termination region (Figure 17). 

If terC is deleted in a ΔrecG strain, does the low point of the peak of over-replication shift towards 

terF? According to the hypothesis above, in ΔrecG ΔterC cells, a fork established in the termination 

area would then arrive first at terB, which, at 75 kb away (Duggin and Bell, 2009), is relatively close 

to the location of terC. This fork would be blocked until a replication fork arrives from the origin, 

displaces Tus, and establishes two new replication forks again with one moving further in to the 

termination area and the other now free to move to terF. 

To investigate this possibility, the one-step inactivation method developed by Datsenko and 

Wanner (page 50; Datsenko and Wanner, 2000) was used to delete terC from a wild type MG1655 

strain background. ΔrecG was then moved into the resulting ΔterC strain via P1vir transduction. 

Marker frequency analysis by deep sequencing was performed and replication profiles were 
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determined for ΔterC cells in the presence and absence of RecG. The data for the replication profile of 

ΔrecG single mutant cells shown in Figure 17, panel IV was generated from a different sequencing run 

to the other strains. The information required from this control is only concerned with demonstrating 

that the low point of the peak of over-replication in ΔrecG cells is at terB and not terC and other 

characteristics such as relative peak height are unimportant and so in this instance, it is acceptable to 

use this profile alongside the others. 

 

Figure 17: Replication profiles of E. coli cells showing the effect of ΔterC on the peak of over-replication in 

cells lacking RecG. Shown is the marker frequency analysis of exponentially growing cultures generated 

via deep sequencing. Read numbers (normalised against a stationary phase wild type control) are plotted 

against the chromosomal location. The schematic above the graphs is a representation of the E. coli 

chromosome, showing the position of oriC (green line) and ter sites (red lines for those in the left hand 

replichore and blue lines for those in the right hand replichore) above and the seven rrn operons and the 

chromosome dimer resolution site dif below. The data for the ΔrecG profile (IV) were generated from a 

different sequencing run and are plotted on a different axis to the other profiles. Sequencing templates 

were isolated from MG1655 (wild type), SLM1134 (ΔterC), SLM1140 (ΔterC ΔrecG) and N4560 (ΔrecG). 

Marker frequency profiles for key constructs have been generated independently twice. Only one 

representative replication profile is shown. 

Whilst there is some noise in the replication profiles we have established for the ΔterC derivatives, the 

major features are clear (Figure 17).The profile of the ΔterC single mutant appears in essence to be 

the same as the wild type profile (Figure 17, panels I and II), indicating that the absence of a Tus/ter 

block at terC does not cause any major problems for the cells. 
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The replication profile of ΔterC ΔrecG cells reveals that the low point of the peak remains at terB 

even in the absence of terC. One possible explanation for this observation might be that a Tus/terC 

complex is overcome more easily than the Tus/terB complex. However, this explanation is rather 

unlikely, as in other contexts a Tus/terC complex is a very efficient block for a proceeding replisome 

(Dimude et al., 2018a; Duggin and Bell, 2009; Ivanova et al., 2015; Moreau and Schaeffer, 2012). 

Instead, it seems more likely that the absence of any indication of a block to replication fork 

progression at terC is not due to displacement of Tus from terC caused by initiation of replication forks 

at the Tus/terC complex via origin-independent DNA synthesis. If this was the case, there would be 

sufficient time in between rounds of chromosome replication in ΔterC cells for replication forks 

established via origin-independent initiation to proceed to Tus/terB instead, and the whole scenario 

would be shifted to the right in the replication profile of ΔterC ΔrecG cells. This is not the case. 

The ter sites in E. coli are not evenly distributed either side of the midpoint of the chromosome 

(i.e. the location directly opposite oriC in the context of a circular chromosomal diagram); the midpoint 

is instead near to terC (Figure 16; Ivanova et al., 2015). This means that the two replichores are slightly 

asymmetrical in that forks approaching the termination area from oriC will on average arrive at the 

termination area at terA (right-hand fork) before arriving at terC (left-hand fork). This is reflected in 

the replication profiles of wild type cells where the low point of the profiles is near terC and not at the 

midpoint between the innermost ter sites (Figure 8, panel I; note that the right-hand replichore is 

shown on the left hand side of a replication profile with respect to the termination area and vice versa). 

In the profile of a ΔrecG single mutant, the low points either side of the peak of over-replication are 

approximately symmetrical whereas in the ΔterC ΔrecG strain, the profile is higher on the right of the 

peak compared to the left and so the chromosomal sequences represented there are present at a 

higher frequency on a population level than those to the left of the peak. It is unlikely that ΔterC would 

have any affect that allows forks to reach the termination region from the origin faster than in terC+ 

cells, and so it is possible that this is an effect of ΔterC on forks that originate in the termination region 

via origin-independent synthesis. As seen in Figure 17 panel IV, this increase in marker frequency 

extending from terB to the next fork traps at terF/G is seen in replication profiles of ΔrecG single 

mutants however and so we are unable to attribute the differences seen between the profiles to the 

absence of terC. Taken together with the fact that the same situation is not seen at terA, which forms 

a strong block to replication fork progression out of the termination region, my data confirm that the 

activity resulting from origin-independent over-replication within the termination region does not 

provide an explanation for the observed lack of a replication fork block at terC in ΔrecG cells and 

indicate instead that the situation is more complex. 
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Discussion 

In the absence of either RecG or RNase HI, DNA synthesis is able to initiate independently of both the 

initiator protein DnaA and the origin of replication, oriC. Both RecG and RNase HI can remove 

RNA:DNA hybrids in vitro (Fukuoh et al., 1997; Tadokoro and Kanaya, 2009; Vincent et al., 1996), 

which led to the idea that the over-replication in both ΔrnhA and ΔrecG cells might arise via a common 

underlying mechanism enabled by the persistence of R-loops (Hong et al., 1995; Kogoma, 1997). Our 

data show that despite this apparent similarity however, there are a number of significant differences 

between the over-replication initiating in ΔrecG cells and that seen in ΔrnhA cells. Whilst the data 

presented in this chapter support that origin-independent synthesis indeed arises via R-loops in the 

absence of RNase HI, they do not support R-loop involvement in the origin-independent synthesis seen 

in ΔrecG cells. 

We recently reported that the genetic requirements for origin-independent over-replication in the 

termination area differ in the absence of RecG or RNase HI (Dimude et al., 2015). Different substrates 

are exploited by PriA to initiate origin-independent synthesis. We found that, whereas the helicase 

activity of PriA, and specifically the ability to unwind a forked structure equivalent to a 3’ flap, was 

essential for origin-independent replication in the termination region of ΔrecG cells (Rudolph et al., 

2013), this specific substrate activity of PriA is not essential for origin-independent synthesis in cells 

lacking RNase HI (Dimude et al., 2015). The effect of chromosome linearisation near to dif on the 

origin-independent synthesis seen in the termination region differed between ΔrecG and ΔrnhA cells. 

This manifested in a striking difference in the ability of dnaA Δtus rpo* cells with a linearised 

chromosome to grow in the absence of origin firing; cells lacking RecG were unable to grow at all 

whereas there was no detectable effect on the growth of cells lacking RNase HI, which grew robustly 

at 42 °C (Dimude et al., 2015; Rudolph et al., 2013). These data suggest that different mechanisms are 

responsible for the origin-independent synthesis in ΔrecG or ΔrnhA cells. 

This is supported by the fact that the RNase H1 protein from S. cerevisiae can compensate for 

ΔrnhA and reduces growth in the absence of origin firing over 20-fold but has no effect on the growth 

of dnaA ΔrecG Δtus rpo* cells at restrictive temperature (Figure 12). Given that RNase H1 cleaves the 

RNA from RNA:DNA hybrids (Cerritelli and Crouch, 2009), this result strongly suggests that in contrast 

to the situation in ΔrnhA strains, R-loops are not important for the majority of origin-independent 

DNA synthesis in the absence of RecG. The data in Figure 12 suggest that the effects of S. cerevisiae 

RNase H1 and E. coli RecG are specific; there is no obvious complementation between the two proteins.  

The imaging flow cytometry analysis of EdU incorporation in to newly synthesised DNA provides 

insight in to the frequency of origin-independent over-replication seen in cells lacking RecG or RNase 

HI on a population basis, but also how that synthesis is distributed among the individual cells within 

a culture (Figure 11). The data show very clear differences in the fluorescent signal detected in the 

absence of either protein. In contrast to dnaA single mutants, the majority of dnaA ΔrnhA cells show 
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either robust signal along the entire length of the cell or multiple intense spots, indicating high levels 

of EdU incorporation and therefore high levels of DNA synthesis taking place at multiple chromosome 

locations even in the absence of origin firing (Figure 11). In contrast, there is very little or no 

fluorescent signal in the majority (71 %) of dnaA ΔrecG cells and instead they appear like the dnaA 

single mutant, indicating that in these cells, DNA synthesis is not able to occur 90 minutes after oriC 

firing has been inhibited (Figure 11). 

The imaging flow cytometry data for both dnaA ΔrecG and dnaA ΔrnhA cells are in line with the 

growth capability seen in the absence of each protein when origin firing is prevented through the use 

of DnaA(ts). dnaA ΔrnhA cells are able to form colonies at restrictive temperature, especially on 

minimal media, whereas dnaA ΔrecG cells cannot (Figure 10) (Dimude et al., 2015; Rudolph et al., 

2013). Significant levels of origin-independent DNA synthesis must be occurring in dnaA ΔrnhA cells 

to support the growth at restrictive temperature and this is exactly what we see in the EdU 

incorporation assay. dnaA ΔrecG cells do not grow in the absence of origin firing, consistent with the 

lack of fluorescence seen in the majority of these cells when probed for origin-independent DNA 

synthesis. This also means that the significant level of DNA synthesis implied by the intense 

fluorescent signal in 29 % of dnaA ΔrecG cells is not able to sustain growth (Figure 10, Figure 11). It is 

possible that this synthesis arises as a result of spontaneous damage to DNA in these cells. It has been 

shown previously that UV-irradiated ΔrecG cells exhibit significantly increased levels of DnaA-

independent synthesis, which arises as a result of UV-induced damage to the DNA (Rudolph et al., 

2009a) and as spontaneous DNA damage is well known to occur under normal growth conditions even 

in the absence of exogenous insult (Lindahl, 1993), this provides a reasonable explanation for the high 

levels of synthesis seen in a subset of the population, as indicated by the intense fluorescent signal of 

these cells. 

In contrast to the situation in the absence of RNase HI, origin-independent synthesis in dnaA ΔrecG 

cells is only able to sustain growth at the restrictive temperature when the replication fork trap is 

inactivated by the introduction of a tus deletion (Dimude et al., 2015; Rudolph et al., 2013). This allows 

the over-replication within the termination area to progress out of this region, and it is robust enough 

to duplicate the whole chromosome and support cell growth, especially when the impact of 

replication-transcription encounters is reduced by the introduction of the rpoB*35 allele of RNA 

polymerase (Figure 10) (Dutta et al., 2011; Rudolph et al., 2013). These findings strongly suggest that 

whatever generates the over-replication takes place within the termination region in ΔrecG cells, 

which is different in cells lacking RNase HI (Dimude et al., 2015; Rudolph et al., 2013). 

As a result of the data presented here, taken together with the rest of the study (Dimude et al., 

2015), it is clear that there are significant differences in the occurrence of and genetic requirements 

for origin-independent synthesis in the absence of either RecG or RNase HI. Whilst we cannot exclude 

that RecG might have a role in removal of R-loops, our data suggest that R-loops contribute very little 

to the over-replication observed in ΔrecG cells. 
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Instead there is a growing body of work that implicates RecG in a role in managing events at the 

fusion of two replication forks, preventing re-replication of the chromosome by processing 3’ flap 

structures that arise as a result of replication fork fusion events (Lloyd and Rudolph, 2016; Rudolph 

et al., 2009a, 2009b, 2010b, 2013). One aspect of this work was to generate replication profiles of 

strains carrying two copies of the replication origin in the presence and absence of RecG. Replication 

forks initiated bi-directionally at each origin will move towards each other resulting in two forks 

meeting within the fork trap in the native termination region whereas the other two forks will meet 

in an ectopic location between the two origins. The replication profiles revealed that the region 

between the two origins that becomes an ectopic fork fusion location is shallower and less defined in 

the ΔrecG derivative, consistent with an amplification of a broad region of the chromosome (Figure 

15) (Midgley-Smith et al., 2018; Rudolph et al., 2013). If origin-independent over-replication is 

initiated at fork fusion events in the absence of RecG, this is exactly what would be expected. It was 

reasoned that the lack of a defined peak like that seen in the native termination region was due to the 

fact that there are no Tus-ter traps present to contain the over-replication and so it is able to spread 

out from the initiation location and amplify a larger section of the chromosome (Rudolph et al., 2013). 

I developed this work further by inserting ter sequences between the two origins to create a 

replication fork trap, thereby creating a proper ectopic termination area. As expected, the presence of 

functional Tus/ter fork traps in oriC+ oriZ+ cells resulted in a defined peak of over-replication in the 

ectopic fork fusion region in the ΔrecG derivative that is not seen when RecG is present (Figure 15) 

(Midgley-Smith et al., 2018). This data strongly supports the idea that the over-replication that arises 

in cells lacking RecG initiates as a result of events at fork fusions. The logical follow up control that 

would confirm this idea would be to generate a single origin derivative (oriC+ terA4.44 terA4.57 ΔrecG 

or oriZ+ terA4.44 terA4.57 ΔrecG) to show that in the absence of fork fusion events, the peak disappears. 

However, this is of course not possible, as without a functional replication origin on either side of the 

ectopic fork trap, the Tus/ter complexes would prevent replication of a large region of the 

chromosome. 

We have suggested that as two replication forks converge at replication termination, the helicase 

of one replisome might displace the leading-strand polymerase of the opposing replisome and unwind 

the newly created duplex DNA. This would result in the formation of a 3’ flap structure, which might 

normally be processed by RecG or degraded by 3’ exonucleases, but in the absence of either, PriA is 

able to exploit these structures to re-initiate replication. D-loop recombination intermediates are 

formed via the recombinogenic substrates generated by the newly established replication forks, which 

are also substrates for PriA replication restart, and results in bidirectional replication. 

Despite that fact that a number of observations can be explained by this model and a growing body 

of data that supports the idea of fork fusions having the potential to result in over-replication of the 

chromosome, the molecular details of what happens within the termination region are largely 

unknown. Our hypothesis that the low point of the peak of over-replication in ΔrecG cells would be 

shifted from terB towards terF in the absence of terC was based on our model of over-replication at 
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fork fusion events. If over-replication is initiated as a result of replication fork fusions, newly 

established replication forks within the termination area will progress until they are stopped by 

Tus/ter complexes at terC and terA. Blocked forks will be met by replication forks initiated at oriC and 

so secondary initiation events are expected to occur in this scenario. We hypothesised the sheer 

number of proteins involved might prevent access of Tus to the DNA at Tus/terC, therefore allowing 

replication forks that are established there to proceed to Tus/terB, where they are then blocked. The 

data presented here show that even in the absence of terC, the position of the low point of the peak of 

over-replication in ΔrecG cells was unaffected (Figure 17). Whilst the data do not invalidate any part 

of the model, they do suggest that the situation in the termination region is more complex than is 

currently understood. The fact that the right-hand low point of the peak of over-replication was not 

altered by the deletion of terC was to some degree unsurprising, as the reasoning used to develop the 

hypothesis could not explain why the same situation was not seen at terA. Further investigation is 

needed to unravel the molecular details of the over-replication in ΔrecG cells, and by extension, the 

details of fork fusion events during normal replication termination. It would be of interest to 

determine in the first instance what happens to the shape of the peak of over-replication in ΔrecG 

ΔterB and ΔrecG ΔterB ΔterC cells. In this instance, the tus gene would need to be expressed from a 

different location because terB overlaps with tus. Furthermore, a similar situation is seen in the ectopic 

fork fusion location of oriC+ oriZ+ ΔrecG cells in which an ectopic fork trap has been created (Figure 

15). In contrast to the situation at terC, the distortion in the replication profile at the location of the 

Tus/terA4.44 complex in oriC+ oriZ+ terA4.44 terA4.57 ΔrecG cells indicates that there is a block to fork 

progression but that the over-replication is on occasion able to proceed further towards oriC. This 

could be investigated further by introducing double ter sites to create the ectopic replication fork trap, 

which would also more closely resemble the situation found at the native termination region. 

The observation that cells lacking both RecG and the Holliday junction resolvase RuvABC show a 

synergistic sensitivity to DNA damage (Lloyd, 1991) has led to the suggestion that both RecG and 

RuvABC might have overlapping functionalities. The reduced recovery of conjugational recombinants 

in Δruv ΔrecG double mutants further contributed to this idea (Lloyd, 1991). More recently, the focus 

has been on a role for RecG at replication termination. So does RecG have a function in the resolution 

of recombination intermediates? Such a role certainly cannot be ruled out categorically. However, the 

finding that over-replication in cells lacking RecG depends on the presence of both RecA and RecBCD 

(Midgley-Smith et al., 2018; Rudolph et al., 2013) strongly suggests that in the absence of RecG, fork 

fusion intermediates lead to increased levels of recombination. In contrast, in cells lacking both RecG 

and RuvABC the over-replication observed in the termination area of ΔrecG cells remains unchanged. 

However, while dnaA Δtus rpo* ΔrecG cells grow robustly at restrictive temperature (Figure 10), 

growth is abolished if ruv is deleted in addition (Midgley-Smith et al., 2018; Rudolph et al., 2013). 

Given that in ΔrecG Δruv cells over-replication is still detected in the termination area (Midgley-Smith 

et al., 2018) the most likely explanation for this observation is that the over-replication initiated at 

both fork fusion intermediates and subsequently at recombination intermediates results in an 
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increased number of recombination intermediates, which prevent the segregation of the 

chromosomes into daughter cells. Thus, recombination intermediates are still formed, but if they 

cannot be resolved because of a lack of Holliday junction resolution, the cells affected become inviable, 

which might explain the observed reduced recovery of conjugational crosses in Δruv ΔrecG cells 

(Lloyd, 1991). In line with this hypothesis, it was reported recently that recombination levels can be 

significantly increased in Δruv ΔrecG cells if the RecFOR recombination system is deactivated (Lloyd 

and Rudolph 2016). Indeed, in Δruv ΔrecG ΔrecF priA300 cells the synergism between recG and ruv is 

virtually eliminated, suggesting that RecG has little to do with providing an alternative pathway for 

the resolution of recombination intermediates (Lloyd and Rudolph, 2016). 

The data presented here show that in ΔrecG cells carrying a second copy of the origin, the peak of 

over-replication is dramatically increased (Figure 15), as reported previously (Midgley-Smith et al., 

2018; Rudolph et al., 2013). The over-replication cannot be due to forks being held specifically at 

Tus/ter complexes as growth of ΔrecG cells in the absence of origin firing depends specifically on the 

absence of Tus, not its presence (Figure 10) (Rudolph et al., 2013) and in line with this, we recently 

reported data suggesting that there are increased numbers of active replication forks in ΔrecG and 

oriC+ oriZ+ ΔrecG cells if tus is deleted (Midgley-Smith et al., 2018). Instead, we suggest that the 

increased peak height is related to the period of time that a fork is held rather than the fact that they 

are blocked (Midgley-Smith et al., 2018). The presence of the ectopic replication origin will result in 

clockwise forks arriving at the termination area much sooner than anticlockwise forks coming from 

oriC, and so forks will be held at terC/B for a considerable period of time before a fork fusion event 

takes place. Reports on the stability of a replisome at obstacles including nucleoprotein roadblocks 

suggest a limited half-life of 4–6 min (Marians et al., 1998; McGlynn and Guy, 2008; Mettrick and 

Grainge, 2016), which suggests that after a relatively limited period of time, the replication fork 

complexes might start to disassemble. Forks permanently stalled at obstacles are processed by 

recombination proteins RecBCD (Dimude et al., 2018b; Michel and Leach, 2012) and so the opposing 

fork is likely to meet a complex recombination intermediate. If RecG has a role in managing 

recombination, as the result of the tandem repeat deletion assay suggests (page 89), and in doing so, 

affects the ability of PriA to initiate replication at these intermediates, then it would be expected that 

the over-replication seen in the absence of RecG would increase in an oriC+ oriZ+ background where 

forks are stalled for an extended period of time. 
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Origin‐independent over‐replication 

and genomic instability  

Recent work has shown that in the absence of RecG, origin-independent over-replication occurs 

specifically in the termination area of the chromosome, and that this replication is robust enough to 

sustain cell growth independent of replication initiated via both the normal origin, oriC, and the 

initiator protein DnaA (page 68) (Dimude et al., 2015; Rudolph et al., 2013). In the absence of RecA or 

RecBCD recombinase activities, the over-replication is abolished (Midgley-Smith et al., 2018; Rudolph 

et al., 2013), indicating that it is dependent on recombination. A model to explain how the over-

replication might arise as a result of a replication fork fusion event via the formation and subsequent 

exploitation of a 3’ ssDNA flap has been developed (Dimude et al., 2015; Lloyd and Rudolph, 2016; 

Rudolph et al., 2010a, 2013). PriA-mediated replication re-start at the 3’ flap (Windgassen et al., 2018) 

converts it to a dsDNA flap, which is then a substrate for RecBCD to process and initiate homologous 

recombination (Kowalczykowski, 2000). This results in a further substrate for PriA to establish 

another replication fork that moves in the opposite direction (see page 31 for more detail). 

Whilst recombination is an essential process for DNA repair and successful DNA replication (Cox 

et al., 2000; Cromie et al., 2001), it can come at a cost to genome integrity, and increased levels of 

recombination lead to destabilisation of the genome. This can have pathological consequences, and in 

humans, genomic instability is a prominent feature of cancers (Negrini et al., 2010; Shen, 2011) and 

the cause of a number of diseases and genetic disorders (Aguilera and Gómez-González, 2008; Castel 

et al., 2010; Hou et al., 2017; Sasaki et al., 2010). It has been shown that aberrant homologous 

recombination can be a cause of genomic instability (Shammas et al., 2009). If the over-replication 

seen in E. coli cells in the absence of RecG is triggered by an increased frequency of recombination, 

then it has the potential to destabilise the genome. 

If replication termination triggers recombination events, we should be able to measure that the 

recombination frequency is increased. Marker frequency analyses of exponentially growing cells 

lacking RecG show a peak of over-replication specifically within the termination region (Dimude et al., 

2015; Rudolph et al., 2013; Wendel et al., 2014), and so we investigated recombination frequency in 

this location and in a second, control location away from the termination region. It has been reported 

previously that the rate of recombination can be altered in the absence of RecG. Lovett and colleagues 

showed that ΔrecG cells exhibit increased genomic instability using an assay measuring deletion of a 

tandem repeated DNA sequence from both a plasmid- or chromosome-based repeat construct; ΔrecG 

cells show an increased deletion rate compared to wild type cells (Lovett, 2006; Lovett et al., 1993). 

Similar results in the reversion rate of a tandem repeat sequence using a plasmid-based assay were 

generated by Lloyd and Rudolph (2016). We decided to use a similar assay for our investigation. If 
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there is a correlation between replication termination and recombination frequency, we would expect 

to see a location-specific increase in recombination specifically in the absence of RecG, with the 

increase in the termination region being higher than the increase at the control location assayed. This 

would be in line with our model, which is based around the idea that the majority of over-replication 

seen in the absence of RecG results from events associated with replication fork fusions, and so 

supports the prediction of an increased frequency of recombination in the termination region. 

A tandem repeat cassette termed KanKanMX4 (Ede et al., 2011) located on a plasmid similarly 

showed increased reversion rates in the absence of RecG (Lloyd and Rudolph, 2016). The KanKanMX4 

cassette contains a gene for kanamycin resistance that has an internal duplication of a 266 bp fragment 

of the gene (Figure 18; Ede et al., 2011), which inactivates the resistance gene and cells carrying this 

cassette are susceptible to the antibiotic kanamycin. 

 

Figure 18: The KanKanMX4 tandem repeat cassette. A) Diagram of the KanMX4 and KanKanMX4 module 

showing the duplication within the kanamycin resistance gene, represented by the coloured boxes. The 

duplication causes a frameshift and introduces a stop codon in the second copy of the repeat, resulting 

in a gene expression and a non-functional kanamycin resistance protein. B) Schematic representation of 

gene conversion events occurring via homologous recombination. The duplication is represented by the 

coloured sections as in A). i. If replication or end processing is stopped within the second copy of the 

repeat and invasion of the second copy on the sister chromosome takes place, the duplication is 

maintained. ii. If it stops in the first copy of the repeat, invasion into the first copy on the sister 

chromosome will also result in the duplication being maintained but if the invasion occurs in the second 

copy on the sister chromosome, one of the repeats is lost and functional kanamycin resistance is restored. 

iii. If replication or end processing stops in the second repeat but the ssDNA invades the first repeat of 

the sister chromosome, a triplication is generated. Only the outcome of ii) can be detected by our assay. 

Gene function is restored when one of the two repeats is deleted, and this event is quantified 

experimentally by scoring kanamycin-resistant colonies. This deletion event can be mediated via 

homologous recombination or by recombination-independent misalignment errors during replication 
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that are associated with repeat sequences such as replication slippage errors (Bzymek and Lovett, 

2001; Lovett, 2004). I investigated whether it was possible to use the KanKanMX4 construct to detect 

different reversion rate increases when it was inserted in to two different locations of the 

chromosome. The work by Lloyd and Rudolph (2016) on reversion rates of the plasmid-based 

KanKanMX4 tandem repeat cassette revealed that the increase seen in the absence of RecG is abolished 

in ΔrecG ΔrecA and ΔrecG ΔrecB double mutants, indicating that the reversion events in ΔrecG cells are 

mediated by recombination (Lloyd and Rudolph, 2016), further confirming its suitability for our aim. 

It has been shown that RecA and RecBCD are required for both the origin-independent over-

replication and origin-independent growth seen in the absence of RecG (Midgley-Smith et al., 2018; 

Rudolph et al., 2013). It was recently reported that in contrast, the RuvABC Holliday junction resolvase 

is dispensable for the peak of over-replication in the replication profiles of ΔrecG cells but that growth 

of dnaA Δtus rpo* ΔrecG cells is abolished at restrictive temperature in the absence of RuvABC, 

indicating that RuvABC is important for segregation of the replicated chromosomes (Midgley-Smith 

et al., 2018). The tandem repeat deletion rates determined by Lloyd and Rudolph are in line with these 

data; the increase in the reversion rate in the absence of RecG depends on RecA and RecB but not Ruv 

(Lloyd and Rudolph, 2016). 

Inserting a tandem repeat cassette at two chromosomal locations 

The KanKanMX4 module was originally cloned in to the shuttle vector pRS316 (Sikorski and Hieter, 

1989), generating pRS316-KanKanMX4 (Ede et al., 2011). Given that I wanted to investigate the effect 

that specific chromosome location has on the reversion rate of the construct, it was not possible to use 

a plasmid-based assay and instead the tandem repeat cassette had to be integrated in to the 

chromosome. To achieve this, it was necessary to first link it to a selectable marker; in this case, a gene 

that conferred resistance to chloramphenicol (cat) flanked by frt sites (<cat>) was used. The <cat> 

construct was amplified by PCR from the synthetic oriZ-<cat> construct present in the chromosome 

of TB28 and cloned in to pRS316-KanKanMX4, resulting in plasmid pSLM001. This was subsequently 

used as the template for the PCR-amplification of the KanKanMX4-<cat> cassette, using primers that 

carry 50 bp ends that contain homology to two different regions of the chromosome; one near narU in 

the termination area and a second, control region near yjhR at 4.53 Mb of the E. coli chromosome. The 

insert locations were selected to minimise the risk of interfering with expression of local genes. In the 

termination region, the insertion was located after the stop codon of one gene and well before the start 

of the next gene, and the control location insertion was between two stop codons (Figure 19 A and C 

respectively). The resulting PCR products were integrated separately on to the chromosome of wild 

type cells using the lambda Red recombination system (Datsenko and Wanner, 2000). Colony PCR was 

employed to verify the correct insert at each chromosomal location (Figure 19). 
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Figure 19: Confirmation of successful integration of the KanKanMX4 cassette at two chromosomal 

locations. Schematic representation is shown of the area around narU within the termination area (Ai) 

and around yjhR at the control location (C) with and without the integrated KanKanMX4-<cat> construct. 

The verification primers are shown as green arrows. PCR products generated with the primers for the 

termination area (B) are shown for four recombinant strains and a wild type control. Primer combinations 

used were a/c (lanes 1, 4, 7, 10 and 13), d/b (lanes 2, 5, 8, 11, and 14) and a/b (lanes 3, 6, 9, 12 and 15). Colony 

PCR products were run on 1 % agarose 1 × TBE gels with a gradient voltage of ~6 V/cm. 2-log ladder (NEB) 

was run for size reference. PCR products generated with the primers for the control region (D) are shown. 

The KanKanMX4-<cat> constructs in two recombineering clones were transduced in to wild type cells, 

producing three transductant strains. Chromosomal DNA from the original recombineering clones, three 

transductant strains and wild type control was used as the template DNA. Problems with the integration 

initially were resolved by altering the integration strategy slightly. The initial verification primer (e) was 
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lost and so we could not test the left-hand flank of the integration. We confirmed integration of the 

construct using primer combination d/f, in addition to observing the expected antibiotic resistance 

pattern. Colony PCR products were run on 1 % agarose 1 × TBE gels with a gradient voltage of ~6 V/cm. 2-

log ladder (NEB) was run for size reference. 

P1 liquid culture lysates of the correct recombinant strains were prepared and used to transfer the 

KanKanMX4-<cat> construct in to wild type cells at either the termination area or the control region 

in order to avoid taking forward any aberrant recombination events that may have occurred during 

the recombineering process. Subsequently ΔrecG was moved in to each of the strains via P1vir 

transduction, resulting in KanKanMX4narU ΔrecG and KanKanMX4yjhR ΔrecG. 

Reversion rate at two distinct locations of the 

chromosome 

To determine if there is an increase in the rate of recombination, it is not so simple as counting the 

number of reversion mutants and presenting that as a fraction of the total colony forming units (cfu) 

of the culture, as is highlighted by the diagram below (Figure 20). A recombination event, leading to 

the reversion of the KanKanMX4 module to a functional kanamycin resistance gene, has happened 

after three divisions in Culture A in Figure 20. The red cell is kanamycin resistant. There is a reversion 

event much earlier in Culture B and again after three divisions (Figure 20). Although there are now 

eight reversion mutants in total in this culture, there have only been two reversion events. 

 

Figure 20: Schematic diagram explaining mutation rate versus number of mutants. Circles represent 

bacterial cells, which divide and result in two daughter cells. The blue circles are non-mutant cells and the 

red circles represent a mutant cell that differs genetically from the original parent cell. See the text for 

details. 

Whilst it is easier to measure the frequency of reversion mutants, even across a number of 

independent cultures of the same strain, it does not take in to consideration that events will, by chance, 

occur either early or late in some cultures (Rosche and Foster, 2000). Instead, the reversion rate of 

the KanKanMX4 construct in the presence and absence of RecG was estimated using a fluctuation assay 

based on the method of the median by Lea and Coulson (Foster, 2006; Lea and Coulson, 1949), which 
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utilises a system of statistical calculations that compensates for this eventuality (Lea and Coulson, 

1949) (page 60). 

It was predicted that the reversion rate of the KanKanMX4 construct would increase in the absence 

of RecG, as observed before (Lloyd and Rudolph, 2016; Lovett, 2006; Lovett et al., 1993) and that 

reversion events would be particularly prevalent in the termination area (KanKanMX4narU) in ΔrecG 

cells compared to the control location (KanKanMX4yjhR). 

In the tandem repeat assay, there will be a certain frequency of kanamycin-resistant cells across 

the cultures of each strain due to reversion events that occur whether RecG is present or not. Both the 

mutation and reversion events are extremely susceptible to media composition and other 

experimental conditions, and so control strains that contained the KanKanMX4 construct but were 

otherwise wild type (KanKanMX4narU and KanKanMX4yjhR) were used to establish a baseline rate of 

reversion events at each insert location in order to be able to determine if there is an increase in one 

location or another when RecG was absent. The reversion rate of the control strains is only relevant 

for that particular batch of media and so within each experiment at least, the media must all come 

from the same batch. The reversion rate established for each control strain was set to 1 and the 

reversion rate of the corresponding strain lacking RecG was used to calculate the factor increase in 

reversion rate compared to the control strain reversion rate. 

Table 4: Reversion rates of the KanKanMX4 in the termination area and the control region in wild type and 

ΔrecG cells. “Termination area” and “control location” refer to the KanKanMX4 insert location at narU and 

yjhR respectively. The strains used were SLM1042 (KanKanMX4narU), SLM1048 (KanKanMX4narU ΔrecG), 

SLM1043 (KanKanMX4yjhR) and SLM1049 (KanKanMX4yjhR ΔrecG). Experiments were performed at least 

twice independently, producing very similar results. 

Strain Reversion rate Factor increase 

Wild type termination area 9.13 ×10-8 ± 1.18 × 10-8 1 

ΔrecG termination area 9.74 × 10-7 ± 1.02 × 10-7 10.67 

Wild type control location 1.18 × 10-7 ± 1.44 × 10-8 1 

ΔrecG control location 1.62 × 10-6 ± 1.63 ×10-7 13.76 

The reversion rate of the KanKanMX4 tandem repeat construct to a functional kanamycin resistance 

gene is very similar in each of the two wild type strains, which means that the reversion rate in wild 

type cells is not affected by the chromosome location of the tandem repeat construct (Table 4). 

In the absence of RecG, the reversion rate of the KanKanMX4 construct is higher in both ΔrecG 

KanKanMX4narU and ΔrecG KanKanMX4yjhR cells when compared to the reversion rate of the 

corresponding wild type strains (Table 4). This is in line with previous work using tandem repeat 



 Results Part II 

95 
 

systems, which report an increase in reversion rate in cells lacking RecG compared to the wild type 

reversion rate (Lloyd and Rudolph, 2016; Lovett, 2006; Lovett et al., 1993). 

If there is a correlation between over-replication and recombination frequency, then we should 

observe a greater increase in reversion rate in the termination region in the absence of RecG compared 

to the increase seen in the control region in the absence of RecG. However, this is not what was 

observed. The factor increase in reversion rate at each location was instead very similar (Table 4). If 

anything, the increase in ΔrecG KanKanMX4yjhR cells is slightly higher than the increase seen in ΔrecG 

KanKanMX4narU cells. 

Effect of an ectopic origin on reversion rate 

Replication profiles determined by high resolution marker frequency analysis of ΔrecG cells revealed 

a defined peak of over-replication in the termination region that is not present in wild type cells 

(Dimude et al., 2015; Rudolph et al., 2013; Wendel et al., 2014). When a second copy of the replication 

origin was introduced at an ectopic location roughly a quarter of the way round the right-hand 

replichore (oriZ; Figure 13), there was a dramatic increase in the amplification of the termination 

region in cells lacking RecG compared to ΔrecG cells with a single replication origin (Rudolph et al., 

2013). We introduced oriZ to our tandem repeat construct strains to see if we would then observe a 

stronger increase in the reversion rate of KanKanMX4narU in the absence of RecG in comparison to 

the increase in reversion rate of the KanKanMX4yjhR construct, in line with what we see in the 

replication profiles of oriC+ oriZ+ ΔrecG cells. If the data show that the biggest factor increase in 

reversion rate is seen in oriC+ oriZ+ ΔrecG KanKanMX4narU cells, it would indicate a strong correlation 

between the over-replication seen in the absence of RecG and recombination. 

In double origin strains, replication initiates from both oriC and oriZ with equal efficiency (Dimude 

et al., 2018a; Ivanova et al., 2015; Wang et al., 2011) and this results in replication forks meeting in an 

ectopic region in between the two copies of the origin in addition to the native termination region 

(Ivanova et al., 2015; Midgley-Smith et al., 2018). The control insert location of the KanKanMX4 

cassette at yjhR is within this ectopic fork fusion region. Based on our model that proposes that fork 

fusion events lead to recombination-dependent over-replication in the absence of RecG, 

recombination frequency will be increased in this region in oriC+ oriZ+ KanKanMX4yjhR cells and so 

we would expect to see a greater increase in the reversion rate of KanKanMX4yjhR ΔrecG cells in a 

double origin background compared to the increase seen in the comparative strains in a single origin 

background. 

oriZ+ derivatives of the KanKanMX4 strains were created via P1vir transduction and the reversion 

rates for each KanKanMX4 insert location were determined for the double origin strains in the 

presence and absence of RecG. 
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Table 5: KanKanMX4 reversion rates in the presence and absence of RecG in strains carrying two copies of 

the replication origin. “Termination area” and “control location” refer to the KanKanMX4 insert location 

at narU and yjhR respectively. The strains used were SLM1058 (oriC+ oriZ+ KanKanMX4narU), SLM1059 (oriC+ 

oriZ+ ΔrecG KanKanMX4narU), SLM1060 (oriC+ oriZ+ KanKanMX4yjhR) and SLM1061 (oriC+ oriZ+ ΔrecG 

KanKanMX4yjhR). Experiments were performed at least twice independently, producing very similar 

results. 

Strain Reversion rate Factor increase 

oriZ+ termination area 2.58 × 10-7 ± 2.92 × 10-8 1 

oriZ+ ΔrecG termination area 8.36 × 10-7 ± 8.88 × 10-8 3.24 

oriZ+ control location 1.26 × 10-6 ± 1.23 × 10-7 1 

oriZ+ ΔrecG control location 1.72 × 10-6 ± 1.81 × 10-7 1.37 

In a double origin background, the absence of RecG increases the reversion rate of the KanKanMX4 

module inserted in the termination area by a factor of 3.24 (Table 5). The factor increase in the 

reversion rate of the control location was, at 1.37, slightly less. Whilst this is in principle what was 

expected based on the hypothesis, the increase in over-replication affected by the addition of oriZ in 

oriC+ oriZ+ ΔrecG cells is so striking (Rudolph et al., 2013) that a more significant increase in reversion 

rate in the termination area of the double origin ΔrecG strain compared to the control region was 

expected. 

Moreover, the actual reversion rate of the KanKanMX4 construct at the control location is higher 

than that at the termination region in both recG+ and ΔrecG cells, in contrast to what we would expect 

(Table 5). The replication profiles of ΔrecG cells show clearly that over-replication occurs in the 

termination region (Dimude et al., 2015; Rudolph et al., 2013; Wendel et al., 2014) and it has been 

found to be dependent on both RecB and RecA (Midgley-Smith et al., 2018; Rudolph et al., 2013), 

thereby indicating the necessity of recombination in enabling the over-replication to take place. 

Taking this in to account, it is somewhat surprising that the KanKanMX4yjhR construct demonstrated 

a greater recombination rate than the KanKanMX4narU construct in a double origin background. 

Discussion 

A tandem repeat reporter cassette inserted at two different locations of the chromosome was 

employed to measure the reversion rate of each location in ΔrecG cells with one or two replication 

origins in an attempt to provide a direct link between over-replication in ΔrecG cells and homologous 

recombination. The over-replication seen in the termination region of ΔrecG cells depends on both 
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RecA and RecB but not Ruv, and previous studies using the KanKanMX4 plasmid-based assay reported 

that the same is seen in the increase in the reversion rate of the tandem repeat specifically in the 

absence of RecG (Lloyd and Rudolph, 2016; Midgley-Smith et al., 2018; Rudolph et al., 2013), which 

supports the suitability of this assay for our aims. In line with the model for how over-replication in 

the absence of RecG occurs as a result of replication fork fusions, a larger increase in the reversion 

rate of the tandem repeat cassette in the termination region was anticipated, where replication 

predominantly terminates, compared to a control region away from termination. In cells containing 

an additional, ectopic replication origin, oriZ, the control region becomes an ectopic fork fusion region, 

and we expected to see a bigger increase in reversion rate in ΔrecG derivatives of these cells compared 

with the single origin ΔrecG cells. 

Had we seen the trends that had been expected, I would have carried out a variety of control 

experiments such as creating ΔrecA derivatives to confirm that the increase in the reversion rate in 

the absence of RecG was due to an increase in homologous recombination, and ΔrecB derivatives to 

support the suggestion that the initial substrate for a recombination event was a dsDNA end that is 

processed by RecBCD. There are a number of further experiments that would have been carried out 

to test for a correlation between increased recombination frequency and fork fusion events. Previous 

work has shown that initiation of over-replication that occurs in the absence of RecG is dependent on 

the helicase activity of PriA, specifically the 3’ flap processing ability (Rudolph et al., 2013). The srgA1 

allele of priA encodes a mutant protein that no longer has this ability (Gregg et al., 2002) and the over-

replication is abolished in ΔrecG srgA1 cells (Dimude et al., 2015; Rudolph et al., 2013). By introducing 

the srgA1 allele in to the KanKanMX4 strains, we would expect that any increase in reversion rate in 

the ΔrecG derivatives would be abolished, which would provide further support to the model of 

recombination-dependent over-replication initiating at fork fusion locations. 

An important control would be needed to support that any increase in reversion rate seen in the 

absence of RecG at both narU and yjhR following the introduction of the ectopic replication origin, oriZ, 

was due to replication fork fusions and not a peculiarity of a double origin strain. In both insert 

locations, an increase would be expected when oriZ was introduced. Therefore, there should be a third 

integration site of the KanKanMX4 construct in the opposite replichore to oriZ. This would be needed 

in order to establish that there is no increase in this location even when oriZ is introduced so that the 

increases seen in the other two locations can be attributed to replication fork fusion events and are 

not just a feature of cells with two replication origins. As discussed below, this was not the case as the 

system did not work quite as expected and so this further work was not undertaken. 

The data show an increase in the reversion rate in cells lacking RecG, in line with previous studies 

(Lloyd and Rudolph, 2016; Lovett, 2006; Lovett et al., 1993), and a smaller increase in ΔrecG cells with 

a double origin strain background. We hypothesised that there would be a larger increase in reversion 

in cells with the repeat cassette inserted in the termination region in the single origin strains and a 

significantly larger increase in the termination region in double origin strains, but the data do not 

show this (Table 4, Table 5). There was a significant increase in the reversion rate in both 
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KanKanMX4narU and KanKanMX4yjhR cells in the absence of RecG as was expected, but the increase 

was not higher in KanKanMX4narU cells and instead, the factor increase in reversion in the absence of 

RecG in single origin strains was very similar at both KanKanMX4 construct locations. The increases 

in reversion rate in double origin ΔrecG cells were also significantly less than we had expected, 

particularly for the native termination region (KanKanMX4narU). Moreover, the actual reversion rates 

of oriC+ oriZ+ KanKanMX4yjhR cells were higher than in oriC+ oriZ+ KanKanMX4narU cells both in the 

presence and absence of RecG. 

Whilst the reversion rate data for the single origin constructs were not generated in parallel with 

the double origin constructs and so are not directly comparable, it is worth noting that the reversion 

rates of both double origin recG+ constructs are higher than their single origin counterparts, whilst the 

values for the ΔrecG strains are really quite similar (KanKanMX4 construct location specific) in both 

single origin and double origin constructs (Table 4, Table 5). There is almost a 3-fold increase in the 

reversion rate of the KanKanMX4narU construct in the double origin background compared to the rate 

in the corresponding single origin strain. More notably, there is a 10-fold difference in reversion rate 

between the single and double origin KanKanMX4yjhR cells whilst the values for the two ΔrecG 

derivatives are relatively similar. Given that the increase occurred in the control strains where all 

processing enzymes are present, it is a surprising observation that we would not expect based on our 

model. 

The results of the tandem repeat deletion assay were not fully in line with what we had expected, 

indicating that either our model is wrong and so the predictions we made based on that were wrong, 

or that the assay is not suitable for measuring what we aimed to measure. 

Our model hypothesises that RecBCD is involved in remodelling fork fusion intermediates to 

promote recombination and generation of a substrate for PriA-mediated replication fork assembly, 

and also in processing the double strand end of a newly-established replication fork and promoting 

invasion of the re-replicated DNA behind the fork or the sister chromosome, leading to further 

replication initiation (Dimude et al., 2016; Rudolph et al., 2009b, 2010a, 2013). Both in vitro and in 

vivo, RecBCD degrades dsDNA at a very fast rate (Dillingham and Kowalczykowski, 2008; Wiktor et 

al., 2018), and with high processivity of over ~100 kb. The KanKanMX4 construct employed in this 

reversion rate assay contains an internal duplication that is 266 bp long and was not specifically 

engineered to contain chi sites (χ), the specific DNA sequence that regulates RecBCD activity by 

switching degradation of the dsDNA to the 5’end only, resulting in a 3’ ssDNA overhang that is a 

substrate for RecA-mediated strand invasion of homologous sequences (Anderson and 

Kowalczykowski, 1997; Arnold and Kowalczykowski, 2001; Bianco and Kowalczykowski, 1997; Smith, 

2012). One explanation for the discrepancy between the hypothesis and what was observed could be 

that the action of RecBCD enzyme in dsDNA degradation is very likely to degrade far more than the 

entire KanKanMX4 construct and so the subsequent recombination event would occur outside of the 

KanKanMX4 construct. In this event, the tandem repeat within the kanamycin resistance gene would 

remain intact and so would not result in kanamycin resistance. The assay was only ever going to be 
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successful in detecting an effect in the absence of RecG purely because, on a population basis, there 

would be so many reversion events that on occasion, the degradation of dsDNA by RecBCD would end 

in the vicinity of the KanKanMX4 construct and the subsequent RecA-mediated strand invasion would 

happen to result in the deletion of one of the duplicated sequences. Given the reported speed and 

processivity of RecBCD in vivo, it is possible that in the majority of cases where RecBCD activity is 

triggered, the enzyme is so fast and processive that the whole tandem repeat construct is simply 

degraded, and the RecA-mediated strand invasion event takes place upstream of the KanKanMX4 

construct, which will therefore leave the duplication intact more often than not, even after a 

homologous recombination event has taken place. This provides a potential explanation or part 

thereof for the difference between what we expected to see and the actual data. 

Why might the reversion rates of ΔrecG strains with the KanKanMX4yjhR construct be similar to 

or even higher than the construct in the termination region in both single and double origin strain 

backgrounds? The yjhR insert location, which functions as a control region in the single origin strains, 

becomes an ectopic fork fusion region in the double origin strains, although there are no ter/Tus 

complexes to form a replication fork trap like that seen in the native termination region. This 

structural difference could go some way in explaining why the actual reversion rate of the 

KanKanMX4yjhR construct is higher than that of the KanKanMX4narU construct. Over-replication 

within the native termination region is contained within the ~250 kb between the innermost ter sites 

(Dimude et al., 2016; Duggin and Bell, 2009). The speed of dsDNA degradation by RecBCD according 

to a recent in vivo study (~1.6 kb s-1) (Wiktor et al., 2018) is faster than DNA synthesis by PolIII (550 

– 750 bp s-1) (Pham et al., 2013). If RecBCD degrades so quickly and the progression of replication 

forks within the termination region is blocked by the ter/Tus replication fork pause sites, the over-

replication will be digested away very quickly. In contrast, the yjhR location in the double origin strains 

becomes an ectopic termination region but without the constraints of the ter/Tus complexes. Recent 

work has shown that activity at the rrnCABE operon cluster impedes replication forks progressing in 

a direction opposite to normal (Ivanova et al., 2015; Midgley-Smith et al., 2018) but even taking this 

in to account, the area between rrnCABE and oriZ is much larger than between terA and terC. This 

might provide a higher chance that over-replication initiating within this region is able to persist 

before RecBCD can catch up. 

Additionally, given that there is less confinement of replication forks within the ectopic 

termination region between oriC – oriZ and the rrn operons (rrnH and rrnCABE) will lead to replication 

fork pausing, there is likely to be more variability in the location of where forks actually fuse in the 

ectopic fork fusion region compared to the native termination area, which means a wider spread of 

initiating events. If the proximity of the initiating event to the tandem repeat cassette is the problem, 

then a wider spread would be in favour of seeing more reversion events because if by chance there is 

a fork fusion event that results in over-replication that happens far enough away from the 

KanKanMX4yjhR construct so that over the course of that experiment, RecBCD degradation happens 

to stop in the duplicated area, then that might still lead to a reversion event even though there are no 
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chi sites. So a higher variability of fork fusion locations in the ectopic termination region might lead to 

more reversion events being detected. 

 A prediction of this scenario would be that if the replication fork trap is inactivated, this should 

cause an increase in the reversion rate of the tandem repeat construct located at narU in the native 

termination region. To test this, I planned to inactivate the replication fork pause sites (ter/Tus) by 

deleting tus to see if that lead to an additional increase in the reversion rate in the native termination 

area. The introduction of Δtus to oriC+ oriZ+ KanKanMX4narU cells would create a similar situation in 

the native termination region as that in the ectopic termination region, and so the fork fusion locations 

would become more spread out. In ΔrecG derivatives, this would result in degradation as part of 

RecBCD-mediated recombination initiating in more diverse locations compared to the situation in tus+ 

cells, and given the large number of cells assayed in an experiment, it should increase the chance of 

the assay detecting a number of extra reversion events whereby just by chance, the degradation ends 

near to the tandem repeat cassette and then causes a reversion event. Whilst it would have been 

interesting to investigate why we did not see the results we had expected, this was beyond the scope 

of the timeframe of my PhD studies. 

In a growing population, there is a gradient in the copy number of chromosomal sequences. 

Homologous recombination can only take place if there is a second copy of the chromosomal sequence 

present. Given that within a population there will be more copies of KanKanMX4yjhR than 

KanKanMX4narU this might facilitate more recombination events in the yjhR location compared to the 

native termination region, which might also contribute to the unexpectedly high reversion rates 

detected in the yjhR location. 

If there are factors affecting the accuracy of the data in reflecting the levels of recombination 

actually occurring in each chromosome location tested, as we have suggested above, there are a 

number of approaches that might mitigate this. Given the speed of RecBCD dsDNA degradation, using 

a construct with a much longer repeat sequence might help to increase the chance that RecBCD 

degradation ends in the vicinity and RecA-mediated strand invasion occurs within the tandem repeat, 

thereby increasing the detection frequency of recombination events. Lovett and colleagues have 

previously used a 750 bp tandem repeat to investigate reversion rates in a number of strain 

backgrounds, and reported a factor of 4 increase in reversion rate in ΔrecG cells with the tandem 

repeat integrated in to the chromosome at lac (Lovett, 2006; Lovett et al., 1993). This repeat sequence 

is almost three times the length of the 266 bp repeat within the KanKanMX4 construct and so would 

be a good starting point, but it is likely that even this might not be long enough. 

To increase the sensitivity of the assay, an artificial tandem repeat construct could be generated 

that is engineered to contain a chi sequence, which would increase the likelihood of strand invasion 

occurring within the tandem repeat sequence; recombination is increased 5- to 10-fold in the vicinity 

of a χ site (Arnold and Kowalczykowski, 2001). Wiktor et al. (Wiktor et al., 2018) recently used live 

cell imaging to investigate the efficiency of RecBCD in χ site recognition and report a calculated 

efficiency of 26 % indicating that at least two if not three χ sites would be needed to provide a good 
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chance of limiting the degradation activity of RecBCD. It was shown previously in an in vivo assay 

measuring the degradation of plasmid DNA linearized by the introduction of a DSB that the presence 

of a single χ site increases the fraction of undegraded DNA from <4 % to almost 14 %, and the addition 

of a second χ site increases the survival to >30 % (Kuzminov et al., 1994). Despite the fact that the 8 

bp χ sequence is over-represented in the E. coli genome (Cardon et al., 1993), generating a large 

tandem repeat that contains two or three χ sites and yet provides a mechanism of detecting reversion 

events would require quite some genetic engineering and I did not have time to complete this work 

within the timescale of my PhD studies. 

The data presented in this chapter raise questions about a potential correlation between 

increasing the number of origins and an increase in recombination frequency. We do not currently 

have further insight in to what might be happening where the introduction of an ectopic origin in recG+ 

cells seems to result in such an increase in reversion rate, and in order to be certain of any significance 

in the differences of reversion rate, the experiments would need to be repeated with all strains 

assayed in parallel. If the observation of the increase in recombination frequency in cells with a second 

copy of the replication origin is shown to be real, and by inference that double origin strains have 

increased genomic instability, this would help to explain why E. coli employs the replication system 

that it does, with only one origin instead of multiple origins around the chromosome, and so it would 

be interesting to investigate this further. 
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Differentially labelling replisomes  

Replication of chromosomal DNA is carried out prior to cell division in all cells by a complex molecular 

machine called the replisome (Yao and O’Donnell, 2010). Replication initiates at a replication origin, 

where two replisomes are assembled and proceed until termination, where two converging forks fuse. 

In the circular chromosome of E. coli, there is a single origin of replication, oriC, and the two replisomes 

move independently along the DNA (Reyes-Lamothe et al., 2008). Fork fusions normally occur within 

a defined location called the termination area, which is flanked by unidirectional fork traps (ter/Tus) 

that allow forks to enter the termination region but block them from leaving (page 24; Neylon et al., 

2005). 

The E. coli replisome is a large, multiprotein complex that contains all the components required 

for chromosome duplication (Figure 21)(Beattie and Reyes-Lamothe, 2015; Johnson and O’Donnell, 

2005; Kurth and O’Donnell, 2009; O’Donnell, 2006). The replicative DNA polymerase is present in the 

replisome as part of a multi-subunit complex called DNA polymerase III holoenzyme (Pol III H.E.), 

which has three major functional units; the replicative Pol III core, the β sliding clamp and the clamp 

loader. The Pol III core is a heterotrimeric complex consisting of the α subunit polymerase that carries 

out DNA synthesis (encoded by dnaE), the ε subunit (encoded by dnaQ) that provides 3’-5’ exonuclease 

proofreading activity (Scheuermann and Echols, 1984) and the θ subunit (encoded by holE), whose 

function is yet to be fully understood but there is some suggestion that it might have a role in 

stabilising the ε subunit, thereby enhancing ε subunit proofreading activity (Kurth and O’Donnell, 

2009; Taft-Benz and Schaaper, 2004). It was historically understood that there were two copies of Pol 

III present in a replisome, one associated with each strand of the DNA template, but investigations by 

McInerney et al. (McInerney et al., 2007) demonstrated that three DNA Pol IIIs are present in the Pol 

III H.E in vitro. Using a technique that allowed millisecond-level live cell imaging (Plank et al., 2009), 

the Sherratt lab confirmed that there are in fact three molecules of Pol III in an active replisome in vivo 

in E. coli (Beattie and Reyes-Lamothe, 2015; Reyes-Lamothe et al., 2010). 

The speed and processivity of Pol III is due to its interaction with the β sliding clamp (encoded by 

dnaN), a ring-shaped homodimer that encircles the DNA and tethers Pol III to the template via a 

specific interaction with the α subunit (Burgers et al., 1981; LaDuca et al., 1986; Marians et al., 1998). 

The final component of the Pol III H.E. is the clamp loader, which actively assembles the β sliding clamp 

around the DNA. The multiprotein complex is a heptamer (τ3δδ’ψχ) in which the δ subunit (encoded 

by holA) binds to the β sliding clamp dimer and opens it (Jeruzalmi et al., 2001; Turner et al., 1999), 

and the τ subunits (encoded by dnaX) form connections between the Pol III core units and the DnaB 

helicase (Gao and McHenry, 2001a, 2001b). A combination of three molecules of Pol III in association 

with the clamp loader is termed Pol III* ((αεθ)3-τ3δδ’). Less is known about the roles of the final two 

subunits of the clamp loader, χ (holC) and ψ (holD). They form a heterodimer and it was thought that 
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there was one copy in the replisome (Johnson and O’Donnell, 2005) but in vivo microscopy of 

fluorescently-labelled χ and ψ has shown instead that there are four copies of the heterodimer present 

in a replisome (Reyes-Lamothe et al., 2010). 

 

Figure 21: Components of the E. coli replisome. The clamp loader complex is shown in green and the β 

sliding clamps are shown in yellow. All other components are labelled within the diagram. Figure 

reproduced from Beattie and Reyes-Lamothe, 2015 with permission. 

Exactly what happens when two replication forks meet and fuse is not well understood (Beattie and 

Reyes-Lamothe, 2015; Dewar and Walter, 2017; Dimude et al., 2016; Neylon et al., 2005). In E. coli, 

there is a single fork fusion event per cell cycle between two replication forks, and this takes place in 

a well-defined termination region. If we could label the replication forks differentially, we would be 

able to study in detail the events associated with replication fork fusion. 

I explored the feasibility of differentially labelling replisomes in single cells using two different 

fluorescent proteins, with the aim of using this as a tool for investigating replisome dynamics in 

individual cells. The independent progression of the two replisomes in the bidirectional replication 

initiated at oriC in E. coli enables visualisation of the replication forks as two separate foci at certain 

points of DNA replication (Reyes-Lamothe et al., 2008), namely sometime after initiation and before 

termination, when replisome components are fluorescently labelled. Cells in which each replisome is 

labelled with a different colour could potentially be identified at that point and, using time lapse 

microscopy, the replisomes might then be tracked, even if the foci subsequently come together as a 

single focus once more, by using the different colour channels of the fluorescent microscope. These 

cells would enable us to monitor the progression of the replisomes as well as gain further insight in to 

replication termination and the fusion of two replication forks. Does one fork disassemble before the 

other at fork fusion or upon arriving at a ter/Tus trap? Is this different in a strain that has a second, 

ectopic copy of oriC, which ensures one fork is always stalled at a ter/Tus trap prior to fork fusion? 
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Cells with differentially labelled replisomes would help us to answer questions such as these. 

Derivatives of these strains with deletion mutations that have been shown to result in origin-

independent DNA synthesis could then be created in order to investigate over-replication initiating at 

fork fusion events, for example ΔrecG or ΔxonA ΔxseA ΔsbcCD. 

Labelling the replisomes 

A number of replisome component fluorescent fusion proteins have been successfully created by 

other labs. The stoichiometry of the various replisome components was taken in to consideration 

when choosing which would be most appropriate for our aim. For example, β sliding clamp molecules 

are left behind the replisome on the lagging strand as part of Okazaki strand synthesis. This results in 

a trail of signal instead of a defined focus (Georgescu et al., 2010; Moolman et al., 2014; Reyes-Lamothe 

et al., 2010; Stukenberg et al., 1994). The DnaB replicative helicase is a hexamer and so DnaB proteins 

are present at a relatively high copy number in each replisome, which makes it very unlikely that there 

will be single colour replisomes by chance. The ε subunit of the Pol III core is well suited for differential 

labelling as it is located only at the replication fork and is present at a low enough copy number (three) 

that we were optimistic about the chances of achieving single-coloured replisomes. 

To generate the appropriate strain, two copies of the gene for dnaQ fused to two different 

fluorescent protein genes had to be combined in to a single strain. To avoid fluorescent signal 

generated from plasmid replication, we chose to chromosomally express both fluorescent protein (FP) 

constructs instead of using an expression vector, which also avoided the problem of plasmids being 

present in cells in multiple copies. One of the dnaQ-FP fusions was located in the place of the native 

dnaQ gene. The second dnaQ-FP fusion was integrated in an ectopic location on the chromosome close 

to the site of the original dnaQ gene. Both were important considerations with respect to managing 

gene dosage during replication. Gene dosage refers to the number of copies of a gene present in the 

genome of a cell. Gene expression is affected by the position of a gene in relation to the origin of 

replication, with those located close to the origin being present at a higher copy number than those 

located further away from the origin (Sousa et al., 1997). To avoid bias in favour of either of the 

fusions, and to ensure the best chance of achieving single colour labelling of individual replisomes, it 

was important to ensure that the two dnaQ FP variants were present at a ratio as close to 1:1 as 

possible. 

DnaQ-YPet and DnaQ-mTag fusions have previously been generated by the Sherratt lab (Reyes-

Lamothe et al., 2008) and these were used for this work. Both the dnaQ-ypet and the dnaQ-mtag 

constructs were associated with an frt-flanked gene for kanamycin resistance (kan) (Reyes-Lamothe 

et al., 2008) to enable the constructs to be transferred between strains and selection for cells carrying 

the transferred DNA to be carried out. In order to allow the two constructs to be combined in a single 

strain, it was necessary to first remove the kan gene from dnaQ-ypet cells using the FLP/frt site-

directed recombination system (page 51; Datsenko and Wanner, 2000), after which we were able to 
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move the dnaQ-mtag construct in to the resulting strain via P1vir transduction, generating dnaQ-ypet 

dnaQ-mtag cells (see page 64 for full strain construction). 

The replisomes can be differentially labelled 

The foci generated in dnaQ-ypet dnaQ-mtag cells were examined to see if it was possible to generate 

differentially labelled replisomes in single cells where the three molecules of DnaQ in a single 

replisome were all YPet fusions and the three molecules of DnaQ in the other replisome were all mTag 

fusions.  

dnaQ-ypet dnaQ-mtag cells were cultured in M9 minimal medium supplemented with 0.2% 

glucose to ensure slow growth and limit replication initiation to a single event per cell cycle (page 13). 

A sample of the culture was taken at early exponential growth phase. This was to ensure that cells 

would be actively dividing and so replication would be taking place but also that the culture was not 

so grown that the cells would be too dense to allow for clear visualisation of single cells when observed 

via fluorescent microscopy. The sample of liquid culture was applied to a minimal medium agarose 

pad on a microscopy slide and allowed to dry (page 62). Once dry, the samples were covered with a 

cover slip, which gently squeezes the bacteria between the agarose surface and the cover slip and fixes 

the bacteria in place without the need to fix the cells chemically, allowing for live cell microscopy. 

Images were taken using conventional fluorescence microscopy. 

 

Figure 22: Visualisation of replisomes in actively replicating live E. coli cells via fluorescently-labelled DnaQ 

molecules. Snapshot images of cells containing chromosomally-expressed dnaQ-ypet and dnaQ-mtag 

constructs, in an otherwise wild type background. Cells were grown in minimal medium to early 

exponential phase before being transferred to a minimal medium pad on a microscopy slide and viewed 

using conventional fluorescence microscopy. Cells were visualised with a Nikon Ti-U inverted microscope 

equipped with a DS-Qi2 camera (Nikon). Images were taken and the colour of the foci pairs in individual 

cells was assessed. White arrows highlight the location of the foci. Brightfield microscopy was used 

alongside fluorescent channels to provide cell boundaries, which are shown as white lines. The strain used 

was SLM1146 (dnaQ-ypet<> dnaQ-mtag<>). 
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 With two dnaQ FP variants (YPet and mTag), the composition of a single replisome focus can 

theoretically be 3:0, 2:1, 1:2 or 0:3 DnaQ-YPet:DnaQ-mTag. 

The panels in Figure 22A show one focus visible in the red channel (dnaQ-mtag) and a separate 

focus visible in the green channel (dnaQ-ypet), each representing a replisome within a single cell. The 

fact that they are in distinct locations in the cell, coupled with the foci appearance in the overlay image, 

shows that both foci are pure in colour. The panels in Figure 22B show an example of a cell that 

contains one pure colour focus (dnaQ-ypet, green) and one mixed colour focus, which contains both 

dnaQ-ypet and dnaQ-mtag molecules and appears as orange in the overlay image. Whilst a large 

proportion of the cells contained two foci that were both orange, meaning that the three DnaQ 

molecules in each replisome were a mixture of DnaQ-mTag and DnaQ-YPet, the two cells shown in the 

images in Figure 22 are both examples of cells that would be appropriate for use in investigating 

replisome dynamics as at least one replisome in each case contained three copies of the same 

fluorescently-labelled DnaQ construct. The images in Figure 22 show that it is indeed possible to 

generate differentially labelled replisomes in cells containing two different fluorescently-labelled 

dnaQ constructs. 

Discussion 

The data presented show that is it possible to differentially label the replisomes of a single cell by 

creating cells with two copies of the gene for DnaQ, one of the subunits of the replicative polymerase 

Pol III, and labelling each gene with a different coloured fluorescent protein. The benefit of labelling a 

replisome subunit that is present at a low copy number is that there is a greater chance of achieving 

pure coloured-replisomes and so a greater chance at generating cells with differentially labelled 

replisomes. The intensity of the fluorescent signal is unavoidably compromised as a consequence, and 

as can be seen from Figure 22, the capability of basic fluorescent microscopy was pushed to the limit 

in order to detect the three fluorescently labelled copies of ε in each replisome as a single focus. 

Rolling circle replication assays have been used extensively to study replication in vitro. For 

example, Yao et al. (Yao et al., 2009) used this technique to investigate features of the replisome and 

reported that the DnaB and Pol III* subunits of the replisome were stably associated with the 

replication fork for anywhere between <30 kb and >300 kb, with an average of ~ 80 kb. It was 

somewhat surprising that not long after we had successfully achieved proof of concept in differential 

labelling of replisomes, it came to light from two independent studies that components of the 

replisome do not remain stably associated and instead are frequently swapped during DNA replication 

elongation. The publications were preceded by a report of a theoretical explanation for the high rates 

of polymerase exchange seen in the T7 phage (Åberg et al., 2016). The authors suggested that the 

presence and absence of competing replisome factors could be the explanation for what is seen in vitro 

(e.g. from rolling circle replication assays) and what has been seen in vivo in T7, which they then 
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showed to be possible using mathematical modelling. Beattie and co-workers (Beattie et al., 2017) 

investigated the stability of the replisome of E. coli cells in vivo by examining fluorescently-labelled 

replisome components using two independent methods; fluorescence recovery after photobleaching 

(FRAP) and single-particle tracking Photoactivated Localisation Microscopy (sptPALM). They found 

that Pol III and the clamp loader (Pol III*) components recover fluorescence very quickly after 

bleaching, which is consistent with protein exchange taking place. Pol III H.E. components were found 

to be bound to the replisome for no more than a matter of seconds at a time, and the fact that the 

timings for the Pol III* components were very similar despite a difference in stoichiometry led to the 

suggestion that the exchange was likely not individual protein components from the replisome but 

instead was the whole Pol III* subassembly ((αεθ)3-τ3δδ’). An estimation of the fork progression 

between each exchange under the conditions of their assay was significantly longer than the average 

Okazaki fragment length and so they conclude that their observations are likely not linked to 

mechanistics of the lagging strand synthesis. In contrast, DnaB helicase displayed significantly more 

stability at the replisome than any other component and showed no recovery of fluorescent signal 

over a 5 min period of measurement. 

At the same time, Lewis and colleagues published a combined in vitro and in vivo study showing 

that indeed as Åberg et al. (2016) had suggested, availability of the replisome components could be 

the factor that influences the stability of the replisome (Lewis et al., 2017). 

Unfortunately, the finding that in vivo, Pol III molecules, and therefore the ε subunit (dnaQ), are 

rapidly exchanged with copies present in the environment around the replisome renders this 

technique of differential labelling of the replisomes futile for studying replisome dynamics. As already 

discussed above, components outside of the Pol III* subunit assembly that might be more stably 

associated with the replication fork do not present as good candidates for achieving differential 

labelling of the replisomes, rendering it unlikely that a workable solution will be found to make this 

aim possible. 
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3’ exonucleases and DNA replication 

termination  

Recent work has shown that the DnaA-independent over-replication of the chromosome in cells 

lacking RecG is dependent on specifically the helicase activity of the replication restart protein PriA 

(Rudolph et al., 2013). PriA has multiple biochemical activities. In an otherwise wild type background, 

mutations that disable the ATPase, helicase or translocase activities of PriA were shown to have very 

little or no effect on normal cellular physiology, whereas retaining the ability to assemble protein 

complexes on to the chromosome was found to be instrumental in maintaining a near-wild type 

phenotype (Sandler, 2005; Sandler et al., 2001; Zavitz and Marians, 1992). priA300 (PriAK230R) 

contains a mutation in the priA gene that inactivates the helicase, ATPase and translocase activities of 

PriA whilst leaving the ability to assemble active primosomes intact (McGlynn et al., 1997; Zavitz and 

Marians, 1992). A mutation in the priA gene called srgA1 is even more specific in its effect on PriA 

activity than priA300. srgA1 encodes a protein that has an L557P substitution that specifically affects 

its ability to unwind the lagging strand of a replication fork that is missing the leading strand, a 

branched DNA structure that is the equivalent of a 3’ flap. The ability of the mutant protein to unwind 

replication forks in situations with both the leading and lagging strands present is essentially the same 

as for the wild-type protein (Gregg et al., 2002). The introduction of the srgA1 allele of priA in to ΔrecG 

cells abolishes the DnaA-independent over-replication. This suggests that the DNA structure exploited 

by PriA to initiate origin-independent DNA synthesis in the absence of RecG is a 3’ flap (Rudolph et al., 

2010b, 2013). 

3’ ssDNA can be degraded by 3’ exonucleases. This led to questions about what might happen in 

cells lacking 3’ exonucleases; does origin-independent over-replication occur in the termination 

region of these cells? Rudolph and colleagues (2013) generated a replication profile for a strain that 

lacked all three major 3’ exonucleases, ExoI, ExoVII and SbcCD (ΔxonA ΔxseA ΔsbcCD). Exonuclease I 

(ExoI), is a highly processive exonuclease specific to ssDNA, with 3’ to 5’ activity (Lehman and 

Nussbaum, 1964; Thomas and Olivera, 1978). Exonuclease VII (ExoVII) is a processive exonuclease 

specific to ssDNA and has both 3’ to 5’ and 5’ to 3’ activity (Chase and Richardson, 1974a, 1974b). 

ExoVII is composed of two non-identical subunits; a large subunit encoded by xseA and a smaller 

subunit encoded by xseB (Vales et al., 1983). ExoVII-deficient strains in these studies were generated 

by deleting the xseA gene. SbcCD (sbcCD) has both ssDNA endonuclease and 3’ – 5’ dsDNA exonuclease 

activity (Connelly and Leach, 1996; Connelly et al., 1999). 

 As predicted, there was a peak of over-replication in the replication profile of this strain (Figure 

23) (Rudolph et al., 2013). As with the over-replication seen in the profile of ΔrecG cells, the peak 

occurs in the termination region, although it bleeds through both Tus/terC and Tus/terB in to the left 
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hand replichore. The frequency of the chromosomal locations represented at the tip of the peak is 

equal to or even slightly higher than the frequency of the region of oriC, which means that the number 

of copies of this area of the chromosome present in the sample is at least as many as the number of 

copies of the origin region present in the sample. 

 

Figure 23: Replication profile of E. coli cells in the absence of RecG or the exonucleases ExoI, ExoVII and 

SbcCD. Shown is the marker frequency analysis of exponentially growing cultures generated via deep 

sequencing. Read numbers (normalised against a stationary wild type control strain) are plotted against 

the chromosomal location. The schematic above the graphs is a representation of the E. coli chromosome, 

showing the position of oriC (green line) and the ter sites (red lines for those in the left hand replichore 

and blue lines for those in the right hand replichore). Sequencing templates were isolated from MG1655 

(wild type), N6576 (ΔrecG) and N6953 (ΔxonA ΔxseA ΔsbcCD). Figure modified from Rudolph et al., 2013 

with permission. 

These findings triggered the following work to investigate the over-replication that occurs in the 

absence of the three major 3’ ssDNA exonucleases and to provide further insight in to what might be 

occurring at fork fusion events. My data indicate that both RecG and 3’ exonucleases have a role in 

managing events at replication termination. The data presented in this chapter have recently been 

published (Midgley-Smith et al., 2019). 

Origin-independent growth 

Cells lacking 3’ exonucleases can grow in the absence of origin 

firing 

The replication profile in Figure 23 demonstrates a clear similarity between cells lacking RecG and 

cells lacking 3’ exonucleases; in the absence of either RecG or 3’ exonucleases, there is a defined peak 

of over-replication in the termination area. In ΔrecG cells, this origin-independent over-replication is 

robust enough to sustain cell growth in the absence of origin firing (Rudolph et al., 2013). 
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Is the same true for the over-replication seen in the absence of 3’ exonucleases? In order to assess 

if growth does arise as a result of this origin-independent over-replication, we created strain 

constructs lacking the three 3’ exonucleases in which we were able to prevent oriC from firing using 

DnaA(ts). We conducted spot dilution assays of dnaA Δtus rpo* ΔxonA ΔxseA ΔsbcCD cells and 

compared growth in the presence (30 °C) and absence (42 °C) of origin firing. We also assayed the 

single and double mutant strains in a dnaA Δtus rpo* background in order to assess if origin-

independent growth can occur in the absence of only one or two of the proteins. Briefly, a sample of 

each exponentially growing culture at 30 °C was taken and serially diluted. Dilutions were spotted on 

to LB and minimal salts agar plates in duplicate and one set was then incubated at the permissive 

temperature for DnaA(ts) of 30 °C and the other at the restrictive temperature of 42 °C. 

The spot dilution assay revealed that, as is seen in the absence of RecG, dnaA Δtus rpo* cells lacking 

all three 3’ exonucleases can indeed grow in the absence of origin firing (Figure 24, dnaA Δtus rpo* 

ΔxonA ΔxseA ΔsbcCD at 42 °C). These cells show robust levels of origin-independent growth, which is 

consistent with the clear peak of over-replication seen in Figure 23 and establishes further similarity 

between cells lacking RecG and cells lacking 3’ exonucleases. The smaller colony sizes of dnaA Δtus 

rpo* cells lacking all three 3’ exonucleases at 30 °C after 24 h incubation (Figure 24, 30 °C, 24 h 

incubation) demonstrates that these cells have a mild slow-growth phenotype that is not seen in the 

absence of one or two 3’ exonucleases, but subsequent growth following incubation for 48 h confirmed 

that the viability of the cells was not significantly affected (Figure 24, 30 °C, 48 h incubation). 

The absence of each 3’ exonuclease individually resulted in very little or no origin-independent 

growth, indicating that the presence of any two of the 3’ exonuclease proteins is sufficient to prevent 

origin-independent growth occurring in these cells. However, the small amount of growth seen at 42 

°C in the absence of ExoI only (Figure 24, dnaA Δtus rpo* ΔxonA) and not in the absence of either ExoVII 

or SbcCD (Figure 24, dnaA Δtus rpo* ΔxseA and dnaA Δtus rpo* ΔsbcCD respectively) suggests that 

ExoVII and SbcCD are not as effective at preventing origin-independent replication initiation as ExoI. 

The fact that growth is inhibited in dnaA Δtus rpo* ΔxseA ΔsbcCD cells at 42 °C even after 48 hours 

shows clearly that the presence of ExoI alone is enough to prevent origin-independent growth. 

Introduction of ΔsbcCD to dnaA Δtus rpo* ΔxonA cells improved growth at 42 °C significantly, and an 

even stronger effect was seen by the introduction of ΔxseA to dnaA Δtus rpo* ΔxonA cells. This assay 

demonstrates the very clear hierarchy of the 3’ exonucleases in preventing origin-independent 

growth, with ExoI being the most important, followed by ExoVII and finally SbcCD. 
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Figure 24: The effect of ΔxonA, ΔxseA and ΔsbcCD on origin-independent growth. A spot dilution assay 

was used to evaluate the relative contribution of Exo I, Exo VII and SbcCD in supressing growth arising via 

origin-independent DNA replication. The strains carry a temperature sensitive allele for the DnaA initiator 

protein, dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Growth occurring at 

the restrictive temperature is achieved in the absence of oriC firing. The replication fork trap in the 

termination area was inactivated by deletion of the tus gene and an rpoB*35 point mutation was 

introduced, which destabilises ternary RNA polymerase complexes. The strains used were RCe267 

(dnaA46 Δtus rpo*), RCe528 (dnaA46 Δtus rpo* ΔxonA), SLM1219 (dnaA46 Δtus rpo* ΔxseA), RCe553 

(dnaA46 Δtus rpo* ΔsbcCD), SLM1194 (dnaA46 Δtus rpo* ΔxonA ΔxseA), RCe554 (dnaA46 Δtus rpo* ΔxonA 

ΔsbcCD), SLM1223 (dnaA46 Δtus rpo* ΔxseA ΔsbcCD) and SLM1226 (dnaA46 Δtus rpo* ΔxonA ΔxseA 

ΔsbcCD). 

To investigate chromosome replication in cells lacking 3’ exonucleases in more detail, we conducted 

marker frequency analysis via deep sequencing to generate replication profiles of cells lacking either 

ExoI (ΔxonA), ExoVII (ΔxseA) or SbcCD (ΔsbcCD). 
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Figure 25: Replication profiles of E. coli cells in the presence and absence of the exonucleases ExoI, ExoVII 

or SbcCD. Shown is the marker frequency analysis of exponentially growing cultures generated via deep 

sequencing. Read numbers (normalised against a stationary phase wild type control) are plotted against 

the chromosomal location. The schematic above the graphs is a representation of the E. coli chromosome, 

showing the position of oriC (green line) and ter sites (red lines for those in the left hand replichore and 

blue lines for those in the right hand replichore) above and the seven rrn operons and the chromosome 

dimer resolution site dif below. Sequencing templates were isolated from MG1655 (wild type), RCe563 

(ΔxonA), SLM1185 (ΔxseA) and RCe562 (ΔsbcCD). Marker frequency profiles for key constructs have been 

generated independently twice. Only one representative replication profile is shown. 

The replication profile of wild type cells (Figure 25, panel I) fits well with previously reported marker 

frequency analysis, with a clearly defined origin region present at the highest frequency on a 

population level and the lowest copy numbers in the termination region on a population level (Ivanova 

et al., 2015; Maduike et al., 2014; Rudolph et al., 2013; Skovgaard et al., 2011). The replication profiles 

of ΔxonA, ΔxseA and ΔsbcCD cells show that on a population level, in the absence of ExoI, ExoVII or 

SbcCD (Figure 25, panels II, III and IV respectively), there is no peak of over-replication in the 

termination area and the profiles look like that of wild-type cells (Figure 25, panel I), in stark contrast 

to the high frequency of initiation within the termination area seen in the profile of cells lacking all 

three exonucleases (Figure 23 panel III). As seen from the growth assay in Figure 24 however, all single 

mutants in a dnaA Δtus rpo* background show essentially no growth in the absence of origin firing and 

so it is not particularly surprising that the single mutant replication profiles do not show any over-

replication. 

In line with the origin-independent growth seen in cells combining ΔxonA with ΔxseA or ΔsbcCD in 

a dnaA Δtus rpo* background (Figure 24), replication profiles of ΔxonA ΔxseA cells and ΔxonA ΔsbcCD 

cells show peaks of over-replication within the termination area (Figure 26, panels I and II), as was 

shown previously for ΔxonA ΔsbcCD cells (Wendel et al., 2014, 2018). However, the peaks are small, 

especially compared to those seen in the absence of RecG or the triple 3’ exonuclease mutant strain 

(Rudolph et al., 2013; Figure 23) which suggests that the presence of any one of the 3’ exonuclease 

proteins will compensate for the absence of the other two to some extent, limiting the over-replication 

seen in the termination region in the replication profiles of the double mutant strains (Figure 26). 
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Figure 26: Replication profiles of E. coli cells in the absence of two exonucleases. Shown is the marker 

frequency analysis of exponentially growing cultures generated via deep sequencing. Read numbers 

(normalised against a stationary phase wild type control) are plotted against the chromosomal location. 

The schematic above the graphs is a representation of the E. coli chromosome, showing the position of 

oriC (green line) and ter sites (red lines for those in the left hand replichore and blue lines for those in the 

right hand replichore) above and the seven rrn operons and the chromosome dimer resolution site dif 

below. Sequencing templates were isolated from SLM1203 (ΔxonA ΔxseA), RCe569 (ΔxonA ΔsbcCD) and 

SLM1209 (ΔxseA ΔsbcCD). Marker frequency profiles for key constructs have been generated 

independently twice. Only one representative replication profile is shown. 

It is also possible that the peaks of over-replication seen in ΔxonA ΔxseA and ΔxonA ΔsbcCD cells 

(Figure 26) are less defined than that seen in the absence of RecG partly because the profiles are 

slightly shallower. In the profile of ΔrecG cells (Figure 23), the downwards slope of both the left- and 

right-hand replichores either side of the termination area is more acute than that in cells lacking 3’ 

exonucleases, and this makes the peak more defined and visible. 

The growth assay of dnaA Δtus rpo* cells lacking 3’ exonucleases (Figure 24) revealed that cells 

lacking all three 3’ exonucleases have a mild slow growth phenotype (Figure 24; 30 °C, 24 h 

incubation). dnaA Δtus rpo* ΔxonA ΔxseA cells show no growth defects (30 °C) and grow robustly in 

the absence of origin firing even in the presence of SbcCD (42 °C) and so this strain was used for 

further experiments. 

Origin-independent growth requires inactivation of the 

replication fork trap 

The origin-independent over-replication in cells lacking RecG is only able to sustain cell growth in the 

absence of origin firing when a combination of two mutations are introduced to dnaA ΔrecG cells; Δtus 

inactivates the replication fork trap and an rpoB*35 point mutation in the β subunit of the RNA 

polymerase alleviates conflicts between replication and transcription complexes (Rudolph et al., 

2013). Without these two mutations, dnaA ΔrecG cells are unable to grow at the restrictive 

temperature (page 68). 
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The fact that over-replication seen in the replication profiles of cells lacking 3’ exonucleases is 

confined to the termination area suggested that the same would apply to origin-independent growth 

in dnaA ΔxonA ΔxseA strains. In order to confirm if this was the case, we carried out a spot dilution 

assay of dnaA ΔxonA ΔxseA cells in the presence and absence of Tus protein and the rpo* point 

mutation separately and in combination. 

 

Figure 27: The effect of the replication fork trap and replication-transcription encounters on origin-

independent growth in the absence of ExoI (ΔxonA) and ExoVII (ΔxseA). A spot dilution assay was used 

to evaluate the growth arising via origin-independent DNA replication in strains carrying a temperature 

sensitive allele for the DnaA initiator protein, dnaA46, which produces a protein that is functional at 30°C 

but not at 42°C. Growth occurring at the restrictive temperature is achieved in the absence of oriC firing. 

The replication fork trap in the termination area was inactivated by deletion of the tus gene. The effects 

of replication-transcription encounters were reduced by introducing a point mutation, rpoB*35, which 

destabilises ternary RNA polymerase complexes. The strains used were SLM1246 (dnaA46 ΔxonA ΔxseA), 

SLM1244 (dnaA46 ΔxonA ΔxseA Δtus), SLM1245 (dnaA46 ΔxonA ΔxseA rpo*) and SLM1194 (dnaA46 ΔxonA 

ΔxseA Δtus rpo*). 

The growth assay confirmed that, like dnaA ΔrecG cells, dnaA ΔxonA ΔxseA cells are unable to form 

colonies at the restrictive temperature of 42 °C (Figure 27). The introduction of an rpo* point mutation 

resulted in a marginal increase in growth. Inactivation of the replication fork trap by deleting tus 

resulted in much more significant levels of growth, especially following 48 hrs incubation, showing 

that origin-independent over-replication is able to sustain growth once the replication forks are able 

to leave the termination area. This growth was improved even further in dnaA ΔxonA ΔxseA cells that 

carried a combination of both Δtus and rpo* mutations (Figure 27). This is in line with the idea that 

origin-independent replication initiates in the termination area in cells lacking the 3’ exonucleases 

and is only able to sustain growth at the restrictive temperature in a dnaA background once the fork 
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trap is inactivated. Forks leaving the termination region will be moving in the opposite orientation to 

normal and so will encounter problems resulting from replication-transcription conflicts, and the rpo* 

mutation relieves these conflicts to some extent (Dutta et al., 2011; Trautinger et al., 2005), leading to 

a stronger origin-independent growth phenotype (Figure 27). 

Over-replication of the termination area is 

abolished if the chromosome is linearised 

Although the chromosomes of most prokaryotes, including E. coli, are circular, some bacteriophages 

as well as some bacterial species have linear chromosomes like eukaryotes. Cui and colleagues (Cui et 

al., 2007) exploited the linearization mechanism of the E. coli bacteriophage N15 in order to 

investigate whether the E. coli chromosome could be linearised or not and to assess any effects on 

prokaryotic cells that result from having a linear chromosome. In this system, the tos sequence is 

introduced to the chromosome near to the dimer resolution site, dif, within the termination region. 

Lysogenic infection introduces the N15 telomerase TelN to the cells, which mediates linearization by 

processing the DNA at a site within tos to generate two termini with hairpin ends (see page 161 for 

more detail) (Cui et al., 2007). They reported that the E. coli cells remained viable and the linearised 

chromosome structure was stable. Linearisation did not affect the growth of wild type cells (Cui et al., 

2007), a finding that was subsequently independently confirmed (Rudolph et al., 2013). 

It was recently reported that chromosome linearization affects the origin-independent over-

replication seen in cells lacking RecG (Dimude et al., 2015; Rudolph et al., 2013). The over-replication 

within the termination area is substantially reduced in ΔrecG cells with a linearised chromosome. In 

line with this, dnaA Δtus rpo* ΔrecG cells with a linearised chromosome are no longer able to grow in 

the absence of origin firing. This supports the idea that replication originating in the termination 

region is responsible for the origin-independent growth in dnaA Δtus rpo* ΔrecG cells and if replication 

forks are prevented from meeting by chromosome linearization, this growth is abolished. Given that 

over-replication is observed in the termination area of cells lacking 3’ exonucleases, we wanted to 

investigate how the over-replication seen in these cells was affected when replication forks were 

prevented from meeting. Would it be a similar situation to that seen in ΔrecG cells, indicating a 

common underlying mechanism in initiation of origin-independent replication in the two strain 

backgrounds? 
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Figure 28: Confirmation of chromosome linearisation. A) Schematic representation of the region 

surrounding dif in the termination area in wild type cells and in cells with the tos-kan construct integrated. 

The linearisation verification primers are shown in green (Cui et al., 2007). B) PCR products generated with 

the linearisation verification primers for wild type (lane 1), tos-kan cells (lane 2) and N15 lysogen of tos-kan 

with a linearised chromosome (lane 3). The increase in product size between lane 1 and lane 2 indicates 

the presence of the tos-kan cassette. The N15 telomerase TelN is present in N15 lysogens. TelN cleaves its 

target sequence within tos, resulting in linearisation of the chromosome in tos-kan N15 lysogens. The 

linearisation site is located between the primer binding sites and so prevents the formation of a PCR 

product. C – E) Pulse field gel electrophoresis confirming linearisation of the chromosome. The tos 

sequence is inserted into a 273.6 kb NotI fragment shown in green in C, which is divided in to two 

fragments shown in green in E when tos is processed by TelN. One of these fragments forms an additional 

band near the base of the gel highlighted by an orange box that is absent from un-linearised chromosomal 

samples. The chromosomal DNA was prepared from SLM1213 (ΔxonA ΔxseA N15 lysogen) in lane 1, 

SLM1187 (ΔxonA ΔxseA tos-kan) in lane 2 and SLM1212 (ΔxonA ΔxseA tos-kan N15 lysogen) in lane 3. 

We utilised the system described above to achieve chromosome linearization in strains lacking two of 

the three main 3’ exonucleases, ΔxonA ΔxseA. Linearisation was confirmed (Figure 28) and marker 

frequency analysis by deep sequencing was conducted to establish replication profiles of ΔxonA ΔxseA 

cells with either a circular or linearised chromosome. The replication profiles show that the over-

replication in the termination region of ΔxonA ΔxseA cells is unaffected by the insertion of the tos-kan 

construct or by the lysogenic infection with N15, as the peak in the termination region in these cells is 

unchanged (Figure 29, panels I and II). If the over-replication was initiated from an origin-like 

sequence within the termination region (Kogoma, 1997), it is likely that the insertion of the tos-kan 

construct would disrupt it and the over-replication would be abolished but this is not what we see and 
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instead the peak appears the same as that seen in ΔxonA ΔxseA cells (cf. Figure 26 and Figure 29). 

However, origin-independent over-replication in the termination area of cells lacking 3’ exonucleases 

is completely abolished when the linearization sequence tos is combined with N15 lysogenic infection 

to linearise the chromosome (Figure 29, panel III). 

 

Figure 29: Replication profiles of E. coli cells showing the effect of chromosome linearization on 

replication in ΔxonA ΔxseA cells. Shown is the marker frequency analysis of exponentially growing 

cultures generated via deep sequencing. Read numbers (normalised against a stationary phase wild type 

control) are plotted against the chromosomal location. The schematic above the graphs is a 

representation of the E. coli chromosome, showing the position of oriC (green line) and ter sites (red lines 

for those in the left hand replichore and blue lines for those in the right hand replichore) above and the 

seven rrn operons and the chromosome dimer resolution site dif below. Introduction of the tos 

linearization sequence to ΔxonA ΔxseA cells was followed by lysogenic infection with N15, resulting in the 

expression of the telomerase TelN that processes tos. Sequencing templates were isolated from SLM1213 

(ΔxonA ΔxseA N15), SLM1187 (ΔxonA ΔxseA tos) and SLM1212 (ΔxonA ΔxseA tos N15 lysogen). Marker 

frequency profiles for key constructs have been generated independently twice. Only one representative 

replication profile is shown. 

The effect of chromosome linearisation on over-replication in the termination area of ΔxonA ΔxseA 

cells differs slightly to what is seen in ΔrecG cells following chromosome linearisation. The profile of a 

linearised ΔrecG strain showed that the over-replication within the termination area is significantly 

reduced following chromosome linearisation but it is not abolished entirely. Instead, there is 

amplification of the sequences on either side of the tos-kan construct (Rudolph et al., 2013), which is 

different to the complete lack of amplification seen in ΔxonA ΔxseA cells with a linearised chromosome. 

The growth of dnaA Δtus rpo* ΔxonA ΔxseA cells with either a circular or a linearised chromosome 

was assessed in the presence and absence of origin firing. 
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Figure 30: Spot dilution assays to evaluate DnaA-independent growth in dnaA Δtus rpo* ΔxonA ΔxseA cells 

with a linearised chromosome. Introduction of the tos linearization sequence to dnaA Δtus rpo* ΔxonA 

ΔxseA cells was followed by lysogenic infection with N15, resulting in the expression of the telomerase 

TelN that processes tos. The strains used were SLM1225 (dnaA46 Δtus rpo* ΔxonA ΔxseA tos), SLM1232 

(dnaA46 Δtus rpo* ΔxonA ΔxseA N15) and SLM1230 (dnaA46 Δtus rpo* ΔxonA ΔxseA tos N15 lysogen). 

In line with the replication profile data, the spot dilution assay in Figure 30 shows that the ability of 

dnaA Δtus rpo* ΔxonA ΔxseA cells to grow in the absence of origin firing is almost entirely abolished in 

the strain with a linearised chromosome, as is seen in cells lacking RecG. Linearisation does not affect 

the growth of the strain at the permissive temperature of 30 °C when the DnaA(ts) protein is 

functional and able to initiate DNA replication, which reiterates that E. coli cells with a linearised 

chromosome are viable and are able to grow as normal. The non-lysogenic tos strain and the N15 

lysogen without the linearization sequence both demonstrate that there is no reduction in origin-

independent growth in dnaA Δtus rpo* ΔxonA ΔxseA strains that retain a circular chromosome (Figure 

30; see Figure 24 and Figure 27 for the dnaA Δtus rpo* ΔxonA ΔxseA control). Therefore, the almost 

total loss of ability to grow in the absence of origin firing seen in the dnaA Δtus rpo* ΔxonA ΔxseA tos 

N15 lysogen is a direct result of linearising the chromosome. The most obvious change effected by the 

linearization of the chromosome at dif is that replication forks will not meet in the termination region 

but will instead run in to the hairpin structures generated by phage N15 processing of the tos sequence 

(Figure 41) (Cui et al., 2007). Whilst it is possible that other explanations might apply, the clear 

absence of origin-independent DNA synthesis and origin-independent growth in ΔxonA ΔxseA cells 

with a linearised chromosome strongly supports the idea that replication fork fusions are responsible 

for generating intermediates that can trigger the observed over-replication. 
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Origin-independent over-replication requires PriA 

helicase activity in cells lacking 3’ exonucleases 

Growth experiments of cells lacking RecG in the presence and absence of PriA helicase activity show 

that the robust origin-independent growth seen in ΔrecG cells is abolished in priA300 mutants. In line 

with this, marker frequency analysis revealed that there is no peak of origin-independent over-

replication in the termination area of ΔrecG cells when the helicase activity of PriA is disabled by the 

introduction of the priA300 allele (Rudolph et al., 2013). 

To establish further the requirements for origin-independent replication and growth seen in cells 

lacking 3’ exonucleases, we investigated how the presence and absence of the helicase activity of PriA 

affected ΔxonA ΔxseA cells. 

 

Figure 31: DnaA-independent growth in dnaA Δtus rpo* ΔxonA ΔxseA cells in the presence and absence of 

the helicase activity of PriA. The strains carry a temperature sensitive allele for the DnaA initiator protein, 

dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Growth occurring at the 

restrictive temperature is achieved in the absence of oriC firing. The strains used were SLM1194 (dnaA46 

Δtus rpo*ΔxonA ΔxseA) and SLM1198 (dnaA46 Δtus rpo* ΔxonA ΔxseA priA300). 

Introduction of a priA300 allele in to a dnaA Δtus rpo* ΔxonA ΔxseA strain had no effect on growth at 

the permissive temperature of 30 °C when DnaA(ts) protein is functional and able to initiate DNA 

replication at oriC. As is seen in the ΔrecG background however, the ability of dnaA Δtus rpo* ΔxonA 

ΔxseA priA300 cells to grow at 42 °C was abolished, which means that oriC- and DnaA-independent 

DNA replication is not able to sustain growth in dnaA Δtus rpo* ΔxonA ΔxseA cells when the helicase 

activity of PriA is disabled (Figure 31). 

In cells lacking RecG, the effect of priA300 on origin-independent growth is reflected in the 

disappearance of the peak of over-replication seen in the termination area of ΔrecG cells from the 

replication profile. This is explained by the model proposed for initiation of origin-independent DNA 

replication that a 3’ flap generated as a result of a replication fork fusion event is able to persist in the 

absence of RecG and can be targeted by PriA to load DnaB helicase and initiate replication. Helicase 

activity is required by PriA to modulate the DNA fork structure in order to achieve this (Rudolph et 

al., 2009b, 2010a, 2013). 

Given the results of the growth experiments and the ΔrecG priA300 replication profile, it seemed 

likely that the peak of over-replication seen in the termination area of ΔxonA ΔxseA cells would be 



 Results Part IV 

120 
 

eradicated in a priA300 strain. We constructed a ΔxonA ΔxseA priA300 strain and prepared the 

chromosomal DNA sample from exponentially growing cells in order to generate a replication profile 

through marker frequency analysis. The samples have been sent to Earlham Institute for marker 

frequency analysis via deep sequencing, but we have not received the data back yet and so are unable 

to generate a replication profile for this strain. 

srgA1 was found to be a suppressor of ΔrecG mutant phenotypes (Al-Deib et al., 1996). The fork 

structure that srgA1 is unable to process is effectively a 3’ flap, which is the predicted substrate 

generated in replication fork fusion events in the absence of RecG according to the model for origin-

independent DNA replication developed by Rudolph and colleagues (Dimude et al., 2015; Rudolph et 

al., 2009b, 2010a, 2013). The peak of over-replication in the termination region of ΔrecG cells is 

abolished in the replication profile of ΔrecG srgA1 double mutants (Rudolph et al., 2013). Growth 

experiments in dnaA Δtus rpo* ΔrecG srgA1 cells revealed that the origin-independent growth seen in 

ΔrecG cells is also almost entirely abolished (reduced over 1000-fold) in the presence of the mutant 

PriA[L557P] protein, supporting the idea that a 3’ flap structure generated during replication 

termination, which would normally be eliminated by RecG, is able to persist in the absence of RecG 

and be targeted by PriA for replication initiation (Rudolph et al., 2013). 

In order to establish if the 3’ flap processing ability of PriA is essential for the origin-independent 

growth seen in cells lacking 3’ exonucleases, we utilised the spot dilution assay to assess origin-

independent growth in dnaA Δtus rpo* ΔxonA ΔxseA cells in the presence and absence of the srgA1 

allele. 

  

Figure 32: Spot dilution assays to evaluate the effect of PriA helicase mutations on DnaA-independent 

growth in dnaA Δtus rpo* ΔxonA ΔxseA cells. The strains carry a temperature sensitive allele for the DnaA 

initiator protein, dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Growth 

occurring at the restrictive temperature is achieved in the absence of oriC firing. The strains used were 

SLM1194 (dnaA46 Δtus rpo*ΔxonA ΔxseA), SLM1199 (dnaA46 Δtus rpo* ΔxonA ΔxseA srgA1) and SLM1198 

(dnaA46 Δtus rpo* ΔxonA ΔxseA priA300). SLM1194 and SLM1198 are reproduced from Figure 31. 
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As with the priA300 mutation, the presence of the srgA1 allele had no effect on growth of dnaA Δtus 

rpo* ΔxonA ΔxseA cells at the permissive temperature of 30 °C when DnaA(ts) protein is functional and 

able to initiate DNA replication. In contrast to what was observed in ΔrecG cells (Rudolph et al., 2013), 

we found that the dnaA Δtus rpo* ΔxonA ΔxseA srgA1 strain was able to grow at 42 °C via origin-

independent DNA replication (Figure 32). The colonies grow slowly and the inactivation of the 3’ flap 

processing ability of PriA (srgA1) does reduce growth by at least one order of magnitude, but it is not 

abolished to the same extent as that seen in both the dnaA Δtus rpo* ΔxonA ΔxseA and dnaA Δtus rpo* 

ΔrecG strains lacking the full helicase activity of PriA or the dnaA Δtus rpo* ΔrecG srgA1 strain (Figure 

31; Rudolph et al., 2013). This suggests that in contrast to ΔrecG cells, in the absence of 3’ exonucleases 

there are at least two independent pathways for initiation of origin-independent DNA replication, one 

which relies on PriA targeting of 3’ flaps and a second one which does not. 

This idea is supported by the replication profiles generated via marker frequency analysis. The 

peak of over-replication seen in the termination area of the replication profile of ΔxonA ΔxseA cells is 

not abolished by the presence of the srgA1 helicase (Figure 33 A) in contrast to what is seen in ΔrecG 

srgA1 cells (Rudolph et al., 2013). Therefore, origin-independent replication is able to initiate in ΔxonA 

ΔxseA srgA1 cells without the 3’ flap processing ability of PriA helicase. The profiles of the ΔxonA and 

ΔxseA single mutant strains are unaffected by the addition of the srgA1 allele (compare Figure 33 B, 

panels I and II with Figure 25, panels II and III respectively. All profiles were produced from the same 

sequencing run). The profile of srgA1 itself is equivalent to the wild-type profile (compare Figure 33 

B, panel III with Figure 25, panel I; the wild-type profile was produced from the same sequencing run 

as the srgA1 profile). 
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Figure 33: Replication profiles of E. coli cells with a srgA1 point mutation in the gene for PriA. Shown is the 

marker frequency analysis of exponentially growing cultures generated via deep sequencing. Read 

numbers (normalised against a stationary phase wild type control) are plotted against the chromosomal 

location. The schematic above the graphs is a representation of the E. coli chromosome, showing the 

position of oriC (green line) and ter sites (red lines for those in the left hand replichore and blue lines for 

those in the right hand replichore) above and the seven rrn operons and the chromosome dimer 

resolution site dif below. Sequencing templates were isolated from SLM1203 (ΔxonA ΔxseA), SLM1186 

(ΔxonA ΔxseA srgA1), SLM1172 (ΔxonA srgA1), SLM1214 (ΔxseA srgA1) and JJ1264 (srgA1). Marker frequency 

profiles for key constructs have been generated independently twice. Only one representative replication 

profile is shown. 

Over-replication initiating at 5’ flap structures 

The accumulation of 3’ flap structures in the termination region is what would be expected in cells 

lacking 3’ exonucleases, which could subsequently be targeted by PriA to initiate new replication forks 

that are then responsible for the over-replication seen in the absence of 3’ exonucleases (Figure 23, 

Figure 26) (Rudolph et al., 2013). So why does the introduction of the srgA1 allele of PriA not abolish 

all origin-independent replication and growth in dnaA Δtus rpo* ΔxonA ΔxseA cells (Figure 32, Figure 

33) when it does have that affect in ΔrecG derivatives? RecG protein is present in cells lacking one or 

more 3’ exonucleases, and in fact becomes essential for viability in the absence of all three 3’ 

exonucleases (Rudolph et al., 2010b). Whilst 3’ exonucleases have a relatively narrow activity and 
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substrate specificity (Lovett, 2011), RecG has been shown to unwind a variety of structures (Lloyd and 

Rudolph, 2016). If RecG is able to convert 3’ flap structures to 5’ flaps in vivo, then one explanation 

might be that because RecG is still present in these cells, it is able to convert 3’ flaps generated at 

replication fork fusion events to 5’ flaps, which are normally degraded by exonucleases with 5’ to 3’ 

polarity, such as RecJ or ExoVII (Lovett, 2011) but might occasionally provide a substrate for the 

initiation of origin-independent replication instead. If this is the case, cells lacking 5’ flap processing 

should show an increase in origin-independent over-replication. This prompted the idea that the 

growth of dnaA Δtus rpo* ΔxonA ΔxseA srgA1 cells at 42 °C might be due to the absence of ExoVII 

reducing the 5’ flap processing capability of the cells and allowing PriA the opportunity to establish 

origin-independent synthesis at 5’ flaps. To establish if this is the case, we utilised the spot dilution 

assay to assess the growth of dnaA Δtus rpo* ΔxonA and dnaA Δtus rpo* ΔxonA srgA1 cells at permissive 

and restrictive temperatures. 

 

Figure 34: Spot dilution assay to evaluate the effect of srgA1 allele of PriA on DnaA-independent growth 

in dnaA Δtus rpo* ΔxonA cells. The strains carry a temperature sensitive allele for the DnaA initiator 

protein, dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Growth occurring at 

the restrictive temperature is achieved in the absence of oriC firing. The strains used were RCe528 (dnaA46 

Δtus rpo*ΔxonA) and SLM1110 (dnaA46 Δtus rpo*ΔxonA srgA1). 

As shown in Figure 34, in the presence of ExoVII, the origin-independent growth seen in dnaA Δtus 

rpo* ΔxonA cells is abolished when the srgA1 allele of PriA is introduced, demonstrating that the origin-

independent growth in the absence of ExoI is in fact dependent on the 3’ flap-processing ability of 

PriA. dnaA Δtus rpo* ΔxonA srgA1 cells can only grow at the restrictive temperature when the 5’ 

exonuclease capability of the cells has been diminished via the deletion of ΔxseA. 

To investigate this further, we then generated replication profiles of ΔxonA ΔxseA strains in the 

presence and absence of RecJ, an exonuclease with 5’-3’ activity that specifically degrades ssDNA 

(Lovett, 2011). If origin-independent over-replication can initiate from 5’ flap substrates in some way, 

then removing RecJ should result in an increase in over-replication in cells lacking 3’ exonucleases. 
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Figure 35: Replication profiles of E. coli cells showing the effect of recJ deletion on replication in ΔxonA 

and ΔxseA cells. Shown is the marker frequency analysis of exponentially growing cultures generated via 

deep sequencing. Read numbers (normalised against a stationary phase wild type control) are plotted 

against the chromosomal location. The schematic above the graphs is a representation of the E. coli 

chromosome, showing the position of oriC (green line) and ter sites (red lines for those in the left hand 

replichore and blue lines for those in the right hand replichore) above and the seven rrn operons and the 

chromosome dimer resolution site dif below. Sequencing templates were isolated from MG1655 (wild 

type), RCe563 (ΔxonA), SLM1185 (ΔxseA), N4934 (ΔrecJ), SLM1178 (ΔrecJ ΔxonA) and SLM1204 (ΔrecJ 

ΔxseA). Marker frequency profiles for key constructs have been generated independently twice. Only one 

representative replication profile is shown. 

The absence of RecJ alone in an otherwise wild-type background does not alter the replication profile 

from that seen in wild-type cells. The replication profiles of ΔxonA and ΔxseA cells are also unaffected 

by the absence of RecJ (Figure 35). It is possible that origin-independent over-replication is not able 

to initiate from 5’ flaps that persist in ΔrecJ cells, and so no effect is seen in the replication profiles of 

ΔrecJ derivatives. It is also possible that ExoVII (xseA) masks any effect of the absence of RecJ in ΔrecJ 

ΔxonA cells, as ExoVII has 5’ – 3’ exonuclease activity as well as being a 3’ exonuclease, and so this 

enzyme is likely to be compensating for ΔrecJ. However, as no peak of over-replication is seen in the 

ΔxonA and ΔxseA single mutants (Figure 25) it is perhaps not surprising that the absence of RecJ does 

not influence the replication profiles of these strains. 
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Figure 36: Replication profiles of E. coli cells showing the effect of recJ deletion on replication in ΔxonA 

ΔxseA cells. Shown is the marker frequency analysis of exponentially growing cultures generated via deep 

sequencing. Read numbers (normalised against a stationary phase wild type control) are plotted against 

the chromosomal location. The schematic above the graphs is a representation of the E. coli chromosome, 

showing the position of oriC (green line) and ter sites (red lines for those in the left hand replichore and 

blue lines for those in the right hand replichore) above and the seven rrn operons and the chromosome 

dimer resolution site dif below. Sequencing templates were isolated from SLM1203 (ΔxonA ΔxseA) and 

SLM1188 (ΔxonA ΔxseA ΔrecJ). Marker frequency profiles for key constructs have been generated 

independently twice. Only one representative replication profile is shown. 

In contrast, the absence of RecJ in a ΔxonA ΔxseA background results in a perceptible difference to the 

replication profile. There is a significant increase in the size of the peak of over-replication in the 

termination area of these cells (Figure 36), which means that there is a higher incidence of origin-

independent replication in the termination area in ΔxonA ΔxseA cells in the absence of RecJ compared 

to that seen when RecJ is present to degrade 5’ flap structures. If in the absence of 3’ exonucleases, 3’ 

flaps are converted to 5’ flaps and in the absence of 5’ exonucleases ExoVII and RecJ, instead of being 

degraded can be targeted as a substrate for replication initiation, then we would expect an increase in 

the over-replication seen in the termination region of ΔxonA ΔxseA cells when RecJ is absent, and this 

is exactly what we see (Figure 36). 

To establish if the increase in over-replication of the termination area of ΔxonA ΔxseA cells in the 

absence of RecJ translates in to an increase in origin-independent growth, a spot dilution assay was 

used to assess the growth of dnaA Δtus rpo* ΔxonA cells at 42 °C in the presence and absence of RecJ. 

Until this point, ΔxonA ΔxseA cells had been utilised instead of cells lacking all three 3’ exonucleases. 

The origin-independent growth in dnaA Δtus rpo* ΔxonA ΔxseA cells (Figure 24) is robust enough that 

it would not be possible using the spot dilution assay to measure any improvement in growth that 

deleting recJ might allow. dnaA Δtus rpo* ΔxonA cells achieve single colony growth at the 1 × 10-3 

dilution at 42 °C and therefore allow for an increase in origin-independent growth to be assessed and 

the effect of ΔrecJ on origin-independent growth in dnaA Δtus rpo* ΔxonA cells to be determined. 
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Figure 37: Spot dilution assays to evaluate the effect of recJ deletion on DnaA-independent growth in 

dnaA tus rpo* xonA cells. The strains carry a temperature sensitive allele for the DnaA initiator protein, 

dnaA46, which produces a protein that is functional at 30°C but not at 42°C. Growth occurring at the 

restrictive temperature is achieved in the absence of oriC firing. The strains used were SLM1218 (dnaA46 

Δtus rpo* ΔxonA), SLM1233 (dnaA46 Δtus rpo* ΔrecJ) and SLM1224 (dnaA46 Δtus rpo* ΔxonA ΔrecJ). 

There was no difference in growth of dnaA Δtus rpo* cells at either the permissive (30 °C) or restrictive 

(42 °C) temperature in the absence of RecJ (Figure 37). The minimal growth and large colony variants 

seen at 42 °C in the absence of origin firing is equivalent to that seen previously in the dnaA Δtus rpo* 

strain (Figure 24). In dnaA Δtus rpo* ΔxonA cells however, origin-independent growth is at least 

doubled in the absence of RecJ, suggesting that replication initiating at 5’ flaps in the absence of RecJ 

can indeed contribute to the origin-independent growth seen in dnaA Δtus rpo* ΔxonA cells. This is in 

line with the observed increase of origin-independent DNA synthesis seen in the termination area of 

ΔxonA ΔxseA cells in the absence of RecJ (Figure 36). 

DNA replication in strains carrying an ectopic 

replication origin 

To gain further insights in to the events that trigger initiation in the termination area in the absence 

of 3’ exonucleases, we generated strains with an additional copy of oriC inserted into the chromosome. 

This copy of oriC, termed oriZ, is located roughly a quarter of the way around the right-hand 

replichore, clockwise from oriC (Figure 13) (Ivanova et al., 2015; Wang et al., 2011). Previous work on 

double origin strains lacking RecG shows that there is a substantial increase in the peak of over-

replication seen in the termination area of ΔrecG cells when oriZ is present (Rudolph et al., 2013). A 

further significant result was that the shorter interval between oriC and oriZ that forms a new, ectopic 
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location of fork fusion events was significantly shallower in the absence of RecG. This is indicative of 

amplification of the region, which is consistent with over-replication initiated as a result of fork 

fusions taking place in this location due to the presence of the ectopic origin. In the absence of ter/Tus 

complexes creating a defined termination area, over-replication of the chromosome will not appear 

as a defined peak like that seen in the native termination area and instead will lead to a broader 

increase in marker frequency of the region (Midgley-Smith et al., 2018; Rudolph et al., 2013). 

Is the peak of over-replication in ΔxonA ΔxseA cells affected by the presence of an ectopic 

replication origin? To investigate this, replication profiles of ΔxonA, ΔxseA and ΔxonA ΔxseA cells in an 

oriC+ oriZ+ background were established (Figure 38). The equal peak height of the two origin regions 

confirms synchronous initiation occurs at oriC and oriZ as reported previously (Rudolph et al., 2013; 

Wang et al., 2011). The double origin profiles are asymmetric as is expected, which is due to the fact 

that the clockwise replication fork initiating at oriZ will reach the termination area in advance of the 

anti-clockwise fork initiated at oriC, and so will proceed through the termination area and be blocked 

at terC/Tus or terB/Tus. On a population basis, this results in many more cells having replicated the 

lower half of the right-hand replichore including the terA – terC/B region compared with the area 

behind terB. This is what causes the step in the replication profile at the termination area. 

In contrast to what is seen in oriC+ oriZ+ ΔrecG cells, the replication profile of oriC+ oriZ+ ΔxonA 

ΔxseA cells shows that the peak of over-replication in the termination area of ΔxonA ΔxseA cells is not 

substantially increased by the presence of an ectopic replication origin, and in fact is not visible in the 

profile (Figure 38, panels I and IV). This does not necessarily mean that the over-replication is 

abolished however; the replication profile is so skewed in the termination area due to the distorted 

physiology of the chromosome and it is possible that this is enough to mask the relatively minor peak 

that is present in ΔxonA ΔxseA cells. 

Is the profile of the shorter chromosomal region between the two origins altered in the absence of 

ExoI and ExoVII, as is seen in cells lacking RecG (Midgley-Smith et al., 2018; Rudolph et al., 2013). In 

the absence of a replication profile of oriC+ oriZ+ cells from this sequencing run, the oriC+ oriZ+ ΔxonA 

profile was used as the comparison, as the profile of a ΔxonA single mutant shows no obvious 

differences to the profile of wild type cells (Figure 25). An overlay of the replication profiles for oriC+ 

oriZ+ ΔxonA and oriC+ oriZ+ ΔxseA cells shows the similarity between the two profiles (Figure 44, panel 

I), indicating that any differences between the profiles of oriC+ oriZ+ ΔxonA and oriC+ oriZ+ ΔxonA ΔxseA 

must arise as a result of the combined deletion of xonA and xseA. All strains involved were sequenced 

as part of the same sequencing run, and the same stationary phase sample was used for normalising 

the data sets of all three strains. If over-replication occurs in the ectopic fork fusion region in oriC+ 

oriZ+ ΔxonA ΔxseA cells, an increase in the marker frequency of this region in comparison to xonA+ 

xseA+ cells would be expected. Overlaying the oriC+ oriZ+ ΔxonA ΔxseA profile on to the oriC+ oriZ+ ΔxonA 

profile, aligned according to the oriC peak height, reveals that the valley between the origins is less 

defined in the absence of both ExoI and ExoVII (Figure 38, panel V). The effect is subtle, and there 

might be alternative explanations that explain this, but the result warrants a more detailed analysis in 
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the future. Growth experiments confirmed that the doubling times of oriC+ oriZ+ ΔxonA and oriC+ oriZ+ 

ΔxonA ΔxseA cells are very similar (data not shown; Midgley-Smith et al., 2019), suggesting that the 

frequency of origin firing is unlikely to be affected by the presence or absence of xseA and if this is the 

case, the alignment via the origin peal height is justified. 

 

Figure 38: Replication profiles of E. coli cells with two replication origins lacking ΔxonA, ΔxseA or both. 

Shown is the marker frequency analysis of exponentially growing cultures generated via deep 

sequencing. Read numbers (normalised against a stationary phase wild type control) are plotted against 

the chromosomal location. The chromosome coordinates are offset to start 0.9 Mb to make it easier to 

see the shorter interval between the replication origins. The schematic above the graphs is a 

representation of the E. coli chromosome, showing the position of oriC (green line) and ter sites (red lines 

for those in the left hand replichore and blue lines for those in the right hand replichore) above and the 

seven rrn operons and the chromosome dimer resolution site dif below. Sequencing templates were 

isolated from SLM1203 (ΔxonA ΔxseA), SLM1206 (oriC+ oriZ+ ΔxonA), SLM1208 (oriC+ oriZ+ ΔxseA) and 

SLM1217 (oriC+ oriZ+ ΔxonA ΔxseA). Marker frequency profiles for key constructs have been generated 

independently twice. Only one representative replication profile is shown. 

That the difference between the two profiles (Figure 38, panel V) is subtle is not surprising given the 

relatively small peak seen in the native termination area of ΔxonA ΔxseA cells despite the fact that in 

this region, ter/Tus traps are present to focus the over-replication. I have since created a double origin 

strain that has ter sites inserted in between the two origins, flanking the region where most forks 

meet, thereby creating an ectopic fork trap. When ΔrecG is introduced to this strain, the broad 

amplification of the ectopic fork fusion region seen in the replication profile of oriC+ oriZ+ ΔrecG cells 
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without the ectopic ter sites is replaced by a clear peak of over-replication, which strongly supports 

the idea that origin-independent over-replication in ΔrecG cells is co-localised with fork fusion events 

(Figure 15) (Midgley-Smith et al., 2018). The double origin ectopic ter strain could be used to 

determine if the same is true for the over-replication in the ectopic termination region of cells lacking 

3’ exonucleases. These experiments are currently being undertaken in the Rudolph lab. 

ExoI and ExoVII are not essential for the survival of oriZ+ cells 

lacking oriC 

It has previously been shown that it is possible to delete the entire oriC region in a strain carrying the 

ectopic replication origin, oriZ, which can provide insights in to the established architecture of E. coli 

chromosomes and problems that arise when this is altered (Ivanova et al., 2015). We recently found 

that it was not possible to delete oriC in this strain background in the absence of RecG. By exploiting a 

synthetic lethality assay (page 61), we were able to confirm that ΔoriC oriZ+ ΔrecG cells are not viable 

(Midgley-Smith et al., 2018). This assay uses a gene expressed from pRC7, an unstable plasmid that is 

rapidly lost and carries a functional lac operon, to cover chromosomal deletion of the gene in a Δlac 

strain background. Following introduction of further mutations, plasmid-free colonies can be 

distinguished from those where the covering plasmid is present by plating the cultures on to plates 

containing IPTG and X-gal (Bernhardt and de Boer, 2004). Mutations that abolish over-replication in 

ΔrecG cells (priA300) or that allow forks arising from origin-independent replication to leave the 

termination area (Δtus) were found to restore viability of ΔoriC oriZ+ ΔrecG cells (Midgley-Smith et al., 

2018). 

We investigated oriC+ oriZ+ strains lacking 3’ exonucleases further by attempting to delete oriC in 

this strain background. Given that this is not possible in ΔrecG cells without a covering plasmid, we 

investigated this initially using a synthetic lethality assay. We created ΔxonA and ΔxonA ΔxseA 

derivatives of oriC+ oriZ+ Δlac cells, and then transformed the resulting strains with the pAM488 lac+ 

plasmid expressing xonA to cover the chromosomal xonA deletion. Using P1vir transduction, we then 

generated ΔoriC::kan derivatives of these strains. We confirmed the deletion of oriC from the resulting 

strains through PCR analysis of the oriC chromosomal region (Figure 45). 

Briefly, samples of ΔoriC oriZ+ Δlac ΔxonA pxonA+ and ΔoriC oriZ+ Δlac ΔxonA ΔxseA pxonA+ cells 

were extracted from exponential phase cultures and dilutions were plated on LB agar or M9 glucose 

minimal salts agar supplemented with IPTG and X-gal. IPTG induces expression of the lac operon, 

which results in the production of β-galactosidase. This hydrolyses X-gal and the product of this 

reaction produces a blue pigment. Cells without the plasmid do not produce a blue colour. Blue and 

white colonies were counted after incubation at 37 °C. If the deletion of oriC is lethal in cells lacking 3’ 

exonucleases, cells in which the covering plasmid is lost will fail to grow and the lac+ cells that retain 

the plasmid will form blue colonies only. If viability is not affected, both blue and white colonies will 



 Results Part IV 

130 
 

form, and if viability is reduced but not eliminated, plasmid-free cells will form white colonies that will 

be noticeably smaller than the blue colonies. 

 

Figure 39: Viability of ΔoriC oriZ+ cells in the absence of 3’ exonucleases. Photographs of synthetic lethality 

assays show the effect of xonA and xseA deletions on the viability of ΔoriC oriZ+ cells. The images are 

representative of the total plate in each case. The relevant genotype and strain number of each strain 

used is shown above each image, and the number of white colonies (which have lost the covering 

plasmid) is shown below as a fraction of the total number of colonies of that plate. The actual colony 

numbers for each plate is shown in parentheses as number of white/total colonies counted.  

The presence of both white and blue colonies and segregation within the blue colonies in the synthetic 

lethality assay revealed that ΔoriC oriZ+ cells are viable in the absence of ΔxonA or ΔxonA ΔxseA, in 

contrast to what is seen in the absence of RecG (Figure 39) (Midgley-Smith et al., 2018). The fact that 

the white and blue colonies are the same size shows that plasmid-free cells are able to grow as robustly 

as those that retain the plasmid, which means that ΔoriC oriZ+ ΔxonA and ΔoriC oriZ+ ΔxonA ΔxseA cells 

are not only viable but are healthy. 

When ampicillin-containing agar plates were initially inoculated with frozen stocks of the two 

strains used in this assay, large colony variants present on both plates indicated that suppressor 

mutations develop in both strain constructs, as reported previously for ΔoriC oriZ+ constructs (Ivanova 

et al., 2015). However, I noticed that on both these plates and the subsequent LB IPTG X-gal plates 

from the initial experiment that there were more suppressor colonies on the ΔoriC oriZ+ ΔxonA 

pAM488 (xonA+) (JD1350) plates than on the ΔoriC oriZ+ ΔxonA ΔxseA pAM488 (xonA+) plates. Given 

the fact that the presence of ampicillin selects for cells carrying the plasmid, which contains a gene for 

ampicillin resistance, the ΔoriC oriZ+ ΔxonA pAM488 (xonA+) strain is purely ΔoriC oriZ+, and JD1351 
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is the same but with xseA deleted. It is therefore possible that pathology seen normally in ΔoriC oriZ+ 

strains is reduced slightly in the absence of ExoVII; further investigation would be required to confirm 

this. 

Discussion 

It was shown previously that in the absence of either RecG helicase or 3’ exonucleases, replication can 

initiate independently of both DnaA and oriC and it was proposed that this might arise as a result of 

PriA-mediated replication initiated at 3’ flap structures generated as two replication forks fuse 

(Rudolph et al., 2010a, 2013). Recent work investigating the origin-independent synthesis seen in 

ΔrecG cells provides compelling evidence in support of this and is in line with a role for RecG in 

managing events at replication termination, including data presented earlier in this thesis (page 65) 

(Dimude et al., 2015; Lloyd and Rudolph, 2016; Midgley-Smith et al., 2018; Rudolph et al., 2009a, 

2009b, 2013). Based on the hypothesis that 3’ flap structures might result from replication fork 

fusions and the fact that over-replication of the termination area was observed in ΔxonA ΔxseA ΔsbcCD 

cells, it was suggested that 3’ exonucleases might also have a role at replication termination (Rudolph 

et al., 2013). 

While the results presented previously are certainly in line with this hypothesis, other 

explanations could apply, as the involvement of 3’ exonucleases in termination had not been 

rigorously tested. The data presented here confirm that in the absence of 3’ exonucleases, origin-

independent synthesis leads to over-replication of the termination region specifically (Figure 26), as 

reported previously (Rudolph et al., 2013; Wendel et al., 2014). I have shown that in cells lacking 3’ 

exonucleases, this over-replication is able to sustain robust growth in the absence of origin firing 

(Figure 24), and that this is only possible when the replication fork trap is inactivated by the deletion 

of tus (Figure 27). Replication forks leaving the termination area will proceed in an orientation 

opposite to normal, resulting in conflicts with transcription complexes, and indeed, origin-

independent growth is improved further when a point mutation that alleviates replication-

transcription conflicts (rpo*) (Dutta et al., 2011; Ivanova et al., 2015; McGlynn et al., 2012) is 

introduced (Figure 27). The fact that dnaA ΔxonA ΔxseA cells cannot grow in the absence of origin 

firing when dnaA Δtus rpo* ΔxonA ΔxseA cells can (Figure 27), despite the over-replication seen in the 

termination region of ΔxonA ΔxseA cells (Figure 26), strongly supports the idea that the origin-

independent DNA synthesis in cells lacking 3’ exonucleases is initiated as a result of events occurring 

within the termination region, in line with the idea that 3’ exonucleases normally perform some 

function at termination that inhibits this over-replication. These data show similarities to the origin-

independent synthesis in cells lacking RecG (Rudolph et al., 2013). 

In line with this, similarities were found in the genetic requirements for origin-independent 

synthesis to initiate in cells lacking either RecG or 3’ exonucleases. A circular chromosome has been 
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found to be a requirement for the over-replication in both ΔrecG and 3’ exonucleases-deficient strains. 

Replication terminates within the termination region when two converging forks fuse. If in the 

absence of 3’ exonucleases origin-independent over-replication initiates due to events at replication 

fork fusions, then it would be expected that by preventing forks from meeting, the over-replication 

would disappear, and this is exactly what is seen. Linearising the chromosome at a location near to dif 

within the termination region (Cui et al., 2007) prevents replication forks from meeting. The data 

reported here show that origin-independent growth is almost entirely abolished in dnaA Δtus rpo* 

ΔxonA ΔxseA cells when the chromosome is linearised (Figure 30) as is seen in cells lacking RecG 

(Dimude et al., 2015; Rudolph et al., 2013). The peak of over-replication in the replication profile of 

ΔxonA ΔxseA cells is also abolished on chromosome linearization (Figure 29), demonstrating that in 

these cells, the origin-independent over-replication cannot initiate. Thus, in the absence of either RecG 

or 3’ exonucleases, origin-independent synthesis is only able to initiate in cells with a circular 

chromosome, and the necessity for fork fusion events in generating substrates that PriA can target for 

re-initiation provides an explanation for this observation. 

In addition, previous work has shown that in ΔrecG cells, the initiation of origin-independent 

replication is dependent on the helicase activity of PriA, specifically its ability to process 3’ flaps 

(Dimude et al., 2015; Rudolph et al., 2013). Similarly, my data show that the helicase activity of PriA is 

also essential for origin-independent growth in the absence of 3’ exonucleases (Figure 31). Initially, it 

appeared that the specific 3’ flap processing ability of PriA was not essential for origin-independent 

growth as in contrast to the situation in the absence of RecG, origin-independent growth in cells 

lacking ExoI and ExoVII was not abolished when a srgA1 mutant allele was introduced (Figure 32). 

However, further investigation revealed that when ExoVII is present, the origin-independent growth 

of dnaA Δtus rpo* ΔxonA cells is in fact entirely abolished by the introduction of the srgA1 allele (Figure 

34). This confirmed that the growth of dnaA Δtus rpo* ΔxonA ΔxseA srgA1 cells seen at 42°C is very 

likely to be dependent on the absence of ExoVII, which has 5’ to 3’ exonuclease activity in addition to 

3’ to 5’ activity, and that the 3’ flap processing ability is therefore essential for origin-independent 

growth in dnaA Δtus rpo* ΔxonA cells (Figure 34), strongly suggesting that 3’ flap structures 

accumulate in the termination area in the absence of ExoI (Figure 40). Replication initiating at 3’ flap 

structures does underpin the majority of the origin-independent growth seen in cells lacking 3’ 

exonucleases, as in dnaA Δtus rpo* ΔxonA ΔxseA cells carrying the srgA1 allele, growth at restrictive 

temperature was reduced substantially (over 10-fold) (Figure 32), but the significant growth that 

remains demonstrates that there is at least one other mechanism for initiating origin-independent 

over-replication in these cells. Our ΔrecJ data support the idea that initiation at 5’ flaps might explain 

this to some degree. If RecG converts a 3’ flap to a 5’ flap, as suggested previously (Rudolph et al., 

2010b), the resulting structure would be accessible for primosome assembly by PriA (Tanaka and 

Masai, 2006) even in cells carrying the mutant protein (PriA L557P) encoded by srgA1 (Figure 40). In 

line with this, when 5’ flap degradation is prevented in cells lacking 3’ exonucleases by introduction 

of a recJ deletion, the peak of origin-independent over-replication seen in these cells increases (Figure 
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36) and the origin-independent growth of dnaA Δtus rpo* ΔxonA cells increases in the absence of RecJ 

(Figure 37) even though ExoVII, which has both 3’ and 5’ exonuclease activity (Lovett, 2011), is 

present in these cells. This result provides an explanation for the observation that dnaA Δtus rpo* 

ΔxonA ΔxseA srgA1 cells are able to grow in the absence of origin firing. 

There is a striking difference in the size of the peak of over-replication in cells lacking RecG 

compared to that seen in ΔxonA ΔxseA cells considering that both show similar viability of ~ 60% in a 

dnaA Δtus rpo* background when grown at restrictive temperature (this study and Rudolph et al., 

2013), revealing that there is not a direct correlation between the levels of over-replication and the 

ability of cells to grow in the absence of origin firing. Replication profiles of cells lacking ExoI and 

SbcCD have been generated previously by the Courcelle laboratory and show a peak of over-

replication in the termination region of ΔxonA ΔsbcCD cells (Wendel et al., 2014, 2018). Whilst our 

data are in line with this work in principle, the peak in the replication profile of our ΔxonA ΔsbcCD 

strain was much less pronounced (Figure 26). Their replication profiles also show a small but 

perceptible peak in the termination region of ΔxonA and ΔsbcCD single mutant strains, which are not 

defined in our profiles. Wendel and colleagues have also profiled cells lacking RecG (Wendel et al., 

2014) and again, the peak of over-replication seen in the replication profile of ΔrecG cells is 

significantly higher than that seen in previous work (Rudolph et al., 2013), which suggests that there 

is more origin-independent over-replication occurring in these strains than in our strains. The 

parental wild type strain, SR108, used by the Courcelle group is a derivative of W3110 (Donaldson et 

al., 2004). The genome sequences of W3110 and the parental wild type strain that we use, MG1655, 

are almost identical except that W3110 has been shown to have a large chromosomal inversion 

spanning rrnD-rrnE (Hayashi et al., 2006; Hill and Harnish, 1981; Skovgaard et al., 2011). The two 

operons are in opposite replichores but are both relatively close to oriC; rrnD is in the left hand 

replichore and rrnE is in the right hand replichore. The result of this inversion is that compared to 

MG1655, oriC is shifted slightly in to the left hand replichore because the distance between rrnD and 

oriC is greater than the distance between oriC and rrnE. In MG1655 cells, replication termination 

occurs very close to terC on average whereas in W3110, because of the inversion, it will be closer to 

terA. In W3110 derivatives, the anticlockwise fork will progress far enough to reach terA in the 

termination region, where it will then be held by the Tus/terA complex before fusing with an opposing 

fork. Previous work carried out in the Rudolph laboratory has shown that over-replication in ΔrecG 

cells is elevated substantially when one fork is trapped at a Tus/ter barrier before the converging fork 

arrives (Midgley-Smith et al., 2018; Rudolph et al., 2013), as discussed earlier (page 88) and so the 

asymmetric position of the origin in a W3110 background certainly explains the dramatic levels of 

over-replication seen in the replication profile of the Courcelle laboratory ΔrecG strain (Wendel et al., 

2014) compared to our own. Could it be that an asymmetric replichore arrangement has a similar 

effect in cells lacking 3’ exonucleases? The marker frequency replication profiles of double origin 

strains lacking 3’ exonucleases presented here (Figure 38) demonstrate that an asymmetric 

replichore arrangement certainly does not have the same effect as in the absence of RecG. It could still 
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have a mild effect but the distortion in the termination area resulting from the presence of the ectopic 

replication origin is likely to obscure any mild increase to the relatively small levels of over-replication 

that occurs in ΔxonA ΔsbcCD cells (cf. Figure 38 and Figure 26) whereas it may be more evident in a 

strain with a single origin that is mildly shifted (Wendel et al., 2014). The data presented here suggests 

that in cells lacking 3’ exonucleases, an asymmetric replichore arrangement does not trigger much 

higher levels of over-replication compared with single oriC+ backgrounds, in contrast to what is seen 

in ΔrecG cells (Rudolph et al., 2013). 

Could the differing levels of over-replication seen in the absence of either RecG or 3’ exonucleases 

be explained by the idea that synthesis may occur in only a subset of cells? However, the robust 

viability at 42 °C, which is observed in both ΔrecG and 3’ exonuclease-deficient strains, makes this very 

unlikely. So, despite the differences in over-replication, the viabilities of cells lacking RecG and 3’ 

exonucleases are very similar. Instead, a key difference between RecG and 3’ exonucleases that might 

help to explain the differing levels of over-replication observed is the involvement of RecG in 

recombination, as proposed before (Rudolph et al., 2013) and as discussed earlier (page 88) (Figure 

40). In line with this, Azeroglu and colleagues (2016) recently reported that RecG is important in 

managing replication initiation at sites of DSBR and that in the absence of RecG, divergent replication 

is initiated. If recombination triggers replication and, in the absence of 3’ exonucleases, RecG limits 

initiation at recombination intermediates, then this might well explain the differences in peak height 

observed. A high incidence of origin-independent over-replication initiation would present as a larger 

peak in the replication profile, but the problems caused by such high levels of recombination might 

result in fewer cells able survive in the absence of origin firing, as might be the case in ΔrecG cells. In 

contrast, there is no indication that 3’ exonucleases have a role in managing recombination 

intermediates and so perhaps, with RecG present to fulfil this role, there are fewer initiation events 

but also fewer problems to manage and so there is a similar level of viability of dnaA Δtus rpo* ΔxonA 

ΔxseA and dnaA Δtus rpo* ΔrecG cells at 42°C despite the fact that levels of synthesis appear to be quite 

significantly different. 
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Figure 40: Schematic representation of events associated with the fusion of two replication forks in the 

termination area. Three different fork fusion scenarios are shown on the left (green box), resulting in a 

number of different intermediates (middle), which are then processed by a variety of different proteins 

(right). It was necessary to present some of the diagrams in a different orientation to the preceeding 

intermediate. This is the case for the processing of the recombination intermediates resulting from fork 

fusion scenario iii by either PriA or RecBCD, and also for the processing of the double-stranded end that 

results from PriA-mediated replisome assembly at a 5’ flap structure. The double-stranded end in each 

case is processed and leads to recombination intermediates. See text for further details. 

The data presented show that if there is an effect of the presence of an ectopic replication origin on 

the over-replication in cells lacking 3’ exonucleases, it is only mild (Figure 38), in contrast to the 

situation in ΔrecG cells (Midgley-Smith et al., 2018; Rudolph et al., 2013; Wendel et al., 2014). In line 

with this, cells lacking 3’ exonucleases that carry an ectopic replication origin can tolerate the deletion 

of the entire oriC region (Figure 39) whereas we have recently reported that ΔoriC oriZ+ ΔrecG cells 

are synthetically lethal (Midgley-Smith et al., 2018). If prolonged arrest of a replication fork leads to 

an increase in recombination events (Figure 40), this will cause problems in cells lacking RecG. In 

contrast, in the absence of 3’ exonucleases, RecG is still present and will limit any effect of replication 

fork arrest by processing recombination intermediates, which explains the different levels of over-

replication observed, especially in cells with an asymmetric replichore arrangement, and also explains 

the similar viabilities.  
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General discussion  

Both initiation and elongation of DNA replication in bacteria have been studied for many years and 

are understood in quite some detail. In contrast, the events associated with termination of DNA 

replication have remained surprisingly elusive, as highlighted by Dewar and Walter in a recent review 

about termination, where they state: “Unlike initiation and elongation, which have been extensively 

studied, replication termination has received relatively little attention, especially in eukaryotic cells” 

(Dewar and Walter, 2017). However, even this statement is deceptive. Indeed, the Tus/ter replication 

fork trap system was found in some bacteria including E. coli many years ago and has been quite 

extensively studied, a fact that has led to the impression that termination is better understood in 

bacteria than it is in eukaryotic cells. However, it was shown previously that the replication fork trap 

system contributes to termination under normal growth conditions relatively infrequently (Bouché 

et al., 1982; Dimude et al., 2016; Duggin and Bell, 2009; Ivanova et al., 2015; Rudolph et al., 2013). 

This, in turn, suggests that the fusion of freely moving replication forks is the most common event, and 

until recently we knew hardly anything about the fusion of two moving forks, both in pro- and 

eukaryotic cells. Here I present data that clarify some of the events associated with replication fork 

fusion and highlight that the events associated with replication termination are surprisingly complex.  

Data recently reported by the Rudolph laboratory already suggested that the fusion of forks can 

have surprisingly severe pathological consequences (Rudolph et al., 2013). As a result of a number 

of studies, a hypothesis of the events associated with the fusion of two replisomes was developed 

(Dimude et al., 2015; Hiasa and Marians, 1994; Krabbe et al., 1997; Rudolph et al., 2009b, 2010b, 

2010a, 2013). As two replication forks converge, the DnaB helicase of one fork can displace the 

leading strand polymerase of the opposing fork, resulting in the formation of a 3’ flap structure. If 

allowed to persist, 3’ flaps can be processed by PriA restart protein to establish a new replication fork. 

The resulting duplex DNA on the leading strand will have a dsDNA end and so can trigger RecA-

RecBCD-dependent recombination with the re-replicated DNA behind the newly established fork or 

with the sister chromosome, generating a substrate from which PriA can establish another replication 

fork that moves in the opposite direction. The fact that this origin-independent over-replication of the 

chromosome has the potential to sustain cell growth without the need for oriC firing illustrates the 

severity of these events. RecG has been identified as one of the key players in this process by normally 

processing any formed 3’ flaps very rapidly (Dimude et al., 2015; Lloyd and Rudolph, 2016; Rudolph 

et al., 2013). Similarly, 3’ exonucleases have also been implicated to be involved in the processing of 

3’ flaps (Rudolph et al., 2013; Sinha et al., 2018; Wendel et al., 2014, 2018). 

The data presented here strongly support the importance of RecG in replication termination. Cells 

carrying a second, ectopic replication origin, oriZ, have an ectopic fork fusion region in addition to the 

native termination area. It has been identified previously that in oriC+ oriZ+ cells lacking RecG, there is 
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a broad amplification of this region (Midgley-Smith et al., 2018; Rudolph et al., 2013). When ter sites 

were introduced to create a replication fork trap around this region, the resulting peak seen in the 

replication profile of cells lacking RecG demonstrated that origin-independent over-replication is 

triggered in this region as well as in the native termination region (Figure 15) (Midgley-Smith et al., 

2018). My data support that the proposed processing of R-loops by RecG helicase (Fukuoh et al., 

1997; Hong et al., 1995; Lloyd and Rudolph, 2016; Vincent et al., 1996) is not involved in the 

initiation of this origin-independent synthesis, much in contrast to the situation in cells lacking RNase 

HI (Dimude et al., 2015; Kogoma, 1997; Maduike et al., 2014; Usongo et al., 2016). Over-replication 

of the chromosome causes a variety of different problems for cells and the over-replication that occurs 

in the termination region of ΔrecG cells, if exacerbated, can have lethal consequences, as illustrated by 

the lethality of ΔoriC oriZ+ ΔrecG cells, which require a tus deletion in order to be able to grow 

(Midgley-Smith et al., 2018). 

In addition, the presented data provide strong support not only for a role of 3’ exonucleases in 

termination, but also for 3’ flap structures being key intermediates when replication forks fuse. As is 

seen in ΔrecG cells (Dimude et al., 2015; Rudolph et al., 2013), origin-independent over-replication 

of the chromosome is able to sustain robust cell growth in cells lacking 3’ exonucleases once the 

replication fork trap is inactivated and the DNA synthesis initiated within the termination region is 

able to escape (Figure 24, Figure 27). Importantly, while RecG is capable of processing a variety of 

different substrates (Briggs et al., 2004; Rudolph et al., 2010b), the substrate specificity of 3’ 

exonucleases is much more defined, thereby essentially confirming the presence of 3’ flap structures 

as one of the major intermediates as replication forks fuse. The growth of dnaA Δtus rpo* ΔxonA ΔxseA 

cells at 42 °C despite the presence of the srgA1 allele of PriA demonstrated that in the absence of 3’ 

exonucleases, origin-independent DNA synthesis is on occasion able to initiate at structures other than 

3’ flaps. The subsequent finding that this growth is dependent on the absence of ExoVII, which has 5’ 

– 3’ exonuclease activity, and that the absence of RecJ, also a 5’ exonuclease, improves origin-

independent growth of dnaA Δtus rpo* ΔxonA cells, demonstrated that the alternative structure 

exploited in cells lacking 3’ exonucleases is a 5’ flap. The data presented in this thesis currently do not 

allow any conclusion of which proteins might be involved in the conversion of 3’ flaps into 5’ flaps. 

However, RecG helicase certainly can do this reaction (Bianco, 2015; Briggs et al., 2004; McGlynn et 

al., 2001; Tanaka and Masai, 2006). In addition, it was shown before that cells lacking the three main 

3’ exonucleases ExoI, ExoVII and SbcCD are inviable if recG is deleted (Rudolph et al., 2010a), making 

RecG an excellent candidate for carrying out this conversion.  

There are several genetic approaches that could be used to confirm the involvement of RecG in the 

conversion, based on the principle that in the absence of RecG, the conversion would no longer take 

place and so if a recG deletion was introduced to cells lacking 3’ exonucleases, the origin-independent 

synthesis seen in these cells would become entirely dependent on the 3’ flap processing ability of PriA. 

Origin-independent growth seen in the absence of ExoI in a dnaA Δtus rpo* background is abolished 
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when srgA1 is introduced to these cells (Figure 34), as is seen in the absence of RecG (Dimude et al., 

2015; Rudolph et al., 2013) and in cells lacking both RecG and ExoI (SLM-S and CJR, unpublished 

data), whereas dnaA Δtus rpo* ΔxonA srgA1 cells can grow if the 5’ flap processing capability of the cell 

is reduced by deleting xseA. The prediction is that by deleting recG from these cells, growth at 42 °C 

would be abolished. In any event, the work presented here highlights not only several protein 

activities involved in processing fork fusion intermediates, but also various pathways that are used 

for the processing of replication fork fusion intermediates.  

While in the initial versions of the working model of replication termination RecG and 3’ 

exonucleases appeared to have an equivalent role, the data presented here reveal distinct differences 

between the over-replication seen in ΔrecG cells and strains lacking 3’exonucleases, which highlight 

the complexity of the fusion process itself. In strains that have a second, ectopic copy of the replication 

origin inserted half way around the right hand replichore, the clockwise fork from the ectopic origin 

oriZ will arrive at the termination region before the anticlockwise fork coming from oriC and so will 

be blocked by Tus/ter complexes for some time (Dimude et al., 2018a; Ivanova et al., 2015; Midgley-

Smith et al., 2018). This asymmetric replication results in a significant increase in the peak of over-

replication in the termination area of ΔrecG cells in an oriC+ oriZ+ background (Rudolph et al., 2013), 

as was confirmed in this study (Figure 15). This was not observed in oriC+ oriZ+ cells lacking 3’ 

exonucleases (Figure 38), highlighting a significant difference in the effect of RecG or 3’ exonuclease 

absence. The fact that the growth of both dnaA ΔrecG (Figure 10) (Dimude et al., 2015; Rudolph et 

al., 2013) and dnaA ΔxonA ΔxseA cells (Figure 27) at 42 °C explicitly relies on the absence of Tus and 

not its presence indicates that the stalling of a replication fork specifically at a Tus/ter complex cannot 

be an essential event in the initiation of origin-independent over-replication. 

One of the most apparent differences between ΔrecG cells with two origins compared to ΔrecG 

cells with a single replication origin, beside the fact that one replication fork is always held at a Tus/ter 

complex, is the length of time that forks are blocked before being met by the converging fork. Despite 

a recent report that a replication fork held at a Tus/ter complex for an extended period does not 

disassemble and instead remains stably bound (Moolman et al., 2016), in vitro and in vivo 

measurements of fork stability at obstacles including nucleoprotein roadblocks suggest a limited half-

life of 4‒6 min (Marians et al., 1998; McGlynn and Guy, 2008; Mettrick and Grainge, 2016), which 

suggests that after a relatively limited period of time, the replication fork complexes might start to 

disassemble. Forks permanently stalled at obstacles are processed by recombination proteins RecBCD 

(Dimude et al., 2018a; Michel and Leach, 2012). Thus, if forks stalled for a longer period at Tus/ter 

complexes are processed by recombination proteins, the opposing fork would not meet an arrested 

fork but a complex recombination intermediate. This suggests that at least three different type of fork 

fusion events have to be considered: the fusion of freely moving forks, the fusion of one free and one 

arrested fork and the fusion of one free fork with a fork that is at least partially disassembled and 

processed by recombination proteins. It was suggested that a fork blocked for an extended time at a 
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Tus/ter complex, as is the case in double origin strain, could trigger the over-replication seen in cells 

lacking RecG (Azeroglu et al., 2016). This cannot be essential for the over-replication seen in cells 

lacking RecG, as outlined above. However, if RecG was involved in both processing 3’ flap structures 

as forks fuse and also destabilisation of recombination intermediates such as D-loops, this would 

provide an explanation for the differences observed between ΔrecG and 3’ exonucleases-deficient 

cells. Thus, once over-replication is started at a 3’ flap, in the absence of RecG the problem will become 

exacerbated by recombination, in particular in a situation where one fork is already processed by 

recombination proteins. Indeed, while the tandem repeat deletion studies presented here did not 

show increased levels of reversion events in the fork fusion area (page 96), they did highlight that 

RecG is able to prevent recombination events leading to tandem repeat deletions (page 94), as 

demonstrated before (Lovett et al. 2003; Lovett 2006; Lloyd and Rudolph 2016). There is no indication 

in the current literature that 3’ exonucleases might have such a role, indicating that the lower levels 

of over-replication observed in the absence of 3’ exonucleases stem mainly from the direct 

consequences of fork fusion reactions. Despite the low level of origin-independent over-replication 

seen in ΔxonA ΔxseA cells (Figure 26), this is clearly enough to sustain robust origin-independent 

growth. 

Once origin-independent synthesis is established within the termination region, the replication 

forks will proceed until they are arrested at a Tus/ter complex. In this scenario, when the next round 

of replication is initiated at oriC, the replication forks will encounter a different situation compared to 

the previous round of replication when they reach the termination region as they will converge with 

replication forks held at the Tus/ter complexes. This idea adds an even great layer of complexity on 

the events that occur at replication termination and we have not yet begun to understand the 

consequences of this. 

The work presented also clarifies our understanding of the ability of ∆recG cells to grow in the 

absence of oriC firing. The ability of E. coli cells to grow if either the DnaA initiator protein or oriC is 

inactivated was described as Stable DNA Replication (SDR) (Kogoma, 1997). SDR was first observed 

in cells lacking RNase HI (Horiuchi et al., 1984; Ogawa et al., 1984) and then extended to a variety of 

mutations, including ∆recG (Kogoma, 1997). Given the rather defined substrate specificity of RNase 

HI, which degrades RNA in RNA:DNA hybrids (Kogoma, 1997; Tadokoro and Kanaya, 2009), Kogoma 

and co-workers suggested that the origin-independent replication seen in ΔrnhA cells initiates at 

persisting R-loops (Kogoma et al., 1985; Meyenburg et al., 1987; Kogoma, 1997). Given that RecG 

was also found to remove R-loops by unwinding (Fukuoh et al., 1997; Vincent et al., 1996), it was 

assumed that the over-replication detected in ΔrecG cells might arise via a similar mechanism 

(Kogoma, 1997). However, the work presented here suggests otherwise. While the results strongly 

support the idea that over-replication in ∆rnhA cells is initiated at persisting R-loops, R-loops are 

unlikely to contribute towards the origin-independent synthesis observed in cells lacking RecG 

(Dimude et al., 2015; Lloyd and Rudolph, 2016; Midgley-Smith et al., 2018; Rudolph et al., 2013). 
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At least three different forms of SDR, namely constitutive, damage-induced and stationary SDR, have 

already been described (Kogoma, 1997), and processes such as persisting R-loops and 

recombination-dependent replication were suggested to contribute (Kogoma, 1997). My data 

highlight that in addition, termination of DNA replication is likely to have an important place as well 

and a variety of proteins, including RecG, ExoI, ExoVII, SbcCD and RecJ, contribute via this pathway 

(Figure 40) (Dimude et al., 2015; Midgley-Smith et al., 2018; Rudolph et al., 2010a, 2013; Wendel 

et al., 2014, 2018). Thus, while the term SDR is well suited to describe the resulting phenomenon of 

cells being able to grow without a functional replication origin, it obscures the underlying molecular 

mechanisms, because it “summarises” a number of unrelated and very different processes. Whilst it 

no doubt made sense from the historical perspective to use a defined name for what was observed, 

the common term suggests similarities where there are none, which hinders clarity rather than 

allowing us to understand phenomena better. With modern experimental techniques, we are now 

gaining increased levels of insight in to the various phenomena that were described as SDR, revealing 

an increasing number of processes involved and the molecular mechanisms behind these processes. 

Going forward it will be helpful to focus on the individual processes of nucleic acid metabolism rather 

than using descriptive terms such as SDR. 
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Appendix  

Linearisation of the E. coli chromosome 

Although the chromosomes of most prokaryotes, including E. coli, are circular, some bacteriophages 

as well as some bacterial species have linear chromosomes like eukaryotes. Cui and colleagues (Cui 

et al., 2007) exploited the linearization mechanism of the E. coli bacteriophage N15 in order to 

investigate whether the E. coli chromosome could be linearised or not and to assess any effects on 

prokaryotic cells that result from having a linear chromosome. Bacteriophage N15 is a temperate λ-

like phage, which means that it is capable of both a lytic and lysogenic pathway upon infection of 

host cells (Gandon, 2016). Unlike other phage with lysogenic capability, N15 is unusual in that it 

does not insert its genetic material in to the host chromosome during lysogenic infection. Instead, 

the N15 prophage (the viral genome within the host cell) exists as a plasmid molecule in the 

cytoplasm of host E. coli cells (reviewed in Ravin, 2011). 

The DNA of mature N15 phage is linear and has a 12 bp single-stranded DNA over-hang at each 

end of the molecule, called cosL and cosR. These ends are complimentary to one another (cohesive 

ends) and anneal following infection of E. coli cells, resulting in a circular phage DNA molecule 

(Ravin, 2011; Ravin et al., 2001). In a lysogenic infection, this circular DNA molecule undergoes 

linearization resulting in a linear N15 prophage molecule with covalently closed hairpin ends. The 

bacteriophage telomerase TelN (encoded by the telN gene) is responsible for this process (Deneke et 

al., 2000; Ravin et al., 2001; Rybchin and Svarchevsky, 1999). The TelN target sequence on the N15 

circular phage DNA is telRL, which is located within tos (telomerase occupancy site). tos consists of a 

central 22-bp palindromic sequence, telO, which is flanked by a series of inverted repeat sequence 

pairs, R1/L1, R2/L2 and R3/L3. The region spanning from R3 to L3 with telO at the centre forms 

telRL, the binding site for TelN protelomerase (Deneke et al., 2000, 2002) and the 56-bp sequence an 

almost perfect palindrome. TelN binds to telRL and introduces a staggered double stranded break 

within telO, yielding a linear molecule. Because of the palindromic sequence of telRL, the single-

stranded ends are self-complementary and form the left and right hairpin ends of the molecule. TelN 

completes telomere resolution by covalently closing the ends (Ravin, 2011, 2015; Rybchin and 

Svarchevsky, 1999). 

Ravin and colleagues (Ravin et al., 2001) cloned a DNA fragment containing telN and the TelN 

target site telRL from tos in to various plasmids and used them to demonstrate that these two 

components alone are sufficient to achieve linearization of a non-N15 circular DNA molecule, 

although the full tos sequence results in the most efficient binding of TelN to telRL (Deneke et al., 

2002). The autonomy of this linearization system was exploited and enabled the development of a 

simple and effective method to linearise the chromosome in E. coli cells (Cui et al., 2007). The tos 
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sequence was inserted near to dif in the termination area of the E. coli chromosome and a kanamycin 

resistance marker (kan) was inserted directly downstream of the tos sequence in order to create a 

construct that was transferrable by P1vir transduction. The telN gene was cloned in to pBAD24 

under the control of the arabinose promoter and tos-kan cells were then transformed with the 

resulting plasmid, enabling telomere resolution by TelN to produce a linear DNA molecule. Although 

the telN gene lies adjacent to tos in the N15 DNA and could have been included in the cloned DNA 

fragment to make the linearization protocol simpler, the separation of the tos sequence and TelN 

allows for more robust control of the system in an experimental setting as it allows control in having 

cells with circular and cells with linearised chromosomes. However, using a plasmid to achieve this 

generated cells that contained both linear (chromosome) and circular (plasmid) replicons, which 

caused problems when investigating separation of chromosomes following replication. Another way 

of providing the cell with TelN was lysogenic infection of tos-kan cells with N15, resulting in 

expression of telN by the N15 prophage. Once the strains were made, it was confirmed that the E. coli 

cells remained viable and the linearised chromosome structure was stable. Linearisation did not 

affect the growth of wild type cells (Cui et al., 2007), a finding that was subsequently independently 

confirmed (Rudolph et al., 2013). 

 

Figure 41: Schematic outlining the mechanism of chromosome linearisation. 
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Figure 42: Marker frequency analysis of exponential phase E. coli cells with two replication origins and an 

ectopic termination area, in the presence and absence of RecG. Read numbers (normalised against a 

stationary phase wild type control) are plotted against the chromosomal coordinates, which are offset to 

start at 0.9 Mb to make it easier to see both replication origins. The schematic above the graphs is a 

representation of the E. coli chromosome, showing the position of oriC and oriZ (green lines) and ter sites 

(red lines for those in the left hand replichore and blue lines for those in the right hand replichore) above 

and the seven rrn operons and dif below. The strains used were MG 1655 (wild type), SLM 1197 (oriZ ter 

4.44 Mb><ter 4.57 Mb) and SLM 1205 (oriZ ter 4.44 Mb><ter 4.57 Mb recG). 
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Figure 43: Linearisation of the E. coli chromosome in dnaA Δtus rpo* ΔxonA ΔxseA cells. PCR products 

generated with the linearisation verification primers for wild type (lane 1), tos-kan cells (lane 2) and N15 

lysogen of tos-kan with a linearised chromosome (lane 3). The increase in product size between lane 1 and 

lane 2 indicates the presence of the tos-kan cassette. The N15 telomerase TelN is present in N15 lysogens. 

TelN cleaves its target sequence within tos, resulting in linearisation of the chromosome in tos-kan N15 

lysogens. The linearisation site is located between the primer binding sites and so prevents the formation 

of a PCR product. For primer binding sites, see Figure 28. The chromosomal DNA was prepared from 

SLM1232 (dnaA46 Δtus rpo* ΔxonA ΔxseA N15), SLM1225 (dnaA46 Δtus rpo* ΔxonA ΔxseA tos-kan) and 

SLM1230 (dnaA46 Δtus rpo* ΔxonA ΔxseA tos-kan N15 lysogen).  



 Appendix 

165 
 

 

Figure 44: Replication profiles of oriC+ oriZ+ cells in the absence of ExoI and ExoVII. Data in II are replotted 

from Figure 38. The overlay of the replication profile for oriC+ oriZ+ ΔxonA cells with that of oriC+ oriZ+ 

ΔxseA cells demonstrates that there are no significant differences between the two profiles, which 

validates the use of the oriC+ oriZ+ ΔxonA profile as a baseline to compare the profile of double origin cells 

lacking both ExoI and ExoVII (II). The profiles were aligned according to peak height, which is explained 

previously (page 127).  
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Figure 45: Deletion of the native replication origin, oriC in an oriZ+ strain background. A) Schematic 

representation of the origin region in wild type cells and cells with the origin replaced by a gene for 

kanamycin resistance. The primers used to generate the oriC-disruption DNA are shown in red. The 

verification primers used to confirm the deletion of oriC are shown in green (Rudolph et al., 2013). B) PCR 

products generated via Hot Start PCR (page 54) with the oriC-deletion verification primers are shown for 

primer combination a/b (lanes 1, 5 and 9), c/d (lanes 2,6 and 10), a/e (lanes 3,7 and 11) and f/d (lanes 4, 8 

and 12). 

To generate an ectopic replication origin, a copy of a 5 kb region spanning oriC was generated and 

integrated into the chromosome at 344 kb (Wang et al., 2011), (Figure 45, AI; Rudolph et al., 2013). 

This fragment spans all of the binding sites for the verification primers shown in Figure 45 A. The 

presence of PCR products with the a/b and c/d primer combinations in the ΔoriC strains is due to the 

presence of oriZ, the sequence of which is identical to the oriC region. The verification of the kan flanks 

in the ΔoriC samples, combined with the absence of PCR products with these primers in the wild type 

control sample, confirms that oriC in the native location has been replaced by the kanamycin 

resistance cassette. 


