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a b s t r a c t 

High-throughput technologies such as chromatin immunoprecipitation (IP) followed by next generation 

sequencing (ChIP-seq) in combination with gene expression studies have enabled researchers to inves- 

tigate relationships between the distribution of chromosome-associated proteins and the regulation of 

gene transcription on a genome-wide scale. Several attempts at integrative analyses have identified di- 

rect relationships between the two processes. However, a comprehensive understanding of the regulatory 

events remains elusive. This is in part due to the scarcity of robust analytical methods for the detection of 

binding regions from ChIP-seq data. In this paper, we have applied a recently proposed Markov random 

field model for the detection of enriched binding regions under different biological conditions and time 

points. The method accounts for spatial dependencies and IP efficiencies, which can vary significantly be- 

tween different experiments. We further defined the enriched chromosomal binding regions as distinct 

genomic features, such as promoter, exon, intron, and distal intergenic, and then investigated how predic- 

tive each of these features are of gene expression activity using machine learning techniques, including 

neural networks, decision trees and random forest. The analysis of a ChIP-seq time-series dataset com- 

prising six protein markers and associated microarray data, obtained from the same biological samples, 

shows promising results and identified biologically plausible relationships between the protein profiles 

and gene regulation. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Chromatin immunoprecipitation combined with massively par-

allel DNA sequencing (ChIP-seq) is a method used to identify

the binding sites of chromosome-associated/‘epigenetic’ proteins

(Note that the term epigenetic will be used in its broadest sense

throughout this manuscript.). ChIP-seq in combination with gene

expression data enables researchers to investigate relationships

between chromosomal-bound protein regulatory mechanisms and

gene expression responses on a genome-wide scale. However, de-

spite falling costs, next generation sequence data remains too ex-

pensive to be generated on a large scale, and it is generally consid-

ered logistically unfeasible to generate next generation data from

clinical trials where thousands of samples are involved. It is there-

fore currently not possible to determine how modification of the

epigenetic landscape regulates changes in gene expression within
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arge patient cohorts. Conversely, there are many studies where

hIP-seq data is in the public domain but the corresponding gene

xpression data is not available: and again, it is not possible to un-

erstand how epigenetic modifications dictate gene expression re-

ponses [8] . We propose that machine learning data models could

e used to address such situations, by modelling the mechanistic

elationships between observed gene expression responses and the

orresponding epigenetic modifications. Once the association be-

ween gene expression and epigenetic regulatory events is defined,

t should then be possible to predict one from the other and ex-

rapolate this information into a deeper understanding of gene reg-

lation mechanisms. 

The computational biology community has proposed several

ethodologies that integrate protein binding and gene expression

ata to identify causal relationships between the two events. How-

ver, existing studies of high-throughput data have adopted rela-

ively simple methods for the analyses of ChIP-seq data, which do

ot fully leverage all the information that this technology can of-

er. Furthermore, such studies generally restrict an investigation to

he relationship between a single chromatin protein and a gene

xpression profile [24] . 
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Fig. 1. Simple schematic of the process used to model and predict gene response 

using the epigenetic protein binding profiles in combination with different genomic 

features. 
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A further potential limitation of current integrative methods

s that studies tend to primarily focus on protein bindings sites

ocated only within gene promoter regions and transcriptional start

ites [5,17] . Likewise, classification techniques have been used to

lucidate relationships between epigenetic mechanisms and gene

xpression while focusing on a single genomic feature [4,12] . For

xample, the linear model named GEMULA [4] models gene ex-

ression as a function of predicted transcription factor binding to

romoter regions. However, several reports have proposed that ad-

itional genomic regions, such as introns and exons in combination

ith distal enhancers, play important roles in gene regulation, and

hat both the number and length of exons and introns influence

ene transcription [7,15,16] . Furthermore, first exons are reported

o be enriched for regulatory signals, and conservation of the first

ntron has been reported to be positively correlated with gene ex-

ression [16] . Such observations suggest that, in order to fully un-

erstand epigenetic transcriptional regulatory mechanisms, protein

inding data associated with both exons and introns, along with

romoters, should be included in molecular models of transcrip-

ion. 

Further understanding of epigenetic regulatory mechanisms is

lso complicated by the dynamic nature of gene expression and the

inding profiles of DNA-associated proteins, both of which change

arkedly in response to different biological stimuli and with time

12,22] . 

The primary objective of this study was to explore how ge-

omic protein binding profiles could be predictive of gene expres-

ion and help elucidate epigenetic regulatory mechanisms. How-

ver, prior to identifying such associations another important goal

as to better characterise the complex characteristics of ChIP-seq

ata and use this information to determine the most appropriate

eans of data pre-processing and modelling. We also considered

hat the protein profiles may prove more informative if our model

ncluded details of the genomic features where binding occurred

e.g. promoter, exon etc.) and how these changed with time and

reatment. 

A recently developed Markov random field model, that incor-

orates complex characteristics of ChIP-seq data, such as spatial

ependencies and different immunoprecipitation (IP) efficiencies

cross replicates and biological conditions, was used to identify

hIP-seq binding regions [1] . The enriched binding regions were

sed to create protein profiles with respect to the genomic fea-

ures. And the predictive power of the respective profiles was eval-

ated using advanced machine learning techniques; including neu-

al networks, decision trees and random forest. 

The described method clearly illustrates how the interactions of

egulatory binding proteins, gene expression, time and treatment

an be integrated into a unified model that is predictive of biologi-

ally plausible relationships between the protein profiles and gene

xpression. 

. The method 

Fig. 1 contains a flowchart of the proposed method. 

In this model, microarray technology is used to identify a set

f genes of interest at a biological or experimental condition. In

arallel, ChIP-seq data is used to create binding profiles of a set of

roteins of interest under the same condition. The binding profiles

ndicate whether the proteins bind at those genes of interest and if

o, which genomic features (e.g. a promoter) do they bind to. The

inding profile and gene status data are integrated and modelled

sing different classification techniques. How accurately the pro-

ein binding profiles predicts gene expression is then quantified.

omparing performance of the different predictive models identi-

es both the proteins and genomic features that are most predic-

ive of gene transcription. 
.1. Microarray analysis 

Genome-wide gene expression levels are determined using mi-

roarray technology. Expression datasets can be obtained from dif-

erent biological conditions (e.g. treated/untreated), and each con-

ition ideally represented by several biological/technical replicates.

 collective of the average gene expression level for all genes un-

er one condition is called the sample expression profile. This pro-

le can be represented using one of several descriptors, for exam-

le, absolute measurement, expression ratio, or a discrete value,

nd each gene is classified as ‘active’ or ‘inactive’ depending on

he observed value. Furthermore, classification or clustering tech-

iques can be used to classify the genes, or, group the genes us-

ng an agreed expression value. However, given that the dataset

sed in this study details several biological conditions, differential

xpression analysis between conditions of interest was considered

he most pertinent method of classifying gene status. Note that

hanges in gene expression are coordinated in biological systems

i.e. not truly independent). However, due to our limited under-

tanding of transcriptional mechanisms, differential expression is

easured per gene using appropriate statistical tests and differen-

ially expressed genes selected using a stringent fold-change crite-

ion. 

In the popular R limma package [19] , an empirical Bayes ap-

roach is implemented via a global variance estimator s 2 which is

0 
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computed using all genes’ variances. The resulting test statistic is

a moderated t -statistic, where instead of the single-gene estimated

variances s 2 g , a weighted average of s 2 g and s 2 
0 

is used. Under cer-

tain distributional assumptions, this test statistic can be shown to

follow a t -distribution under the null hypothesis with the degrees

of freedom dependent on the data being analysed [19] . 

Following differential analysis, a gene may be classed as ‘up-

regulated’ or ‘downregulated’ between different biological or ex-

perimental conditions and labelled 0 or 1 respectively. Note that

gene status is used as the response variable in the machine learn-

ing analysis model. 

2.2. Analysis of ChIP-seq data 

The proposed model can incorporate details of any number of

transcription factor or proteins. However, the epigenetic and ex-

pression data must both be generated from the same biological

condition. A peak calling method is used to locate the genomic

regions that are bound by the protein in each ChIP-seq sample.

The peak calling method ideally incorporates all the characteristics

of ChIP-seq data, such as spatial dependency of regions along the

genome, IP efficiency of individual experiments, and excess zeroes

of the resulting count data. To account for all these features, we

have used a recently developed Markov random field (MRF) model,

proposed by Bao et al. [1] , to analyse the ChIP-seq data. 

Given count data, reporting the number of fragments aligned

to consecutive regions of the genome of a pre-defined fixed size

(i.e. bins), the MRF model evaluates the distribution of the counts

across the genome in question and assigns each region a proba-

bility of it being enriched or not. Additional factors, such as the

enrichment score of neighbouring regions is also considered while

calculating this probability (i.e. to account for spatial dependen-

cies). A brief overview of the model is summarised below. For a

more detailed description see Bao et al. [1] . 

Let M be the number of total bins in a particular chromosome.

Let Y mcr be the counts in the m th bin, ( m = 1 , 2 , 3 , . . . ., M), un-

der condition c (time points or control) and replicate r . The counts

can be from either background (non-enriched region) or from the

signal (enriched regions). Our goal is to infer the state of the latent

variable X mc , which is defined as 1 if region m is enriched in con-

dition c , and zero otherwise. The joint mixture model for Y mcr can

be written as follows: 

 mcr ∼ p c f 
(
y, θ S 

cr 

)
+ ( 1 − p c ) f 

(
y, θ B 

cr 

)
(1.1)

where p c = P ( X mc = 1) is the mixture portion of the signal com-

ponent and f ( y, θ S 
cr ) and f ( y, θB 

cr ) are the signal and background

densities, respectively. 

One of the attractive characteristics of this model is that the

probability p c of a region being enriched does not depend on ChIP

efficiencies. However, the parameters signal and background distri-

butions θ S 
cr and θB 

cr do depend on ChIP efficiencies of the individ-

ual replicates r and are therefore allowed to be estimated uniquely

for each replicate. Typically, a ChIP-seq signal f ( y, θ S 
cr ) is modelled

as a negative binomial distribution, whereas the background signal

f ( y, θB 
cr ) is modelled as a zero-inflated negative binomial distribu-

tion to account for the excess number of zeros. This leads to: 

 mcr | ( X mc = 0 ) ∼ ZINB ( πcr , μ0 cr , φ0 cr ) (1.2)

 mcr | ( X mc = 1 ) ∼ NB ( μ1 cr , φ1 cr ) . (1.3)

The latent variable, X mc , which represents the binding profile, is

assumed to satisfy 1D Markov properties 

p ( X mc | X −mc ) = p ( X mc | X m −1 ,c , X m +1 ,c ) , (1.4)
hat is, the enrichment of a region given all the other regions de-

ends only on the state of the two adjacent regions. All the pa-

ameters in this model are estimated using a Bayesian approach

nd are implemented in the R package enRich [1] . 

Using this model, the enriched regions can be detected by set-

ing a threshold on the posterior probabilities of enrichment. One

ay to set this threshold is by fixing an acceptable false discovery

ate (FDR). If D is the set of declared enriched regions correspond-

ng to a particular cut-off on the posterior probabilities, then the

stimated false discovery rate for this cut-off is given by 

̂ 

 DR = 

∑ 

mεD 
ˆ P ( X mc = 0 | Y ) 
| D | . (1.5)

.3. Creating the binding profile of proteins 

After the protein binding regions are identified and annotated,

 binding profile of the proteins, required for integration with the

xpression data, is generated. The method for creating the protein

inding profile is as follows. Let us assume that differential expres-

ion analysis identifies a set of m genes for a biological condition

 , and that the annotated binding regions of p proteins are iden-

ified in the ChIP-seq analysis step. Each binding site is annotated

ith a gene symbol, of the closest gene, and the genomic feature

n which the binding site is located (e.g. promoter, exon etc.). Let

 be the number of genomic features to be included in the study.

or each condition c , the binding profiles of p proteins for m genes

nd f genomic features are stored in an m × pf matrix where X ijkc 

epresents the binding status (1 or 0) of protein j to the feature k

f gene i at biological condition c . 

.4. Classification model selection and evaluation 

For classification purposes, the binding profile of the p proteins

or m genes and f genomic features are used as the predictor. The

xpression status of the m genes is considered as the response

ariable. Note that this model can be extended to include more

han one biological condition. In such a scenario, assume we have

 biological conditions and from each of these we identify a set

f genes along with their activity status. For each set s l , where l

epresents the experimental condition, the binding profile of the

roteins must be created from the same biological condition l . The

inding profile is then integrated with the associated gene status,

or classification. This data model is attractive in that it can be im-

lemented with common classification techniques, such as neural

etwork, random forests and decision trees. 

10-fold cross validation is used on each of the feature selection

nd classification methods, to identify the most descriptive model.

lassification accuracy is used to evaluate the performance of the

odels. 

. Experimental results 

.1. Summary of the data 

All data values were collected from murine bone-marrow de-

ived macrophages (BMDMs), stimulated with lipopolysaccharide

LPS), and from LPS stimulated BMDMs treated with a synthetic

ompound (I-BET). As I-BET mimics acetylated histones, I-BET’s

resence disrupts the chromatin complexes that regulate expres-

ion of key inflammatory genes in activated BMDMs. Data were

ollected at three time points: 0, 1 and 4 h. The epigenetic

ata was generated from a ChIP-seq time-series dataset that in-

luded quantification of bromodomain-containing protein 4 (Brd4);

cetylated histone H4 (H4ac); histone H3 lysine 4 tri-methylation

H3K4me3); RNA polymerase II (RNA PolII); subunit of RNA poly-

erase II (RNA PolII S2); and cyclin-dependent kinase 9 (CDK9)
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Table 1 

Summary of the number of 200 bp binding regions identified at 5% FDR for each of the six pro- 

teins of interest and the three biological conditions investigated. 

Proteins LPS stimulated at 0H LPS stimulated at 4H IBET treated at 4H 

Number of 200 bp enriched regions at 5% FDR 

RNA polymerase II 1,132,284 705,177 625,282 

RNA polymerase II S2 1,020,916 1,282,471 666,159 

H3K4me3 293,266 327,854 318,679 

H4ac 170,087 218,960 166,806 

Brd4 151,048 135,101 38,831 

CDK9 166,600 105,905 122,004 
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Table 2 

Correlation values of binding profile of the six epigenetic proteins at 

different genomic features given gene status (4 h post LPS stimula- 

tion). 

Proteins Promoter Distal intergenic Exon Intron 

RNA PolII 0.525 0.429 0.525 0.524 

RNA PolII S2 0.491 0.384 0.483 0.465 

H3k4me 0.274 0.184 0.198 0.275 

H4ac 0.384 0.273 0.222 0.290 

Brd4 −0.002 −0.003 0.039 0.029 

CDK9 0.029 −0.003 0.047 −0.013 
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roteins/markers. Gene expression data was generated using the

llumina Genome Analyser II. See Nicodeme et al. [13] for further

xperimental details. Note that all data used in this study is pub-

icly available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 

cc=GSE21910 . 

.2. Data pre-processing 

.2.1. Microarray data analysis 

Gene expression data generated using Illumina bead array tech-

ology was pre-processed using the R package beadarray [3] and

nalysed by linear modelling to detect differential expression us-

ng the limma package [20] . To determine the effect of LPS, the LPS

timulated expression profile obtained at the 4-h time point was

ompared to the 0-h expression profile. To quantify the effect of

BET treatment on LPS induced genes, LPS + IBET treated samples

t the 4-h time point were compared to the 4-h LPS only samples.

 2-fold change in expression, in association with a corrected p -

alue of less than .05, was considered differentially expressed. Us-

ng this threshold, 652 genes were defined as up regulated by LPS

etween 0 and 4 h time points. 183 of these genes were observed

o be downregulated in response to IBET treatment. To facilitate

he integrative analysis, each microarray probe was annotated with

ts respective Entrez gene symbol and these gene symbols were

sed to integrate the expression data with the ChIP-seq data. 

.2.2. ChIP-seq data analysis 

The ChIP-seq reads were aligned to the mouse genome (ob-

ained from the UCSC Genome Browser version mm9, released in

007) using Bowtie [9] and only the uniquely mapped reads were

etained for further analysis. As the distribution of the counts of

equences varies by chromosome, all chromosomes were modelled

eparately. After the alignment process, data from each of the 19

utosomal chromosomes were collected and the sequence counts

er 200 bp region of each chromosome were determined. Regions

ound to be enriched at 5% FDR ( Table 1 ) were selected for further

nalysis. 

.2.3. Annotation of the peaks 

After the ChIP-seq datasets were analysed using the MRF model,

 list of bound genomic regions (200 bp long) was obtained. These

egions were then annotated with the nearest gene names using

he R package ChIPseeker [25] . Note that the input for the annota-

ion package is the binding locations of the ChIP-seq data in BED

ormat. Peaks are annotated with the gene symbol, gene name and

enomic feature. For example, if a peak was located within the

 

′ UTR of a gene, it was annotated as 5UTR and the gene symbol

f that gene. The genomic features considered in this study were:

romoter, exon, 5 ′ UTR, 3 ′ UTR, intron, and distal intergenic. The

 package TxDb.Mmusculus.UCSC.mm9.knownGene [2] encoded a

xDb object detailing mouse genome mm9 build. The TxDb object

ontained the transcript-related features used to retrieve annota-

ions from both the UCSC and BioMart data resources. 
The percentages of protein peaks located within the genomic

eatures of interest were plotted as simple pie charts ( Fig. 2 ). It is

pparent that H3K4me3 and H4ac are mostly bound within pro-

oter regions, while RNA PolII and RNA PolII S2 are often located

ithin intron regions. In contrast, CDK9 and Brd4 are predomi-

antly bound at distal intergenic regions. 

.2.4. Generation of protein binding profile and integration of both 

atasets 

After annotating the peaks, the binding profile of each of the six

roteins for four genomic features under the three biological con-

itions were generated (see Section 2.3 ). 652 unique genes were

lassified as expressed and up-regulated by LPS at 4-h time points.

he expression values of these proteins were at the upper end

f the ranked profile (i.e. > 9.52) and these were assigned to be

lass 1. Further 609 genes with lower expression values (i.e. < 5.72)

ere selected as low/non-expressed and assigned to be class 0. The

inding profile for these 1261 genes was associated with the an-

otated peak file (see Section 2.4 ) for each of the four genomic

eatures. Pearson correlation coefficients were then calculated be-

ween the respective input and output variables. The resulting cor-

elation value ( Table 2 ) was interpreted as indicative of how the

inding or non-binding of a protein at a specific genomic feature

ffected gene regulation. RNA polymerase was reported to be most

orrelated with expression status at all genomic features. H3k4Me

nd H4ac were weekly correlated while both Brd4 and CDK9 were

ot correlated at any of the four genomic features evaluated. 

This result indicates that the binding of RNA polymerase II at

romoter, intron, exon and distal intergenic regions is significantly

orrelated with gene regulation response, and that Brd4 and CDK9

inding contribute the least. 

.3. Predicting gene statuses with machine learning approaches 

.3.1. Neural networks 

Integrated ChIP-seq and microarray data were modelled us-

ng neural networks to evaluate whether a protein binding pro-

le could predict gene expression status. nnet [18] is an R pack-

ge that implements feed-forward neural networks with a single

idden layer. In this study, the R package e1071 and its wrapper

unction were used to model the data, and the performance of the

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21910
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Fig. 2. Graphical summaries of the feature distribution of the six bound proteins derived from the I-BET treated samples at the 4-h time point. The numerical values report 

the percentage of features bound by the specific protein. 

 

 

 

 

 

 

 

 

 

 

 

 

b  

w  

n

3

 

a  

t  

a  

g  

o  

e  

t  

b  
classifier was assessed by 10-fold cross validation. Different com-

binations of proteins were selected as predictors of gene status

and those combinations reporting the highest accuracy were sum-

marised in Tables 3 and 4 . 

The LPS stimulation results ( Table 3 ) indicated that the binding

profiles of RNA PolII, RNA PolII S2 and H4ac bound to the promoter

region predict the expression data most accurately, while the bind-

ing profile at distal intergenic regions is the least predictive fea-

ture. Neither Brd4 nor CDK9 performed as strongly as any of the

four other proteins. 

Comparing the I-BET inhibition profile results indicated that

most of the models report similar accuracies ( Table 4 ) and that

RNA PolII, RNA PolII S2 and H4a all are valuable predictors of ex-

pression. However, since the different combinations of predictors
ound to different features produce equivalent results, it is unclear

hich proteins or features perform best. Again, Brd4 and CDK9 did

ot feature in the ranked best performing models. 

.3.2. Decision trees 

The R package rpart [23] was used to fit recursive partitioning

nd regression trees to the data. As described above, the class de-

ailing the 1261 LPS gene profile was used as the response variable

nd the binding profile of the six proteins at a promoter for those

enes as the predictors. The R package rpart creates the tree with

nly important variables that can classify the response well. In this

xperiment, three datasets were used as input for the classifier: (1)

he binding profile of all proteins at promoter (see Fig. 3 ), (2) the

inding profile of all proteins at four genomic features (see Fig. 4 )
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Table 3 

Performance of neural network predicting gene expression using various combinations of 

the epigenetic binding profile 4 h post LPS stimulation (i.e. this defines the LPS response). 

Numerical values are the percent accuracy after 10-fold cross validation. 

Combination of variables Genomics features 

Promoter Exon Intron Distal intergenic 

PolII + PolII_S2 + H4ac 83.16 81.90 82.18 80.35 

PolII + PolII_S2 + H3K4me + H4ac 82.36 82.35 82.30 80.37 

PolII + H4ac 82.48 82.16 81.96 80.07 

PolII + PolII_S2 82.67 81.76 82.03 80.40 

PolII + PolII_S2 + H3K4me 81.82 81.33 80.20 79.87 

PolII_S2 + H4ac 81.97 80.19 80.88 79.44 

H3K4me + H4ac 79.99 76.76 78.39 77.18 

Table 4 

Performance of neural network when predicting up and downregulation of gene expres- 

sion using binding profile of proteins as predictors in terms of accuracy (%) after 10-fold 

cross validation. This analysis was completed using 183 genes up-regulated at 4H (LPS 

only) and downregulated by I-BET at 4H (i.e. LPS + I-BET). 

Combination of variables Genomic features 

Promoter Exon Intron Distal intergenic 

PolII + PolII_S2 + H4ac 77.20 78.34 78.98 76.36 

PolII + PolII_S2 + H3K4me + H4ac 77.39 78.56 77.02 75.46 

PolII + H4ac 75.34 77.89 76.91 76.07 

PolII + PolII_S2 77.40 78.90 78.04 76.80 

PolII + PolII_S2 + H3K4me 77.09 78.68 78.45 76.73 

PolII_S2 + H4ac 78.90 78.23 78.67 76.05 

H3K4me + H4ac 75.74 75.67 75.08 75.86 

Fig. 3. Decision tree generated using rpart and the LPS-only profile. Leaf nodes represent the gene classification while the root and internal nodes represent binding of a 

protein at a promoter region. 
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Fig. 4. Decision tree where leaf nodes represent gene classes while the root and internal nodes represent binding of protein at different genomic regions (promoter, exon 

etc.). 
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and (3) the binding profile of all proteins to a promoter at differ-

ent time points (see Fig. 5 ). The tree constructed with the binding

profile of all proteins bound to a promoter is depicted in Fig. 3 . 

The resulting tree indicated that if RNA PolII binds at a gene

promoter, the gene will be active. However, if it does not and H4ac

binds at the promoter, that gene will be active, and if PolII S2 binds

at the promoter the gene will also be active. The gene is classified

as inactive for other statuses of the protein. The accuracy for 10-

fold cross validation was 83.94%. 

Next, the profile of all the proteins bound at different genomic

features (i.e. promoter, exon, intron, distal intergenic) for all 1261

genes were combined and the data modelled using rpart. The re-

ported tree ( Fig. 4 ) describes the bindings of RNA PolII, H4ac, RNA

PolII S2 at promoter regions and RNA PolII at exon. This tree ap-

pears similar to that presented in Fig. 3 . However, the branching

on the right side of the tree indicates that RNA PolII bindings at

promoter and exon would classify a gene as active. 

We next investigated how time affects both protein binding and

gene expression. Note that in this scenario, a gene expression re-

sponse may occur at a later point, i.e. in response to the observed

epigenetic event, rather than simultaneously. For this model, only

the promoter feature was selected but we incorporated the profiles

of all six proteins at the three time points (i.e. 0H, 1H and 4H re-

spectively). The resulting tree ( Fig. 5 ) indicates that when RNA Polll

binds at a promoter at 4H or 1H h, or PolII S2 binds at a promoter

at 1H, or H4ac binds at a promoter at the 4H time point, the gene

will be classed as active; if not, the gene will be inactive at the 4H

time point. 

3.3.3. Random forest 

The R package randomForest [10] was used to implement the

random forest classification method. 
Data were prepared as described above with gene classes used

s the response variable and the binding profile of the six proteins

t different genomic locations as the predictor variables. Fig. 6

ummarises the importance of different variables obtained by the

andom forest method. The prediction models indicated that when

nly binding at a promoter is considered, RNA PolII, H4ac and RNA

olII S2 are reported to be the most important predictors of gene

xpression, in terms of mean accuracy and mean Gini. However,

hen the binding profile of all the variables are aggregated, RNA

olII, H4ac and RNA PolII S2 promoter binding and PolII binding at

xon, are selected as the most important features. Again, both Brd4

nd CDK9 contribute least to the prediction. These results concur

ith the features selections reported by the decision tree in the

revious section. 

.3.4. Comparative performance of the three classification methods 

After evaluating the performance of the individual classifiers, a

ombinatorial analysis of the variables previously reported as im-

ortant was performed on the LPS stimulated profile. The combi-

ations used for this analysis included: 

1. RNA PoIII, RNA PolII S2 and H4ac at promoter (pr); 

2. RNA PoIII, RNA PolII S2 and H4ac at promoter and RNA PolII at

exon (ex); 

3. RNA PolII and H4ac at promoter at 4 h time point (4H) and RNA

PolII and RNA PolII S2 at promoter at 1 h time point (1H). 

Comparing performances of the three classification methods

 Table 5 ) indicated that, for all combinations of variables, the deci-

ion tree and neural network methods out-performed the random

orest method. Note that decision trees are a popular choice of

lassification method as the output model is readily interpretable,

nd in this instance, it is clear which of the genomic variables are

ost predictive of gene activation. 



M.M. Ferdous et al. / Neurocomputing 275 (2018) 1490–1499 1497 

Fig. 5. In this decision tree where leaf nodes represent the class of the genes and the root node and internal nodes represent binding of a protein at a promoter at different 

time points (0H, 1H and 4H). As for the neural network model, neither Brd4 nor CDK9 were reported as contributing to the prediction. 

Table 5 

The performances of three different classifiers in terms of 10-fold cross validation accuracy. PolII, PolII 

S2 and H4ac are reported as the most informative proteins, while the promoter region is the most 

significant genomic feature. The early time point appears to have little predictive value irrespective of 

the machine learning method used. 

Predictors Neural network Decision tree Random forest 

Accuracy (%) 

PolII_pr + H4ac_pr + PolII_S2_pr 80.02 84.08 78.83 

PolII_pr + PolII_ex + H4ac_pr + PolII_S2_pr 82.93 84.75 78.43 

PolII_1H + PolII_4H + H4ac_4H + PolII_S2_1H 83.48 84.70 80.41 
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Table 6 

The performance of decision tree and random forest in terms of 10-fold 

cross-validation accuracy. The analysis indicates that the promoter and 

time predictive model are the most accurate of the combinations evalu- 

ated. 

Predictors Decision tree Random forest 

Accuracy (%) 

Promoter only 83.94 79.38 

All genomic features combined 83.80 79.70 

Promoter at different time-points 85.01 80.73 

 

 

c  

e

Furthermore, decision tree models often simplify model inter-

retation as the classification model automatically selects those

eatures that are important for the prediction and omits those

eatures that are not. In contrast to this, a neural network based

odel uses all the input features, unless a user manually imple-

ents feature selection as part of the data pre-processing. 

The random forest method also implements the feature selec-

ion steps. For this reason, when the binding profiles of all proteins

t all the genomic features and the protein binding profiles at pro-

oters at different time-points have been used for prediction, we

ave used only decision tree and random forest. 

As the random forest method also implements the feature se-

ection steps, a further comparative performance analysis com-

ared decision tree and random forest classification. The analyses

ompleted were: 

1. The binding profile of all proteins at promoters; 

2. The protein binding profiles of all protein at all the genomic

features; 
3. The binding profiles of all proteins at promoters at different

time-points. 

The accuracy results ( Table 6 ) obtained indicated that the de-

ision tree classifier out-performed the random forest classifier in

ach instance. 
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Fig. 6. Importance of variables as detected by a random forest model (a) from protein binding profile at promoter; (b) from protein binding profile at different f eatures, exon 

(ex), intron (in), promoter (pr), distal intergenic (ds); (c) from protein binding profile at promoter at different time points (0H, 1H and 4H). 
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4. Conclusion 

In this paper, we have demonstrated the application of machine

learning techniques to predict gene transcriptional response, using

the genomic binding profile of proteins believed to play a role in

the regulation of gene expression. The method uses an advanced

Markov random field model to detect enriched regions from ChIP-

seq data, and adopts advanced machine learning methods for pre-

dictive modelling. We successfully applied the method to an in-

tegrated dataset comprising a ChIP-seq time-series dataset of six

protein markers and the associated gene expression data obtained

under several biological conditions. 

Our results indicate that the combined binding profiles of sev-

eral proteins at different genomic features accurately predict vari-

ations in gene expression. This combinatorial model concurs with

current understanding of transcriptional gene regulation networks

which are known to involve multi-factorial mechanisms participat-

ing in a huge complex of components and interactions spanning

many genomic loci [11,21] . Of the six proteins investigated, RNA

PolII, RNA PolII S2, H3K4me3 and H4ac significantly contributed
o the accuracy of the expression profile. The individual protein

rofiles we report as predictive of gene expression have been val-

dated experimentally, for example, RNA PolII is known to bind

t promoter regions and then recruit other transcription factors

o create a large multiprotein complex that initiates transcription

6,14] . Likewise, the histone proteins have also been confirmed to

lay several critical roles in transcription. In addition, both the de-

ision tree and random forest models report the later time point

rofiles as accurate predictors of gene expression which empha-

ises the temporal aspect of the regulatory mechanism [12] . How-

ver, the sparsity of time point data available limits any further

nderstanding of the protein profile responses over shorter and

onger time frames. 

Our analysis indicates that neither the CDK9 or Brd4 pro-

ein profiles were accurate predictors of gene expression. This

s somewhat surprising as CDK9 is known to act as an elon-

ation factor for RNA polymerase II-directed transcription, while

rd4 is reported to participate in the core binding of RNA poly-

erase II. However, this finding agrees with the original analysis

f this dataset [13] and most likely reflects the time point used to
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ollect samples (e.g. responses may occur prior or post the 4-h

indow). 

In summary, we have successfully demonstrated how machine

earning techniques can be used to predict gene expression re-

ponses using ChIP-seq protein profiles and that the predictive

odels can be expanded to include additional descriptors of ex-

erimental factors. Further advances in our understanding of the

omplex regulatory mechanisms could be explored if datasets that

panned greater time frames and included additional experimental

etrics (e.g. HiSeq long distance chromosome contacts, micro-RNA

nteractions with nuclear transcription factors, long noncoding RNA

inding etc.) were made available. 
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