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Abstract 

 

Increasing working memory (WM) capacity is often cited as a major influence on 

children’s development and yet WM capacity is difficult to examine independently of 

long-term knowledge. A computational model of children’s nonword repetition 

(NWR) performance is presented that independently manipulates long-term 

knowledge and WM capacity to determine the relative contributions of each in 

explaining the developmental data. The simulations show that (1) both mechanisms 

independently cause the same overall developmental changes in NWR performance; 

(2) increase in long-term knowledge provides the better fit to the child data; and (3) 

varying both long-term knowledge and WM capacity adds no significant gains over 

varying long-term knowledge alone. Given that increases in long-term knowledge 

must occur during development, the results indicate that increases in WM capacity 

may not be required to explain developmental differences. An increase in WM 

capacity should only be cited as a mechanism of developmental change when there 

are clear empirical reasons for doing so. 
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1. Introduction 

 

While it is clear that cognitive changes occur during the course of the child’s 

development, it is less clear precisely what develops. Indeed, this issue is central to 

developmental psychology, and has generated a considerable amount of empirical 

data and theoretical debate. Theories range from changes in knowledge structures 

(e.g. Piaget, 1950, 1952; Vygotsky, 1978), changes in a combination of knowledge 

and working memory (WM) capacity (e.g. Case, 1985; Halford, 1993), changes in 

adaptive strategy choice (Siegler, 1995), and changes in processing speed (e.g. Kail, 

1988), to name but a few. This paper concentrates on developmental change occurring 

via increases in knowledge and increases in WM capacity1. As we will see, these two 

mechanisms are inextricably linked such that it is difficult to examine the effects of 

one in the absence of the other. 

 

No serious researcher would argue against the idea that increases in children’s 

knowledge play a central role in development. Piaget (1950, 1952) first put forward 

the hypothesis that knowledge structures are continually updated by the child, with the 

vast majority of subsequent research supporting this view in one form or another (e.g. 

Klahr & Wallace, 1976; Siegler, 1995). For example, although Siegler (1995) 

suggests development via adaptive strategy choice, this encompasses general 

knowledge that develops through task experience within a domain. 

 

                                                 
1 WM capacity in the context of this paper refers to the storage component of working memory. 
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However, further mechanisms of development have also been proposed. In particular, 

increases in WM capacity have consistently been cited as a separate mechanism of 

development in a wide range of domains, such as reasoning (e.g. Halford, Maybery & 

Bain, 1986), vocabulary learning (e.g. Gathercole & Baddeley, 1989), arithmetic 

(Passolunghi & Siegel, 2001) and spelling (Ormrod & Cochran, 1998). Furthermore, 

Cowan (2000) argues, based on a wealth of previous literature, for both individual and 

developmental differences in WM capacity, and Cantor and Engle (1993) argue that 

individual differences in capacity arise from variations in the amount of activation 

that is available to distribute among long-term memory traces. 

 

One problem in examining mechanisms of development other than knowledge is the 

extent to which knowledge pervades these other hypothesized developmental 

mechanisms. WM capacity in particular is sensitive to knowledge changes – the 

chunking hypothesis, for example, suggests that our capacity to hold meaningful 

chunks for recoding material is based on our long-term knowledge (e.g. Miller, 1956; 

Simon, 1974). Developmental theorists also acknowledge the interplay between 

knowledge and WM capacity. For example, Case (1985) argues that WM capacity 

remains fixed across childhood but the amount of information that can be stored in 

WM increases as knowledge increases.  

 

If WM capacity is strongly influenced by long-term knowledge, then developmental 

increases in WM capacity will be hard to differentiate from developmental increases 

in knowledge. Any empirical assessment of WM capacity must therefore account for 

the child’s existing knowledge, because failure to do so may lead to tests of WM 

capacity that inadvertently capture differences in knowledge rather than capacity. 
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However, while it is possible to lay out tasks that estimate a child’s knowledge in a 

specific domain, it is almost impossible to be certain what knowledge a child may 

bring to bear when completing a task within that domain. For example, in the balance 

scale domain (e.g. Siegler, 1976), knowledge of weight and distance are seen as 

critical in completing the task successfully, but there is a variety of other types of 

knowledge that also help performance, such as knowledge of number and the concepts 

of greater-than and less-than. 

 

There are therefore two related problems in providing an accurate measure of WM 

capacity. First, there is a strong interplay between WM capacity and long-term 

knowledge. Second, measuring WM capacity independently of long-term knowledge 

is difficult because it is almost impossible to derive all of the pieces of knowledge a 

child may use when completing a WM capacity task. Taken together, these two issues 

raise questions about whether tests of WM capacity, in part or whole, are tests of 

long-term knowledge.  

 

This paper examines the relative contributions of long-term knowledge and WM 

capacity in explaining developmental change. Given that increases in the child’s long-

term knowledge must take place during the course of development, we ask whether 

additional assumptions need to be made regarding developmental increases in WM 

capacity or whether increases in long-term knowledge are sufficient to account for the 

developmental data. To address this issue, a computational model of development will 

be presented which independently examines the roles of long-term knowledge and 

WM capacity and compares the results of each with developmental data.  
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As stated previously, empirically assessing WM capacity independently of long-term 

knowledge is difficult. Computational modeling can help because a model requires all 

necessary task knowledge to be specified in order to complete a task, enabling a clear-

cut analysis of how long-term knowledge influences performance. In addition, 

plausible assumptions regarding WM capacity can be included within a model. A 

computational model that includes both long-term knowledge and WM capacity can 

therefore independently manipulate each to see how increases in long-term knowledge 

and increases in WM capacity are able to match the developmental differences in the 

child data. In particular, we can ask which phenomena in the child data can be 

explained by changes in long-term knowledge and which phenomena can be 

explained by changes in WM capacity. Furthermore, we can vary both long-term 

knowledge and WM capacity simultaneously to see whether the interplay between the 

two is able to provide a better explanation of the child data than either increasing 

long-term knowledge or increasing WM capacity alone. 

 

The domain we use to examine long-term knowledge and WM capacity is one where 

both mechanisms are cited as being the dominant explanation for age-related changes: 

nonword repetition (NWR) (Gathercole, Willis, Baddeley & Emslie, 1994). NWR 

studies involve a nonsense word being read aloud to the child, who is asked to repeat 

it back accurately. Across a range of studies, NWR performance has consistently been 

shown to improve with age and to be inversely related to nonword length (e.g. 

Gathercole & Baddeley, 1989; Gathercole & Adams, 1993; Roy & Chiat, 2004). 

These results appeared to support the view that phonological WM capacity increased 

with age (e.g. Gathercole & Baddeley, 1989; Gathercole & Adams, 1993). However, 

it quickly became clear that there were long-term knowledge influences on NWR 
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ability, because performance was significantly better for nonwords rated as being 

wordlike and nonwords containing high-frequency phonemes (e.g. Frisch, Large & 

Pisoni, 2000; Gathercole, 1995; Gathercole, Willis, Emslie & Baddeley, 1991). The 

results of studies of NWR in children thus appear to support both  the idea that 

increasing WM capacity is the dominant factor (e.g. Baddeley, 2002; Baddeley, 

Papagno & Vallar, 1988; Gathercole & Adams, 1993; Gathercole & Baddeley, 1989; 

Gathercole et al., 1994; Gathercole & Pickering, 1999) and the idea that increasing 

long-term knowledge is the dominant factor (e.g. Metsala, 1999; Munson, Edwards & 

Beckman, 2005; Munson, Kurtz & Windsor, 2005; Bowey, 1996). NWR performance 

therefore provides an ideal domain to examine the relative contributions of long-term 

knowledge and WM capacity. 

 

The remainder of this paper is organized as follows. First, the computational model of 

NWR performance is outlined. Second, we report three simulations of NWR 

performance (varying long-term knowledge, WM capacity, and both) together with 

comparisons across simulations. Third, we discuss the results of the simulations and 

their implications for theory, highlighting the respective roles of long-term knowledge 

and WM capacity. 

 

2. The model: EPAM-VOC 

 

EPAM-VOC (Jones, Gobet & Pine, 2007) is a phoneme sequence learner that takes 

speech in phonemic form as input and builds a hierarchical network of phoneme 

sequences (or “chunks”) that represents long-term knowledge of the linguistic input. 

The model has previously been used to simulate NWR performance in 2-5 year old 
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children (Jones et al., 2007). EPAM-VOC is based on the EPAM modeling 

architecture (Feigenbaum & Simon, 1984), which, together with related 

discrimination-net models such as CHREST (Gobet & Simon, 2000) and MOSAIC 

(Freudenthal, Pine, Aguado-Orea, & Gobet, 2007; Freudenthal, Pine, & Gobet, 

2006),2 has been used to simulate psychological phenomena in a variety of domains 

such as learning, memory, and perception in chess, verbal learning behavior, the digit-

span task, the context effect in letter perception, and the acquisition of syntactic 

categories (see Gobet, Lane, Croker, Cheng, Jones, Oliver & Pine., 2001, or Gobet & 

Lane, 2005, for overviews). We first provide an overview of EPAM before describing 

EPAM-VOC in order to highlight areas where EPAM-VOC has been simplified from 

the original EPAM architecture. 

 

2.1. The EPAM architecture 

 

EPAM (e.g. Feigenbaum & Simon, 1984) is a modeling architecture consisting of a 

short-term memory and a discrimination network giving access to long-term memory; 

it also postulates attention mechanisms that will impact on the construction of the 

discrimination network. The discrimination network is built based on the features of a 

given input; the links contains tests on these features, and the nodes (or “chunks”) 

contain the internal description of the item. For example, a large red triangle might 

have the three features large, red, and triangle. After learning, these features will be 

represented in the network as a sequence of tests, each related to a feature of the input 

item. The sequence of tests can be used to determine whether or not a given input is 

                                                 
2 EPAM stands for Elementary Perceiver and Memorizer, CHREST for Chunk Hierarchy and REtrieval 

STructures, and MOSAIC for Model Of Syntax Acquisition In Children. 
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familiar (i.e. is similar to an input that has been seen before). The features of the input 

item would be sorted through the sequence of tests and the resulting information, if it 

matched the sequence of features of the input, would determine that the input was 

familiar. However, if the resulting information mismatched the features in the input, 

then this gives EPAM an opportunity for learning something about the input. There 

are two methods of learning: if the information held at the resulting node under-

represents the sequence of input features, then a process of familiarization adds more 

information to the node; if the resulting information over-represents the input, in the 

sense that it contains features not shared by the input, then a process of discrimination 

creates a new test containing the mismatched part of the input, and a new node below 

that test.  

 

Fig. 1 shows how the familiarization and discrimination processes work, and how the 

sequence of input features would be tested in the discrimination network. In this 

figure, nodes are represented by ellipses. If the network was as shown in the left graph 

of Fig. 1 and the input was “Large red triangle”, EPAM would first look for a test that 

satisfies the first feature of the input (“Large”) below all tests emanating from the 

topmost node. As such a test exists, EPAM traverses to the “Large” node and 

processes the next feature of the input (“Red”). Again, the “Red” test can be satisfied 

and EPAM traverses to the “Large red” node. The next feature is now processed 

(“Triangle”) but no tests emanate from the “Large red” node so EPAM cannot 

traverse any further. However, as the information in the final node (“Large red”) 

mismatches the sequence of features in the input (“Large red triangle”), EPAM 

familiarizes by adding the feature “Triangle” to the “Large red” information in the 

node. If the network was as shown in the right graph of Fig. 1 and the input was 
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“Large red square”, EPAM would satisfy the “Large” and “Red” tests, but would then 

find that the resulting information “Large red triangle” mismatched the features in the 

input (“Large red square”). At this point, EPAM would discriminate the two by 

adding a test (“Square”) and a node with the new input sequence (“Large red square”).  

 

FIGURE 1 ABOUT HERE 

 

EPAM provides a simple means of determining whether a given input is recognized 

by the network (i.e. has been seen before) by traversing the network. For example, in 

the resulting network on the right side of Fig. 1, and the input “Large red square”, 

EPAM would apply the first feature of the input (“Large”) to all tests below the null 

top node. Such a test exists, and the “Large” node now becomes the current set of 

information and EPAM moves on to the next feature (“Red”). Such a test exists below 

the current node and so the “Large Red” node now becomes the current node. The 

input moves on to the final feature (“Square”) which exists as a test and so the input 

can be said to have been recognized by the model. 

 

EPAM therefore provides a method by which a set of input features can be learnt 

while preserving the pattern within that set of input features. Furthermore, any given 

input can be applied to the model to determine whether the knowledge gained by the 

model makes it possible to recognize the input pattern. For EPAM-VOC, it is 

vocabulary that is being learnt, and so the input features will be phonemes. The 

patterns that the model will learn will therefore be sequences of phonemes, and we 

will see that these can be used effectively to help in vocabulary acquisition. 
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2.2. EPAM-VOC and EPAM 

 

EPAM-VOC is a simplified version of EPAM that dispenses with the familiarization 

process. This means that the information returned after fulfilling a test is the 

accumulation of all the preceding tests (i.e. the network can no longer under- or over-

represent the features of the input). Given that EPAM-VOC is applied to vocabulary 

learning and that learning new words involves the short-term storage of sound 

patterns, more attention will be given to short-term memory mechanisms than in the 

standard EPAM. We now detail how EPAM-VOC learns sequences of phonemes and 

how short-term memory is implemented.  

 

2.3. Learning phoneme sequences in EPAM-VOC 

 

The simulations we present will compare the model’s performance against 2-5 year 

old children, so we assume that at the beginning of the simulations, EPAM-VOC has 

knowledge of the phonemes used in English (an assumption that has support in the 

vocabulary acquisition literature, e.g. Bailey & Plunkett, 2002). Before any learning 

takes place, the network therefore consists of a null top node plus all the constituent 

phonemes in English as tests and nodes below the null top node.  

 

In keeping with EPAM, EPAM-VOC examines each feature (for vocabulary learning, 

each phoneme) of the input sequence in turn, until it can learn something from that 

sequence. When a sequence of phonemes is presented to the model, EPAM-VOC 

traverses as far as possible down its existing hierarchy of nodes by examining each 

input phoneme in turn, until it cannot traverse any more. At this point, something is 
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learnt regarding the current phoneme in the sequence, and the remainder of the 

sequence now becomes a new input that is processed by the top node.  

 

As an example, consider the utterance “Where?”, which has a phonemic equivalent of 

“W EH1 R” (speech is converted to a phonemic equivalent using the CMU Lexicon 

database, available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict). Traversal in 

EPAM-VOC involves selecting a test below the current node that is equal to the next 

phoneme in the sequence. When “W EH1 R” is presented, EPAM-VOC attempts to 

find a test below the null top node equal to “W”. Since a “W” test exists, the node 

“W” now becomes the current top node in the network. The input now becomes “EH1 

R” and the “EH1” phoneme is considered for traversal. However, there are no tests 

below the “W” node (remember that the network contains only the top node and 

nodes for the constituent phonemes in English) and therefore traversal ends. EPAM-

VOC now learns “W EH1” by adding an “EH1” test and a node with the sequence “W 

EH1” below the “W” node. Some learning has occurred, so processing reverts to the 

null top node and the input proceeds to the last phoneme, “R”, but as this already 

exists below the top node, learning ends. 

 

Presenting the input a second time results in the actual sequence “W EH1 R” being 

learnt. The first phoneme “W” is examined, and the “W” test is taken from the null 

top node to the “W” node. This now becomes the top node and the input moves on to 

the “EH1” phoneme. An “EH1” test can be taken below the “W” node and so “W 

EH1” now becomes the top node, with the input moving on to the “R” phoneme. No 

further tests exist below this node, and so “R” is added as a test below “W EH1”, and 
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a new node “W EH1 R” is added at the end of the test. The resulting network after 

two presentations of “W EH1 R” is shown in Fig. 2. 

 

FIGURE 2 ABOUT HERE 

 

Learning in EPAM-VOC therefore involves the creation of tests and nodes. Tests 

specify phonemes to be matched in the input in order to traverse the network. Nodes 

represent phonemes and phoneme sequences that are known in the network. Traversal 

of the network begins when EPAM-VOC is presented with an input (e.g. a mother’s 

utterance). This input is then used to traverse the network until no further traversal is 

possible, at which point a new test and node will be created below the furthest 

traversed node. Once learning has occurred, processing reverts back to the null top 

node and the traversal and learning process begins again using the remainder of the 

input.  

 

Because of the way EPAM-VOC learns, the contents of any one node are the 

concatenation of all the tests that lead to that node (e.g. the “W EH1 R” node in Fig. 2 

comprises all of the phonemes contained in the tests that lead to the node). There is 

therefore only ever one test that leads to any one node. The learning mechanism 

within EPAM-VOC means that a word containing seven phonemes would require six 

learning passes (the initial phoneme in the word would already be known below the 

null top node). Although it may seem that EPAM-VOC learns very quickly, it is 

possible to reduce the rate of learning (e.g. by altering the probability of learning a 

new node), and this has been successful for other variants of EPAM/CHREST models 

(e.g. Croker, Pine & Gobet, 2003; Freudenthal, Pine & Gobet, 2002). Slowing down 
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the rate of learning yields similar networks, but over a longer period of time. The 

input sets used in the simulations contain a very small subset of the input that a child 

hears, so it is reasonable to have learning take place in the way that has been 

illustrated. 

 

The learning mechanism within EPAM-VOC is sensitive to the input it receives. For 

example, words or phrases that occur often in the input are likely to be represented at 

a single node, whereas words or phrases that occur rarely in the input are unlikely to 

be represented at a single node (unless they consist of very few phonemes). 

Sensitivity to the frequency characteristics of the input will be important when we 

consider how EPAM-VOC simulates WM capacity limitations. 

 

2.4. Providing WM capacity limitations within EPAM-VOC 

 

The model uses a fixed duration WM capacity based on the phonological store 

component of the working memory model (Baddeley & Hitch, 1974). The 

phonological store is implemented rather than the phonological loop in line with 

findings that children of five years or younger show no reliable rehearsal strategy (e.g. 

Gathercole & Adams, 1994; Gathercole, Adams & Hitch, 1994). The phonological 

store has a temporal duration of 2,000 ms (Baddeley, Thompson & Buchanan, 1975) 

that is implemented within EPAM-VOC as a time to match the input using the nodes 

in long-term knowledge (the hierarchical network). To match a node takes 400 ms, 

and to match a phoneme within that node takes an additional 30 ms, excluding the 

first phoneme (these timing estimates are based on those of Zhang & Simon, 1985). 

For example, matching the “W EH1 R” node in the network shown in Fig. 2 would 
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take 460 ms. Since it takes 400 ms to match any node in the network, the “W EH1 R” 

node is allocated a time of 400 ms to match the node itself, but added to this time is 

the time to match each constituent phoneme bar the first (i.e. 30 ms for “EH1” and 30 

ms for “R”) – resulting in a time allocation of 460 ms. 

 

Consider the input “Where’s baby?” (phonemic equivalent “W EH1 R Z B EY1 B 

IY0?”) and the network as shown in Fig. 2. The “W EH1 R” part of the input can be 

matched using the contents of a single node and is allocated a time of 460 ms. The 

remainder of the input contains phonemes that exist only as single item nodes in the 

network, which are therefore allocated a time limit of 400 ms each. The input 

presented to EPAM-VOC for learning is therefore “W EH1 R Z B EY1” and has a 

temporal duration of 1,660 ms. The phonemes at the end of the utterance, “B” and “ 

IY0”, are not included as these would exceed the 2000 ms limit. That is, once the time 

limit of the phonological store is exceeded, no further input is able to be processed. 

 

By using long-term knowledge to mediate the amount of information that can be 

represented within a fixed capacity limit, EPAM-VOC is able to concretely specify 

how WM capacity and long-term knowledge interact. The absence of a detailed 

specification of the link between WM and long-term memory has been acknowledged 

as a problem with current accounts of NWR performance (e.g. Gathercole et al., 1994) 

and, although there have been attempts to provide verbal descriptions (e.g. 

Gathercole, 2006; Metsala, 1999), EPAM-VOC offers a precise specification of the 

interaction. 
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At the early stages, after EPAM-VOC has been presented with a small amount of 

mother’s speech, its hierarchy of nodes is not very large and therefore long-term 

memory is of minimal aid to offset WM capacity limitations. The nodes at this point 

will only contain small sequences of phonemes and so any given input to the model is 

likely to require many nodes to represent it, resulting in only some of those nodes 

being captured within the 2,000 ms limit of the phonological store. However, after the 

model has been presented with a large amount of speech, the hierarchy becomes more 

extensive such that nodes can contain long sequences of phonemes – if part of the 

input can be represented using these nodes, this will reduce the amount of time 

allocated to the input such that more of it can now be captured within the 

phonological store. Furthermore, EPAM-VOC’s sensitivity to the variation in the 

input means that more will be learnt from speech containing a large rather than a 

small set of vocabulary, even when (for example) the number of utterances and mean 

length of utterance are matched. This is because any diversity within the input results 

in more opportunity for the model to learn nodes containing different phoneme 

sequences. It is worth noting that the time to match a node and the time to match 

constituent phonemes in a node do not vary with vocabulary size. Rather, vocabulary 

size itself drives how much information can fit into WM capacity. 

 

2.5. How EPAM-VOC performs the NWR test 

 

Nonword repetition is achieved by presenting the model with the phonemic 

representation of each individual nonword in the same way that normal speech input 

is presented to the model. EPAM-VOC therefore attempts to capture as much of the 

nonword as possible using existing nodes by traversing the network in exactly the 
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same way as with standard speech input—including the same time-limited capacity. If 

the whole nonword can be captured in the phonological store within the given time-

limited capacity it is assumed to have been repeated correctly, otherwise the nonword 

is assumed to have been repeated incorrectly. Nonwords that are repeated correctly 

obtain a score of 1, and nonwords repeated incorrectly obtain a score of 0. This is the 

same method of scoring as per the children. Each group of nonwords contains five 

stimuli, so scores are out of 5. Multiplying these scores by 20 results in a percentage 

repetition accuracy for the model and for the children. 

 

For young children, errors are made on the NWR test even for the simplest stimuli 

(single syllable wordlike nonwords). Errors are believed to occur either from 

inaccurate encoding/storage (Gathercole & Baddeley, 1990a) or inaccurate 

articulation of the nonword (particularly for nonwords containing consonant clusters, 

Gathercole et al., 1991). In fact, NWR studies often make allowances for articulation 

difficulties (e.g. Roy & Chiat, 2004). Encoding/storage/articulation difficulties have 

been incorporated within EPAM-VOC by adding a probability of error when making 

traversals in the network. This means that when trying to represent a nonword in as 

few nodes as possible, an incorrect test may be taken, resulting in an incorrect 

response. Error probabilities are the same as those used by Jones et al. (2007). 

 

Children’s nonword repetition errors can be categorized in terms of phoneme 

substitutions, phoneme deletions, and the combination of the two (phoneme addition 

rarely occurs in nonword repetition, Gathercole et al., 1994). EPAM-VOC is also able 

to produce these categories of error. By having the possibility of selecting an incorrect 

node when traversing the network, the model is able to produce phoneme 
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substitutions. Phoneme deletions occur when the nonword is unable to fit in the time-

limited phonological store. 

 

2.6. Alternative models of nonword repetition and psycholinguistic phenomena 

 

There are other models that examine nonword repetition and also a variety of models 

that are concerned with phenomena from psycholinguistics and memory research, 

such as serial order effects. We consider both varieties of model here in order to give 

a perspective as to how EPAM-VOC fits in with these models. 

 

There exist at least three models of nonword repetition. First, Hartley and Houghton 

(1996) describe a connectionist network that incorporates a decay element. Nonwords 

are presented to the model in the training phase, and recall of the nonwords is 

determined in a later test phase. Decay in the model means that long nonwords have a 

lower probability of correct recall than short nonwords, consistent with the nonword 

repetition literature (e.g. Gathercole & Baddeley, 1989). The model also includes 

competition at the phoneme level such that (for example) phonological substitutions 

can take place. Based on data from Treiman and Danis (1988), the model makes 

similar types of error to those made by children and adults. 

 

Second, Brown and Hulme’s (1995, 1996) trace decay model represents a given 

nonword (or other item) as a sequence of time slices based on the time taken to 

articulate the nonword. Each time slice begins with a high activation strength that 

declines as time progresses, meaning the beginning segment of a nonword decays 

more rapidly than the middle and end segments. However, activation strength can be 
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increased based on relationships to LTM traces. For nonwords that share similarities 

to real words (i.e. wordlike nonwords), activation would therefore be higher than that 

of nonwords sharing little similarity to real words (i.e. non-wordlike nonwords). The 

resulting effect, as seen in children’s nonword repetition, is that wordlike nonwords 

have a higher repetition accuracy than non-wordlike nonwords (e.g. Gathercole, 

1995).  

 

Third, Gupta and colleagues (Abbs, Gupta, Tomblin & Lipinski, 2007) detail a 

recurrent connectionist network that combines long-term phonological knowledge 

(the weights in the network) and phonological short-term memory (the recurrence in 

the network). The training set comprised 4,386 English words varying in length from 

2-4 syllables. By including units in this network that in some sense represent phoneme 

features, it was possible to examine phonological discrimination effects as well as 

nonword repetition effects. A significant relationship between phonological 

discrimination and nonword repetition was found, independent of any involvement of 

vocabulary learning. This finding in the model mirrors that of human participants. 

Although no examination of specific nonword repetition effects was carried out, it 

should be noted that this model is in its infancy and further work is due to come out 

(Gupta & Tisdale, submitted). 

 

If we consider the first two models (given that the third does not yet examine NWR 

phenomena), both models are able to capture some of the central phenomena that are 

seen in the nonword repetition literature, such as differences in performance 

depending on nonword length and wordlikeness. EPAM-VOC is also able to capture 

these effects (Jones et al., 2007). For example, better performance is found for short 
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nonwords because these are more likely to fit in the model’s time-limited 

phonological store. Wordlike nonwords show an advantage over non-wordlike 

nonwords because they are captured in fewer nodes (thereby receiving a lower time 

allocation in the phonological store). The main advantage of EPAM-VOC over the 

models listed above is that EPAM-VOC captures all of the necessary nonword 

repetition effects while at the same time explaining how phonological knowledge is 

actually acquired through exposure to naturalistic stimuli. 

 

Further models exist that attempt to simulate short-term memory phenomena other 

than nonword repetition. For example, OSCAR (Brown, Preece & Hulme, 2000) is 

able to simulate a wide range of serial order phenomena such as item similarity and 

grouping effects. The primacy model (Page & Norris, 1998) simulates word length, 

list length and phonological similarity effects in serial recall. Burgess and Hitch’s 

(1999) network model simulates the same phenomena as the primacy model but also 

includes effects of articulatory suppression. All of these models specifically address 

phenomena seen primarily in the serial recall literature rather than phenomena in the 

nonword repetition literature and so this is a clear difference compared to EPAM-

VOC. The lack of a mechanism by which EPAM-VOC can simulate serial recall is a 

limitation of the model which we will return to in our general discussion. However, it 

should be noted that the models described above, although they provide an 

explanation of serial recall phenomena, do not explain how the material relevant to 

this phenomena is learnt – that is, how phonological knowledge is acquired and how 

new words are learned. This is a major advantage of EPAM-VOC over all of the 

models covered in this section. 
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3. Simulations of the NWR data 

 

Before presenting the analyses, we first describe the child data that were used to 

compare to the simulations, how the simulations were performed, and how the 

analyses that compare the simulations to the child data were carried out. 

 

3.1. Selecting appropriate comparison data 

 

EPAM-VOC is a computational model that emphasizes the role of the input in the 

child’s development. To provide as close an approximation to the input as possible, 

NWR performance will be compared to young children, because their input is easier 

to estimate (older children receive input from a variety of sources such as books, 

television, etc.). The children’s NWR data from Jones et al. (2007) are used because 

this study uses children between two and five years of age, and it is the only study we 

are aware of that uses the same NWR test and methodology across these ages. The 

data compares 2-3 year old children and 4-5 year old children on nonwords that are 

either wordlike or non-wordlike and that vary from one to three syllables in length. 

Older children show better NWR performance and there are effects of wordlikeness 

and nonword length for both ages, with better performance for wordlike nonwords 

and shorter nonwords.  

 

3.2. Method of simulation 

 

The simulations attempt to match 2-3 year olds NWR performance at an early stage in 

the model’s development (when WM capacity is small or the model is at an early 
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stage in its learning) and to match 4-5 year olds NWR performance at a later stage in 

the model’s development (when WM capacity is large or the model is at a late stage in 

its learning). An indicative estimate of the input that a 2-3 year old child receives is 

the speech from the primary caregiver, so an input solely based on mother’s 

utterances is used in the early stages of the model’s learning. However, to 

approximate the input that a 4-5 year old receives, words from a vocabulary frequency 

database for 8 year old children (available at 

http://www.essex.ac.uk/psychology/cpwd/) are used in conjunction with the mother’s 

utterances. The simulations begin by using only mother utterances, but gradually 

introduce words from the vocabulary database at later stages in the model’s learning. 

We assume that, with age, children become better at encoding and articulating words, 

and so the probability of making an error when traversing the discrimination network 

is reduced at later stages of the model’s learning.  

 

Table 1 shows the stage of learning, the amount of input seen by the model, the ratio 

of mother’s utterances to vocabulary items used in the input, and the probability of 

making a traversal error at each stage of the model’s learning. Note that the 

probability of making a traversal error is not based on an arbitrary figure but reflects 

children’s error rates for single-syllable nonwords. For example, the 2-3 year olds 

have a 28% average error rate for single-syllable nonwords (Gathercole & Adams, 

1993; Jones et al., 2007). Single-syllable nonwords average 3.1 phonemes, and 

assuming one traversal per phoneme, with each phoneme having a probability of error 

of .10, then the probability of making a correct traversal is .90 *.90 *.90 = .73, or a 

27% error rate. Although the error rates for single syllable nonwords can be said to 

have been ‘fit’, the actual comparisons are made on nonwords of one to three 
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syllables, and nonwords that are both wordlike and non-wordlike, so error rates 

mainly arise from the dynamics of the model. 

 

TABLE 1 ABOUT HERE 

 

EPAM-VOC was trained individually on each of twelve sets of mother’s utterances 

taken from mother-child interactions with 2-3 year old children across the period of 

one year (Theakston, Lieven, Pine & Rowland, 2001). The number of utterances 

varied for each mother-child (range 17,474-33,452; mean 25,519). When introducing 

vocabulary items into the input, pairs of vocabulary items were used so that the 

number of phonemes in the input would be roughly equal to the number of phonemes 

in a mother’s utterance. The average number of phonemes in a mother utterance is 

12.03; the average number of phonemes in a pair of vocabulary items is 10.46. The 

vocabulary items selected for use as input were scaled based on the frequency of 

occurrence of the item. For example, ‘lake’ has a frequency of 181 and is therefore 

over three times as likely to be selected for use as input than ‘laid’, which has a 

frequency of 59. 

 

Consider as an example the mother-child interactions for ‘Anne’, which contain 

33,390 mother’s utterances. The model is presented with all of the first 25% of these 

utterances. For the next 12.5% of the mother utterances, one in every ten utterances is 

replaced by a pair of vocabulary items (in accordance with the figures in Table 1). 

Similarly, the subsequent 12.5% of the mother utterances have two in every ten 

utterances replaced with pairs of vocabulary items. If a nonword repetition test were 
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to be carried out at this stage (i.e. after 50% of the input has been seen), the 

probability of selecting an incorrect test when traversing the network would be .08. 

 

The model was run ten times for each of the twelve sets of mother-child data. Ten 

simulations give a representative estimate of NWR performance for each set of 

mother-child data given that there are two random elements in the model: the 

vocabulary items selected for use as input and the probability of making a traversal 

error. The results of the ten simulations from each set of mother-child data were then 

averaged in order to arrive at a mean NWR performance score for each dataset.  

 

The simulations need to vary both long-term knowledge (by manipulating the amount 

of input seen by the model) and WM capacity (by manipulating the time-limit of the 

phonological store), and so simulations were run at each of the following 

phonological store time durations: 1500 ms, 1600 ms, 1700 ms, 1800 ms, 1900 ms 

and 2000 ms. We also allowed for the possibility that higher values of WM capacity 

might allow better matches to the data, and therefore also included durations of 2,100 

ms and 2,200 ms. Altogether, there were 960 simulations (8 time durations * 12 

children * 10 runs per child), or 96 when the NWR tests are averaged for each child. 

For each simulation, a nonword repetition test was carried out for every 12.5% of the 

input seen by the model so that performance could be analyzed at different levels of 

knowledge. For each simulation, this resulted in eight nonword repetition tests, one 

for each ‘stage of learning’ (12.5% of input, 25%, 37.5%, 50%, 62.5%, 75%, 87.5% 

and 100%). The nonword repetition test used the nonwords from Jones et al. (2007), 

as NWR comparisons are being made to the children from this study. 
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3.3. Method of analysis 

 

There exist a number of methods for measuring the goodness of fit between the 

simulations of a model and the observed data. Here, to assess the success of different 

parameter assignments of EPAM-VOC in replicating the child NWR data, we use four 

methods that appear natural. 

 

First, computing the Root Mean Squared Error (RMSE) between the child data and 

the simulations gives an indication of how well the simulations map onto the child 

data in terms of raw NWR performance. RMSE estimates the overall error between 

two sets of data. For each condition (e.g. one-syllable wordlike nonwords) the RMSE 

value represents the difference in repetition accuracy between the simulations and the 

child data. RMSE values therefore give an estimate of how closely the simulations 

match the child data, with low RMSE values indicating that the model matches the 

child data closely. For analysis purposes, the ten simulation runs for each set of 

mother-child data are averaged, as are the RMSE values for each condition. This 

results in one overall RMSE value for each set of mother-child data that represents the 

difference in repetition accuracy between the ten simulations and the child data across 

all types and lengths of nonword.  

 

Second, computing correlations for each set of NWR results gives an indication of 

how well the simulations map onto the trends shown in the child data. If the model 

perfectly predicts the pattern of variation in the observed data, the correlation should 

be equal to one. 
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Third, subjecting the simulation data to the same ANOVA analyses as those used with 

the original child data will confirm (or not) that the NWR phenomena that are seen in 

the child data are also seen in the simulations.  The target phenomena are: 

improvement in performance with age; decrease in performance as nonword length 

increases; and decrease in performance as wordlikeness decreases. 

 

Fourth, examining the types of error produced by the model and comparing them to 

the types of error children make provides a finer indication of how well the model 

simulates the children’s data. We compare error data with the kinds of error that five 

year old children produce (Gathercole et al., 1994). Although this makes comparison 

to 2-3 year old children difficult, the only 2-3 year old error data we know of (Roy & 

Chiat, 2004) examines syllable errors rather than errors at the phonemic level. 

 

In the first part of the analyses, we examine three different variations of simulation. 

First, we vary long-term knowledge while keeping WM capacity constant to see what 

NWR phenomena are explained by increases in long-term knowledge alone. Second, 

we vary WM capacity while keeping long-term knowledge constant to see what NWR 

phenomena are explained by increases in WM capacity alone. Third, we allow both 

variables to vary—that is, we are interested in the interaction of these variables to see 

if the combination of knowledge and WM capacity provides a better explanation of 

the data than either increases in long-term knowledge or increases in WM capacity 

alone.  

 

In all three cases, we are interested in finding the levels of long-term knowledge and 

WM capacity that minimize RMSE both for 2-3 year olds and 4-5 year olds. Once 
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these levels are found, we use a correlation analysis to help select the simulation that 

best approximates the child data. The ‘winning’ simulation is then subjected to an 

ANOVA in order to test whether the main NWR phenomena seen in the child data are 

also found in the simulation data. Note that the ANOVA analyses concentrate on the 

main effects of age, nonword length, and the wordlikeness of the nonwords, since 

these are the central phenomena of interest. This is partly to show whether or not the 

simulations capture these main effects, and partly to keep the analyses concise. 

Finally, we examine the error pattern for the ‘winning’ simulation and compare it to 

the error patterns in the children. 

 

In the second part of the analyses, we compare the three ‘winning’ models in more 

detail by examining RMSE for each type of nonword and each length of nonword. 

Analyzing the data in finer detail will help to establish (1) which model provides the 

best fit to the child data; (2) which aspects of the data the models fit best; and (3) 

where the most important differences between the models lie. The analyses in this 

section will report interactions because we are now interested in the dynamics of how 

each model fits the child data. 

 

3.4. Analyses 1: Varying long-term knowledge 

 

This section examines the extent to which long-term knowledge alone can account for 

the developmental changes in NWR performance. By varying long-term knowledge 

while WM capacity is held constant we hope to find a simulation at one level of 

knowledge that approximates 2-3 year olds’ NWR performance and find a simulation 

at a higher level of knowledge that approximates 4-5 year olds’ NWR performance. 
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However, this also involves finding an appropriate WM capacity across the two 

simulations. As can be seen in Table 2, the simulations that give the lowest combined 

RMSE values are at WM capacity durations of 2,000 ms and 2,100 ms. For example, 

keeping WM capacity constant at a duration of 2,000 ms and varying long-term 

knowledge results in an average RMSE of 9.59 for simulations at stage 2 of the 

model’s learning (compared to 2-3 year olds) and 10.08 for simulations at stage 8 

(compared to 4-5 year olds). Similarly, keeping WM capacity constant at a duration of 

2,100 ms also results in low RMSE values for simulations at stage 2 and 8 of the 

model’s learning (10.94 and 8.86 respectively).  

 

TABLE 2 ABOUT HERE 

 

We use a correlation analysis to further establish the quality of the best assignments of 

model values. The simulations show good correlations to the 2-3 year old and 4-5 year 

old data. The 2,000 ms WM capacity duration simulations compare well at stage 2 to 

2-3 year old children (r(4)=.89, p<.02) and at stage 8 to 4-5 year olds (r(4)=.71, 

p>.05).3 The 2,100 ms WM capacity duration simulations also account for the data 

well (r(4)=.88, p<.03 and r(4)=.63, p>.05 respectively). Although there is little 

difference between the RMSE and correlation data, the 2,000 ms WM capacity 

simulations are slightly better in both cases and so are analyzed further. The left graph 

of Fig. 3 shows a comparison between the 2-3 year olds and the stage 2 simulations 

and the right graph shows a comparison between the 4-5 year olds and the stage 8 

simulations. 

                                                 
3 Given such small sample sizes (6 datapoints) only high correlation coefficients (.81 or above) are 

significant. 



Working Memory and Long-term Knowledge  29 

 

FIGURE 3 ABOUT HERE 

 

A 2 (stage of learning: 2 or 8) x 2 (nonword type: wordlike or non-wordlike) x 3 

(nonword length: 1, 2 or 3 syllables) mixed ANOVA was performed on the 2,000 ms 

simulation data. There was a significant effect of stage of learning (F(1,22)=313.17, 

p<.001), with better performance at stage 8, and a significant effect of nonword type 

(F(1,22)=75.83, p<.001), with better performance for wordlike nonwords. There was 

also a significant effect of nonword length (F(2,44)=348.76, p<.001), with post hoc 

Bonferroni tests showing better performance for one-syllable nonwords over both 

two- and three-syllable nonwords (both p<.001) and better performance for two-

syllable nonwords over three-syllable nonwords (p<.001). Importantly, the 

simulations show the same pattern of performance as the children: there is better 

performance with age (with age in these simulations corresponding to the amount of 

knowledge), there is better performance for wordlike nonwords over non-wordlike 

nonwords, and there is better performance for short nonwords over long nonwords. 

Variations in long-term knowledge are sufficient to capture the main developmental 

phenomena in the child data. 

 

The error data of Gathercole et al. (1994) indicate that the majority of errors involve 

phoneme substitution (38%) followed by phoneme deletion (28%) and phoneme 

deletion and substitution (22%). All other error types occur relatively infrequently 

(7% or lower). The error types for the simulations also follow this pattern. At stage 2, 

substitutions were the most common error (60%) followed by phoneme deletion and 

phoneme deletion and substitution (both 17%). A similar pattern was found at stage 8, 



Working Memory and Long-term Knowledge  30 

where substitutions were again the most common error (62%), followed by phoneme 

deletion (14%) and phoneme deletion and substitution (12%). 

 

3.5. Analyses 2: Varying WM capacity 

 

In this section, we examine whether variations in WM capacity alone can account for 

the developmental NWR data. In a similar manner to the first analyses, we first need 

to find suitable levels of long-term knowledge in order to establish an appropriate 

level of knowledge that results in low RMSE values. Taking into consideration RMSE 

values across both the 2-3 year old and 4-5 year old data (see Table 2), the simulations 

that give the lowest combined RMSE are at stages 7 and 8. When the model has seen 

87.5% of the input (i.e. stage 7), a comparison to the 2-3 year old data shows a RMSE 

of 13.74 at a WM capacity duration of 1,500 ms and a comparison to the 4-5 year old 

data shows a RMSE of 8.89 at a WM capacity duration of 2,100 ms. After the model 

has seen 100% of the input (i.e. stage 8), the 2-3 year old comparison has a RMSE of 

12.59 at a WM capacity duration of 1,500 ms and the 4-5 year old comparison has a 

RMSE of 8.92 at a WM capacity duration of 2,100 ms.4 

 

The simulations where only WM capacity is varied also show good correlations to the 

2-3 year old and 4-5 year old data. The stage 7 simulations at WM capacity 1,500 ms 

compare well to 2-3 year olds (r(4)=.82, p<.05) and reasonably well to 4-5 year olds 

                                                 
4 Note that the error probabilities decrease as the stages of learning increase. The error probabilities 

reflect improvement in the long-term processes of encoding and articulation and therefore reflect 

increases in long-term knowledge. A correlation between the error probabilities at each stage of 

learning and the number of nodes in the model at each stage confirm this relationship (r(6)=-.99, 

p<.001). 
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at a 2,100 ms WM capacity duration (r(4)=.52, p>.05). The stage 8 simulations also 

compare well (r(4)=.90, p<.02 and r(4)=.63, p>.05 respectively). Both sets of 

simulations compare favorably with the child data in terms of correlations, and so 

analysis will be carried out on the stage 8 simulations which have slightly lower 

RMSE values overall and also slightly better correlations. The left graph of Fig. 4 

shows NWR performance for the 2-3 year olds compared to the simulations at a WM 

capacity duration of 1,500 ms, and the right graph shows NWR performance for the 4-

5 year olds compared to the simulations at a WM capacity of 2,100 ms. 

 

FIGURE 4 ABOUT HERE 

 

Finally, we carry out an ANOVA to examine whether the model with the selected 

value assignment reproduces the phenomena observed with children. A 2 (WM 

capacity duration: 1,500 ms or 2,100 ms) x 2 (nonword type: wordlike or non-

wordlike) x 3 (nonword length: 1, 2 or 3 syllables) mixed ANOVA was performed on 

the stage 8 simulation data. There was a significant effect of WM capacity duration 

(F(1,22)=941.94, p<.001), with better performance at 2,100 ms, and a significant 

effect of nonword type (F(1,22)=156.94, p<.001), with better performance for 

wordlike nonwords. There was also a significant effect of nonword length 

(F(2,44)=879.93, p<.001), with post hoc Bonferroni tests showing better performance 

for one-syllable nonwords over both two- and three-syllable nonwords (both p<.001) 

and better performance for two-syllable nonwords over three-syllable nonwords 

(p<.001). As with the simulations where long-term knowledge was varied, the data 

show the same pattern of nonword repetition performance as for the children: there is 

better performance with age (with age in these simulations corresponding to the 
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phonological store duration), there is better NWR performance for wordlike nonwords 

over non-wordlike nonwords, and there is better performance for short nonwords over 

long nonwords. Variations in WM capacity alone are also able to capture the 

developmental NWR phenomena that are seen in children. 

 

The error data show a different pattern to that of Gathercole et al. (1994), who found 

that the main order of error frequency is phoneme substitution followed by phoneme 

deletion and then phoneme deletion and substitution. Although the three central error 

types are again predominant, the order of frequency is different. At 1,500 ms duration, 

the primary form of error is phoneme deletion (57%), followed by substitution (23%) 

and deletion and substitution (19%). At 2,100 ms, there are only two main forms of 

error: substitution (87%) and addition and substitution (11%). 

 

3.6. Analyses 3: Varying both WM capacity and long-term knowledge 

 

If developmental change involves both long-term knowledge and WM capacity, then 

the best simulation of the children’s data would be expected to arise from the 

interaction between WM capacity and knowledge. This is what we investigate in this 

analysis by allowing both variables to change as the model learns as a function of 

time. Interestingly, Table 2 shows that when comparing to 2-3 year olds, the lowest 

possible RMSE is obtained with a 2,000 ms WM capacity duration at stage 2 of the 

model’s learning, the exact same parameter settings as for the long-term knowledge 

analysis. When comparing to the 4-5 year olds, the lowest possible RMSE is obtained 

with a 2,100 ms WM capacity duration at stage 6 of the model’s learning. We have 

already ascertained that the model at stage 2 with a WM capacity duration of 2,000 
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ms matches the main effects seen in the children, so we only analyze the model at 

stage 6 with WM capacity duration 2,100 ms here.  

 

A 2 (nonword type: wordlike or non-wordlike) x 3 (nonword length: 1, 2 or 3 

syllables) mixed ANOVA was performed on the stage 6/WM capacity duration 2,100 

ms simulation data. There was a significant effect of nonword type (F(1,11)=4.96, 

p<.05), with better performance for wordlike nonwords and a significant effect of 

nonword length (F(2,22)=93.05, p<.001). Post hoc Bonferroni tests showed better 

performance for one-syllable nonwords over both two- and three-syllable nonwords 

(both p<.001) and better performance for two-syllable nonwords over three-syllable 

nonwords (p<.003). The results fit the same pattern of result for the 4-5 year old 

children. Variations in both long-term knowledge and WM capacity are able to 

capture the developmental NWR phenomena that are seen in children. 

 

For our analysis of errors, we concentrate on the stage 6/2,100 ms simulation data, 

since we already know that the stage 2/2,000 ms simulation data compare well to the 

children for types of error. The stage 6/2,100 ms simulation data show a different 

pattern of error to the children. Only two types of error are predominant: phoneme 

substitution (86%) and phoneme addition and substitution (10%). 

 

3.7. Examining the match between simulation and child data 

 
We have now identified the simulations that best approximate the children’s 

performance in three cases: when varying levels of long-term knowledge, when 

varying levels of WM capacity, and when varying levels of long-term knowledge and 

WM capacity simultaneously. Not surprisingly, given the strong links between 
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knowledge and WM capacity outlined earlier, independently varying long-term 

knowledge and WM capacity allowed us to match the developmental NWR 

phenomena in both cases. When both were allowed to vary simultaneously, we 

determined that the best simulations to 2-3 year old children were the same as those 

seen when only long-term knowledge was varied, but the best simulation to 4-5 year 

old children was for a new pair of parameter settings. We now further investigate the 

pattern of results by examining the knowledge, WM capacity and interaction 

simulations in more detail to see how well each is able to match the intricacies of the 

child data. 

 

To provide a more fine-grained analysis of the closeness of fit for the simulations, the 

analyses in this section focus on performance for each nonword type and for each 

nonword length. Rather than use raw NWR performance scores, RMSE values are 

used because these will indicate how well each simulation matches the child data for 

each type and length of nonword. That is, we already know that all the ‘winning’ 

simulations match the basic findings seen in the children. The goal here, therefore, is 

to examine the pattern of error across each of the simulations by examining the RMSE 

error rates across each nonword type and length. Analyzing the data in this much 

detail will not only indicate which model provides the best fit to the child data, but 

also which aspects of the child data the models are most — and least — successful in 

accounting for. Table 3 shows RMSE figures for each type of nonword at each of the 

three syllable lengths, for the ‘winning’ knowledge, WM capacity and interaction 

simulations.  

 

TABLE 3 ABOUT HERE 
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3.7.1. 2-3 year old data 

We only analyze the long-term knowledge and WM capacity simulations here because 

the ‘winning’ interaction simulations were the same as those for long-term 

knowledge. A 2 (simulation-type: long-term knowledge or WM capacity) x 2 

(nonword-type: wordlike or non-wordlike) x 3 (nonword-length: 1, 2, or 3 syllables) 

ANOVA was computed on the RMSE data for the 2-3 year old simulations. There 

was a main effect of simulation-type (F(1,22)=13.72, p<.002), with the long-term 

knowledge simulation having lower RMSE rates than the WM capacity simulation. 

There were also a main effect of nonword-type (F(1,22)=64.40, p<.001), with 

RMSE’s being lower for wordlike nonwords. Finally, there was a main effect of 

nonword-length (F(2,44)=103.82, p<.001). Post hoc Bonferroni tests showed that 

RMSE rates for two-syllable nonwords were lower than those for one-syllable 

(p<.001) and three-syllable nonwords (p<.007), and RMSE rates for three-syllable 

nonwords were lower than those for one-syllable nonwords (p<.001).  

 

There were also significant interactions involving the simulation variable, indicating 

the areas where the long-term knowledge simulations provided a better fit to the data 

than the WM capacity simulations. Specifically, while the mean difference in RMSE 

error rates between the long-term knowledge simulations and the WM capacity 

simulations was only -0.18 for the wordlike nonwords, it was -0.42 with the non-

wordlike nonwords  (F(1,22)=9.80, p<.006). The interaction between type of 

simulation and nonword length (F(2,44)=15.20, p<.001) comes from the fact that the 

difference between the two simulations is larger with one-syllable (-0.40) than with 

two-syllable (0.07) and three-syllable nonwords (-0.12). There was also an interaction 
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between nonword-type and nonword-length (F(2,44)=65.83, p<.001) indicating that 

for both of the simulations, RMSE error rates were particularly high for non-wordlike 

one-syllable nonwords. 

 

3.7.2. 4-5 year old data 

The 4-5 year old data were subjected to the same analysis as above, but this time the 

‘winning’ interaction simulation is included because the three ‘winning’ simulations 

in the 4-5 year old comparisons are all different from each other. A 3 (simulation-

type: long-term knowledge, WM capacity, or interaction) x 2 (nonword-type: 

wordlike or non-wordlike) x 3 (nonword-length: 1, 2, or 3 syllables) ANOVA was 

computed on the RMSE data for the 4-5 year old simulations. As per the previous 

analyses, there were main effects of nonword-type (F(1,33)=35.68, p<.001) and 

nonword-length (F(2,44)=103.82, p<.001). However, the most important finding was 

the fact that there was no effect of simulation-type (F(2,33)=1.39, p>.05), illustrating 

that RMSE rates were similar across all three types of simulation. 

 

There were also significant interactions involving the simulation variable. The 

interaction involving nonword-type (F(2,33)=25.27, p<.001) illustrated that the WM 

capacity simulations provided the lowest error rates for wordlike-nonwords and yet 

the highest error rates for non-wordlike nonwords. The interaction involving 

nonword-length (F(4,66)=3.51, p<.02) illustrated that there were no differences across 

simulations for one and two-syllable nonwords but the interaction simulation had 

lower error rates for three-syllable nonwords. Similar to the 2-3 year old analysis, 

there was also an interaction between nonword-type and nonword-length 
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(F(2,66)=41.89, p<.001) indicating particularly high error rates for non-wordlike one-

syllable nonwords. 

 

3.8. Summary 

 

In summary, the analyses in this section showed that the knowledge and interaction 

simulations provided a closer match to the 2-3 year old child data compared to the 

WM capacity simulations. There were no major differences across simulations in 

comparisons to the 4-5 year old data. This indicates that, overall, the long-term 

knowledge simulations provided a closer match to the child data than the WM 

capacity simulations, with little benefit arising from allowing both knowledge and 

WM capacity to vary. The analyses also revealed the general success of all three types 

of simulation in matching the child data. First, the simulations matched the child data 

best for wordlike nonwords and for nonwords of two- and three-syllables. The latter is 

particularly important because it illustrates that the probability of making a traversal 

error in EPAM-VOC, which was based on children’s error rates for one-syllable 

nonwords, is influenced by the dynamics of the model. Second, the simulations are 

poor for one-syllable non-wordlike nonwords, indicating a specific area where the 

model needs further development. 

 

4. Discussion 

 

The goal of this paper was to investigate the respective roles of increasing long-term 

knowledge and increasing WM capacity in explaining developmental change. A 

computational model of vocabulary learning was presented that was able to simulate 
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children’s NWR performance. Long-term knowledge and WM capacity were each 

systematically varied independently of one another, showing that both were able to 

capture the central findings in NWR performance: improved performance with age; 

improved performance for shorter nonwords; and improved performance for wordlike 

nonwords. Allowing both knowledge and WM capacity to vary (i.e. allowing the two 

to interact) revealed that the best simulations of the 2-3 year old children were the 

same as those where only knowledge was varied, although the best simulations of the 

4-5 year old data arrived at a new set of parameter assignments. However, an analysis 

of the patterns of error made by the children and the simulations showed that 

variations in task knowledge provided the best fit to the types of error made by 

children. Taken as a whole, these findings suggest that long-term knowledge alone 

may be sufficient to match the developmental data. 

 

A further, more fine-grained analysis was performed on the three ‘winning’ 

simulations to examine where each simulation matched the child data for type and 

length of nonword. These analyses indicated that for the 2-3 year old data, both the 

long-term knowledge simulations and the interaction simulations provided a 

significantly better fit to the intricacies of the child data than the WM capacity 

simulations. By contrast, no differences between any of the simulations were found 

for the 4-5 year old children. The results suggest that increases in WM capacity may 

not be necessary to explain developmental change given that increases in long-term 

knowledge must occur during development. The results are important not only for 

NWR and vocabulary learning, but also for developmental psychology in general. We 

now discuss implications for each of these areas. 
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4.1. Implications for developmental psychology 

 

The clear finding from the results presented is that independent changes in long-term 

knowledge and WM capacity are both sufficient to simulate developmental data. This 

is important because it illustrates that long-term knowledge and WM capacity share 

strong links with each other, suggesting that it may well be very difficult to measure 

each of these factors independently of the other.  

 

Upon closer inspection, the results showed that increases in long-term knowledge 

provided a significantly better match to the child data. Given that no serious 

developmental theory would argue against changes in long-term knowledge, we can 

assume that increases in the child’s knowledge base must constitute a significant part 

of the child’s development. If this is the case, then one can legitimately ask whether 

changes in long-term knowledge cause perceived changes in other mechanisms of 

development. The findings here illustrate that, at least for simulations of NWR 

performance, changes in long-term knowledge can account for apparent changes in 

WM capacity. It is therefore possible that any changes in performance on 

developmental tasks that are hypothesized to arise from increases in WM capacity 

may simply arise from increases in long-term knowledge.5  

 

The results show support for both the chunking hypothesis and Case’s (1985) idea that 

WM capacity remains fixed throughout development. As knowledge develops, the 

units used for measuring WM capacity change, where previously independent units of 

                                                 
5 Note that we are referring here to developmental differences in WM capacity rather than individual 

differences. 
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knowledge become grouped into a new memory structure that can now be used as a 

single unit (Lane, Gobet, & Cheng, 2001). WM capacity therefore remains constant 

but through long-term chunking the amount of information that can be held in WM 

increases over time. Increases in long-term domain knowledge therefore give rise to 

the perception that there are associated increases in WM capacity because expansions 

in long-term knowledge result in an ability to hold more information in WM. 

 

Knowledge effects have been seen in a variety of domains, particularly with regard to 

expertise. For example, children who have expertise in chess are able to hold more 

information in WM than their non-chess playing peers in chess-related memory tests 

whereas in domains where both sets of children are non-experts, no differences are 

seen in tests of WM capacity (Chi, 1978; Schneider, Gruber, Gold & Opwis, 1993). 

 

The possibility that changes in WM capacity are an artifact of changes in long-term 

memory is also consistent with previous results in the memory literature. For 

example, Swanson (1999) found clear relationships between both verbal and 

visuospatial WM capacities and reading and mathematics ability – high scores on the 

WM capacity tasks were therefore related to high scores on the ability tasks that tap 

into long-term knowledge. While it could be argued that reading and mathematics 

ability do not directly relate to the WM tasks that Swanson (1999) carried out, they 

may be indicative of a larger knowledge base, and hence the possibility that long-term 

knowledge provided a significant contribution to the apparent age-related differences 

in WM capacity. 
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Bayliss, Jarrold, Gunn and Baddeley (2003) tested complex span (memory span 

involving both WM capacity and a processing component) together with traditional 

tests of WM capacity. They found that domain specific WM capacity tasks made 

significant contributions to both children’s and adults’ performance of complex span 

tasks that involved the same form of storage. For example, performance on verbal 

WM capacity tasks made significant contributions to performance on complex span 

tasks involving a verbal storage component. This is consistent with the hypothesis that 

long-term knowledge within a domain (the domains here being rather general – verbal 

or visuospatial) may influence the amount of information that can be held in WM 

capacity for that domain. That is, more verbal long-term knowledge results in a larger 

WM capacity for verbal information and thus better performance on complex tasks 

involving verbal storage of information.  

 

The idea that WM capacity tasks may contain a long-term component has also been 

put forward for traditional WM capacity tasks. For example, digit span tasks have 

been criticized for involving long-term knowledge such as familiarity with the digits 

used (e.g. Case, Kurland & Goldberg, 1982). However, there is evidence to suggest 

that there may be WM capacity differences over and above any long-term knowledge 

influences. Although young children have been shown to have more knowledge for 

lower numbers than higher ones (Dehaene & Mehler, 1992), Cowan, Nugent, Elliott, 

Ponomarev and Saults (1999) found age-related differences for a version of the digit 

span task but found no evidence of digit preference in children of younger ages. This 

would suggest that while long-term knowledge plays a significant role in the child’s 

development, there may also be developmental increases in WM capacity.  
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The evidence thus far suggests that while long-term knowledge may explain age-

related differences in WM capacity, there is still the possibility of developmental 

differences in WM capacity itself. As previously mentioned, studies involving the 

measurement of WM capacity are difficult to interpret because of the influence of 

long-term knowledge. In this respect, studies that appear to show age-related 

differences in WM capacity should be treated with caution unless there are clear 

empirical reasons for preferring an explanation in terms of increases in WM capacity 

over an explanation in terms of increasing knowledge. On the basis of the results that 

have been presented here, we would argue that ‘clear empirical reasons’ are not only 

phenomena that give the appearance of a WM capacity explanation but also those 

where computer simulations have shown that the target phenomena cannot be 

simulated using an explanation involving only long-term knowledge. Only when both 

of these stipulations are met can one legitimately conclude that age-related WM 

capacity differences are required to explain developmental change.  

 

One final finding within the memory literature that may appear not to fit easily with a 

long-term knowledge explanation is the decline in memory performance for older 

adults (e.g. Salthouse, 1990; Swanson, 1999). However, this can be explained from a 

pure knowledge view of WM capacity if one assumes the knowledge itself is difficult 

to access in older populations because of interference. Hasher and Zacks (1988) 

suggest that older adults have difficulty removing items from WM and as such these 

items interfere with others. Similar views are also held by Dempster (1993) and 

Bjorklund and Harnishfeger (1990).  

 

4.2. Implications for nonword repetition and vocabulary learning 
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Although NWR involves both WM capacity and long-term knowledge, WM capacity 

is seen by many as being the most important factor (e.g. Baddeley, Gathercole & 

Papagno, 1998; Gathercole & Baddeley, 1990a, 1990b; Gathercole et al., 1994). The 

results here suggest that the relationship between WM capacity and long-term 

knowledge is actually a complex one that changes over time. As more phonological 

knowledge is acquired, more information can be captured in a fixed WM capacity and 

thus shifts in performance are seen. These shifts do not require any alteration in WM 

capacity – they only require increases in long-term phonological knowledge.  

 

Although EPAM-VOC supports views of vocabulary learning that highlight 

phonological knowledge as the key mediator (e.g. Bowey, 1996; Metsala, 1999), more 

recent theoretical explanations have attempted to clarify the respective roles of long-

term knowledge and WM capacity. In particular, Gathercole (2006) suggests that 

auditory processing and phonological analysis are used to construct a phonological 

representation of the nonword and on the basis of this, redintegration may occur based 

on the amount of overlap between the phonological form and stored lexical entries 

(i.e. words). This suggests that the relative role of WM capacity depends upon the 

type of nonword – those nonwords that share few features with lexical items will 

place more reliance on WM capacity. This explanation is somewhat true of all of the 

simulations presented here – when nonwords had strong links to long-term knowledge 

(i.e. wordlike nonwords) there was a closer match to the child data in terms of lower 

RMSE rates. However, the results also suggest WM capacity may need further 

investigation. If non-wordlike nonwords emphasize the role of WM capacity, then the 

simulations where only WM capacity was varied should have shown better a better fit 



Working Memory and Long-term Knowledge  44 

to non-wordlike nonwords than wordlike nonwords. In fact, the better fit to the data 

was seen for wordlike nonwords.  

 

One line of research that may help in identifying the roles of long-term knowledge 

and WM capacity in NWR performance involves specific language impairment (SLI). 

For example, Archibald and Gathercole (2006) find that children with SLI have a WM 

capacity deficit that is restricted to the verbal domain (implicating phonological WM 

capacity deficits) and Marton and Schwartz (2003) also implicate WM in suggesting 

that children with SLI have problems of simultaneous processing. Further research 

also suggests WM capacity problems for language impaired learners (e.g. De Beni, 

Palladino, Pazzaglia & Cornoldi, 1998; De Jong, 1998). 

 

At first blush, these results speak against the role of long-term knowledge.  However, 

the interpretation of these studies suffers from the same problems as those highlighted 

in the introduction of this article – namely that as phonological long-term learning 

occurs, the units used to measure WM capacity change. We believe that 

computational modeling is a tool that can be used to help in examining language 

impairments. We have supported the view that WM capacity is closely linked to long-

term knowledge, and it now needs to be ascertained whether language impairments lie 

in WM capacity limitations (as suggested above), or alternatively general language 

learning limitations (such as slow learning, Gray, 2006), degraded phonological long-

term representations (as suggested by Service, 2006), a combination of these, or some 

other form of deficit. Computer models such as EPAM-VOC can be used to examine 

the effects that each has upon subsequent NWR performance – based on the fit of the 
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model to the data, specific hypotheses can be generated to help pinpoint potential 

areas of impairment. 

 

4.3. Limitations of the model 

 

The results presented provide an indication that changes in long-term knowledge may 

be sufficient to account for developmental changes in the nonword repetition task 

amongst 2-5 year old children. However, there are some limitations of the model that 

one needs to consider before accepting this conclusion. 

 

First, working memory is represented as a simple time-limited store that allocates a 

temporal duration to each part of the input. Once the time allocation for the input 

exceeds the duration of the phonological store (2,000 ms) the remainder of the input is 

not processed. This does not harmonize with recall effects in the adult literature, 

where primacy and recency effects have been found for nonwords (Gupta, 2005). 

Although there is some contention concerning primacy effects and rehearsal in young 

children (e.g. Siegel, Allick & Herman, 1976), recency effects have been found (e.g. 

Hagen & Kingsley, 1968). Future versions of EPAM-VOC therefore need to 

incorporate a recency mechanism whereby the most recent part of the input is 

available for processing. 

 

Second, the nonword repetition test carried out by the model involves it being able to 

encode the nonword within the time-limited capacity of the phonological store. It 

could be argued, therefore, that rather than the model performing nonword repetition, 

EPAM-VOC is performing nonword recognition. In fact, a fuller account of the 
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nonword repetition process should not only include an encoding process but also an 

articulation process. This is a goal to be achieved in future versions of the model. 

 

Third, the model does not account for memory effects such as serial order effects (e.g. 

Thorn & Frankish, 2005). The instantiation of working memory in EPAM-VOC is 

most aligned to chaining accounts – items in working memory are recalled based on 

the context of preceding items (this is most applicable when several items exist as the 

contents of a node). However, chaining accounts have been criticized in terms of their 

adequacy in explaining serial recall effects. For example, Henson, Norris, Page and 

Baddeley (1996) found that confusable items in a list (e.g. phonologically-similar 

items) have no obvious influence on the likelihood of correctly recalling non-

confusable items. As such, when a non-confusable to-be-recalled item exists in a list 

containing confusable and non-confusable items, the preceding/succeeding items do 

not predict the recall likelihood of the to-be-recalled item. As Henson et al. (1996) 

note, these findings present difficulties for EPAM-like models that are predominantly 

of the chaining variety. Future versions of EPAM-VOC need to consider how its 

account of working memory can deal with the type of serial recall findings presented 

above. 

 

4.4. Overall summary 

 

A computational model of NWR performance has shown that developmental changes 

in vocabulary learning are likely to be mediated by long-term phonological 

knowledge rather than WM capacity. It is therefore possible that WM capacity 

explanations of developmental change actually arise from differences in long-term 
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knowledge. These results suggest the need for caution when evaluating WM capacity 

explanations of developmental change, with researchers only invoking developmental 

changes in WM capacity when there are clear empirical reasons for doing so. 

 

The use of computational models can help in examining the relative contributions of 

long-term knowledge and WM capacity within developmental tasks because they 

allow the two to be independently manipulated so that the relative influence of each 

can be examined. Using the domain of vocabulary learning, we compared variations 

in long-term knowledge and variations in WM capacity, showing that it is likely that 

the key mediator in age-related differences is long-term vocabulary knowledge.  

 

Specific language impairment is a key area where further examination of vocabulary 

learning is necessary because there is a wealth of research that points towards WM 

capacity impairments whereas alternative explanations could exist relating to long-

term knowledge. Computational modeling techniques could be of particular value in 

this domain because they provide a key resource in helping to identify where the 

deficits lie. 
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Figure legends 

 

Fig. 1. Learning in EPAM. For both graphs, the starting node for traversing the 

network is indicated by the topmost node (indicated in bold) that contains no 

information. Arrows indicate tests, and ellipses indicate nodes, which contain the 

resulting information after a test. New information added via learning is represented 

either by bold text or by arrows and ellipses using dashed lines.  

Fig. 2. The resulting EPAM-VOC network after receiving the input “W EH1 R” 

twice. Note that although only five individual phonemes are illustrated below the root 

node, the model knows all phoneme primitives. 

Fig. 3. 2,000 ms capacity duration NWR performance at stages 2 and 8, 

compared to 2-3 year old (left graph) and 4-5 year old children (right graph) 

respectively. 

Fig. 4. Stage 8 NWR performance at 1,500 ms and 2,100 ms capacity durations, 

compared to 2-3 year old (left graph) and 4-5 year old children (right graph) 

respectively. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 



Working Memory and Long-term Knowledge  61 

Figure 4 
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Table 1. Stage of learning, amount of input seen by the model, the ratio of mother’s 

utterances to vocabulary items used in the input, and the probability of making a 

traversal error at each stage of the EPAM-VOC’s learning.  

 

Stage of learning Amount of input 

seen by the model 

(%) 

Percentage of pairs 

of vocabulary items 

included in the 

input 

Probability of 

selecting an 

incorrect link when 

traversing 

1 0-12.5 0 0.10 

2 12.5 – 25 0 0.10 

3 25 - 37.5 10 0.09 

4 37.5 – 50 20 0.08 

5 50 - 62.5 30 0.07 

6 62.5 – 75 40 0.06 

7 75 - 87.5 50 0.05 

8 87.5 – 100 60 0.04 
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Table 2. RMSE averaged across simulations at varying stages of long-term 

knowledge (stages of learning within EPAM-VOC) and at varying durations of WM 

capacity. Stages 9 and 10 and WM capacities 2,100 and 2,200 are given to examine 

whether optimal simulations are found for variations that lie outside of normal ranges. 

 

RMSE comparisons, EPAM-VOC vs 2-3 year olds 

WM capacity 
Stage of 

learning 
1,500 

ms 

1,600 

ms 

1,700 

ms 

1,800 

ms 

1,900 

ms 

2,000 

ms 

2,100 

ms 

2,200 

ms 

1 25.41 23.82 12.24 11.12 10.31 10.33 11.09 11.29 

2 24.34 22.18 10.82 10.39 9.79 9.59 10.94 11.72 

3 22.88 22.04 9.71 10.04 10.89 11.17 14.40 14.38 

4 20.23 20.32 11.82 13.04 13.83 11.98 18.64 18.59 

5 17.14 18.22 13.37 14.24 13.52 16.93 22.10 22.22 

6 14.17 17.18 16.60 17.29 16.54 19.35 26.31 26.74 

7 13.74 16.81 18.77 20.60 22.25 23.09 30.25 29.45 

8 12.59 16.24 20.79 24.33 25.54 25.34 33.96 34.02 

         

RMSE comparisons, EPAM-VOC vs 4-5 year olds 

WM capacity 
Stage of 

learning 
1,500 

ms 

1,600 

ms 

1,700 

ms 

1,800 

ms 

1,900 

ms 

2,000 

ms 

2,100 

ms 

2,200 

ms 

1 47.59 45.68 32.93 29.24 30.41 28.91 21.84 22.16 

2 46.04 44.27 29.66 25.91 26.93 27.24 22.07 21.10 
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3 44.18 42.99 26.93 24.32 22.21 21.71 16.66 17.20 

4 41.38 41.12 23.30 20.88 20.52 19.48 13.14 13.35 

5 38.02 38.88 21.16 18.54 18.93 15.69 10.65 9.84 

6 34.99 36.70 19.02 14.29 15.59 14.15 8.86 9.42 

7 31.57 34.73 18.15 12.66 11.90 10.26 8.89 9.53 

8 29.27 32.54 16.70 11.19 10.62 10.08 8.92 9.51 
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Table 3. Average RMSE values for each ‘winning’ simulation type, computed by 

nonword type and nonword length. 

 

RMSE for simulations of 2-3 year old NWR performance 

 Syllables in wordlike nonwords 
Syllables in non-wordlike 

nonwords 

Simulation 1 2 3 1 2 3 

Long-term 

knowledge 
.35 .44 .38 1.06 .26 .39 

WM 

capacity 
.46 .30 .51 1.75 .26 .50 

Interaction .35 .44 .38 1.06 .26 .39 

       

RMSE for simulations of 4-5 year old NWR performance 

 Syllables in wordlike nonwords 
Syllables in non-wordlike 

nonwords 

Simulation 1 2 3 1 2 3 

Long-term 

knowledge 
.28 .49 .53 .81 .28 .64 

WM 

capacity 
.14 .19 .18 .95 .35 .88 

Interaction .30 .59 .53 .80 .19 .25 

  

 


