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Abstract

Increasing working memory (WM) capacity is oftetedias a major influence on
children’s development and yet WM capacity is difft to examine independently of
long-term knowledge. A computational model of cteld's nonword repetition
(NWR) performance is presented that independendigipulates long-term
knowledge and WM capacity to determine the relatimetributions of each in
explaining the developmental data. The simulatsinwswv that (1) both mechanisms
independently cause the same overall developmeiméaiges in NWR performance;
(2) increase in long-term knowledge provides thiteldit to the child data; and (3)
varying both long-term knowledge and WM capacitgs@do significant gains over
varying long-term knowledge alone. Given that iases in long-term knowledge
must occur during development, the results inditt@éincreases in WM capacity
may not be required to explain developmental diffiees. An increase in WM
capacity should only be cited as a mechanism o¢ldpmental change when there

are clear empirical reasons for doing so.



Working Memory and Long-term Knowledge 3

1. Introduction

While it is clear that cognitive changes occur dgrihe course of the child’s
development, it is less clear precisely what dep®léndeed, this issue is central to
developmental psychology, and has generated adeyable amount of empirical
data and theoretical debate. Theories range frangds in knowledge structures
(e.g. Piaget, 1950, 1952; Vygotsky, 1978), chamg@scombination of knowledge
and working memory (WM) capacity (e.g. Case, 198&lford, 1993), changes in
adaptive strategy choice (Siegler, 1995), and obsungprocessing speed (e.g. Kail,
1988), to name but a few. This paper concentrategeoelopmental change occurring
via increases in knowledge and increases in WMaigpaAs we will see, these two
mechanisms are inextricably linked such that dif§cult to examine the effects of

one in the absence of the other.

No serious researcher would argue against thetidgancreases in children’s
knowledge play a central role in development. Ri&f@50, 1952) first put forward
the hypothesis that knowledge structures are coalfywnupdated by the child, with the
vast majority of subsequent research supportirggvilelw in one form or another (e.g.
Klahr & Wallace, 1976; Siegler, 1995). For examplghough Siegler (1995)
suggests development via adaptive strategy chibiseencompasses general

knowledge that develops through task experiendainvé domain.

1 WM capacity in the context of this paper referghie storage component of working memory.
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However, further mechanisms of development hawe lzden proposed. In particular,
increases in WM capacity have consistently beead@s a separate mechanism of
development in a wide range of domains, such aor@ag (e.g. Halford, Maybery &
Bain, 1986), vocabulary learning (e.g. GathercolBaldeley, 1989), arithmetic
(Passolunghi & Siegel, 2001) and spelling (Ormro@@&chran, 1998). Furthermore,
Cowan (2000) argues, based on a wealth of preVikenature, for both individual and
developmental differences in WM capacity, and Caatal Engle (1993) argue that
individual differences in capacity arise from véinas in the amount of activation

that is available to distribute among long-term rogyiraces.

One problem in examining mechanisms of developro#h@r than knowledge is the
extent to which knowledge pervades these otherthgsed developmental
mechanisms. WM capacity in particular is sensitovknowledge changes — the
chunking hypothesis, for example, suggests thatapacity to hold meaningful
chunks for recoding material is based on our largitknowledge (e.g. Miller, 1956;
Simon, 1974). Developmental theorists also ackndgédehe interplay between
knowledge and WM capacity. For example, Case (188§)es that WM capacity
remains fixed across childhood but the amount f@irmation that can be stored in

WM increases as knowledge increases.

If WM capacity is strongly influenced by long-teknowledge, then developmental

increases in WM capacity will be hard to differatgi from developmental increases
in knowledge. Any empirical assessment of WM cayauoust therefore account for

the child’s existing knowledge, because failurd@cso may lead to tests of WM

capacity that inadvertently capture differencekriowledge rather than capacity.
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However, while it is possible to lay out tasks thstimate a child’s knowledge in a
specific domain, it is almost impossible to be @erivhat knowledge a child may
bring to bear when completing a task within thandm. For example, in the balance
scale domain (e.g. Siegler, 1976), knowledge ofheaind distance are seen as
critical in completing the task successfully, there is a variety of other types of
knowledge that also help performance, such as lediyd of number and the concepts

of greater-than and less-than.

There are therefore two related problems in proggdin accurate measure of WM
capacity. First, there is a strong interplay betwd&M capacity and long-term
knowledge. Second, measuring WM capacity indepehdehlong-term knowledge

is difficult because it is almost impossible toiderall of the pieces of knowledge a
child may use when completing a WM capacity tasgkeh together, these two issues
raise questions about whether tests of WM capaaityart or whole, are tests of

long-term knowledge.

This paper examines the relative contributionsafHerm knowledge and WM
capacity in explaining developmental change. Giver increases in the child’s long-
term knowledge must take place during the coursiewélopment, we ask whether
additional assumptions need to be made regardinglamental increases in WM
capacity or whether increases in long-term knowdealg sufficient to account for the
developmental data. To address this issue, a catimodl model of development will
be presented which independently examines the obllesig-term knowledge and

WM capacity and compares the results of each vatrebpmental data.
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As stated previously, empirically assessing WM cépandependently of long-term
knowledge is difficult. Computational modeling daglp because a model requires all
necessary task knowledge to be specified in omdeomnplete a task, enabling a clear-
cut analysis of how long-term knowledge influenpesformance. In addition,
plausible assumptions regarding WM capacity camtleded within a model. A
computational model that includes both long-terraidedge and WM capacity can
therefore independently manipulate each to seeihowases in long-term knowledge
and increases in WM capacity are able to matcllévelopmental differences in the
child data. In particular, we can ask which phenoani@ the child data can be
explained by changes in long-term knowledge anatlvphenomena can be
explained by changes in WM capacity. Furthermorecan vary both long-term
knowledge and WM capacity simultaneously to seetindrehe interplay between the
two is able to provide a better explanation of¢higd data than either increasing

long-term knowledge or increasing WM capacity alone

The domain we use to examine long-term knowledgeVdM capacity is one where
both mechanisms are cited as being the dominafameagion for age-related changes:
nonword repetition (NWR) (Gathercole, Willis, Badiele& Emslie, 1994). NWR
studies involve a nonsense word being read alotitetahild, who is asked to repeat
it back accurately. Across a range of studies, N\éRormance has consistently been
shown to improve with age and to be inversely egldb nonword length (e.g.
Gathercole & Baddeley, 1989; Gathercole & Adam§31%Roy & Chiat, 2004).

These results appeared to support the view thatgibgical WM capacity increased
with age (e.g. Gathercole & Baddeley, 1989; Gatbler& Adams, 1993). However,

it quickly became clear that there were long-temowdedge influences on NWR
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ability, because performance was significantlydyeftor nonwords rated as being
wordlike and nonwords containing high-frequencymdmes (e.g. Frisch, Large &
Pisoni, 2000; Gathercole, 1995; Gathercole, Wilisislie & Baddeley, 1991). The
results of studies of NWR in children thus appeasupport both the idea that
increasing WM capacity is the dominant factor (Bagddeley, 2002; Baddeley,
Papagno & Vallar, 1988; Gathercole & Adams, 1998th@rcole & Baddeley, 1989;
Gathercole et al., 1994; Gathercole & Pickerin®@%nd the idea that increasing
long-term knowledge is the dominant factor (e.gt9d&, 1999; Munson, Edwards &
Beckman, 2005; Munson, Kurtz & Windsor, 2005; Bow&996). NWR performance
therefore provides an ideal domain to examine ¢hagive contributions of long-term

knowledge and WM capacity.

The remainder of this paper is organized as folldwirst, the computational model of
NWR performance is outlined. Second, we reportetsimulations of NWR
performance (varying long-term knowledge, WM capa@nd both) together with
comparisons across simulations. Third, we disdussédsults of the simulations and
their implications for theory, highlighting the pective roles of long-term knowledge

and WM capacity.

2. The model: EPAM-VOC

EPAM-VOC (Jones, Gobet & Pine, 2007) is a phoneeqgisnce learner that takes
speech in phonemic form as input and builds a ribieal network of phoneme
sequences (or “chunks”) that represents long-terankedge of the linguistic input.

The model has previously been used to simulate NMfformance in 2-5 year old
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children (Jones et al., 2007). EPAM-VOC is basethenEPAM modeling
architecture (Feigenbaum & Simon, 1984), whichetbgr with related
discrimination-net models such as CHREST (Gobeir&of, 2000) and MOSAIC
(Freudenthal, Pine, Aguado-Orea, & Gobet, 2007ydeathal, Pine, & Gobet,
2006)? has been used to simulate psychological phenoinemaariety of domains
such as learning, memory, and perception in clvesbal learning behavior, the digit-
span task, the context effect in letter perceptom, the acquisition of syntactic
categories (see Gobet, Lane, Croker, Cheng, JGhgsr & Pine., 2001, or Gobet &
Lane, 2005, for overviews). We first provide anmwew of EPAM before describing
EPAM-VOC in order to highlight areas where EPAM-V@&s been simplified from

the original EPAM architecture.

2.1. The EPAM architecture

EPAM (e.g. Feigenbaum & Simon, 1984) is a modetirghitecture consisting of a
short-term memory and a discrimination network mvaccess to long-term memory;
it also postulates attention mechanisms that miiact on the construction of the
discrimination network. The discrimination netwaskouilt based on the features of a
given input; the links contains tests on theseufest and the nodes (or “chunks”)
contain the internal description of the item. Foaraple, a large red triangle might
have the three features large, red, and triandgter fearning, these features will be
represented in the network as a sequence of éeatls,related to a feature of the input

item. The sequence of tests can be used to detemtiather or not a given input is

2 EPAM stands for Elementary Perceiver and MemoriZefREST for Chunk Hierarchy and REtrieval

STructures, and MOSAIC for Model Of Syntax Acquimitiin Children.
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familiar (i.e. is similar to an input that has beseren before). The features of the input
item would be sorted through the sequence of gagtghe resulting information, if it
matched the sequence of features of the input,dwdeermine that the input was
familiar. However, if the resulting information matched the features in the input,
then this gives EPAM an opportunity for learningn&thing about the input. There
are two methods of learning: if the informationdhat the resulting node under-
represents the sequence of input features, theocags of familiarization adds more
information to the node; if the resulting infornmatiover-represents the input, in the
sense that it contains features not shared bynthd,ithen a process of discrimination
creates a new test containing the mismatched p#reonput, and a new node below

that test.

Fig. 1 shows how the familiarization and discrintioa processes work, and how the
sequence of input features would be tested inigwichination network. In this
figure, nodes are represented by ellipses. If #teork was as shown in the left graph
of Fig. 1 and the input was “Large red trianglePAM would first look for a test that
satisfies the first feature of the input (“Larg&glow all tests emanating from the
topmost node. As such a test exists, EPAM travdcstd®e “Large” node and
processes the next feature of the input (“Red”aiAgthe “Red” test can be satisfied
and EPAM traverses to the “Large red” node. Thd feature is now processed
(“Triangle”) but no tests emanate from the “Largdrnode so EPAM cannot
traverse any further. However, as the informatiothe final node (“Large red”)
mismatches the sequence of features in the inpatdé red triangle”), EPAM
familiarizes by adding the feature “Triangle” teettLarge red” information in the

node. If the network was as shown in the right grapFig. 1 and the input was
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“Large red square”, EPAM would satisfy the “Largeid “Red” tests, but would then
find that the resulting information “Large red trgde” mismatched the features in the
input (“Large red square”). At this point, EPAM wduiscriminate the two by

adding a test (“Square”) and a node with the newtisequence (“Large red square”).

FIGURE 1 ABOUT HERE

EPAM provides a simple means of determining wheghgiven input is recognized
by the network (i.e. has been seen before) by tsang the network. For example, in
the resulting network on the right side of Figafigd the input “Large red square”,
EPAM would apply the first feature of the input fitge”) to all tests below the null
top node. Such a test exists, and the “Large” mumie becomes the current set of
information and EPAM moves on to the next feattiRe(l”). Such a test exists below
the current node and so the “Large Red” node naeines the current node. The
input moves on to the final feature (“Square”) whexists as a test and so the input

can be said to have been recognized by the model.

EPAM therefore provides a method by which a senhpifit features can be learnt
while preserving the pattern within that set ofuhfeatures. Furthermore, any given
input can be applied to the model to determine hdrethe knowledge gained by the
model makes it possible to recognize the inpuepatt-or EPAM-VOC, it is
vocabulary that is being learnt, and so the inpatudres will be phonemes. The
patterns that the model will learn will therefore $equences of phonemes, and we

will see that these can be used effectively to relpcabulary acquisition.
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2.2. EPAM-VOC and EPAM

EPAM-VOC is a simplified version of EPAM that dispes with the familiarization
process. This means that the information returfied fulfilling a test is the
accumulation of all the preceding tests (i.e. teevork can no longer under- or over-
represent the features of the input). Given thaaMR/OC is applied to vocabulary
learning and that learning new words involves tharisterm storage of sound
patterns, more attention will be given to shortstenemory mechanisms than in the
standard EPAM. We now detail how EPAM-VOC learngusmces of phonemes and

how short-term memory is implemented.

2.3. Learning phoneme sequences in EPAM-VOC

The simulations we present will compare the modet'sormance against 2-5 year
old children, so we assume that at the beginnirtetimulations, EPAM-VOC has
knowledge of the phonemes used in English (an gssomthat has support in the

vocabulary acquisition literature, e.g. Bailey &Rkett, 2002). Before any learning
takes place, the network therefore consists ofllaaunode plus all the constituent

phonemes in English as tests and nodes below theopunode.

In keeping with EPAM, EPAM-VOC examines each feat(for vocabulary learning,
each phoneme) of the input sequence in turn, ttin learn something from that
sequence. When a sequence of phonemes is presetihednodel, EPAM-VOC
traverses as far as possible down its existingtiby of nodes by examining each

input phoneme in turn, until it cannot traverse armyre. At this point, something is
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learnt regarding the current phoneme in the seqyemd the remainder of the

sequence now becomes a new input that is proceysibeé top node.

As an example, consider the utterance “Where?”¢clwhas a phonemic equivalent of
“W EH1 R” (speech is converted to a phonemic edamausing the CMU Lexicon
database, available at http://www.speech.cs.cmicgdhbin/cmudict). Traversal in
EPAM-VOC involves selecting a test below the curmerde that is equal to the next
phoneme in the sequence. When “W EH1 R” is prese EBAM-VOC attempts to
find a test below the null top node equal to “Wih& a “W” test exists, the node
“W” now becomes the current top node in the netwdhe input now becomes “EH1
R” and the “EH1” phoneme is considered for travietdawever, there are no tests
below the “W” node (remember that the network comgt@nly the top node and
nodes for the constituent phonemes in English)thakfore traversal ends. EPAM-
VOC now learns “W EH1” by adding an “EH1” test amehode with the sequence “W
EH1” below the “W” node. Some learning has occurssdprocessing reverts to the
null top node and the input proceeds to the lashpme, “R”, but as this already

exists below the top node, learning ends.

Presenting the input a second time results in theahsequence “W EH1 R” being
learnt. The first phoneme “W” is examined, and ‘& test is taken from the null
top node to the “W” node. This now becomes thertogle and the input moves on to
the “EH1” phoneme. An “EH1” test can be taken betbe “W” node and so “W
EH1” now becomes the top node, with the input mgwn to the “R” phoneme. No

further tests exist below this node, and so “Ridsled as a test below “W EH1”, and
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a new node “W EH1 R” is added at the end of the T resulting network after

two presentations of “W EH1 R” is shown in Fig. 2.

FIGURE 2 ABOUT HERE

Learning in EPAM-VOC therefore involves the creataf tests and nodes. Tests
specify phonemes to be matched in the input inrd&averse the network. Nodes
represent phonemes and phoneme sequences thabane ik the network. Traversal
of the network begins when EPAM-VOC is presenteith\&n input (e.g. a mother’s
utterance). This input is then used to traversandteork until no further traversal is
possible, at which point a new test and node wiltteated below the furthest
traversed node. Once learning has occurred, priogess/erts back to the null top
node and the traversal and learning process bagais using the remainder of the

input.

Because of the way EPAM-VOC learns, the contentmgfone node are the
concatenation of all the tests that lead to thdene.g. the “W EH1 R” node in Fig. 2
comprises all of the phonemes contained in the thst lead to the node). There is
therefore only ever one test that leads to anynmae. The learning mechanism
within EPAM-VOC means that a word containing seponemes would require six
learning passes (the initial phoneme in the wordldialready be known below the
null top node). Although it may seem that EPAM-V@@rns very quickly, it is
possible to reduce the rate of learning (e.g. tgrialy the probability of learning a
new node), and this has been successful for otiré@ants of EPAM/CHREST models

(e.g. Croker, Pine & Gobet, 2003; Freudenthal, Riri@obet, 2002). Slowing down
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the rate of learning yields similar networks, buéoa longer period of time. The
input sets used in the simulations contain a verglissubset of the input that a child
hears, so it is reasonable to have learning taeeph the way that has been

illustrated.

The learning mechanism within EPAM-VOC is sensitiveéhe input it receives. For
example, words or phrases that occur often inrtpatiare likely to be represented at
a single node, whereas words or phrases that oaly in the input are unlikely to
be represented at a single node (unless they tafsisry few phonemes).
Sensitivity to the frequency characteristics ofitijgut will be important when we

consider how EPAM-VOC simulates WM capacity limiats.

2.4. Providing WM capacity limitations within EPAMOC

The model uses a fixed duration WM capacity basethe phonological store
component of the working memory model (Baddeley &k 1974). The

phonological store is implemented rather than tih@nplogical loop in line with
findings that children of five years or youngershmo reliable rehearsal strategy (e.g.
Gathercole & Adams, 1994; Gathercole, Adams & Hitc®94). The phonological
store has a temporal duration of 2,000 ms (Badddlegmpson & Buchanan, 1975)
that is implemented within EPAM-VOC as a time totohathe input using the nodes
in long-term knowledge (the hierarchical network). match a node takes 400 ms,
and to match a phoneme within that node takes diti@ahl 30 ms, excluding the

first phoneme (these timing estimates are basdbase of Zhang & Simon, 1985).

For example, matching the “W EH1 R” node in thenmek shown in Fig. 2 would
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take 460 ms. Since it takes 400 ms to match ang mothe network, the “W EH1 R”
node is allocated a time of 400 ms to match theeniself, but added to this time is
the time to match each constituent phoneme bdirdtdi.e. 30 ms for “EH1” and 30

ms for “R”) — resulting in a time allocation of 4@@s.

Consider the input “Where’s baby?” (phonemic eqi@na“W EH1 R Z B EY1 B
I'Y0?”) and the network as shown in Fig. 2. The “\WER” part of the input can be
matched using the contents of a single node aalibisated a time of 460 ms. The
remainder of the input contains phonemes that exilst as single item nodes in the
network, which are therefore allocated a time liafit00 ms each. The input
presented to EPAM-VOC for learning is therefore BM1 R Z B EY1” and has a
temporal duration of 1,660 ms. The phonemes agigeof the utterance, “B” and “
IYO”, are not included as these would exceed tH@02@s limit. That is, once the time

limit of the phonological store is exceeded, ndlifar input is able to be processed.

By using long-term knowledge to mediate the amaidimformation that can be
represented within a fixed capacity limit, EPAM-V@Cable to concretely specify
how WM capacity and long-term knowledge interadte Bbsence of a detailed
specification of the link between WM and long-tememory has been acknowledged
as a problem with current accounts of NWR perforeeaie.g. Gathercole et al., 1994)
and, although there have been attempts to prowdsal descriptions (e.g.
Gathercole, 2006; Metsala, 1999), EPAM-VOC offefgecise specification of the

interaction.
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At the early stages, after EPAM-VOC has been pteslenith a small amount of
mother’s speech, its hierarchy of nodes is not lemge and therefore long-term
memory is of minimal aid to offset WM capacity ltaiions. The nodes at this point
will only contain small sequences of phonemes anany given input to the model is
likely to require many nodes to represent it, rsglin only some of those nodes
being captured within the 2,000 ms limit of the pblogical store. However, after the
model has been presented with a large amount eChpé&he hierarchy becomes more
extensive such that nodes can contain long segs@fghonemes — if part of the
input can be represented using these nodes, thiseduce the amount of time
allocated to the input such that more of it can h@xcaptured within the
phonological store. Furthermore, EPAM-VOC’s sergitito the variation in the

input means that more will be learnt from speeaftaiaing a large rather than a
small set of vocabulary, even when (for example)rthmber of utterances and mean
length of utterance are matched. This is becaugéiaarsity within the input results
in more opportunity for the model to learn nodestaming different phoneme
sequences. It is worth noting that the time to matoode and the time to match
constituent phonemes in a node do not vary witlakatary size. Rather, vocabulary

size itself drives how much information can fita\VM capacity.

2.5. How EPAM-VOC performs the NWR test

Nonword repetition is achieved by presenting thelehavith the phonemic
representation of each individual nonword in theesavay that normal speech input
is presented to the model. EPAM-VOC therefore gtsrto capture as much of the

nonword as possible using existing nodes by travgithe network in exactly the
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same way as with standard speech input—includiagéme time-limited capacity. If
the whole nonword can be captured in the phonoddgiore within the given time-
limited capacity it is assumed to have been repeaterectly, otherwise the nonword
Is assumed to have been repeated incorrectly. Nasabat are repeated correctly
obtain a score of 1, and nonwords repeated inddyrelotain a score of 0. This is the
same method of scoring as per the children. Eaminpgof nonwords contains five
stimuli, so scores are out of 5. Multiplying theseres by 20 results in a percentage

repetition accuracy for the model and for the aleid

For young children, errors are made on the NWRe&esh for the simplest stimuli
(single syllable wordlike nonwords). Errors areiéetd to occur either from
inaccurate encoding/storage (Gathercole & Badddl@90a) or inaccurate
articulation of the nonword (particularly for nonkds containing consonant clusters,
Gathercole et al., 1991). In fact, NWR studiesrofteake allowances for articulation
difficulties (e.g. Roy & Chiat, 2004). Encoding/sdage/articulation difficulties have
been incorporated within EPAM-VOC by adding a ptality of error when making
traversals in the network. This means that whengrto represent a nonword in as
few nodes as possible, an incorrect test may mntaksulting in an incorrect

response. Error probabilities are the same as tises by Jones et al. (2007).

Children’s nonword repetition errors can be categarin terms of phoneme
substitutions, phoneme deletions, and the comloinati the two (phoneme addition
rarely occurs in nonword repetition, Gathercolalet1994). EPAM-VOC is also able
to produce these categories of error. By havingtssibility of selecting an incorrect

node when traversing the network, the model is atbfgoduce phoneme
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substitutions. Phoneme deletions occur when thevahis unable to fit in the time-

limited phonological store.

2.6. Alternative models of nonword repetition asggholinguistic phenomena

There are other models that examine nonword répetind also a variety of models
that are concerned with phenomena from psycholgtiggiand memory research,
such as serial order effects. We consider botletias of model here in order to give

a perspective as to how EPAM-VOC fits in with thesadels.

There exist at least three models of nonword repetiFirst, Hartley and Houghton
(1996) describe a connectionist network that inomafes a decay element. Nonwords
are presented to the model in the training phaserecall of the nonwords is
determined in a later test phase. Decay in the modans that long nonwords have a
lower probability of correct recall than short naras, consistent with the nonword
repetition literature (e.g. Gathercole & Baddel£939). The model also includes
competition at the phoneme level such that (fongxda) phonological substitutions
can take place. Based on data from Treiman ands[§&afB8), the model makes

similar types of error to those made by childred adults.

Second, Brown and Hulme’s (1995, 1996) trace dewagel represents a given
nonword (or other item) as a sequence of timeshased on the time taken to
articulate the nonword. Each time slice begins itiigh activation strength that
declines as time progresses, meaning the begiseigignent of a nonword decays

more rapidly than the middle and end segments. Megyactivation strength can be
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increased based on relationships to LTM tracesnBowords that share similarities
to real words (i.e. wordlike nonwords), activatwauld therefore be higher than that
of nonwords sharing little similarity to real wor@s. non-wordlike nonwords). The
resulting effect, as seen in children’s nonworcetejon, is that wordlike nonwords
have a higher repetition accuracy than non-wordtikewords (e.g. Gathercole,

1995).

Third, Gupta and colleagues (Abbs, Gupta, Tomblihiginski, 2007) detail a
recurrent connectionist network that combines ltarga phonological knowledge
(the weights in the network) and phonological stenn memory (the recurrence in
the network). The training set comprised 4,386 Ehglvords varying in length from
2-4 syllables. By including units in this netwoHhat in some sense represent phoneme
features, it was possible to examine phonologitsaraoination effects as well as
nonword repetition effects. A significant relatibips between phonological
discrimination and nonword repetition was foundlependent of any involvement of
vocabulary learning. This finding in the model rang that of human participants.
Although no examination of specific nonword repetiteffects was carried out, it
should be noted that this model is in its infanog &urther work is due to come out

(Gupta & Tisdale, submitted).

If we consider the first two models (given that thigd does not yet examine NWR
phenomena), both models are able to capture sothe aentral phenomena that are
seen in the nonword repetition literature, sucHiisrences in performance
depending on nonword length and wordlikeness. EPADE is also able to capture

these effects (Jones et al., 2007). For exampterqeerformance is found for short
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nonwords because these are more likely to fiténntodel’s time-limited
phonological store. Wordlike nonwords show an athge over non-wordlike
nonwords because they are captured in fewer ndldexseby receiving a lower time
allocation in the phonological store). The mainattege of EPAM-VOC over the
models listed above is that EPAM-VOC captures falhe necessary nonword
repetition effects while at the same time explariiow phonological knowledge is

actually acquired through exposure to naturalstimuli.

Further models exist that attempt to simulate stesrh memory phenomena other
than nonword repetition. For example, OSCAR (Broffreece & Hulme, 2000) is
able to simulate a wide range of serial order phesra such as item similarity and
grouping effects. The primacy model (Page & NortB98) simulates word length,
list length and phonological similarity effectsgarial recall. Burgess and Hitch’s
(1999) network model simulates the same phenomgtizegorimacy model but also
includes effects of articulatory suppression. Althese models specifically address
phenomena seen primarily in the serial recalldi@re rather than phenomena in the
nonword repetition literature and so this is arctiiierence compared to EPAM-
VOC. The lack of a mechanism by which EPAM-VOC sanulate serial recall is a
limitation of the model which we will return to our general discussion. However, it
should be noted that the models described abaveualh they provide an
explanation of serial recall phenomena, do notargiow the material relevant to
this phenomena is learnt — that is, how phonolddicawledge is acquired and how
new words are learned. This is a major advantagd?@fM-VOC over all of the

models covered in this section.
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3. Simulations of the NWR data

Before presenting the analyses, we first deschibechild data that were used to
compare to the simulations, how the simulationsawErformed, and how the

analyses that compare the simulations to the daitd were carried out.

3.1. Selecting appropriate comparison data

EPAM-VOC is a computational model that emphasihesole of the input in the
child’s development. To provide as close an appnation to the input as possible,
NWR performance will be compared to young childiteecause their input is easier
to estimate (older children receive input from aety of sources such as books,
television, etc.). The children’s NWR data from dsrt al. (2007) are used because
this study uses children between two and five yehege, and it is the only study we
are aware of that uses the same NWR test and nwtigydacross these ages. The
data compares 2-3 year old children and 4-5 yehchildren on nonwords that are
either wordlike or non-wordlike and that vary frame to three syllables in length.
Older children show better NWR performance andelaee effects of wordlikeness
and nonword length for both ages, with better pertonce for wordlike nonwords

and shorter nonwords.

3.2. Method of simulation

The simulations attempt to match 2-3 year olds Np¢Rormance at an early stage in

the model's development (when WM capacity is smiathe model is at an early
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stage in its learning) and to match 4-5 year old¢R\Nperformance at a later stage in
the model’'s development (when WM capacity is lavgéhe model is at a late stage in
its learning). An indicative estimate of the inplét a 2-3 year old child receives is
the speech from the primary caregiver, so an iaplgly based on mother’s
utterances is used in the early stages of the risdéakning. However, to
approximate the input that a 4-5 year old receivesds from a vocabulary frequency
database for 8 year old children (available at
http://www.essex.ac.uk/psychology/cpwd/) are usecbinjunction with the mother’s
utterances. The simulations begin by using onlyhmotitterances, but gradually
introduce words from the vocabulary database at Etages in the model’s learning.
We assume that, with age, children become betem@iding and articulating words,
and so the probability of making an error wheneraing the discrimination network

is reduced at later stages of the model’s learning.

Table 1 shows the stage of learning, the amouimpait seen by the model, the ratio
of mother’s utterances to vocabulary items usdtiennput, and the probability of
making a traversal error at each stage of the nolrning. Note that the
probability of making a traversal error is not ldhea an arbitrary figure but reflects
children’s error rates for single-syllable nonworElsr example, the 2-3 year olds
have a 28% average error rate for single-syllablenords (Gathercole & Adams,
1993; Jones et al., 2007). Single-syllable nonwardsage 3.1 phonemes, and
assuming one traversal per phoneme, with each pi®having a probability of error
of .10, then the probability of making a correewersal is .90 *.90 *.90 = .73, or a
27% error rate. Although the error rates for sirgyléable nonwords can be said to

have been ‘fit’, the actual comparisons are madeamwords of one to three
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syllables, and nonwords that are both wordlike mowlwordlike, so error rates

mainly arise from the dynamics of the model.

TABLE 1 ABOUT HERE

EPAM-VOC was trained individually on each of twelsets of mother’s utterances
taken from mother-child interactions with 2-3 ye&t children across the period of
one year (Theakston, Lieven, Pine & Rowland, 200he number of utterances
varied for each mother-child (range 17,474-33,46@an 25,519). When introducing
vocabulary items into the input, pairs of vocabyliéems were used so that the
number of phonemes in the input would be roughlyaétp the number of phonemes
in a mother’s utterance. The average number of @mnes in a mother utterance is
12.03; the average number of phonemes in a paoadbulary items is 10.46. The
vocabulary items selected for use as input werleddsmsed on the frequency of
occurrence of the item. For example, ‘lake’ hasegudency of 181 and is therefore
over three times as likely to be selected for ssmput than ‘laid’, which has a

frequency of 59.

Consider as an example the mother-child interastfon‘Anne’, which contain

33,390 mother’s utterances. The model is presenmittcall of the first 25% of these
utterances. For the next 12.5% of the mother utters, one in every ten utterances is
replaced by a pair of vocabulary items (in accocéanith the figures in Table 1).
Similarly, the subsequent 12.5% of the mother attees have two in every ten

utterances replaced with pairs of vocabulary itdfresnonword repetition test were
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to be carried out at this stage (i.e. after 50%hefinput has been seen), the

probability of selecting an incorrect test whervétaing the network would be .08.

The model was run ten times for each of the twsbts of mother-child data. Ten
simulations give a representative estimate of NV€Rgomance for each set of
mother-child data given that there are two randt@ments in the model: the
vocabulary items selected for use as input angthleability of making a traversal
error. The results of the ten simulations from esethof mother-child data were then

averaged in order to arrive at a mean NWR perfooaacore for each dataset.

The simulations need to vary both long-term knog&e¢by manipulating the amount
of input seen by the model) and WM capacity (by imalating the time-limit of the
phonological store), and so simulations were rugaah of the following
phonological store time durations: 1500 ms, 16001%#80 ms, 1800 ms, 1900 ms
and 2000 ms. We also allowed for the possibilipt thigher values of WM capacity
might allow better matches to the data, and theeeditso included durations of 2,100
ms and 2,200 ms. Altogether, there were 960 sinomisi(8 time durations * 12
children * 10 runs per child), or 96 when the NW&3ts are averaged for each child.
For each simulation, a nonword repetition test easied out for every 12.5% of the
input seen by the model so that performance coellanalyzed at different levels of
knowledge. For each simulation, this resulted ghthonword repetition tests, one
for each ‘stage of learning’ (12.5% of input, 253%,5%, 50%, 62.5%, 75%, 87.5%
and 100%). The nonword repetition test used thevooas from Jones et al. (2007),

as NWR comparisons are being made to the chiladmn this study.
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3.3. Method of analysis

There exist a number of methods for measuring tloelgess of fit between the
simulations of a model and the observed data. Hermessess the success of different
parameter assignments of EPAM-VOC in replicatireg¢hild NWR data, we use four

methods that appear natural.

First, computing the Root Mean Squared Error (RMI&&)veen the child data and
the simulations gives an indication of how well gm@ulations map onto the child
data in terms of raw NWR performance. RMSE estism#te overall error between
two sets of data. For each condition (e.g. oneabldl wordlike nonwords) the RMSE
value represents the difference in repetition aoybetween the simulations and the
child data. RMSE values therefore give an estimatew closely the simulations
match the child data, with low RMSE values indiegtthat the model matches the
child data closely. For analysis purposes, thesteulation runs for each set of
mother-child data are averaged, as are the RMSkEesdbr each condition. This
results in one overall RMSE value for each set ofhrer-child data that represents the
difference in repetition accuracy between the terukations and the child data across

all types and lengths of nonword.

Second, computing correlations for each set of N\éARilts gives an indication of
how well the simulations map onto the trends showthe child data. If the model
perfectly predicts the pattern of variation in tieserved data, the correlation should

be equal to one.
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Third, subjecting the simulation data to the sarhEOA/A analyses as those used with
the original child data will confirm (or not) théte NWR phenomena that are seen in
the child data are also seen in the simulatiorige térget phenomena are:
improvement in performance with age; decrease ifopaance as nonword length

increases; and decrease in performance as wordBkatecreases.

Fourth, examining the types of error produced leyrttodel and comparing them to
the types of error children make provides a fineligation of how well the model
simulates the children’s data. We compare erraa déth the kinds of error that five
year old children produce (Gathercole et al., 1984#hough this makes comparison
to 2-3 year old children difficult, the only 2-3areold error data we know of (Roy &

Chiat, 2004) examines syllable errors rather thaore at the phonemic level.

In the first part of the analyses, we examine tlifferent variations of simulation.
First, we vary long-term knowledge while keeping Vélpacity constant to see what
NWR phenomena are explained by increases in lomg-+#eowledge alone. Second,
we vary WM capacity while keeping long-term knowdecconstant to see what NWR
phenomena are explained by increases in WM capaldte. Third, we allow both
variables to vary—that is, we are interested iniberaction of these variables to see
if the combination of knowledge and WM capacity\pdes a better explanation of
the data than either increases in long-term knogdemt increases in WM capacity

alone.

In all three cases, we are interested in findirglévels of long-term knowledge and

WM capacity that minimize RMSE both for 2-3 yead®hnd 4-5 year olds. Once
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these levels are found, we use a correlation amsalyhelp select the simulation that
best approximates the child data. The ‘winning’detion is then subjected to an
ANOVA in order to test whether the main NWR phenamseen in the child data are
also found in the simulation data. Note that theOABA analyses concentrate on the
main effects of age, nonword length, and the whedless of the nonwords, since
these are the central phenomena of interest. $ipartly to show whether or not the
simulations capture these main effects, and ptotkeep the analyses concise.
Finally, we examine the error pattern for the ‘wirgi simulation and compare it to

the error patterns in the children.

In the second part of the analyses, we comparthtke ‘winning’ models in more
detail by examining RMSE for each type of nonwond aach length of nonword.
Analyzing the data in finer detail will help to abtish (1) which model provides the
best fit to the child data; (2) which aspects &f data the models fit best; and (3)
where the most important differences between theetsdie. The analyses in this
section will report interactions because we are imderested in the dynamics of how

each model fits the child data.

3.4. Analyses 1: Varying long-term knowledge

This section examines the extent to which long-tenmwledge alone can account for
the developmental changes in NWR performance. Byinvg long-term knowledge
while WM capacity is held constant we hope to finsimulation at one level of
knowledge that approximates 2-3 year olds’ NWRgenaince and find a simulation

at a higher level of knowledge that approximatésygar olds’ NWR performance.
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However, this also involves finding an appropriat® capacity across the two
simulations. As can be seen in Table 2, the sinaulatthat give the lowest combined
RMSE values are at WM capacity durations of 2,080amd 2,100 ms. For example,
keeping WM capacity constant at a duration of 2,0@0and varying long-term
knowledge results in an average RMSE of 9.59 foufations at stage 2 of the
model’s learning (compared to 2-3 year olds) an@8 €or simulations at stage 8
(compared to 4-5 year olds). Similarly, keeping Wapacity constant at a duration of
2,100 ms also results in low RMSE values for siroites at stage 2 and 8 of the

model’s learning (10.94 and 8.86 respectively).

TABLE 2 ABOUT HERE

We use a correlation analysis to further estalthehquality of the best assignments of
model values. The simulations show good correlatiorthe 2-3 year old and 4-5 year
old data. The 2,000 ms WM capacity duration simoitet compare well at stage 2 to
2-3 year old childrenr(4)=.89,p<.02) and at stage 8 to 4-5 year oldgd)=.71,

p>.05)3 The 2,100 ms WM capacity duration simulations alscount for the data

well (r(4)=.88,p<.03 andr(4)=.63,p>.05 respectively). Although there is little
difference between the RMSE and correlation dam2t000 ms WM capacity
simulations are slightly better in both cases andre analyzed further. The left graph
of Fig. 3 shows a comparison between the 2-3 yiglarand the stage 2 simulations
and the right graph shows a comparison betweed-thgear olds and the stage 8

simulations.

3 Given such small sample sizes (6 datapoints) bigly correlation coefficients (.81 or above) are

significant.
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FIGURE 3 ABOUT HERE

A 2 (stage of learning: 2 or 8) x 2 (nonword typerdlike or non-wordlike) x 3
(nonword length: 1, 2 or 3 syllables) mixed ANOVAswperformed on the 2,000 ms
simulation data. There was a significant effecstafe of learningH(1,22)=313.17,
p<.001), with better performance at stage 8, andraficant effect of nonword type
(F(1,22)=75.83p<.001), with better performance for wordlike nond&rThere was
also a significant effect of nonword leng#(2,44)=348.76p<.001), with post hoc
Bonferroni tests showing better performance for-sylable nonwords over both
two- and three-syllable nonwords (b@#.001) and better performance for two-
syllable nonwords over three-syllable nonwonas.Q01). Importantly, the
simulations show the same pattern of performandkeashildren: there is better
performance with age (with age in these simulatmrsesponding to the amount of
knowledge), there is better performance for wordhilonwords over non-wordlike
nonwords, and there is better performance for stmmtvords over long nonwords.
Variations in long-term knowledge are sufficientctpture the main developmental

phenomena in the child data.

The error data of Gathercole et al. (1994) inditiaét the majority of errors involve
phoneme substitution (38%) followed by phonemetaeig28%) and phoneme
deletion and substitution (22%). All other erropdyg occur relatively infrequently
(7% or lower). The error types for the simulatiatso follow this pattern. At stage 2,
substitutions were the most common error (60%pfedld by phoneme deletion and

phoneme deletion and substitution (both 17%). Alampattern was found at stage 8,
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where substitutions were again the most common é@&96), followed by phoneme

deletion (14%) and phoneme deletion and substiiti@%).

3.5. Analyses 2: Varying WM capacity

In this section, we examine whether variations iM\Apacity alone can account for
the developmental NWR data. In a similar mannehédfirst analyses, we first need
to find suitable levels of long-term knowledge miler to establish an appropriate
level of knowledge that results in low RMSE valugaking into consideration RMSE
values across both the 2-3 year old and 4-5 yebdata (see Table 2), the simulations
that give the lowest combined RMSE are at stagasd/8. When the model has seen
87.5% of the input (i.e. stage 7), a comparisaiiéo2-3 year old data shows a RMSE
of 13.74 at a WM capacity duration of 1,500 ms armbmparison to the 4-5 year old
data shows a RMSE of 8.89 at a WM capacity duraifd 100 ms. After the model
has seen 100% of the input (i.e. stage 8), theg@aB old comparison has a RMSE of
12.59 at a WM capacity duration of 1,500 ms antseyear old comparison has a

RMSE of 8.92 at a WM capacity duration of 2,100%ms.

The simulations where only WM capacity is variesbathow good correlations to the
2-3 year old and 4-5 year old data. The stage dlations at WM capacity 1,500 ms

compare well to 2-3 year oldg4)=.82,p<.05) and reasonably well to 4-5 year olds

“ Note that the error probabilities decrease asthges of learning increase. The error probabilities
reflect improvement in the long-term processesnobding and articulation and therefore reflect
increases in long-term knowledge. A correlatiorwgen the error probabilities at each stage of
learning and the number of nodes in the modelct stage confirm this relationshig§)=-.99,

p<.001).
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at a 2,100 ms WM capacity duratiaif4)=.52,p>.05). The stage 8 simulations also
compare wellr(4)=.90,p<.02 and (4)=.63,p>.05 respectively). Both sets of
simulations compare favorably with the child dataerms of correlations, and so
analysis will be carried out on the stage 8 sinoitest which have slightly lower
RMSE values overall and also slightly better catiehs. The left graph of Fig. 4
shows NWR performance for the 2-3 year olds contptreéhe simulations at a WM
capacity duration of 1,500 ms, and the right graipbws NWR performance for the 4-

5 year olds compared to the simulations at a Whaciyp of 2,100 ms.

FIGURE 4 ABOUT HERE

Finally, we carry out an ANOVA to examine whethiee model with the selected
value assignment reproduces the phenomena obssitrechildren. A 2 (WM
capacity duration: 1,500 ms or 2,100 ms) x 2 (nawhigpe: wordlike or non-
wordlike) x 3 (nonword length: 1, 2 or 3 syllablesixed ANOVA was performed on
the stage 8 simulation data. There was a signifieiact of WM capacity duration
(F(1,22)=941.94p<.001), with better performance at 2,100 ms, asgjaificant
effect of nonword typeR(1,22)=156.94p<.001), with better performance for
wordlike nonwords. There was also a significanéefiof nonword length
(F(2,44)=879.93p<.001), with post hoc Bonferroni tests showing dérepterformance
for one-syllable nonwords over both two- and thsgkable nonwords (botp<.001)
and better performance for two-syllable nonwordsrdtiree-syllable nonwords
(p<.001). As with the simulations where long-term Wiexlge was varied, the data
show the same pattern of nonword repetition perémee as for the children: there is

better performance with age (with age in these kitimns corresponding to the
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phonological store duration), there is better NV@Ri@rmance for wordlike nonwords
over non-wordlike nonwords, and there is bettefgsarance for short nonwords over
long nonwords. Variations in WM capacity alone also able to capture the

developmental NWR phenomena that are seen in ehildr

The error data show a different pattern to thabafhercole et al. (1994), who found
that the main order of error frequency is phoneutesstution followed by phoneme
deletion and then phoneme deletion and substituithough the three central error
types are again predominant, the order of frequendifferent. At 1,500 ms duration,
the primary form of error is phoneme deletion (57fé)lowed by substitution (23%)
and deletion and substitution (19%). At 2,100 rheré are only two main forms of

error: substitution (87%) and addition and substitu(11%).

3.6. Analyses 3: Varying both WM capacity and ldagn knowledge

If developmental change involves both long-termvidealge and WM capacity, then
the best simulation of the children’s data wouldeRpected to arise from the
interaction between WM capacity and knowledge. Thishat we investigate in this
analysis by allowing both variables to change astibdel learns as a function of
time. Interestingly, Table 2 shows that when cormggto 2-3 year olds, the lowest
possible RMSE is obtained with a 2,000 ms WM cdpatiration at stage 2 of the
model’s learning, the exact same parameter setésdsr the long-term knowledge
analysis. When comparing to the 4-5 year olds|divest possible RMSE is obtained
with a 2,100 ms WM capacity duration at stage thefmodel’s learning. We have

already ascertained that the model at stage 2amtiM capacity duration of 2,000
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ms matches the main effects seen in the childeewesonly analyze the model at

stage 6 with WM capacity duration 2,100 ms here.

A 2 (nonword type: wordlike or non-wordlike) x 3gmword length: 1, 2 or 3
syllables) mixed ANOVA was performed on the stag&'ld capacity duration 2,100
ms simulation data. There was a significant efééetonword type(1,11)=4.96,
p<.05), with better performance for wordlike nonw®ahd a significant effect of
nonword lengthK(2,22)=93.05p<.001). Post hoc Bonferroni tests showed better
performance for one-syllable nonwords over both-tamal three-syllable nonwords
(bothp<.001) and better performance for two-syllable nords over three-syllable
nonwords §p<.003). The results fit the same pattern of refaulthe 4-5 year old
children. Variations in both long-term knowledgelai'M capacity are able to

capture the developmental NWR phenomena that areisechildren.

For our analysis of errors, we concentrate on thges6/2,100 ms simulation data,
since we already know that the stage 2/2,000 mslation data compare well to the
children for types of error. The stage 6/2,100 mmsutation data show a different
pattern of error to the children. Only two typeseafor are predominant: phoneme

substitution (86%) and phoneme addition and sultit (10%).

3.7. Examining the match between simulation anttiatata

We have now identified the simulations that begirapimate the children’s
performance in three cases: when varying levelsrgj-term knowledge, when
varying levels of WM capacity, and when varyingdesvof long-term knowledge and

WM capacity simultaneously. Not surprisingly, giviie strong links between
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knowledge and WM capacity outlined earlier, indegently varying long-term
knowledge and WM capacity allowed us to match tneetbpmental NWR
phenomena in both cases. When both were allowedrjosimultaneously, we
determined that the best simulations to 2-3 yedchlldren were the same as those
seen when only long-term knowledge was variedilieibest simulation to 4-5 year
old children was for a new pair of parameter sgti''’We now further investigate the
pattern of results by examining the knowledge, WAy axity and interaction
simulations in more detail to see how well eachlke to match the intricacies of the

child data.

To provide a more fine-grained analysis of the ehess of fit for the simulations, the
analyses in this section focus on performancedchaonword type and for each
nonword length. Rather than use raw NWR performacoees, RMSE values are
used because these will indicate how well eachlaiion matches the child data for
each type and length of nonword. That is, we alréambw that all the ‘winning’
simulations match the basic findings seen in thielie@m. The goal here, therefore, is
to examine the pattern of error across each afithalations by examining the RMSE
error rates across each nonword type and lengtaly&img the data in this much
detail will not only indicate which model providdee best fit to the child data, but
also which aspects of the child data the modelsrarset — and least — successful in
accounting for. Table 3 shows RMSE figures for eigple of nonword at each of the
three syllable lengths, for the ‘winning’ knowledd¥M capacity and interaction

simulations.

TABLE 3 ABOUT HERE
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3.7.1. 2-3 year old data

We only analyze the long-term knowledge and WM capaimulations here because
the ‘winning’ interaction simulations were the saasethose for long-term
knowledge. A 2 (simulation-type: long-term knowledy WM capacity) x 2
(nonword-type: wordlike or non-wordlike) x 3 (nonmelength: 1, 2, or 3 syllables)
ANOVA was computed on the RMSE data for the 2-3 y#@ simulations. There
was a main effect of simulation-type((,22)=13.72p<.002), with the long-term
knowledge simulation having lower RMSE rates than\WM capacity simulation.
There were also a main effect of nonword-typ€lL(22)=64.40p<.001), with
RMSE'’s being lower for wordlike nonwords. Finaltihere was a main effect of
nonword-length k(2,44)=103.82p<.001). Post hoc Bonferroni tests showed that
RMSE rates for two-syllable nonwords were lowemnttiizose for one-syllable
(p<.001) and three-syllable nonworgs(007), and RMSE rates for three-syllable

nonwords were lower than those for one-syllablenvads 0<.001).

There were also significant interactions involvthg simulation variable, indicating
the areas where the long-term knowledge simulatwogided a better fit to the data
than the WM capacity simulations. Specifically, igithe mean difference in RMSE
error rates between the long-term knowledge sinmriatand the WM capacity
simulations was only -0.18 for the wordlike nonw&ri was -0.42 with the non-
wordlike nonwords K(1,22)=9.80p<.006). The interaction between type of
simulation and nonword lengtk(2,44)=15.20p<.001) comes from the fact that the
difference between the two simulations is largehwne-syllable (-0.40) than with

two-syllable (0.07) and three-syllable nonwordsX2). There was also an interaction
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between nonword-type and nonword-lendi2(44)=65.83p<.001) indicating that
for both of the simulations, RMSE error rates weaeticularly high for non-wordlike

one-syllable nonwords.

3.7.2. 4-5 year old data

The 4-5 year old data were subjected to the samlgsas as above, but this time the
‘winning’ interaction simulation is included becaube three ‘winning’ simulations

in the 4-5 year old comparisons are all differeabf each other. A 3 (simulation-
type: long-term knowledge, WM capacity, or interac} x 2 (nonword-type:

wordlike or non-wordlike) x 3 (nonword-length: 1,& 3 syllables) ANOVA was
computed on the RMSE data for the 4-5 year old kitians. As per the previous
analyses, there were main effects of nonword-t{i#, 83)=35.68p<.001) and
nonword-length (2,44)=103.82p<.001). However, the most important finding was
the fact that there was no effect of simulationetyip(2,33)=1.39p>.05), illustrating

that RMSE rates were similar across all three tyffesmulation.

There were also significant interactions involvthg simulation variable. The
interaction involving nonword-typd-(2,33)=25.27p<.001) illustrated that the WM
capacity simulations provided the lowest errorgdte wordlike-nonwords and yet
the highest error rates for non-wordlike nonwoiidse interaction involving
nonword-lengthF(4,66)=3.51p<.02) illustrated that there were no differencenss
simulations for one and two-syllable nonwords It interaction simulation had
lower error rates for three-syllable nonwords. &mio the 2-3 year old analysis,

there was also an interaction between nonword-tyygenonword-length



Working Memory and Long-term Knowledge 37

(F(2,66)=41.89p<.001) indicating particularly high error rates farn-wordlike one-

syllable nonwords.

3.8. Summary

In summary, the analyses in this section showetdtigeknowledge and interaction
simulations provided a closer match to the 2-3 wédchild data compared to the
WM capacity simulations. There were no major défezes across simulations in
comparisons to the 4-5 year old data. This indg#tat, overall, the long-term
knowledge simulations provided a closer match éodild data than the WM
capacity simulations, with little benefit arisingin allowing both knowledge and
WM capacity to vary. The analyses also revealedymeral success of all three types
of simulation in matching the child data. Firsg gimulations matched the child data
best for wordlike nonwords and for nonwords of taaé three-syllables. The latter is
particularly important because it illustrates ttiet probability of making a traversal
error in EPAM-VOC, which was based on children'soerates for one-syllable
nonwords, is influenced by the dynamics of the nhd8econd, the simulations are
poor for one-syllable non-wordlike nonwords, indiog a specific area where the

model needs further development.

4. Discussion

The goal of this paper was to investigate the resperoles of increasing long-term

knowledge and increasing WM capacity in explainilegelopmental change. A

computational model of vocabulary learning was @nésd that was able to simulate
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children’s NWR performance. Long-term knowledge &l capacity were each
systematically varied independently of one anotsieowing that both were able to
capture the central findings in NWR performanceprioved performance with age;
improved performance for shorter nonwords; and owed performance for wordlike
nonwords. Allowing both knowledge and WM capacdyary (i.e. allowing the two
to interact) revealed that the best simulationthef2-3 year old children were the
same as those where only knowledge was variedyugththe best simulations of the
4-5 year old data arrived at a new set of paranast®ignments. However, an analysis
of the patterns of error made by the children d&edsimulations showed that
variations in task knowledge provided the bedbfithe types of error made by
children. Taken as a whole, these findings sugfestiong-term knowledge alone

may be sufficient to match the developmental data.

A further, more fine-grained analysis was perforroadhe three ‘winning’
simulations to examine where each simulation mat¢he child data for type and
length of nonword. These analyses indicated thahi® 2-3 year old data, both the
long-term knowledge simulations and the interactionulations provided a
significantly better fit to the intricacies of tlekild data than the WM capacity
simulations. By contrast, no differences betwegndadrihe simulations were found
for the 4-5 year old children. The results suggfest increases in WM capacity may
not be necessary to explain developmental changs ghat increases in long-term
knowledge must occur during development. The result important not only for
NWR and vocabulary learning, but also for developtakpsychology in general. We

now discuss implications for each of these areas.
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4.1. Implications for developmental psychology

The clear finding from the results presented is ithdependent changes in long-term
knowledge and WM capacity are both sufficient taidate developmental data. This
is important because it illustrates that long-t&mowledge and WM capacity share
strong links with each other, suggesting that iy mall be very difficult to measure

each of these factors independently of the other.

Upon closer inspection, the results showed thaeases in long-term knowledge
provided a significantly better match to the clilta. Given that no serious
developmental theory would argue against changksgrterm knowledge, we can
assume that increases in the child’s knowledge ivase constitute a significant part
of the child’s development. If this is the casertlone can legitimately ask whether
changes in long-term knowledge cause perceivedgesain other mechanisms of
development. The findings here illustrate thateast for simulations of NWR
performance, changes in long-term knowledge caauattdor apparent changes in
WM capacity. It is therefore possible that any aemin performance on
developmental tasks that are hypothesized to fxaseincreases in WM capacity

may simply arise from increases in long-term knalgk®

The results show support for both the chunking tiypsis and Case’s (1985) idea that
WM capacity remains fixed throughout developmerst kAowledge develops, the

units used for measuring WM capacity change, whegeiously independent units of

® Note that we are referring here to developmeritirénces in WM capacity rather than individual

differences.
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knowledge become grouped into a new memory strei¢chat can now be used as a
single unit (Lane, Gobet, & Cheng, 2001). WM capattierefore remains constant
but through long-term chunking the amount of infation that can be held in WM
increases over time. Increases in long-term dokrainvledge therefore give rise to
the perception that there are associated incread®® capacity because expansions

in long-term knowledge result in an ability to halebre information in WM.

Knowledge effects have been seen in a variety ofadas, particularly with regard to
expertise. For example, children who have expentighess are able to hold more
information in WM than their non-chess playing [geerchess-related memory tests
whereas in domains where both sets of childremaneexperts, no differences are

seen in tests of WM capacity (Chi, 1978; Schnei@euber, Gold & Opwis, 1993).

The possibility that changes in WM capacity aresiiact of changes in long-term
memory is also consistent with previous resulthexmemory literature. For
example, Swanson (1999) found clear relationshgteden both verbal and
visuospatial WM capacities and reading and mathiemability — high scores on the
WM capacity tasks were therefore related to higivess on the ability tasks that tap
into long-term knowledge. While it could be argukdt reading and mathematics
ability do not directly relate to the WM tasks ti&tvanson (1999) carried out, they
may be indicative of a larger knowledge base, arté the possibility that long-term
knowledge provided a significant contribution te tippparent age-related differences

in WM capacity.
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Bayliss, Jarrold, Gunn and Baddeley (2003) testedptex span (memory span
involving both WM capacity and a processing compahtgether with traditional
tests of WM capacity. They found that domain spe&fM capacity tasks made
significant contributions to both children’s andufid’ performance of complex span
tasks that involved the same form of storage. kample, performance on verbal
WM capacity tasks made significant contributionpéoformance on complex span
tasks involving a verbal storage component. Theoissistent with the hypothesis that
long-term knowledge within a domain (the domainseheeing rather general — verbal
or visuospatial) may influence the amount of infatimn that can be held in WM
capacity for that domain. That is, more verbal loegn knowledge results in a larger
WM capacity for verbal information and thus betterformance on complex tasks

involving verbal storage of information.

The idea that WM capacity tasks may contain a l@mg: component has also been
put forward for traditional WM capacity tasks. Fexample, digit span tasks have
been criticized for involving long-term knowledgéechk as familiarity with the digits
used (e.g. Case, Kurland & Goldberg, 1982). Howeabere is evidence to suggest
that there may be WM capacity differences overamle any long-term knowledge
influences. Although young children have been shtwmave more knowledge for
lower numbers than higher ones (Dehaene & Mehf92), Cowan, Nugent, Elliott,
Ponomarev and Saults (1999) found age-relatedréliftees for a version of the digit
span task but found no evidence of digit preferenashildren of younger ages. This
would suggest that while long-term knowledge playsgnificant role in the child’s

development, there may also be developmental inessim WM capacity.
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The evidence thus far suggests that while long-terawledge may explain age-
related differences in WM capacity, there is $hi# possibility of developmental
differences in WM capacity itself. As previously miened, studies involving the
measurement of WM capacity are difficult to intefppecause of the influence of
long-term knowledge. In this respect, studies #dpgtear to show age-related
differences in WM capacity should be treated wahton unless there are clear
empirical reasons for preferring an explanatiotenms of increases in WM capacity
over an explanation in terms of increasing knowéedgn the basis of the results that
have been presented here, we would argue that ‘etepirical reasons’ are not only
phenomena that give the appearance of a WM capaqiianation but also those
where computer simulations have shown that theetaslgenomena cannot be
simulated using an explanation involving only lalegm knowledge. Only when both
of these stipulations are met can one legitimatehclude that age-related WM

capacity differences are required to explain dgwalental change.

One final finding within the memory literature thatly appear not to fit easily with a
long-term knowledge explanation is the decline emmry performance for older
adults (e.g. Salthouse, 1990; Swanson, 1999). Hervénis can be explained from a
pure knowledge view of WM capacity if one assuniesknowledge itself is difficult
to access in older populations because of intaréereHasher and Zacks (1988)
suggest that older adults have difficulty removitegns from WM and as such these
items interfere with others. Similar views are dietd by Dempster (1993) and

Bjorklund and Harnishfeger (1990).

4.2. Implications for nonword repetition and vockoy learning
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Although NWR involves both WM capacity and longrteknowledge, WM capacity
is seen by many as being the most important fdetgr Baddeley, Gathercole &
Papagno, 1998; Gathercole & Baddeley, 1990a, 1998thercole et al., 1994). The
results here suggest that the relationship betWédncapacity and long-term
knowledge is actually a complex one that changes tme. As more phonological
knowledge is acquired, more information can bewagk in a fixed WM capacity and
thus shifts in performance are seen. These shfteotirequire any alteration in WM

capacity — they only require increases in long-tphanological knowledge.

Although EPAM-VOC supports views of vocabulary l@ag that highlight
phonological knowledge as the key mediator (e.gvd0q 1996; Metsala, 1999), more
recent theoretical explanations have attemptethtdycthe respective roles of long-
term knowledge and WM capacity. In particular, @Gatiole (2006) suggests that
auditory processing and phonological analysis aesltio construct a phonological
representation of the nonword and on the basisi®f tedintegration may occur based
on the amount of overlap between the phonologaahfand stored lexical entries
(i.e. words). This suggests that the relative ofl&/M capacity depends upon the
type of nonword — those nonwords that share fewufea with lexical items will

place more reliance on WM capacity. This explamatiosomewhat true of all of the
simulations presented here — when nonwords hadgstiaks to long-term knowledge
(i.e. wordlike nonwords) there was a closer matctiné child data in terms of lower
RMSE rates. However, the results also suggest Wdaity may need further
investigation. If non-wordlike nonwords emphasize tole of WM capacity, then the

simulations where only WM capacity was varied sddwdve shown better a better fit
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to non-wordlike nonwords than wordlike nonwordsfdat, the better fit to the data

was seen for wordlike nonwords.

One line of research that may help in identifyihg toles of long-term knowledge
and WM capacity in NWR performance involves speddinguage impairment (SLI).
For example, Archibald and Gathercole (2006) fimat £hildren with SLI have a WM
capacity deficit that is restricted to the verbaidin (implicating phonological WM
capacity deficits) and Marton and Schwartz (2008) anplicate WM in suggesting
that children with SLI have problems of simultane@uocessing. Further research
also suggests WM capacity problems for languageaire@ learners (e.g. De Beni,

Palladino, Pazzaglia & Cornoldi, 1998; De Jong,8)99

At first blush, these results speak against the eblong-term knowledge. However,
the interpretation of these studies suffers froemsame problems as those highlighted
in the introduction of this article — namely thatghonological long-term learning
occurs, the units used to measure WM capacity ahaiig believe that
computational modeling is a tool that can be usdtktp in examining language
impairments. We have supported the view that WNMacdp is closely linked to long-
term knowledge, and it now needs to be ascertaimedher language impairments lie
in WM capacity limitations (as suggested abovegltarnatively general language
learning limitations (such as slow learning, Gr2906), degraded phonological long-
term representations (as suggested by Service),20@6mbination of these, or some
other form of deficit. Computer models such as ERX®IC can be used to examine

the effects that each has upon subsequent NWRrpefce — based on the fit of the
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model to the data, specific hypotheses can be gtteto help pinpoint potential

areas of impairment.

4.3. Limitations of the model

The results presented provide an indication thahghs in long-term knowledge may
be sufficient to account for developmental changele nonword repetition task
amongst 2-5 year old children. However, there amgeslimitations of the model that

one needs to consider before accepting this canaus

First, working memory is represented as a simphetimited store that allocates a
temporal duration to each part of the input. Omeetime allocation for the input
exceeds the duration of the phonological storeD218s) the remainder of the input is
not processed. This does not harmonize with reffatts in the adult literature,
where primacy and recency effects have been foomnddnwords (Gupta, 2005).
Although there is some contention concerning pryreféects and rehearsal in young
children (e.g. Siegel, Allick & Herman, 1976), racg effects have been found (e.g.
Hagen & Kingsley, 1968). Future versions of EPAM-@@herefore need to
incorporate a recency mechanism whereby the moshtgart of the input is

available for processing.

Second, the nonword repetition test carried ouhbymodel involves it being able to
encode the nonword within the time-limited capaoityhe phonological store. It
could be argued, therefore, that rather than théetnmerforming nonword repetition,

EPAM-VOC is performing nonword recognition. In faatfuller account of the
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nonword repetition process should not only incladeencoding process but also an

articulation process. This is a goal to be achigmddture versions of the model.

Third, the model does not account for memory effscich as serial order effects (e.g.
Thorn & Frankish, 2005). The instantiation of wargcimemory in EPAM-VOC is
most aligned to chaining accounts — items in wagkitemory are recalled based on
the context of preceding items (this is most ajglie when several items exist as the
contents of a node). However, chaining accounts h&en criticized in terms of their
adequacy in explaining serial recall effects. Bameple, Henson, Norris, Page and
Baddeley (1996) found that confusable items irsia(&.9. phonologically-similar
items) have no obvious influence on the likelihabdorrectly recalling non-
confusable items. As such, when a non-confusabibeicecalled item exists in a list
containing confusable and non-confusable itemsptheeding/succeeding items do
not predict the recall likelihood of the to-be-riéed item. As Henson et al. (1996)
note, these findings present difficulties for EPAIke models that are predominantly
of the chaining variety. Future versions of EPAM-@@eed to consider how its
account of working memory can deal with the typserial recall findings presented

above.

4.4. Overall summary

A computational model of NWR performance has shtven developmental changes
in vocabulary learning are likely to be mediateddng-term phonological
knowledge rather than WM capacity. It is therefpossible that WM capacity

explanations of developmental change actually drisa differences in long-term
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knowledge. These results suggest the need forocewtien evaluating WM capacity
explanations of developmental change, with reseascbnly invoking developmental

changes in WM capacity when there are clear engpir@asons for doing so.

The use of computational models can help in examgithe relative contributions of
long-term knowledge and WM capacity within devel@mal tasks because they

allow the two to be independently manipulated sa the relative influence of each
can be examined. Using the domain of vocabulamnieg, we compared variations
in long-term knowledge and variations in WM capgcshowing that it is likely that

the key mediator in age-related differences is {t@rgn vocabulary knowledge.

Specific language impairment is a key area whemtbdéu examination of vocabulary
learning is necessary because there is a weattseérch that points towards WM
capacity impairments whereas alternative explanatauld exist relating to long-
term knowledge. Computational modeling techniqumgdbe of particular value in
this domain because they provide a key resourbelping to identify where the

deficits lie.
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Figure legends

Fig. 1. Learning in EPAM. For both graphs, thetstgrnode for traversing the
network is indicated by the topmost node (indicateldold) that contains no
information. Arrows indicate tests, and ellipsedi¢gate nodes, which contain the
resulting information after a test. New informat@added via learning is represented
either by bold text or by arrows and ellipses uslaghed lines.

Fig. 2. The resulting EPAM-VOC network after regetythe input “W EH1 R”
twice. Note that although only five individual premes are illustrated below the root
node, the model knows all phoneme primitives.

Fig. 3. 2,000 ms capacity duration NWR performaaicgtages 2 and 8,
compared to 2-3 year old (left graph) and 4-5 ydeuchildren (right graph)
respectively.

Fig. 4. Stage 8 NWR performance at 1,500 ms an@02yis capacity durations,
compared to 2-3 year old (left graph) and 4-5 yé@rchildren (right graph)

respectively.
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Figure 2
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Figure 3
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Figure 4
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Table 1. Stage of learning, amount of input seethbymodel, the ratio of mother’s
utterances to vocabulary items used in the input,the probability of making a

traversal error at each stage of the EPAM-VOC sried.

Stage of learning Amount of input  Percentage of pairs Probability of

seen by the model of vocabulary items selecting an

(%) included in the incorrect link when
input traversing
1 0-12.5 0 0.10
2 12.5-25 0 0.10
3 25-375 10 0.09
4 37.5-50 20 0.08
5 50 -62.5 30 0.07
6 62.5-75 40 0.06
7 75-87.5 50 0.05

8 87.5-100 60 0.04
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Table 2. RMSE averaged across simulations at vgustiages of long-term
knowledge (stages of learning within EPAM-VOC) aitdarying durations of WM
capacity. Stages 9 and 10 and WM capacities 2,40@#&00 are given to examine

whether optimal simulations are found for variatidhat lie outside of normal ranges.

RMSE comparisons, EPAM-VOC vs 2-3 year olds

WM capacity
Stage of
1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200
learning
ms ms ms ms ms ms ms ms

1 25.41 23.82 12.24 11.12 10.31 10.33 11.09 11.29

2 24.34 22.18 10.82 10.39 9.79 9.59 10.94 11.72

3 22.88 22.04 9.71 10.04 10.89 11.17 14.40 14.38

4 20.23 20.32 11.82 13.04 13.83 11.98 18.64 18.59

5 17.14 18.22 13.37 14.24 13.52 16.93 22.10 22.22

6 14.17 17.18 16.60 17.29 16.54 19.35 26.31 26.74

7 13.74 16.81 18.77 20.60 22.25 23.09 30.25 29.45

8 12.59 16.24 20.79 24.33 25.54 25.34 33.96 34.02

RMSE comparisons, EPAM-VOC vs 4-5 year olds
WM capacity
Stage of
1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200
learning
ms ms ms ms ms ms ms ms
1 47.59 45.68 32.93 29.24 30.41 28.91 21.84 22.16

2 46.04 44.27 29.66 2591 26.93 27.24 22.07 21.10
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Table 3. Average RMSE values for each ‘winning’ giation type, computed by

nonword type and nonword length.

RMSE for simulations of 2-3 year old NWR performanc

Syllables in non-wordlike
Syllables in wordlike nonwords

nonwords

Simulation 1 2 3 1 2 3
Long-term

.35 44 .38 1.06 .26 .39
knowledge

WM
46 .30 51 1.75 .26 .50
capacity

Interaction .35 44 .38 1.06 .26 .39

RMSE for simulations of 4-5 year old NWR performanc

Syllables in non-wordlike
Syllables in wordlike nonwords

nonwords

Simulation 1 2 3 1 2 3
Long-term

.28 49 .53 .81 .28 .64
knowledge

WM
14 19 .18 .95 .35 .88
capacity

Interaction .30 .59 .53 .80 .19 .25



