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Recently developed multi-hazard frameworks for performance based engineering require material models ca- 

pable of incorporating the unloading/reloading of structural materials at elevated temperatures. These include 

models for fire-following-earthquake events and the travelling fire methodology (which highlighted the preva- 

lence of material’s unloading/reloading). This paper proposes a new combined isotropic-kinematic hardening 

material model that has been developed to assess the unloading/loading behaviour of steel materials for thermo- 

mechanical analysis with fire, accounting for the Bauschinger effect and transient hardening behaviour. It works 

within the classical rate independent plasticity framework by exploiting the latitude of the two yield-surface 

model. The proposed material model integrates temperature effects on the yield surfaces through the concept of 

a shrinking/expanding bounding surface, and on the Bauschinger effect using an exponential growth function of 

plastic internal variables (PIVs). Transient hardening behaviour is modelled by incorporating a second non-linear 

kinematic hardening variable using an exponential decay function of the PIVs, and a corresponding discrete mem- 

ory parameter tracks any abrupt changes in the direction of plastic loading. Describing the Bauschinger effect and 

its associated transient hardening behaviour using an opposite pair of exponential functions is a novel solution 

that simplifies the computing effort required by classical material models developed purposefully for cyclic load- 

ing. Hence it makes the proposed material model appropriate and efficient for structural analysis with fire. The 

proposed material model has been implemented in Abaqus using the Umat subroutine, and verified against exper- 

imental data where good agreement was observed. Its application in analysing structures subjected to complex, 

realistic building fire is also demonstrated, indicating that it is suitable for incorporating within performance 

based engineering frameworks for structures in fire. 
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. Introduction 

Structural material behaviour in building fire can be extremely com-
lex due to already complicated thermal loading further compounded by
ntricate modern architectural design. Very sophisticated material mod-
ls can be developed to analyse various phenomena for steel materials
nder fire using the thermodynamics framework. However constructing
 material model that is capable of representing every aspect of the be-
aviour is an enormous and yet unneeded task. A good material model is
ne that can solve the engineering problems efficiently within a degree
f accuracy required by the proposed problem. 

Three issues have been identified to be resolved by the proposed
ew material model for performing finite element analysis of structural
ystems subjected to fire: 

1. The unloading/reloading of the material during the heating stage of
a building fire event. It is a conventional assumption that in struc-
tural fire design the strain will only increase monotonically during
the heating phase of a fire with no strain reversal expected [1] ,
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largely established based on the behaviour of single structural el-
ements tested in a standard fire furnace [2] . However, such assump-
tion is no longer valid for performance based fire structural design
where global structural analysis in fire is used, during which load-
ing/unloading/reloading will inevitably occur in certain parts of the
structure due to load redistribution. For instance, consider the fol-
lowing scenarios: 
(a) When appraising structural fire performance of buildings in a

seismic zone, where plastic strains induced by historical earth-
quakes have to be taken into account. 

(b) With the continuous development of travelling fire methodology
framework [3–5] , which accounts for the movement of fire, Dai
et al. [6] have demonstrated that structures will experience cross-
sectional temperature gradient reversals and ‘cyclic’ heating and
cooling during the course of a fire development. 

(c) Load redistribution between structural components through cate-
nary action. Especially for the structural beams that experienc-
ing large deflection in fire, the catenary action significantly in-
fluences their behaviour. A phenomenon has been observed in
019 
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real fire event – Broadgate phase 8 fire [7] and in the large scale
Cardington frame fire tests [8] . 

2. The non-linear stress strain relationships at elevated temperatures,
where the non-linear stress strain behaviour of steel materials such
as structural carbon steels and stainless steels have to be represented
properly using appropriate strain hardening law. The material non-
linearity is regarded as a norm in other engineering fields. But it
is not commonly modelled in structural engineering design, largely
attributed to the perfect elastic-plastic behaviour that structural car-
bon steels exhibit favourably at room temperature. Limited research
[9] has been carried out studying the impact of the structural fire
performance of stainless steels as a result of their higher material
non-linearity. 

3. The Bauschinger effect, the translation of the yield surface in the
stress space, and its associated transient hardening behaviour at el-
evated temperatures. For capacity analysis of steel structures, when
reverse loading occurs, a material model with the Bauschinger ef-
fect properly accounted for should be used [10,11] . Multiple ex-
perimental results [12–14] have shown the yield surfaces of met-
als both expand and translate at elevated temperatures. Lissenden
et al. [12] measured the subsequent yield surface of 316 stainless
steel at 650 °C and found that it had translated and elongated in the
direction of preloading. The same translation and distortion of sub-
sequent yield surfaces have also been observed in aluminium after
being heated to 152 °C [13,14] . Furthermore, it has been observed
that the Bauschinger effect is temperature dependent [13,15–17] . A
diminishing trend of the Bauschinger effect at rising temperatures
(21 °C, 66 °C, 108 °C and 152 °C) was observed in [13] . Harvey et al.
[15] investigated the evolution of the isotropic hardening variable
and kinematic hardening variable of 304L stainless steel at temper-
ature level 20 °C, 200 °C, 600 °C, 800 °C and 1000 °C using reverse
yield experiments, and demonstrated the temperature-dependent na-
ture of the Bauschinger effect. When investigating material’s kine-
matic hardening behaviour under cyclic loading at high tempera-
tures, Maciejewski et al. [16] and Ohno et al. [17] observed dif-
ferent degrees of the Bauschinger effect and transient hardening at
varying temperatures for low carbon steel and 304 stainless steel
respectively. 

ranssen [18] proposed that the constitutive material model for steels at
levated temperatures could be constructed by using the plastic strain
o describe the complete stress strain history at varying temperatures.
his approach has been implemented in finite element software SAFIR
19] for Eurocode 3 [20] steel materials with an elliptical curve adopted
or the non-linear isotropic hardening behaviour [21] , and also im-
lement in the uniaxial material model Steel01Thermal in OpenSEEs
22] with the non-linear stress strain relation being simplified into a
ri-linear relationship. The main shortcomings of this model are its in-
bility to deal with multiple strain reversals and to properly account for
he Bauschinger effect and transient hardening behaviour. 

The above review indicates that the proposed material model should
ave the following capabilities: 

1. Handle non-monotonic loading path; 
2. Model material non-linearity at elevated temperatures; 
3. Include the Bauchinger effect and transient hardening behaviour at

elevated temperatures. 

It is well known that the theory of plasticity provides the framework
or the continuum constitutive descriptions of the behaviour of solids
hat experience permanent plastic deformations. The rate independent
lasticity theory is restricted to the conditions for which the permanent
eformations do not depend on the rate of the loading applied. Sev-
ral rate independent plasticity models have been developed using the
ate independent plasticity framework with internal variable concept to
odel the non-linear strain hardening, and the complex material be-
aviour under non-monotonous loading such as the Bauschinger effect
468 
nd transient hardening. A brief review of the existing models is given
n the next section. 

. Existing kinematic hardening models at room temperature 

Isotropic hardening models are adequate for proportional loading
onditions where the loading increases monotonically and no unloading
ccurs. In order to properly represent material’s response under complex
on-monotonous deformation paths, it has been common to adopt kine-
atic hardening models. In this section, three main types of kinematic
ardening models are briefly reviewed and discussed. 

.1. Mroz’s multisurface model 

Mroz’s model [23] uses a series of linear segments to model the non-
inear stress strain behaviour, i.e. instead of using a single hardening
odulus for the entire stress strain curve, each discretised segment of

he stress strain curve has one constant hardening modulus. In three
imensional stress space, Mroz’s model can be represented by several
ypersurfaces f 0 , f 1 , ... f n , where f 0 is the initial yield surface, and f 1 to
 n define regions of constant hardening moduli. 

On one hand, to produce a smooth non-linear curve, a large number
f yield surfaces are necessary, requiring high computational power.
n the other hand, the plastic moduli ( E p ) under uniaxial loading of
roz’s model can be determined straightforwardly from the stress —

lastic strain curve generated from uniaxial tensile tests. 

.2. Two yield-surface models 

The two-surface model concept was proposed by Krieg [24] and
afalias and Popov [25] independently in the 70s. They introduced the
oncept of a bounding (outer) surface and a loading (inner) surface. 

Compared with the Mroz’s multisurface model that defines a set of
iecewise plastic moduli, the two surface model defines a continuous
ariation of the plastic modulus between the bounding surface and the
oading surface. The non-linear hardening behaviour — smooth transi-
ion between elastic and plastic region, is realised through the relative
ovement of the two surfaces. 

The main difference between Krieg’s model, and Dafalias & Popov’s
odel is the approach adopted for incorporating the Bauschinger ef-

ect. Krieg [24] prescribes kinematic-isotropic proportioning factors to
ecompose the total hardening into isotropic and kinematic hardening
arts for the loading surface and the bounding surface respectively. In
afalias & Popov’s model [25] , the Bauschinger effect is realised by
efining the plastic hardening modulus as a function of the gap between
he bounding and the loading surface. 

Lee et al. [26] resolved the issue of ‘overshooting’, the unrealistic
ransient behaviour of the two yield-surface model which may occur
hen the material is unloaded before being reloaded to its original stress

tate, by only updating the hardening behaviour when reverse loading
ccurs for plastic deformation. 

Recently, Cardoso and Yoon [27] explicitly incorporated the
auschinger ratio in the constitutive equation of the two-surface model
y defining it as an exponential function of the accumulated plastic
train ( 𝜀 𝑝 ). 

.3. Nonlinear kinematic hardening models 

The non-linear kinematic hardening model commonly used is a gen-
ralisation of Prager’s [28] and Ziegler’s [29] linear kinematic harden-
ng models. The Prager’s linear kinematic hardening rule [28] assumes
he yield surface translates in the direction of plastic strain increment.
iegler [29] modified Prager’s rule by assuming yield surface translates
long the direction of the relative stress tensor 𝜼: 

= 𝝈 − 𝜷 (1)
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here 𝝈 is Cauchy stress tensor and 𝜷 is the backstress tensor. 
The evolution equation for the kinematic hardening variable 𝜷 can

e expressed as: 

= 

2 
3 𝐻 𝜺 𝒑 and �̇� = 

2 
3 𝐻 

̇𝜺 𝒑 (2) 

he material constant H is the hardening modulus and 𝜺 p is the plastic
train tensor. 

For modelling material behaviour under cyclic loading, Chaboche
30,31] proposed a non-linear kinematic hardening model as expressed
n Eq. (3) . The backstress ( ̇𝜷) is modelled using multiple (M) terms of
on-linear kinematic hardening, with different material constants 𝛾 i as-
igned for each term to allow for a more extensive strain domain and a
etter description of the soft transition between elasticity and the onset
f plastic flow [32] . 

̇ = 

𝑀 ∑
𝑖 =1 

�̇� 𝑖 �̇�𝑖 = 

2 
3 
𝐻 𝑖 

̇𝜺 𝒑 − 𝛾𝑖 𝜷 𝑖 
̇
𝜀 𝑝 (3)

ith: 

̇
 

𝑝 = 

√ 

2 
3 
̇𝜺 𝒑 ∶ ̇𝜺 𝒑 (4) 

The variable ̇𝜀 𝑝 is the accumulated plastic strain rate and 𝛾 is a ma-

erial constant. The term − 𝛾𝜷
̇
𝜀 𝑝 , called the dynamic recovery term, in-

ludes the effect of saturation in the kinematic hardening model. 
Chaboche’s model is developed based on the non-linear kinematic

ardening model firstly proposed by Armstrong and Frederick [33] in
966. Armstrong & Frederick’s model can be considered as a particular
ase of Chaboche’s model where 𝑀 = 1 , i.e., only one dynamic recovery
erm is used. 

Another possible improvement upon Prager’s linear kinematic hard-
ning rule is introducing non-linearity by replacing the constant kine-
atic hardening modulus H with a generic function of the accumulated
lastic strain, 𝜀 𝑝 [34] . 

̇ = 

2 
3 
𝐻( 𝜀 𝑝 ) ̇𝜺 𝒑 (5)

n this case, a scalar function, 

≡ 𝛽( 𝜀 𝑝 ) (6) 

ust be defined such that 

( 𝜀 𝑝 ) = 

𝑑 𝛽

𝑑 𝜀 𝑝 
(7)

efines the kinematic hardening curve. This curve can be obtained from
imple uniaxial tests in a manner analogous to the determination of the
ardening curve for the purely isotropic hardening model. 

The models reviewed in this section are presented within the frame-
ork of small strains and applicable to the scheme of rate independent
lasticity. Chaboche and Rousselier [30] demonstrated mathematically
hat the non-linear kinematic hardening rule can be considered as a par-
icular case of two-surface theory where the bounding surface can only
xpand isotropically but cannot translate. 

All of the existing kinematic hardening models reviewed focus on
he mechanical aspect of the material behaviour under isothermal con-
ition, without explicitly stating the effects of temperature and tempera-
ure changes. Thus the three issues identified at the beginning have been
nswered to some degree by the existing models for isothermal condi-
ions. In order to develop an appropriate plasticity model for thermo-
echanical analysis of steel materials subjected to fire, the effects of

emperature and temperature changes have to be addressed, which is
iscussed in the following sections. 

. Temperature effects on plasticity models 

Within the framework of thermodynamics, the temperature changes
n the material can result from internal heat generation and external
469 
eat source. The flame edge temperature has been observed at about
50 °C in small-scale compartment fires and the maximum temperature
n a post-flashover building fire can reach 1200 °C [35] . For structural
ehaviour in fire analysis, the heat transfer between the material and
he external fire is believed to predominate the temperature changes
ithin the material. Thus in this work the temperature rise in the ma-

erial due to plastic work can be considered negligible in comparison to
hat caused by the external fire. Consequently, it’s considered appropri-
te to decouple the heat transfer analysis from the thermo-mechanical
nalysis for structural analysis with fire. Strictly referring to the effects
nduced by external fire loading, the temperature effects on the param-
ters and variables in the constitutive equations and evolution laws of
 plasticity model are one of the main focuses in this work. 

The influence of elevated temperatures on elastic and inelastic mate-
ial response, can be treated within the framework of theories of creep
36] or using the viscoplasitc theory [37–39] , where material response
s treated as time-dependent. 

For structural fire analysis, the structural loading is generally static.
xperimental evidence [12] has shown that different loading rates have
o significant influence on the initial yield surfaces at elevated temper-
tures. Sun et al. [40] and Maciejewski et al. [16] examined strain-rate
ensitivity of carbon steel beams and steel-framed structures subjected
o elevated temperatures using the Chaboche and Rousselier’s viscoplas-
ic model [30] . Both [16,40] concluded that the strain rate dependency
nly becomes noticeable when the temperature goes beyond material’s
ransitional temperature, about 700 °C for low carbon steel. 

For steel structural fire design, Eurocode 3 (EC 3) [20] implicitly
ncludes the effects of transient thermal creep in its prescribed stress
train curves. Material models constructed based on the EC 3 stress strain
urves are applicable for heating rates between 2 and 50K/min, without
he need to explicitly consider transient thermal creep [20] . 

Hence a time-independent/rate independent plasticity model is as-
umed to be adequate for the structural fire analysis, as both strain rate
nd creep have been demonstrated to be insignificant for structural steel
aterial’s behaviour at elevated temperature. The influence of tempera-

ure and temperature changes within the framework of rate independent
lasticity model is investigated and discussed in the following sections.

.1. Parametric dependency on temperature 

The material parameters in the constitutive equations are consid-
red to be temperature dependent. For structural steel materials, e.g.
arbon steel and stainless steel, structural design standards such as EC 3
20] provide reduction factors of elastic modulus, yield stress (propor-
ional limit stress) and 0.2% proof stress at elevated temperatures 20–
200 °C, with 100 °C intervals. The plastic modulus can be determined
sing the uniaxial stress strain curves at elevated temperatures found
n design standards and literature. For example, EC3 [20] provides for-
ulas for determining the stress strain relationships of structural steels
sing its corresponding reduction factors. 

.2. Temperature rate dependency for the internal variables 

The most commonly adopted two internal state variables to be con-

idered are the accumulated plastic strain 𝜀 𝑝 𝑛 and the backstress tensor

. The scalar 𝜀 𝑝 𝑛 defines the isotropic hardening of the Von Mises yield
urface, while the tensor 𝜷 defines the translation of the yield surface
entre in the deviatoric stress space. 

The evolution of 𝜷 at elevated temperatures has been a subject of
iscussion for decades and the inclusion of a temperature rate is con-
idered necessary for obtaining stable conditions [32] . Using the frame-
ork of thermodynamics with decoupled heat transfer, considering only

he kinematic hardening of the material, the thermodynamic potential,
r the Helmholtz free energy ( 𝜓) can be defined as follows: 

 = 𝜓 𝑒 ( 𝜺 𝒆 , 𝑇 ) + 𝜓 𝑝 ( 𝜶, 𝑇 ) (8)
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Fig. 1. Stiffness reduction factors. 
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The 𝜶 is the backstrain tensor. In this work Eq. (8) considers no
nternal heat generated by plastic work. Thus the 𝜓 p does not contribute
o the heat transfer analysis in the proposed material model where the
eat transfer is decoupled from the thermo-mechanical analysis. If the
art 𝜓 p of the Helmholtz free energy is expressed in a quadratic form
s: 

 𝑝 ( 𝜶) = 

1 
3 
𝐻( 𝑇 ) 𝜶 ∶ 𝜶 (9)

here the hardening modulus (H) is now a function of temperature.
hen the corresponding backstress is given by: 

= 

𝜕𝜓 

𝜕 𝜶
= 

2 
3 
𝐻( 𝑇 ) 𝜶 (10)

Differentiating Eq. (10) over temperature gives: 

𝜕 𝜷

𝜕𝑇 
= 

2 
3 
𝐻 ( 𝑇 ) 𝜕 𝜶

𝜕𝑇 
+ 

2 
3 
𝜕𝐻 ( 𝑇 ) 
𝜕𝑇 

𝜶 (11)

The evolution of the internal variable backstress 𝜷 over changing
emperatures can therefore be determined using Eq. (11) . 

. Decoupling thermal and mechanical step 

For isotropic materials, the thermal expansion caused by a change in
emperature is uniform in all directions. It is an experimentally observed
act that a stress free material body will experience relative elongations
ut no angular changes as result of an increase or a decrease in tempera-
ure. This thermally induced strain can be imposed on the stress induced
trains (mechanical strains), provided there is no change in the temper-
ture due to the deformation of the material. Thus the total strain —
 measure of the deformation of the material, consists of a mechanical
art and a thermal part, which can be expressed as: 

 𝑡𝑜𝑡𝑎𝑙 = 𝜀 𝑚𝑒𝑐ℎ + 𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (12)

The stress state ( 𝜎) for the structural material (elastic or plastic) de-
ends only on the mechanical strains, which means thermal expansion
oes not directly contribute to plastic yielding if there is no boundary re-
traint. This relationship is the most fundamental relationship that gov-
rns the thermo-mechanical behaviour of structural materials subjected
o fire. Where there is no boundary restraint and no external loading, the
aterial is free to expand resulting in changes in the deformation such

s axial expansion or thermal bowing, however there is no mechanical
train developed in the material in this case, hence no change of the
tress state. 

Δ𝜀 𝑡𝑜𝑡𝑎𝑙 = Δ𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 
𝜀 𝑚𝑒𝑐ℎ = 0 Δ𝜎 = 0 (13)

By contrast, if there is still no external loading but there exist bound-
ry restraints that fully prevent any thermal expansion, the deformation
f the structural material remains unchanged. In this case, the mechani-
al strains are developed, subsequently cause changes in the stress state.

Δ𝜀 𝑡𝑜𝑡𝑎𝑙 = 0 
𝜀 𝑡𝑜𝑡𝑎𝑙 = Δ𝜀 𝑚𝑒𝑐ℎ + Δ𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ⇒ Δ𝜀 𝑚𝑒𝑐ℎ + Δ𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 0 

⇒ Δ𝜀 𝑚𝑒𝑐ℎ = −Δ𝜀 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 
Δ𝜎 ≠ 0 

(14)

The above two scenarios represent two opposite boundary conditions
n real structures under fire. It can be clearly shown that any changes in
he stress state that would cause material yielding are direct results of
echanical strain development. Therefore, rate independent plasticity
odels developed for isothermal conditions are appropriate for mod-

lling the mechanical aspect of the thermo-mechanical analysis of struc-
ural materials subjected to fire. 

A fully thermo-mechanical analysis of structural materials in fire can
e viewed as a series of isothermal mechanical analysis, each one cor-
esponding to a thermostatic state. At each state, the isothermal me-
hanical analysis is carried out at the temperature related to that state.
470 
he temperature difference between two neighbouring states affects the
volution of internal variables as discussed in Section 3 . By adding a
hermal step upon the established isothermal mechanical analysis to
ncorporate the temperature effects, a new material model developed
ithin the framework of rate independent plasticity will become capa-
le of thermo-mechanical analysis with fire. 

.1. Thermal step 

The main objective of the thermal step is to implement tempera-
ure effects into the material parameters for the constitutive equations
nd for the evolution equations of the internal variables, thereby en-
bling the subsequent mechanical analysis to be performed in an isother-
al state. By isolating the mechanical aspect of the analysis from any

hermal effects, it allows us to take advantages of sophisticated stress
ntegration methods developed for existing plasticity models, such as
orward-Euler method incorporating sub-incrementation [41–44] , mid-
oint method [45,46] , radial return method [47–49] , and backward-
uler method [50–52] , in order to achieve higher computing efficiency.

The material parameters that are temperature dependent and have
o be updated at the thermal step are the following: 

1. Elastic modulus. 
2. Yield stress, defined as occurring at proportional limit. 
3. Parameters in the constitutive equation for 𝜺 p , or flow rule. 
4. Parameters in the evolution equations for internal variables. 

.1.1. Elastic modulus at elevated temperatures 

Fig. 1 presents the reduction factors ( k E ) of initial elastic modulus
rovided by EC 3 [20] for carbon steel and Design Manual of Structural
tainless Steel (DMSSS) [53] for stainless steel. Both steel materials ex-
ibit reduction of stiffness at increasing temperatures. 

.1.2. Yield surfaces at elevated temperatures 

The yielding, defined as occurring at the proportional limit, is tem-
erature dependent. The initial yield surfaces at elevated temperatures
hrink as temperature rises. Fig. 1 shows the reduction factors ( k p ) for
tructural carbon steel according to EC 3 [20] . 

At room temperature, the yield criterion of von Mises has been shown
o be in excellent agreement with experiments for many ductile metals
54] . The von Mises yield criterion predicts the initial yield surface to be
 circle in the devitoric stress space. At elevated temperatures, Phillips
t al. [13] experimentally determined yield surfaces of pure aluminium
t 66 °C, 108 °C and 152 °C; Lissenden et al. [12] experimentally investi-
ated the initial yield surface of type 316 stainless steel at 650 °C; Inoue
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Fig. 2. EC3 stress-strain curves v.s. Least square fitting. 
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and s is the deviatoric stress tensor. 

Fig. 3. Combined isotropic/kinematic hardening yield surfaces with tempera- 

ture changes in the deviatoric stress space. 
nd Tanaka [55] carried out a series of experiments and obtained the
nitial yield surfaces of low carbon steel at 200 °C, 250 °C, 300 °C and
50 °C. They all found that the size and shape of experimentally deter-
ined initial yield surfaces agreed satisfactorily to that predicted using

he von Mises yield criterion. Therefore, it is reasonable to believe the
on Mises yield criterion remains applicable at elevated temperatures. 

.1.3. Plastic flow potential at elevated temperatures 

The foundation of the plastic flow potential theory is the normality
ow rule of a potential function. At higher temperatures, Lissenden et al.
12] observed that for 316 stainless steel, the directions of the plastic
ncrement pointed in the general direction of the outward normal of the
ield locus at 650 °C. It is believed that the normality is still applica-
le for steels at elevated temperatures. Consequently, the flow potential
an be determined by the yield function and hardening law using the
ssociated flow theory [54] . 

The hardening law of the carbon steel material model can be ob-
ained by least square fitting the EC 3 [20] stress strain curves at ele-
ated temperatures using the Voce law: 

𝑦,𝑇 = 𝜎𝑦 0 ,𝑇 
+ 𝑣 𝑇 ∗ (1 − 𝑒𝑥𝑝 (− 𝛿𝑇 𝜀 𝑝 )) (15)

here 𝜎𝑦 0 ,𝑇 is the initial yield stress (yielding stress of proportional
imit) at temperature T, which can be calculated using reduction fac-
or ( k p ) prescribed by EC 3 or determined through least square fitting
he stress strain curves. The parameter v T and 𝛿T are both temperature
ependant material constants. It’s found that a better least square fitting
esults, using the Adj-R-square ratio as the indicator, could be achieved
y determining 𝜎𝑦 0 ,𝑇 through curve fitting. Fig. 2 shows the carbon steel
tress — plastic strain curves at elevated temperatures, with the EC 3
urves in solid line and the curves obtained using curve fitting in dashed
ine. A general good agreement is achieved. The material parameters ob-
ained are summarised in Table D.1 . Linear interpolation techniques are
mployed for obtaining the values for intermediate temperatures. 

.1.4. Internal state variables evolution at elevated temperatures 

The accumulated plastic strain 
(
𝜀 
𝑝 
𝑛 

)
remains constant during the ther-

al step. The backstress tensor 𝜷 evolves over changing temperatures
s expressed in Eq. (11) . 

At the thermal step where no change in the (mechanical) strain in-
rement considered, 𝜕 𝜶

𝜕𝑇 
= 0 . Eq. (11) can be reduced to: 

𝜕 𝜷
= 

2 𝜕𝐻( 𝑇 ) 
𝜶 (16) 
𝜕𝑇 3 𝜕𝑇 

471 
Since 𝜷 is deemed temperature rate independent, its value at a tem-
erature point T can be determined by: 

𝑇 = ( 𝜷) 𝑇=0 + 

𝜕 𝜷

𝜕𝑇 
𝑇 (17)

As the tangent hardening modulus H is linearly interpolated be-
ween two stress — strain curves at different temperatures, H becomes
 T — the hardnening modulus at the temperature T, and substituting
q. (16) into Eq. (17) gives: 

𝑇 = ( 𝜷) 𝑇=0 + 

2 
3 
𝐻 𝑇 𝜶 (18)

Eq. (18) can therefore be used to determine the new position of the
ield surface centre due to a temperature change at the thermal step for
he current material point position. 

. A new rate independent plasticity model for structural 

hermo-mechanical analysis in fire 

The new rate independent plasticity model for thermo-mechanical
nalysis of steel materials subjected to fire developed is a combined
sotropic and kinematic hardening model. It adopts the concept of yield
nd bounding surfaces of the two-surface plasticity theory in combi-
ation with the Bauschinger ratio to model the material’s Bauschinger
ffect. Meanwhile, two kinematic hardening variables are used to model
he transient hardening behaviour that material exhibits upon reverse
oading. The theoretical details of the proposed new model are described
n this section. 

.1. Thermal step 

During the thermo-mechanical analysis, the thermal step is respon-
ible for updating both the bounding and the yield surface at elevated
emperatures. In the proposed material model, the bounding surface at a
emperature T is considered to have isotropic hardening only, shown as
ashed circles in Fig. 3 . The size of the bounding surface can be obtained
sing the uniaxial tensile stress — plastic strain relationships combined
ith von Mises yield criterion, with all the material parameters at the

emperature T applied. This gives the bounding surface (F = 0): 

𝐹 𝑇 = 𝐽 ( 𝝈) − 

√ 

2 
3 
𝑌 1 𝐷,𝑇 ( 𝜀 𝑝 ) = 0 

( 𝝈) = 

√
𝒔 ∶ 𝒔 (19) 

here J represents the size of the surface in the deviatoric stress space,
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Fig. 4. Re-positioning of yield surface due to changing temperatures. 
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The (inner) yield surface ( 𝑓 = 0 ) can expand isotropically and move
inematically. The yielding function is defined as in Eq. (20) , incor-
orating the Bauschinger ratio ϑT . With the same uniaxial stress strain
urve adopted, the bounding surface and yielding surface share the same
hape, as shown in Fig. 3 . 

 𝑇 = 𝐽 ( 𝝈 − 𝜷𝑻 ) − 𝜗 𝑇 

√ 

2 
3 
𝑌 1 𝐷,𝑇 ( 𝜀 𝑝 ) = 0 

( 𝝈 − 𝜷𝑻 ) = 

√
( 𝒔 − 𝜷𝑻 ) ∶ ( 𝒔 − 𝜷𝑻 ) (20)

The Bauschinger ratio ϑT decomposes the size of the bounding sur-
ace at the current temperature into the isotropic hardening and the
inematic hardening part of the yield surface, and is defined by Eq. (21) .
t the starting point there is only isotropic hardening, 𝑌 𝑖𝑠𝑜,𝑇 = 𝑌 1 𝐷,𝑇 ⇒
 𝑇 = 1 . 0 . 

 𝑇 = 

𝑌 𝑖𝑠𝑜,𝑇 

𝑌 1 𝐷,𝑇 

 ≤ 𝜗 𝑇 ≤ 1 (21)

The evolution of Bauschinger ratio is evaluated using an exponential
unction of accumulated plastic strain ( 𝜀 𝑝 ), 

 𝑇 = 𝑎 𝑇 ∗ 𝑒𝑥𝑝 (− 𝑏 𝑇 ∗ 𝜀 𝑝 ) + 𝑐 𝑇 (22)

here a T , b T , c T are temperature dependent material coefficients. 
During thermo-mechanical analysis, the subsequent yield surfaces

hrink due to the reduction in the elastic region at elevated temperature,
eanwhile they also expand and translate due to the plastic hardening.
s illustrated in Fig. 3 , the black circle depicts the initial yield surface
t temperature T1. The dashed blue circle is the bounding surface at T1
ith only isotropic hardening considered. The yield surface ( 𝑓 𝑇 1 = 0 ) is

he solid blue circle considering both isotropic and kinematic hardening.
At an increasing temperature T2, the bounding surface ( 𝐹 𝑇 2 = 0 ) is

he red circle in dashed line. At the thermal step, since there is no (me-
hanical) strain increment considered, the yield surface at T2 ( 𝑓 𝑇 2 = 0 )
hould not go beyond the bounding surface. The movement of the yield
urface caused by the evolution of backstress due to changing tempera-
ures should be restricted by the bounding surface. 

Upon a temperature change, the backstress tensor 𝜷T gives a new
osition of the centre of the yield surface in the deviatoric stress space,
nd is determined by Eq. (23) . It is derived from Eq. (18) by adopting
niaxial tensile stress strain curves for the determination of hardening
odulus and the Bauschinger ratio for decomposing the kinematic hard-

ning from the total hardening. 

𝑻 = (1 . 0 − 𝜗 𝑇 ) 
√ 

2 
3 
𝑌 1 𝐷,𝑇 ( 𝜀 𝑝 ) 

𝜺 𝒑 ‖𝜺 𝒑 ‖ (23)

The re-positioning of the yielding surfaces due to temperature
hanges is performed at the thermal step, to allow the plastic strain
ncrement to be determined following the established algorithms of as-
ociative plastic flow rule in the subsequent mechanical step. As illus-
rated in Fig. 3 , the yield surface centre has to be re-positioned from 𝜷T 1 

o 𝜷T 2 . 
When temperature increases from T1 to T2, S T 1 (green dot on the

lue circle in Fig. 4 , which is the stress state converged at T1, now
its outside of the bounding surface of T2 (red circle in dashed line).
he bounding surface size at T2 ( 𝐽 ∗ 

𝑇 2 ) can be determined by Eq. (24) .
he Bauschinger ratio at T2 ( ϑT 2 ) determines the size of yield surface
t T2 ( J T 2 ) following Eq. (25) and the backstress 𝛽𝑇 2 using Eq. (26) .
he Bauschinger ratio ensures the yield surface always stays inside the
ounding surface. 

 

∗ 
𝑇 2 = 

√ 

2 
3 
𝑌 1 𝐷,𝑇 2 ( 𝜀 𝑝 ) (24)

 𝑇 2 = 𝜗 𝑇 2 ∗ 𝐽 ∗ 𝑇 2 (25)
472 
𝑇 2 = (1 − 𝜗 𝑇 2 ) ∗ 𝐽 ∗ 𝑇 2 (26)

The direction of the backstress tensor at T2 ( 𝜷T 2 ) is in the direction of
he plastic strain tensor, hence the 𝜷T 2 can be computed using Eq. (27) :

𝑻 𝟐 = 𝛽𝑇 2 
𝜺 𝒑 ‖𝜺 𝒑 ‖ (27)

The equivalent stress state ( S T 2 ) on the yield surface of T2 (green
ot on the red circle in Fig. 4 ) can therefore be determined following
q. (28) : 

 𝑻 𝟐 = 𝐽 𝑇 2 
𝜺 𝒑 ‖𝜺 𝒑 ‖ − 𝜷𝑻 𝟐 (28)

As can be seen in Eqs. (27) and (28) , during the thermal re-
ositioning, the direction of the yield surface centre and the equivalent
tress state are determined by the direction of the plastic strain tensor.
n the proposed material model, plastic strain tensor is considered the
rue PIV at the thermal step. 

.2. Mechanical step 

At the mechanical step, the stress state is considered isothermal
ence the temperature dependence can be deemed “frozen ” during the
tress integration process. The Bauschinger effect is captured by incor-
orating Bauschinger ratio ( 𝜗 ( 𝜀 𝑝 ) ) as an internal variable. The evolution
unction of 𝜗 ( 𝜀 𝑝 ) is an exponential growth function of the accumulated
lastic strain ( 𝜀 𝑝 ), thus 𝜗 ( 𝜀 𝑝 ) is a PIV as it evolves over plastic hardening.
esides the Bauschinger effect, the material also exhibits transient hard-
ning upon reverse loading. In the proposed model, two nonlinear kine-
atic hardening variables are adopted to capture these two behaviour,
efined as in Eq. (29) . The second variable ( ̇𝜷𝟐 ) only gets activated upon
everse loading. 

̇ = �̇�𝟏 + �̇�𝟐 ∗ 𝑙 (29)

The internal variable — reverse loading index ( l ) is introduced to
rack any drastic changes of the loading direction. Fig. 5 shows the re-
erse loading can be detected by the angle 𝜃d between the old loading
irection and the new loading direction as follows: 

𝑜𝑠 ( 𝜃𝑑 ) = 

𝜼𝑜𝑙𝑑 ⋅ 𝜼𝑛𝑒𝑤 ‖𝜼𝑜𝑙𝑑 ‖‖𝜼𝑛𝑒𝑤 ‖ ; 𝜼 = 𝒔 − 𝜷

𝑜𝑠 ( 𝜃𝑑 ) ⩾ 0 , 𝑙 = 0; 𝑐𝑜𝑠 ( 𝜃𝑑 ) < 0 , 𝑙 = 1 (30) 
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Fig. 5. Reverse loading criterion. 
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.2.1. First kinematic hardening variable ̇𝜷1 
During monotonic loading, as illustrated in Fig. 6 a, the first back-

tress term ( ̇𝜷1 ) accounting for the movement of the yielding surface
solid blue circle) is determined through the Bauschinger ratio ( 𝜗 ( 𝜀 𝑝 ) )
s follows: 

̇𝟏 = (1 − �̇� ( 𝜀 𝑝 )) 
√ 

2 
3 
�̇� 1 𝐷 ( 𝜀 𝑝 ) ∗ 

𝜼‖𝜼‖ (31)

Upon reverse loading, the �̇�𝟏 continues to develop in the reverse load-
ng direction as 𝜀 𝑝 increases. The 𝜗 ( 𝜀 𝑝 ) decomposes the kinematic hard-
ning out of the total hardening at the new loading direction, illustrated
s the green bracket portion of the radius of the new bounding surface
dashed green circle) in Fig. 6 b. 

.2.2. Second kinematic hardening variable �̇�𝟐 
In addition to the �̇�𝟏 , a second kinematic hardening variable is in-

roduced in the proposed model to describe the shifted yield surface
entre (blue dot in Fig. 6 ) travelling back to the origin of the deviatoric
tress space. Acknowledging the evanescent characteristic of kinematic
ardening, the second variable �̇�𝟐 can be viewed as the yield surface
xhibiting an urgent tendency to move back quickly to the origin upon
eversing. 

The exponential growth function of Eq. (22) adopted for Bauschinger
atio evolution indicates that the yield surface moves away from the
rigin at an exponential speed during initial loading. It is reasonable to
ostulate that the yield surface exhibits the same tendency upon revers-
ng, shifting back to the origin at an exponential rate, if not following
he identical speed to that during the initial loading. 

Based on this assumption, a reverse loading ratio ( 𝜐( 𝜀 𝑝 
𝑙 
) ) is introduced

s an exponential decay function of the effective plastic strain of the new

eloading branch, denoted 𝜀 𝑝 
𝑙 
, as in Eq. (32) . The scalar 𝜀 𝑝 

𝑙 
accounts for

he effective plastic strain accumulated during each loading branch, and
ill be reset to zero whenever reverse loading is detected. The material
arameter in Eq. (32) can be obtained from the testing data of reverse
oading curves. Simplifying to assume the same exponential speed for
he backtracking, the same material constant b in the Bauschinger ratio
volution Eq. (22) can be used, which gives: 

= 1 . 0 − 𝑒𝑥𝑝 (− 𝑏 ∗ 𝜀 𝑝 
𝑙 
) (32)

The typical evolution of reverse loading ratio is compared with that
f Bauschinger ratio in Fig. 7 . The Bauschinger ratio starts at 1.0 indi-
ating pure isotropic hardening at the beginning of plastic hardening. It
ecays and steadies at a value below 1.0 where kinematic hardening has
eached its saturation value. Contrarily, the reverse loading ratio starts
rom 0.0 meaning the backtracking is yet to start, and plateaus at the
alue of 1.0, indicating at this point the entire distance travelled by the
ield surface centre in the previous loading branch has been recovered.
473 
The kinematic hardening ( �̇�𝟐 ) is therefore defined as: 

̇𝟐 = �̇�

√ 

2 
3 
̇
𝛽𝑙 ∗ 

𝜼‖𝜼‖ (33) 

The 𝛽𝑙 is a scalar — the distance the yield surface centre travelled
uring the last loading branch in the uniaxial stress direction, as shown
n Fig. 8 , and can be obtained as follows: 

̇
𝑙 = 𝑉 ℎ 

√ 

3 
2 
�̇�𝒏 ∶ �̇�𝒏 (34) 

here ̇𝜷𝑛 is the rate of the (total) backstress tensor at the end of last
oading branch prior to the start of reserve loading. The material pa-
ameter V h is introduced to account for potential softening/hardening
uring reverse loading. It can be obtained using experimental reverse
tress strain data. 

The second variable �̇�𝟐 gets activated upon reverse loading, more
recisely only when re-yielding starts. Between the reverse loading point
nd the re-yielding point, shown as green dots in Fig. 8 , is the unloading
ange during which plastic internal variables remain unchanged. 

.3. Thermal step during reverse loading 

The second kinematic variable �̇�𝟐 was introduced in Section 5.2 when
escribing the mechanical step of the proposed model to account for
aterial’s transient hardening behaviour during reverse loading. 

The thermal step described in Section 5.1 applies to the temperature
hanges experienced by the internal variables during initial monotonic
oading. For modelling temperature changes that occur during reverse
oading, the �̇�𝟐 has to be appropriately incorporated in the thermal step
o ensure the transient behaviour is retained. 

The �̇�𝟐 describes the yield surface backtracking the distance ( 𝛽𝑙 ) that
as been travelled in the stress space prior to the reverse loading. Since
he distance ( 𝛽𝑙 ) is inherited from the previous loading branch, it re-
ains constant during the reverse loading. As shown in Eq. (33) , the

emperature only affects the ‘speed’ of the 𝜷2 as the material parameter
 in the evolution function of the reverse loading ratio ( 𝜐) is considered
emperature dependent. 

Therefore, the �̇�𝟐 does not actively contribute during the thermal
tep. The procedures described in Section 5.1 for updating bounding
urface and yield surface resulting from temperature changes can be
iewed as taking place from the yield surface centre positioned at 𝜷2 in
he stress space. Thus the algorithm proposed in Section 5.1 is still appli-
able, recognising that the backstress used in the algorithm exclusively
efers to the first kinematic hardening variable 𝜷1 . 

The only modification required is in the last step — calculating the
quivalent stress state — to take the 𝜷2 into account. Eq. (28) now be-
omes: 

 𝑻 𝟐 = 𝐽 𝑇 2 
𝜺 𝒑 ‖𝜺 𝒑 ‖ − 𝜷𝟏 𝑻 𝟐 − 𝜷𝟐 (35)

.4. Elastoplastic consistent tangent modulus D 

ep 

The exact linearisation of the incremental stress updating procedure,
ather than to appeal to the rate stress — strain tangential relation, is
ssential for achieving quadratic rates of convergence in the iterative
olution of the finite element equilibrium equations as emphasised by
egtegaal [56] , Simo and Taylor [57] . 

Linearising the incremental constitutive function of stress tensor ( 𝝈)
ields the consistent tangent operator ( D ). 

 = 

𝜕Δ𝝈
𝜕Δ𝜺 

(36) 

The fully implicit backward-Euler return mapping algorithm has
een adopted in the proposed material model to solve the yield con-
ition equation: 

(Δ𝛾) ≡ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾 − ( 𝛽1 𝑛 +1 − 𝛽1 𝑛 ) − �̂� ( 𝑙)( 𝛽2 𝑛 +1 − 𝛽2 𝑛 ) − 𝜎𝑦,𝑖𝑠𝑜 = 0 

(37) 
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Fig. 6. Proposed model during loading — reverse loading in the deviatoric stress space. 

Fig. 7. Typical Bauschinger ratio and Reverse loading ratio evolution. 
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Fig. 8. Proposed model during reverse loading in the deviatoric stress space. 
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here 𝛽1 is the first kinematic term contributing to overall hardening
nd is a function of accumulated plastic strain ( 𝜀 𝑝 ) as defined in Eq. (26) .

2 is the second kinematic hardening term defined in Eq. (33) , l is the
everse loading index, and 𝜎y,iso is the radius of the yield surface as

efined in Eq. (25) . �̂� is the Heaviside step function. 
Eq. (37) s tates the yield condition equation of full terms, using the

eaviside step function to include the second kinematic hardening term
henever reverse loading is detected. The Heaviside step function is
 non-differentiable function, which means the elastoplastic consistent
angent modulus has to be derived for monotonic loading and reverse
oading differently. 

The elastoplastic consistent tangent during monotonic loading has
een obtained as: 

 

𝒆𝒑 = 𝑫 

𝒆 − 4 𝜇2 Θ𝑵 ⊗𝑵 − 

4 𝜇2 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ [ 𝑰 𝒅𝒆𝒗 − 𝑵 ⊗𝑵 ] (38)

= 2 𝜇 + 

2 
3 
𝐻 1 𝐷 ( 𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾) (39)
474 
During reverse loading, Eq. (38) is still applicable with the term Θ
odified to include the 𝜷2 term as follows: 

= 2 𝜇 + 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

− 

2 
3 
𝛽𝑙 𝑒𝑥𝑝 

( 

− 𝑏 

( 

𝜀 
𝑝 

𝑙 𝑛 
+ 

√ 

2 
3 
Δ𝛾

) ) 

(− 𝑏 ) (40) 

The detailed derivation of elastoplastic consistent tangent modulus
s provided in Appendix C . 

. Verification of evolution of isotropic & kinematic hardening 

ariable during monotonic loading 

In the thermo-mechanical analysis, the parameters in the evolu-
ion function of Bauschinger ratio becomes temperature dependant.
he main objective of this section is to verify the evolution of the
auschinger ratio in the proposed material model as a function of accu-
ulation plastic strain ( 𝜀 𝑝 ) in conjunction with temperature. 
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Harley et al. [15] conducted a series of reverse yield experiments
o measure the evolution of isotropic hardening variable ( 𝜅) and kine-
atic hardening variable ( 𝛽11 ) in 304L stainless steel over a range of

emperatures. The scalar isotropic hardening variable 𝜅 is related to the
ize of a rate independent yield surface. The 𝛽11 is associated with the
ranslation of the yield surface centre in the uniaxial stress direction.
he experimental observations of Harley et al. [15] are consistent with
he combined isotropic/kinematic hardening framework. Despite their
nability to directly capture the initial elastic unloading behaviour in the
everse yield experiments largely due to the inelastic material behaviour
f 304L stainless steel, they determined the parameters by correlating
he data from additional Large Strain Reverse (LSR) experiments and
he tensile segment of the reverse yield experiments. 

Harley et al.’s [15] data provided us an insight into how Bauschinger
ffect evolves at elevated temperatures, particularly into how the two
nternal variables ( 𝜅 and 𝛽11 ) of a combined isotropic/kinematic hard-
ning plasticity model evolve at elevated temperatures. 

In this verification study, at first, the 𝜅 and 𝛽11 results of Harley
t al.’s experiments were analysed, based on which a set of tempera-
ure dependent evolution function parameters of the Bauschinger ratio
ere determined using the least square fitting technique. The parame-

ers determined were implemented in the proposed material model for
hermo-mechanical analysis in Abaqus using the Umat subroutine [58] .
he verification was performed by comparing Abaqus results with the
xperimental data. 

.1. Bauschinger effect determination at elevated temperatures 

Based on the uniaxial stress state of the reverse yield experiment
n [15] , neglecting the term for rate dependence in yield strength, the
auschinger ratio ( ϑ) can be determined following: 

11 = 𝜅 + 𝛽11 

𝜗 = 

𝜅

𝜎11 
(41) 

The Bauschinger ratios were calculated using Eq. (41) at 200 °C,
00 °C, 800 °C and 1000 °C, and are presented in Fig. 9 . At each temper-
ture level, Bauschinger ratios saw a general decreasing trend except at
000 °C. The initial plummeting of ϑ1000 indicated a drastic shrink of the
ield surface. When considering the strain is kept constant, Fig. 9 sug-
ests an increase of Bauschinger ratios from 200 °C to 800 °C followed
y a drop as the temperature rises to 1000 °C. 

The evolution function parameters of the Bausinchger ratios can be
btained using the least square fitting method, adopting the exponential
Fig. 9. Bauschinger ratio, least square fitting. 
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aw as in Eq. (22) . The parameters were determined at each temperature
evel individually as summarised in Table D.2 , and subsequently imple-
ented in the Umat subroutine for this verification study. The fitted

urves are plotted in Fig. 9 along with the experimental values. 

.2. Finite element model descriptions 

The experiments were conducted using specimens of 304L stainless
teel rod, following the same reverse yield testing procedures Miller
t al. [59] adopted for testing OFHC copper. The specimen is illustrated
chematically in Fig. 10 . 

The cross section of the gauge (outlined in Fig. 10 ) was modelled
sing the 4-node plane stress elements in Abaqus/CAE, shown as in
ig. 10 . The model was restrained in axial direction on one end. The
niform temperature was applied in the first step. In the second step,
 horizontal monotonic tensile load was applied at the other end to a
aximum 5.0% axial strain. 

The stress strain curves of 304L stainless steel used in the experi-
ents were applied in the material model for the verification. Thus the
arameters of the hardening function were obtained by least square fit-
ing the stress strain curves following the same approach adopted for EC
 carbon steel in Section 4.1.3 , and are summarised in Table D.2 . The
oung’s modulus were applied following the reported values : 195.3GPa
20 °C), 182.8GPa (200 °C), 153.8GPa (600 °C), 125.7GPa (800 °C), and
4.3GPa (1000 °C). 

.3. Results and discussions 

.3.1. Comparison study 

In the proposed material model, the isotropic hardening variable is
omputed following Eq. (42) . 

= 𝜗 𝑇 𝑌 𝑇 ( 𝜀 𝑝 ) (42)

here Y T is the isotropic hardening function and 𝜀 𝑝 is the accumulated
lastic strain. 

The kinematic hardening variable in uniaxial stress state, 𝛽11 , is cal-
ulated from Eq. (43) as follows: 

11 = 

√ 

3 
2 
‖𝜷‖ (43) 

here 𝜷 is the total backstresses. 
The Abaqus results for isotropic hardening ( 𝜅) and kinematic hard-

ning ( 𝛽11 ) are presented and compared with the experimental data in
ig. 11 a and b, respectively. A generally good agreement is observed.
he comparison has demonstrated that the evolution of Bauschinger ra-
io has been successfully implemented in the proposed material model
s a function of temperature and accumulated plastic strain. 

. Verification of Bauschinger effect and transient hardening 

uring reverse loading 

The Bauschinger effect and the transient hardening behaviour typ-
cally observed during reverse loading at room temperature also occur
t elevated temperatures. 

In this section, the capability of the proposed material model to
apture the Bauschinger effect and the transient hardening behaviour
s verified using the experimental data obtained by Maciejewski et al.
16] , who conducted a series of monotonic and cyclic loading tests on
ow carbon steel material (A572 Grade Low Carbon) at high tempera-
ures. For the verification purpose, the experimental data of the reversed
tress strain relationship of the very first loading loop associated with
he monotonic stress strain curve has been used thereby the cyclic hard-
ning/softening effect was excluded. 

The testing was performed on cylindrical specimens with an overall
ength of 114 mm, a gauge length of 25 mm, and a gauge diameter of
1 mm. The same finite element modelling approach as in the previous
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Fig. 10. Reverse yield test specimen (all dimensions in mm) [59] . 

Fig. 11. Hardening variables comparison. 
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erification was adopted. The proposed material model was employed
or the tested low carbon steel material. The hardening function param-
ters were obtained by least square fitting the experimental stress strain
urves at 300 °C and 700 °C. The material properties of the Young’s
odulus and the initial yield stress were also calibrated from the exper-

mental data. 
The stress strain curve (in red) at 300 °C and 700 °C obtained us-

ng least square fitting is compared with the experimental data (blue
ircle) in Fig. 12 a and b respectively. The good agreement observed
emonstrated the Voce hardening law successfully captured the non-
inear stress strain relationships of the tested low carbon steel materials
t elevated temperatures. 

The hardening function parameters obtained, as summarised in
able D.3 , were subsequently implemented in the Abaqus Umat code.
hree reverse loading tests with varying prestrain levels were simulated

n Abaqus to examine the hardening behaviour during reverse loading
t 300 °C and 700 °C respectively. The Abaqus stress strain relation-
hip results of monotonic loading range are compared with the curve
tting stress strain curves in Fig. 12 a and b, the good agreement sug-
ests the hardening functions have been successfully implemented in
mat. 

Varying degrees of transient hardening were predicted by the pro-
osed material model at different prestrain levels. The Bauschinger
476 
ffect and the transient hardening predicted by the proposed material at
he prestrain level experienced in the experiments has been investigated
or the verification in the following. 

The Bauschinger ratio ( ϑ) was determined using Eq. (44) , based on
he experimental data of the reversed stress strain curves of the very
rst loading loop at 300 °C and 700 °C, shown in Fig. 13 a and b respec-
ively. The S11L is the highest stress point during monotonic loading,
nd S11U is the lowest stress point before the material yields upon re-
erse loading, which is the transitional point form the solid blue line to
he dashed blue line in the two Figures. The solid blue line presents
he loading-unloading range of the stress strain development while
he dashed blue line starts from the re-yielding point during reverse
oading. 

11 = 

𝑆11 𝐿 − 𝑆11 𝑈 
2 

; 𝛼11 = 

𝑆11 𝐿 + 𝑆11 𝑈 
2 

; 𝜗 = 

𝜅11 
𝜅11 + 𝛼11 

(44) 

here 𝜅11 and 𝛼11 represents the amount of isotropic and the amount
f kinematic hardening respectively. 

The Bauschinger ratio was therefore 0.790 at 300 °C and 0.724 at
00 °C. The Eq. (22) was adopted in least square fitting to describe
he Bauschinger ratio evolution, assuming it would achieve stabilisation
hortly after the first strain reversal. The determined evolution function
arameters are summarised in Table D.3 . The value of b in Eq. (22) was
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Fig. 12. Stress strain curves comparison. 

Fig. 13. Hardening models comparison. 
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dopted for the reverse loading ratio evolution function — Eq. (32) , as
iscussed in Section 5.2.2 . 

Fig. 13 a and b compares the stress strain development during the
oading-unloading-reverse loading predicted using isotropic hardening
odel and the proposed material model with the experimental data at
00° and 700 °C respectively. The proposed material model predicted
he re-yielding point very well, properly captured the Bauschinger ef-
ect. Beyond the yielding point, the proposed material model also pre-
icted the material’s transient hardening behaviour to a degree of satis-
actory at both 300 °C and 700 °C. 

. Verification of thermal unloading algorithm 

This section focuses on validating the implementation of the algo-
ithm for the re-positioning of the yield surface due to changing tem-
eratures in the Abaqus Umat code. At the thermal step, the new size
f the yield surface is determined by Eq. (25) and the new position of
he yield surface centre is computed using Eq. (27) . The new position of
477 
he yield surface induces a reduction in the stress state, a phenomenon
ommonly referred to as thermal unloading. While the re-positioning
f yield surfaces is an invisible internal process, the thermal unloading
anifests itself in the changing of mechanical stress, hence can be ex-

mined numerically. The verification was therefore performed by com-
aring the thermal unloading result predicted by the proposed material
odel to its analytical solution. 

The model geometry and the material properties of the low carbon
teel at elevated temperatures from previous verification were utilised.
 loading scenario has been designed specifically in the following way to
ccommodate a clear examination of the mechanical behaviour resulted
rom the re-positioning of the yield surface at the thermal step: 

1. Prestrain the material to a mechanical strain level of 0.002, into the
plastic region at 300 °C 

2. Increase temperature to 700 °C while keeping mechanical strain con-
stant. In this manner any changes in the stress observed at the end
of the thermo-mechanical analysis is a result of the yield surface
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Fig. 14. Thermal unloading verification. 
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re-positioning due to temperature changes. This is achieved by ap-
plying displacement controlled boundary conditions. 

Fig. 14 shows the stress strain path during the designed loading pro-
ess. The prestrain at 300 °C produced an accumulated plastic strain of
 . 481 × 10 −4 . At 700 °C, the new yield stress = 64.05 MPa (red point)
s determined by Eq. (25) . For the mechanical strain = 0.002, since
.002 ×E 700 < 64.05, the stress state (0.002,48.91) (green cross) now
its within the yield surface. E 700 is the elastic modulus at 700 °C. The
nloading stress strain development predicted by the proposed material
odel is shown in blue square, and the final stress state = (0.002,48.89)

s computed by the algorithm developed based on Eq. (35) . As the ther-
al unloading behaviour has been successfully captured, it is believed

hat the algorithm for the re-positioning of the yield surface due to
hanging temperatures has been correctly implemented in the Umat
ode. 

. Verification of proposed model in multi-axial loading 

In the previous three verifications, the models were subjected to uni-
xial loading only. In this section, the proposed material model is further
ested under multi-axial loading conditions. 

.1. Experiments in literature review 

Lissenden et al. [12] carried out experiments to determine the initial
ield surface of 316 stainless steel at room temperature and its subse-
uent yield surface at elevated temperature 650 °C, with the impact of
reloading on the subsequent yield surface also investigated. The exper-
mental data obtained in [12] were employed for this verification. 

Tubular specimens fabricated from AISI type 316 stainless steel were
sed to determine the yield surfaces in the axial ( 𝜎11 )/shear ( 𝜎12 ) stress
pace. A brief description of the loading procedure and the findings of
he experiments is provided in the following sections. 

.1.1. Room temperature 

The testing results suggested the initial yield surface could be rep-
esented using a circle of radius 82 MPa predicted by the von Mises
ield criterion in the modified stress space, with the centre located at
 − 8 MPa, − 4 Mpa) rather than at the origin, possibly due to initial resid-
al stresses. 

The impact of prestress on the subsequent yield surfaces was inves-

igated by applying a radial preloading, defined by 𝜎12 = 𝜎11 ∕ 
√
3 , un-

il 50% beyond the initial yield to a maximum stress point (160 MPa,
478 
4 MPa), followed by subsequent unloading to half of the maximum
tress level. The subsequent yield surface determined after prestress-
ng showed the distortion typically found for radial preloading which
onsists mainly of contraction of the yield surface in the preloading di-
ection with a particular flattening on the side nearest origin [60] . 

.1.2. Elevated temperature 650 °C 

The experiments found that the initial yield surface at 650 °C was a

on Mises circle in the modified stress space ( 𝜎12 = 𝜎11 ∕ 
√
3 ) of a radius

f 54 MPa, with its centre located at ( − 4 MPa, − 2 MPa). 
Preloading was applied as pure torsion in the elevated temperature

ase. Maximum tensorial shear strain of 2500 μ𝜀 was applied, followed
y subsequent unloading. Three subsequent yield surface determination
ests were made for the specimen 316SS22 and 316SS16 respectively,
howing translation and elongation in the direction of the preloading
positive torsion). 

.2. Verification model in Abaqus 

.2.1. Model descriptions 

The model geometry of Abaqus benchmark example 3.2.1 [61] —
 uniformly loaded, elastic-plastic plate, was utilised in this verifica-
ion study. Since the main objective was to verify the proposed material
odel algorithm implemented in the Abaqus Umat subroutine, instead

f constructing the entire tubular specimen, a simple plate model was
sed. It allows for a clear assessment of the accuracy of the plasticity
odel, provided the same loading effect from the experiments can be

eproduced in the finite element model. 
The key aspect of the chosen loading process in the experiments —

xial loading in combination with torsion was to ensure the applied
xial stress and shear stress were decoupled. The same loading effect
as realised in the Abaqus plate model by applying carefully designed
oundary conditions as illustrated in Fig. 15 . The boundary conditions
ere constructed to ensure pure shear force and pure axial force applied

n a decoupled manner to the plate of examination, outlined in red.
inematic coupling was adopted for the nodal constraints. 

.2.2. Material properties 

Initial yield stress of the 316SS material at room temperature
147 MPa) and at 650 °C (94 MPa) were calibrated from the experimen-
al results. The elastic modulus is approximately 194.25 GPa at room
emperature, and 106.0 GPa at 650 °C. The hardening parameters of
he material were determined using the experimental stress strain re-
ationship results as summarised in Table D.4 . The Bauschinger ratio
as calculated using the maximum positive stress point and negative

tress point in the preloading direction of the yield surface results. The
arameters of the Bauschinger ratio evolution function are presented in
able D.4 . 

.3. Verification results 

.3.1. Initial yield surfaces 

Fig. 16 a compares the initial yield surfaces of 316SS at room tem-
erature determined by the experimental results and predicted by the
roposed material model. The predicted yield surface is an ideal circle
n the modified stress space as von Mises yield function is adopted. The
xperimental data suggests the initial yield surface of 316SS is close to
 circle with a degree of anisotropy in compressive yield strength. 

At elevated temperature 650 °C, the yield surface determined by the
xperiments is closer to a von Mises circle than it was at room temper-
ture. The comparison between experimental results and prediction is
hown in Fig. 16 b. 

.3.2. Subsequent yield surfaces after radial preloading at room 

emperature 

Fig. 17 a compares the subsequent yield surface of 316SS after radial
restressing, determined by the experiments and the proposed material
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Fig. 15. Abaqus plate model. 

Fig. 16. Initial yield surfaces comparison. 
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odel. The prediction of the proposed material model is an ideal von
ises circle being translated and expanded in the direction of the

reloading. The distortion of the subsequent yield surface due to radial
reloading was not included. Nevertheless, the translation and expan-
ion of the subsequent yield surface in the direction of the preloading
as been clearly captured by the proposed material model. 

.3.3. Subsequent yield surfaces after pure torsion preloading at 650 °C 

At the elevated temperature, preloading was applied as pure torsion
esulting in no noticeable distortion of the subsequent yield surface, as
hown in Fig. 17 b. Consequently, the experimental results suggest the
ubsequent yield surface is an nearly ideal von Mises circle with slight
nisotropy in compressive yield strength. 

A good agreement has been observed between the experimental re-
ults and the predictions. The translation and elongation of the subse-
479 
uent yield surface in the direction of preloading has been successfully
aptured by the proposed material model. 

0. Application of proposed material model 

The implemented material model in Abaqus Umat subroutine
58] was utilised to investigate a single structural steel beam sub-
ected to the complex thermal loading of a ‘travelling fire’. Various
ravelling fire models [3–5,62,63] have been proposed to describe the
oving and spreading behaviour of a fire commonly observed in a

arge open compartment space, which is one of the prominent fea-
ures of modern architectural design, where the Standard Fire Curve
64] ceased to be applicable. The thermal loading adopted in the study
as obtained using the extended travelling fire methodology (ETFM)

ramework [5] . It is able to capture the realistic thermal loading, e.g.
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Fig. 17. Subsequent yield surfaces comparison. 

Fig. 18. Structural model geometries. 
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ross-sectional temperature gradient reversal, and ‘cyclic’ heating and
ooling. 

The single steel beam (UB 305x127x42) investigated in this case
tudy is located in an idealised structural layout, seen as in Fig. 18 a, rep-
esenting a generic modern tall building with a central core of 162 m 

2 .
A series of parametric studies were conducted by Dai et al. [6] to

nvestigate the temperature development within the cross section of the
eam subjected to travelling fire following the defined trajectory with
arious combinations of fire spread rate, 𝜈 ( mm / s ) and the character-
stic fuel load density, q f,k ( MJ / m 

2 ). Fig. 19 a presents the temperature
evelopment of a slow but dense fire ( 𝜈 = 1 . 6 mm/s; 𝑞 𝑓 ,𝑘 = 780 MJ/m 

2 ).
 nearly uniform temperature development is observed across the cross
ection and the maximum temperature reached was about 700 °C. Con-
rastingly, Fig. 19 b shows the temperature development of a rapid but
ight fire ( 𝜈 = 10 . 0 mm/s; 𝑞 𝑓 ,𝑘 = 100 MJ/m 

2 ). A more complex cross sec-
ional temperature distribution history was observed. Different cooling
ates were experienced at the bottom, centre and top of the cross section,
iving rise to the thermal gradient reversal phenomenon — the change
f sign of the thermal gradient ratio. The thermal gradient ratio was
omputed as the temperature ratio between the mid-web and the bot-
480 
om flange, and between the mid-web and the top flange respectively.
 lower maximum temperature of 580 °C was reached in this case. 

The complex thermal loading of the rapid light fire was selected in
his study in order to best demonstrate the capability of the proposed
aterial model. The temperature history results suggest the thermal gra-
ients only observed along the depth of the web of the I section whereas
he temperature development across the thickness of the flanges were
niform because they are thermally thin. Thus the complex thermal
oading only occurred within the web plate. A schematic view of the
ross-section model of the investigated beam used for heat transfer anal-
sis in [6] is shown in Fig. 18 b. For best understanding the structural im-
lications of a complex thermal loading encompassing varying stages of
eating and cooling; cross sectional thermal gradient as well as reverse
hermal gradient, the study hence focused on examining the structural
ehaviour of the web plate in particular. 

A finite element model of the web plate was built in Abaqus/CAE,
s illustrated in Fig. 20 . The web plate modelled is 6000 mm long and
06 mm high. The element type of plane stress was assigned to all el-
ments. Both ends of the plate are translationally and rotationally re-
trained. The EC 3 [20] stress strain curves of carbon steel at elevated
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Fig. 19. Temperature history. 

Fig. 20. Single steel beam modelled. 
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emperatures were adopted. The temperature dependent thermal expan-
ion coefficients ( 𝛼) have also been defined in accordance with EC 3
20] . The Bauschinger ratio evolution function determined for the car-
on steel material in the verification in Section 7 has been applied for
his study. 

0.1. Stress/deformation analysis 

The thermal loading was applied at 9 points along the depth of the
eb plate, seen as in Fig. 18 b. An initial vertical displacement of 24 mm
Fig. 21. Stress/Deformat

481 
 L /250) was adopted to accommodate the investigation of the influence
f initial plastic strain at the onset of a fire. 

The development of the midspan deflection and the accumulated
lastic strain ( 𝜀 𝑝 ) at the bottom of the midspan cross section through-
ut the fire are presented in Fig. 21 a. An earlier stiffness reduction due
o initial plastic deformation is indicated by the notable deflection in-
rease observed at around 50 °C, significantly lower than the initiation
emperature (100 °C) of steel material’s Young’s modulus reduction. The
hange in the tangent of the temperature deflection relationship ob-
erved around 220 °C is believed to be caused by the change of thermal
radient occurred in the temperature history, as seen in Fig. 19 b. At
round 500 °C the curvature of the temperature deflection curve started
o change quickly, indicating substantial beam stiffness reduction as a
esult of material degradation. During the cooling stage, the deflection
xperienced a recovery as the steel material regained its stiffness. The
evelopment of the 𝜀 𝑝 correlated to that of the deflection during the
eating stage. While during cooling, the 𝜀 𝑝 still experienced growth due
o continuous stress development. 
ion analysis results. 
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Fig. 22. Proposed material model v.s. Isotropic hardening model. 
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The development of axial stress (S11) at midspan cross section is
lotted in Fig. 21 b. At the start of the fire, the section is in sagging
ending moment — S11 is positive at the bottom, nearly zero at the
entre and negative at the top. As temperature rises, compressive stress
tarts to develop due to restrained thermal expansion, giving rise to an
vident negative growth of S11 as observed at the centre of the cross
ection. At around 70 °C, the centre S11 sees a shift to tension, because
he P-Delta effect of the thermal expansion induced compression. It is
nteresting to note that the development of the centre S11 suggests the
hole cross section did not reach plastic state until much later in the

ooling stage. 
The evolution of S11 at the bottom and the top of the cross section

xhibited different behaviour from that at the centre since they had al-
eady been in the plastic state before the fire. They started to decrease at
bout 400 °C due to the reduction in the yielding value of the material.

The structure behaved as expected under the thermal loading, the
lastic deformation due to heating and cooling has been successfully
aptured by the proposed material model. 

0.2. Comparison study 

A comparison study of the structural response of the beam using the
roposed material model and the isotropic hardening model in Abaqus
as performed. Fig. 22 a compares the stress development during the
re at the top and the bottom of the midspan cross section produced
sing the two material models respectively. Identical monotonic stress
ncrease and evident stress reversals were observed. The key differ-
nce was the yielding during the reverse, where a lower yield stress
as observed in the results of the proposed material model due to the
auschinger effect. 

The comparison of the stress strain curve at the end span cross section
s presented Fig. 22 b. The Bauschinger effect and the transient hardening
ehaviour have been clearly captured by the proposed material model. 

1. Summary and conclusions 

In this paper, a new combined isotropic-kinematic hardening model
as been developed for assessing steel materials for thermo-mechanical
nalysis with fire. 

Harley et al. [15] observed substantial development of 𝛽11 and swift
rop of 𝜅 within the first 1.0% of straining at elevated temperatures in
482 
04L stainless steel. Different steel materials will exhibit different de-
rees of Bauschinger effects [65] . Due to limited available testing data
n the evolution of isotropic hardening and kinematic hardening vari-
bles at elevated temperatures, it was not possible to carry out more
erifications than those presented. 

However, it should be noted that the verification was conducted to
emonstrate the capability of the proposed material model to capture
he temperature dependent Bauschinger effects, not to justify for any
articular materials. Thus different sets of temperature dependent func-
ion parameters should be adopted for different materials accordingly.
he effect of varying function parameters on the stability of the pro-
osed model is not investigated herein due to limited available testing
ata. A sensitivity study dedicated to this subject is of great interests for
he further development of the model. 

By adopting two non-linear kinematic hardening variables, the pro-
osed material model is capable of modelling the Bauschinger effect and
ransient hardening behaviour at elevated temperatures efficiently. 

Due to the lack of experimental data on the re-positioning of yield
urface centre at elevated temperatures, the corresponding algorithms
as verified by comparing the thermal unloading stress result of the
roposed material model to its analytical solution. 

The multi-axial verification results demonstrated that the proposed
aterial model has been successfully implemented for three dimen-

ional stress analysis. It is capable of capturing the expansion and the
ranslation of yield surfaces, presenting the yield surface as a von Mises
ircle. 

In conclusion, the capability of the proposed material model for cap-
uring the Bauschinger effect and transient hardening behaviour at el-
vated temperatures has been demonstrated. The proposed model has
een successfully implemented in the Abaqus Umat subroutine and was
tilised to analyse the structural behaviour of a single beam structure
nder complex realistic building fires. 

ppendix A. Numerical algorithm for proposed combined 

sotropic and kinematic hardening model 

The numerical algorithm of the proposed combined isotropic and
inematic hardening model for thermo-mechanical analysis of structures
n fire described in the preceding section is summarised in Table A.1 .
he proposed model is implemented into the commercial finite element
ode Abaqus/Standard, using the user subroutine — Umat [58] . 
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Table A.1 

Numerical algorithm for the proposed combined isotropic and kinematic hardening model. 

Last Converged Step n 

If Temperature change ΔT ≠0, Go to Thermal Step, Else Go to Mechanical Step 

Thermal Step, Current Temperature 𝑻 𝒏 +𝟏 , 

1. Update Temperature dependent Parameters 

Young’s modulus 𝐸 𝑇 𝑛 +1 , Initial yield stress 𝜎𝑝,𝑇 𝑛 +1 
Hardening function parameters 𝑣 𝑇 𝑛 +1 and 𝛿𝑇𝑛 +1 
Bauschinger ratio evolution equation parameters 𝑎 𝑇 𝑛 +1 , 𝑏 𝑇 𝑛 +1 and 𝑐 𝑇 𝑛 +1 
Material model parameter 𝑉 ℎ 𝑇 𝑛 +1 
2. Update Bauschinger ratio 

𝜗 𝑇 𝑛 +1 = 𝑎 𝑇 𝑛 +1 ∗ 𝑒𝑥𝑝 (− 𝑏 𝑇 𝑛 +1 ∗ 𝜀 𝑝 𝑛 ) + 𝑐 𝑇 𝑛 +1 
3. Update the size of bounding surface 

𝑌 = 
√ 

2 
3 
𝑌 1 𝐷,𝑇 𝑛 +1 ( 𝜀 

𝑝 
𝑛 ) 

4. Update the position of the yield surface centre, 𝜷1 term 

𝜷𝟏 𝑛 = (1 . 0 − 𝜗 𝑇 𝑛 +1 ) 𝑌 
𝜺 
𝒑 

𝒏 ‖𝜺 𝒑 
𝒏 
‖

Mechanical Step, Strain Increment Δ𝜺 
1. Elastic predictor 

𝝈𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 = 𝑪 𝑛 +1 ⋅ ( 𝜺 𝑛 + Δ𝜺 − 𝜺 

𝒑 
𝑛 ) , 𝜷𝟏 𝑡𝑟𝑖𝑎𝑙 𝑛 +1 = 𝜷𝟏 𝑛 , 𝜷𝟐 

𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 = 𝜷𝟐 𝑛 
𝒔 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 = 𝑰 𝒅𝒆𝒗 ∶ 𝝈

𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 , 𝑰 𝒅𝒆𝒗 = 𝑰 − 

1 
3 
𝟏 ⊗ 𝟏 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 = 𝒔 

𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 − 𝜷𝟏 

𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 − 𝜷𝟐 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 , 𝑵 𝒏 +𝟏 = 
𝜼𝒕𝒓𝒊𝒂𝒍 
𝒏 +𝟏 

∥𝜼𝒕𝒓𝒊𝒂𝒍 
𝒏 +𝟏 ∥

𝜗 𝑛 +1 = 𝑎 𝑛 +1 ∗ 𝑒𝑥𝑝 (− 𝑏 𝑛 +1 ∗ 𝜀 𝑝 𝑛 ) + 𝑐 𝑛 +1 
𝜈𝑛 +1 = 1 . 0 − 𝑒𝑥𝑝 (− 𝑏 𝑛 +1 ∗ 𝜀 

𝑝 

𝑙 𝑛 
) 

Reverse loading index : 𝑙 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 = 𝑙 𝑛 

𝛽𝑙 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 = 𝛽𝑙 𝑛 
• Check the reverse loading criterion according to Eq. (30) 

If cos ( 𝜃) < 0.0 then 

𝑙 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 = 𝑙 𝑛 + 1 

𝜖
𝑝 

𝑙 

𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 = 0 . 0 

𝛽𝑙 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 = 𝑉 ℎ 𝑇 𝑛 +1 
√ 

3 
2 
( 𝜷𝟏 𝑛 + 𝜷𝟐 𝑛 ) ∶ ( 𝜷𝟏 𝑛 + 𝜷𝟐 𝑛 ) 

𝜷𝟐 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 = 0 . 0 
Else, Do nothing 
• Check the yield condition 

If 𝑓 ( 𝜼𝒕𝒓𝒊𝒂𝒍 
𝒏 +𝟏 ) − 𝜗 𝑛 +1 𝑌 1 𝐷,𝑛 +1 ( 𝜀 

𝑝 ) < 𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, then Set (∙) 𝑛 +1 = (∙) 𝑇 𝑟𝑖𝑎𝑙 Exit 

Else Go to Plastic corrector 

2. Plastic corrector 
• Newton-Raphson iteration is employed to determine plastic multiplier Δ𝛾. Initialise Δ𝛾 = 0 . 0 
Iterate until | g ( Δ𝛾)| < Tolerance 

𝑔(Δ𝛾) = ∥ 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ∥ − 2 ∗ 𝜇𝑛 +1 ∗ Δ𝛾 − 𝜗 𝑛 +1 

√ 

2 
3 
∗ 𝑌 1 𝐷,𝑛 +1 ( 𝜀 

𝑝 
𝑛 + 

√ 

2 
3 
Δ𝛾) 

𝑑𝑔(Δ𝛾) = −2 ∗ 𝜇𝑛 +1 − 
2 
3 
∗ [ 𝑌 ′1 𝐷, ( 𝑛 +1) ( 𝜀 

𝑝 
𝑛 + 

√ 

2 
3 
Δ𝛾)] ∗ 𝜗 𝑛 +1 

Y ′ is the first derivative of Y with regard to Δ𝛾
Δ𝛾 = Δ𝛾 − 𝑔 ∕ 𝑑𝑔 
◦ 𝜗 𝑛 +1 is considered a constant during the Newton-Raphson iteration for small step of Δ𝛾. 
The consequent ‘residual stress’ of this simplification will be solved in the next iteration. 

3. Update stress state 

𝜺 𝒑 𝑛 +1 = 𝜺 𝒑 𝑛 + Δ𝛾𝑵 𝑛 +1 ; 𝜀 
𝑝 

𝑛 +1 = 𝜀 
𝑝 
𝑛 + 

√ 

2 
3 
Δ𝛾; 𝜀 𝑙 

𝑝 

( 𝑛 +1) = 𝜀 
𝑝 

𝑙 

𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 + 
√ 

2 
3 
Δ𝛾

𝑙 𝑛 +1 = 𝑙 𝑡𝑟𝑖𝑎𝑙 𝑛 +1 
𝜗 𝑛 = 𝑐 + 𝑎 ∗ 𝑒𝑥𝑝 (− 𝑏 ∗ 𝜀 

𝑝 
𝑛 ) ; 𝜗 𝑛 +1 = 𝑐 + 𝑎 ∗ 𝑒𝑥𝑝 (− 𝑏 ∗ 𝜀 

𝑝 

𝑛 +1 ) 
If 𝑙 𝑛 +1 ≠ 0 then 

𝜈𝑛 = 1 − 𝑒𝑥𝑝 (− 𝑏 ∗ 𝜀 
𝑝 

𝑙 ( 𝑛 ) ) ; 𝜈𝑛 +1 = 1 − 𝑒𝑥𝑝 (− 𝑏 ∗ 𝜀 
𝑝 

𝑙 ( 𝑛 +1) ) 

𝛽2 = ( 𝜈𝑛 +1 − 𝜈𝑛 ) ∗ 𝛽𝑙 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 ; 𝜷𝟐 𝑛 +1 = 𝜷𝟐 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 + 𝛽2 𝑵 𝑛 +1 
Endif 

𝜷𝟏 𝑛 +1 = 𝜷𝟏 
𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 + 
√ 

2 
3 
∗ [(1 − 𝜗 𝑛 +1 ) 𝑌 ( 𝑛 +1) ( 𝜀 𝑝 𝑛 +1 ) − (1 − 𝜗 𝑛 ) 𝑌 ( 𝑛 +1) ( 𝜀 𝑝 𝑛 )] 𝑵 𝑛 +1 

𝝈𝑛 +1 = 𝝈𝑡𝑟𝑖𝑎𝑙 𝑛 +1 − 2 ∗ 𝜇( 𝑛 +1) ∗ Δ𝛾𝑵 𝑛 +1 

A

 

t  

d  

N  

c  

t
 

w  

m⎡⎢⎢⎢⎢⎣
 

w  

C  

H  
ppendix B. Implementation for plane stress material model 

The algorithms developed in Section 5 are based on elastoplas-
ic three-dimensional constitutive equations. To implement the three-
imensional plasticity algorithm to plane stress elements, a global
ewton-Raphson iteration loop has been used to enforce the plane stress
onstraint 𝜎33 = 0 at the Gauss point level, following the approach in-
roduced by Dodds [66] . 

The overall algorithm implemented is summarised in Table B.1 ,
here D 22 is the component of the axisymmetric consistent tangent
483 
atrix: 

 

 

 

 

 

 

𝑑𝜎11 
𝑑𝜎22 
𝑑𝜎12 

𝑑𝜎33 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑫 𝟏𝟏 𝑫 𝟏𝟐 

𝑫 𝟐𝟏 𝐷 22 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑑𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 11 
𝑑𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 22 
2 𝑑𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 12 

𝑑𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 33 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(B.1) 

It is noted that for the above methodology a number of iterations
ill be required in each Gauss point to ensure the plane stress condition.
onsequently, the present procedure can be computational expensive.
owever the cost of the calculations carried out at Gauss point level



M. Zhou, R.P.R. Cardoso and H. Bahai International Journal of Mechanical Sciences 159 (2019) 467–486 

Table B.1 

Numerical algorithm for plane stress material. 

1. Set initial guess for the elastic trial thickness strain to the converged value from last step 

𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 33 = ( 𝜀 𝑒 33 ) 𝑛 
2. Call the stress integration algorithm in Table A.1 

3. For the obtained trial 𝜎33 , if | 𝜎33 | < Tolerance, Then Exit loop 

4. Compute component D22 of the consistent tangent matrix 

5. Apply Newton-Raphon correction to the thickness trial strain 

𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 33 ∶= 𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 33 − 𝜎33 
𝐷 22 

6. Go to Step 2 
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ncreases linearly with the problem size, whereas the cost of the solution
f the global linearised problem increases at a much higher nonlinear
ate [34] . 

The elastoplastic consistent tangent modulus obtained in
ection 5.4 for three dimensional plasticity was modified for the
lane stress plasticity to ensure the tangent operator remain consistent
ith the above nested iteration algorithm. The elastoplastic consistent

angent modulus is derived by first differentiating the residual equation
f the plane stress enforcement loop : 𝜎33 = 0 . Together with Eq. (B.1) ,
t gives: 

𝜎33 = 𝑫 𝟐𝟏 𝑑 𝜺 
𝑒 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 + 𝐷 22 𝑑𝜀 

𝑒 𝑡𝑟𝑖𝑎𝑙 
33 = 0 

⇒ 𝑑 𝜀 𝑒 𝑡𝑟𝑖𝑎𝑙 33 = 

−1 
𝐷 22 

𝑫 𝟐𝟏 𝑑 𝜺 
𝑒 𝑡𝑟𝑖𝑎𝑙 (B.2)

Replacing Eq. (B.2) into Eq. (B.1) results in the following consistent
angent relation between in-plane stress and strain components: 

𝑑 𝝈𝑛 +1 

𝑑 𝜺 𝑒 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

= 𝑫 𝟏𝟏 − 

1 
𝐷 22 

𝑫 𝟏𝟐 𝑫 𝟐𝟏 (B.3)

For the von Mises model, the above Eq. (B.3) relates the elastoplastic
onsistent tangent modulus to generic three dimensional expression as
ollows: 

 

𝑒𝑝,𝑃 𝑙 𝑎𝑛𝑒𝑆𝑡𝑟𝑒𝑠𝑠 

𝑖𝑗𝑘𝑙 
= 𝐷 

𝑒𝑝, 3 𝐷 
𝑖𝑗𝑘𝑙 

− 𝐷 

𝑒𝑝, 3 𝐷 
𝑖𝑗33 

𝐷 

𝑒𝑝, 3 𝐷 
33 𝑘𝑙 

𝐷 

𝑒𝑝, 3 𝐷 
3333 

(B.4)

The above Eq. (B.4) has been implemented in the Abaqus subroutine
mat [58] for performing plane stress analysis using shell elements. 

ppendix C. Derivation of elastoplastic consistent tangent 

odulus D 

ep 

When the material is subjected to monotonic loading, the yield con-
ition function can be reduced to the Eq. (C.1) below, which then be-
omes differentiable: 

(Δ𝛾) ≡ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾 − ( 𝛽1 𝑛 +1 − 𝛽1 𝑛 ) − 𝜎𝑦,𝑖𝑠𝑜 = 0 (C.1)

During reverse loading, the elastoplastic consistent tangent modulus
hall be derived using the Eq. (C.2) : 

(Δ𝛾) ≡ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾 − ( 𝛽1 𝑛 +1 − 𝛽1 𝑛 ) − ( 𝛽2 𝑛 +1 − 𝛽2 𝑛 ) − 𝜎𝑦,𝑖𝑠𝑜 = 0 (C.2)

The following section focuses on presenting in details the derivation
f the elastoplastic consistent tangent modulus for the proposed material
odel under monotonic loading case. The derived elastoplastic consis-

ent tangent operator for the reverse loading case will be provided at
he end of this section. 

Substituting Eq. (25) and 26 into Eq. (C.1) gives: 

(Δ𝛾) ≡ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾 − (1 − 𝜗 𝑛 ) 

[ √ 

2 
3 
𝑌 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

− 𝛽𝑛 

] 

− 𝜗 𝑛 

√ 

2 
3 
𝑌 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

= 0 
484 
Re-arranging and combining the terms related to Y 1 D gives: 

(Δ𝛾) ≡ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾 − (1 − 𝜗 𝑛 ) 𝛽𝑛 − 

√ 

2 
3 
𝑌 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

= 0 

(C.3) 

here the Bauschinger ratio ( ϑ) is considered of constant value of ϑn 

uring the Newton-Raphson iteration for increment (n+1). 
The m 

th Newton-Raphson iterative correction to Δ𝛾 for the solution
f Eq. (C.3) reads: 

𝛾 ( 𝑚 ) ∶= Δ𝛾 ( 𝑚 −1) − 

Φ(Δ𝛾 ( 𝑚 −1) ) 
𝑑 

(C.4)

here 

 = −2 𝜇 − 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

(C.5)

here 𝐻 1 𝐷 ≡ 𝑌 
′
1 𝐷 is the slope of the uniaxial tensile stress — plastic

train curve. 
The incremental algorithmic constitutive update function for 𝝈𝒏 +𝟏 

or the von Mises model with nonlinear combined hardening using back-
uler return mapping is: 

𝝈 = 𝑫 

𝒆 ∶ Δ𝜺 − 2 𝜇Δ𝛾𝑵 (C.6)

here Δ𝜺 is the deviatoric strain increment, 𝛾 is the plastic multiplier,
 

e is the constant isotropic elasticity tensor 

𝑫 

𝒆 = 𝜅𝟏 ⊗ 𝟏 + 2 𝜇𝑰 𝒅 𝒆𝒗 

 𝒅𝒆𝒗 = 𝑰 − 

1 
3 
𝟏 ⊗ 𝟏 (C.7) 

here 𝜅 is the bulk modulus, 𝜇 is the shear modulus, I is the fourth-
rder symmetric unit tensor, and 1 is the second-order symmetric unit
ensor. 

The deviatoric unit flow vector ( N ) is: 

 = 

𝜼𝑛 +1 ‖𝜼𝑛 +1 ‖ = 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ (C.8)

Differentiate the stress update Eq. (C.6) gives: 

𝜕Δ𝝈
𝜕Δ𝜺 

= 𝑫 

𝑒 − 2 𝜇𝑵 ⊗
𝜕Δ𝛾
𝜕Δ𝜺 

− 2 𝜇Δ𝛾 𝜕 𝑵 

𝜕Δ𝜺 
(C.9)

The incremental plastic multiplier derivation ( 𝜕Δ𝛾
𝜕Δ𝜺 ) is obtained by

ifferentiating the yield condition Eq. (C.3) with respect to deviatoric
rial strain 𝜺 

( 𝜼𝑛 +1 , 𝜺 𝒑 𝑛 +1 ) = Φ( 𝜼𝑛 , 𝜺 𝒑 𝑛 ) = 0 

⇒
𝜕Φ
𝜕Δ𝜺 

= 0 

𝜕Φ
𝜕Δ𝜺 

= 

𝜕 

𝜕Δ𝜺 

[ ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 2 𝜇Δ𝛾−(1 − 𝜗 𝑛 ) 𝛽𝑛 − 

√ 

2 
3 
𝑌 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) ] 

= 0 

⇒
𝜕‖𝜼𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 ‖
𝜕Δ𝜺 

− 2 𝜇 𝜕Δ𝛾
𝜕Δ𝜺 

− 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

𝜕Δ𝛾
𝜕Δ𝜺 

= 0 (C.10) 
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The derivative of relative stress tenor ( 
𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 
𝜕Δ𝜺 ) can be obtained by

ollowing: 

𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 
𝜕Δ𝜺 

= 

𝜕( 𝒔 𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 − 𝜷𝑛 ) 
𝜕Δ𝜺 

= 2 𝜇𝑰 𝒅 𝒆𝒗 (C.11)

Subsequently we have: 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ = 

(
𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ∶ 𝜼

𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

)1∕2 
⇒
𝜕‖𝜼𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 ‖
𝜕Δ𝜺 

= 

1 
2 
(
𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ∶ 𝜼

𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

)−1∕2 2 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ∶ 

𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 
𝜕Δ𝜺 

= 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖𝜼𝑛 +1 ‖ ∶ 2 𝜇𝑰 𝒅 𝒆𝒗 = 2 𝜇𝑵 (C.12) 

After substitution of Eq. (C.12) into Eq. (C.10) we can therefore ob-

ain 
𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 
𝜕Δ𝜺 : 

 𝜇𝑵 − 

( 

2 𝜇 + 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) ) 

𝜕Δ𝛾
𝜕Δ𝜺 

= 0 

𝜕Δ𝛾
𝜕Δ𝜺 

= 2 𝜇𝑵 Θ

= 2 𝜇 + 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

(C.13) 

The derivative of the deviatoric unit flow vector ( 𝜕 𝑵 

𝜕Δ𝜺 ) is obtained as
ollows: 

𝜕 𝑵 

𝜕Δ𝜺 
= 

𝜕 𝑵 

𝜕Δ𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

∶ 
𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 
𝜕Δ𝜺 

(C.14)
Table D.1 

Least square fitting results for hardening law - E

Temperature (°C) v T 

100 0.0 

200 48.1 

300 90.9 

400 133.6 

500 114.6 

600 87.8 

700 48.3 

800 23.7 

900 13.1 

1000 8.9 

1100 0.9 

Table D.2 

Least square fitting results - 304L stainless stee

Temperature Hardening function 

°C v T 𝛿T Adj-R-sq 

200 448.9 6.31 0.993 

600 312.7 9.941 0.999 

800 38.34 26.45 0.952 

1000 1000.0 0.1003 0.977 

Table D.3 

Least square fitting results - low carbon steel in Section 7

Temperature Hardening function Bauschinge

°C v T 𝛿T Adj-R-sq a T 

300 138.1 741.9 0.918 0.2212 

700 19.22 1331.0 0.957 0.2801 

485 
C3 carbon steel. 

𝛿T Adj-R-sq 

– –

168.5 0.996 

187.8 0.996 

198.5 0.996 

197.8 0.996 

206.2 0.995 

213.9 0.995 

202.5 0.995 

195.9 0.995 

196.1 0.995 

196.3 0.995 

l in Section 6 . 

Bauschinger ratio evolution function 

a T b T c T Adj-R-sq 

0.8504 184.5 0.1495 0.998 

0.6996 189.3 0.3004 0.980 

0.6786 267.2 0.3214 0.987 

0.9050 500.0 0.0943 0.974 

 . 

r ratio evolution function Material parameter 

b T c T Adj-R-sq Vh T 

5000.0 0.7781 0.996 1.45 

4274.0 0.7100 1.0 1.45 

We have 

𝜕 𝑵 

𝜕Δ𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

= 

𝜕 

𝜕 𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 

( 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖

) 

= 

𝑰 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ − 

𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ⊗ 𝜼𝑡𝑟𝑖𝑎𝑙 

𝑛 +1 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖3 

= 

1 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ [ 𝑰 − 𝑵 ⊗𝑵 ] (C.15) 

Substituting Eq. (C.15) and C.11 into Eq. (C.14) gives: 

𝜕 𝑵 

𝜕Δ𝜺 
= 

1 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ [ 𝑰 − 𝑵 ⊗𝑵 ] ∶ 2 𝜇𝑰 𝒅 𝒆𝒗 = 

2 𝜇‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ [ 𝑰 𝒅𝒆𝒗 − 𝑵 ⊗𝑵 ] (C.16)

Finally, substituting Eq. (C.13) and C.16 into Eq. (C.9) , the elasto-
lastic consistent tangent can be obtained: 

 

𝒆𝒑 = 𝑫 

𝒆 − 4 𝜇2 Θ𝑵 ⊗𝑵 − 

4 𝜇2 ‖𝜼𝑡𝑟𝑖𝑎𝑙 
𝑛 +1 ‖ [ 𝑰 𝒅𝒆𝒗 − 𝑵 ⊗𝑵 ] (C.17)

During reverse loading, the elastoplastic consistent tangent can still
e computed following Eq. (C.17) , with the term Θ modified to include
he 𝜷2 term as follows: 

= 2 𝜇 + 

2 
3 
𝐻 1 𝐷 

( 

𝜀 𝑝 𝑛 + 

√ 

2 
3 
Δ𝛾

) 

− 

2 
3 
𝛽𝑙 exp 

( 

− 𝑏 

( 

𝜀 
𝑝 

𝑙 𝑛 
+ 

√ 

2 
3 
Δ𝛾

) ) 

(− 𝑏 ) 

(C.18) 

here b is the material coefficient as adopted in the reverse loading
volution Eq. (32) . 𝛽𝑙 is the backstress from the last branch of loading
s defined in Eq. (34) . 

The above elastoplastic consistent tangent operators have been im-
lemented in the Abaqus Umat subroutine for the proposed model. 

ppendix D. Tables of parameters 

Table D.1 presents the curve fitting results of v T and 𝛿T for every
00 °C. Linear interpolation will be used to obtain the intermediate
alues. 
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Table D.4 

Least square fitting results - 316 stainless steel in Section 9 . 

Temperature Hardening function Bauschinger ratio evolution function 

°C v T 𝛿T Adj-R-sq a T b T c T Adj-R-sq 

650 13.5 1533.0 0.854 0.3078 800.0 0.70 1.0 
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