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Abstract 
 
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process 
by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of 
immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of 
rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing 
process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, 
turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and 
are useful for further optimisation design of prototypical rheomixing processes. 
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1. Introduction 

 

Immiscible alloys, such as Al-Pb and Al-Bi, are advanced materials used for bearing applications in 

the automotive industry. For instance, in a sliding bearing, a soft Pb phase well dispersed in a solid 

matrix will produce characteristics of low friction and good wear resistance. The application of these 

alloys, however, has been limited, due to metallurgical problems related to liquid phase separation 

during casting. The components of immiscible alloys are only completely miscible above the 

temperature Tc indicated by the binodal line in Fig. 1. When a single-phase liquid is cooled below the 

temperature Tc shown in Fig. 1, it transforms into two liquids. Generally, these droplets may settle due 

to gravity, temperature or concentration gradients. Normally, large compositional and density 

differences invariably exist between the two liquid phases, leading to a rapid spatial phase separation or 

macrosegregation during solidification on earth. The microstructure of such casting is a complex 

interplay of nucleation, growth, Stokes and Marangoni motion, the interaction of the individual flow 

fields around the moving droplets and their interaction with the solidification. Evidences show that the 

solidified microstructure of cast immiscible alloys strongly depends on the hydrodynamic behaviour of 

the liquids during cooling [1].  

 



 

 

 

Research shows that a fine dispersion of minority phase particles in a hypermonotectic alloy can be 

obtained by rapid quenching or fast cooling, thus passing through the miscibility gap within a second or 

less. For example, a special planar flow casting process in the horizontal direction and a vertical strip 

casting process were invented using the fast cooling method [2]. However, results show that the soft 

phase drops concentrate in the middle of the strip due to Marangoni motion. A novel TSE rheomixing 

process has been successfully developed in our laboratory for casting immiscible alloys [3]. Here, we 

present a numerical analysis of the hydrodynamic behaviour of an immiscible metallic drop in a shear-

induced turbulent flow, which is the main flow feature in the TSE rheomixing process. The emphasis of 

the present work is to investigate hydrodynamic behaviours and to draw qualitative differences in the 

features produced by different shearing approaches and properties. 

 

2. Analysis of the twin-screw rheomixing processing 

 

A rheomixing process was developed based on previous experience in the processing of semisolid 

metal (SSM) slurry by a twin-screw extruder (TSE) [4]. TSE is commonly used in polymer processing 

[5,6], and provides sufficient shear flow in the rheomixing process to create a fine and homogeneous 

droplet dispersion, and enough viscous force to counterbalance the Stokes and Marangoni motions by 

choosing the proper operating temperature. The intermeshing co-rotating twin-screw extruder is used 

for mixing immiscible alloys. Experimental results show that fine and spherical Pb particles are 

distributed uniformly in the Zn matrix phase [3].  

Fig. 1   Scheme of a typical binary phase diagram with a liquid miscible gap. 
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The flow field of the intermeshing co-rotating twin-screw extruder undergoes cyclic stretching, 

folding, and reorienting [7]. The flow patterns inside a TSE are complex, as shown in fig. 7 of [7], and 

studies have confirmed that the fluid moves in figure “8” motions around the periphery of the screws 

[8, 9]. Experimental velocity fields inside a TSE were reported in [10]. A global view of the laminar 

flow within a twin-screw is illustrated in [11], highlighting the stretching process takeover of material 

due to intensive shear flow [12]. The maximum shear rate is produced by the intermeshing regions in 

minimum gaps located between the screw and barrel, and tip to tip of the screws. Although detailed 

studies of twin-screw extruders for polymer processing have been performed numerically [13-17] and 

experimentally [18,19], their results are still limited for a proper understanding of the microscopic 

principles of immiscible liquid alloys due to the complex multiphase characteristics both in the 

hydrodynamic and metallurgical aspects. 

Basically, the main feature of a twin-screw extruder is a strong shear flow field produced by co-

rotating intermeshing screws [5, 11, 20]. The droplets are created in the microscopic scale, and the 

turbulent flow enhanced by mixing, swirling and pumping actions in a macroscopic scale. The 

rheomixing process is shown in Fig. 2. Two immiscible liquid alloys are stirred before pouring into a 

twin-screw extruder, and the minority phase Pb liquid is in the form of larger droplets. The main 

concern for the rheomixing process is droplet interaction, including rupturing, coalescence and 

suspension, which affects the microstructure of immiscible alloy castings. 
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Fig. 2 Schematic illustration of the twin-screw rheomixing process. 



 

 

The procedures for rheomixing can be described in four stages, according to rheological behaviour: 

1. Formation of Pb drop in Zn matrix liquid phase: Pb drops formed from two liquid phases by 

shear stress, induced by the action of mechanical devices; the minority phase is in the form of 

large drops. 

2. Rupture and coalescence of Pb drop: Pb drops breakup into small droplets by a twin-screw 

under high speed.  

3. Pb liquid droplet and Zn solid particle collision: collisions occur when the temperature is below 

Tm, the Pb drop is broken up into fine droplets by collision with Zn solid particles in turbulence 

flow activated mainly by mixing block elements, to prevent the coarsening of Zn particles. 

4. Stability of dispersion and suspension: Pb droplets are dispersed by turbulence and suspended 

in the Zn matrix phase due to the increased viscosity of the Zn matrix phase in semisolid state. 

This prevents Pb droplets from further coagulation.  

Drop deformation and breakup in pure shear flow have been studied since 1932 [21,22]. More 

recently, experimental and computational observations of drop formation and breakup have been 

reported [23-27]. A numerical study of immiscible drops in turbulent flow shows that the drop shape 

depends on the local flow regime, classified by four turbulence structure types [28]. A comprehensive 

review of immiscible fluid mixing was given in [29], which focused on stages from steady to unsteady 

features. 

Drop deformation in steady state can be measured by the Taylor deformation parameter D= (L-B) / 

(L+B), where B = rd (1-D) is the minor axis of the drop, L = rd (1+D) is the major one, and rd is the 

drop radius. For drop deformation in unsteady state, the drop was elongated under various shapes 

depending on the imposed stress, and finally starts breaking up. After a fully broken up, refinement and 

coalescence are occurred by the interactions between daughter droplets. However, the mixing 

behaviour of daughter droplets in shear-induced flow has not been reported in the literature. Moreover, 

the hydrodynamic behaviour of immiscible liquid alloys in a shear-induced mixing process has not 

been examined, especially in a twin-screw extruder. Here, the essential micro-mechanism of 

immiscible liquid alloys in rheomixing is presented. The numerical simulations are conducted through 

the volume-of-fluid (VOF) method [30] with piecewise linear interface construction (PLIC) scheme 

[31], algebraic multigrid (AMG) approach [32] and k-ε turbulence model [33]. The rupturing, 

interaction and dispersion of droplets, the essential microscopic mechanisms of the twin-screw 

extruder, are investigated to improve further our understanding of the rheomixing process. The 



 

 

numerical methods used in these investigations have been previously validated [34]. The studies reveal 

a wealth of interesting rheological and microstructural features that provide qualitative insights into 

rheomixing, which are consistent with previous experimental work. 

 

3. Flow configuration  

 

The simplified flow fields for studying the main microstructural rheomixing mechanisms in a twin-

screw extruder are illustrated in Fig. 3. The imposed shear rate γ is given by the following equation 

[35]: 

 γ =2nπ(rs/δ–1)  (1) 

where rs is the screw radius,  n is the screw rotational speed and δ corresponds to the gap or channel 

depth of the twin-screw extruder. 

 

 

Numerical simulations are built on two computational domains. The first is for studying two-phase 

mixing. The immiscible Zn-Pb binary alloy system is initially stratified, and a shear rate is imposed on 

the upper and lower layers. The second computational domain is for studying drop breakup and 

refinement. A Pb drop is initially suspended in the matrix phase, and assumed to have an undeformed 

radius rd and viscosity μd, while the matrix phase has viscosity μm, and the distance between barrel and 

screw is δ. Computations are conducted as two-dimensional due to the limitations of computer 

capabilities. The two-dimensional domain size is 16×4, grid size is 128×32. 

Model experiments of parallel disks were performed in order to study the fundamental mechanism of 

immiscible polymeric materials in a twin-screw extruder [36]. However, numerical simulations have 

advantages since various shear rate profiles can be established for setting up initial and boundary 

Fig. 3  Schematics of the computational domain in shear-induced flow for studying 
the phenomena of drop formation (left) and drop rupturing (right); spatially periodic 
in the x and z directions. 

upper layer liquid speed U
y

xo

δ

lower layer liquid

y

o

zδ

x



 

 

conditions, and more complex forces can be easily imposed to reflect the special operating condition 

and screw configuration.  

There are four dimensionless parameters in our numerical simulations: the capillary number Ca=γ μm 

rd / σ , where σ is the interfacial tension and the average shear rate is defined as γ =U/ δ; the Weber 

number Webdrop=Re Ca=ρrd U2/σ; the viscosity ratio λ=μd / μm ; and the Reynolds number 

Redrop=ρmγ rd
2 / μm , where subscript m is for matrix phase and d is for drop phase. 

In the simple shear flow, the drop hydrodynamics is mainly influenced by two competing forces. 

One is the viscous shear stress μmγ of the matrix phase, which causes drop deformation, and the other 

is the characteristic Laplace pressure σ / rd , which resists the deformation. The capillary number Ca, 

defined as the ratio between these two forces, provides a useful measure of the efficiency of the shear 

flow to deform the drop. The viscosity ratio is defined as the ratio of drop viscosity to matrix phase 

viscosity. The Reynolds number Re is the ratio of inertia force to viscous force. 

The twin-screw used in the rheomixing process has a 16mm diameter at tip and 3mm groove with a 

special profile [37] to achieve high shear rate and enhance the positive displacement pumping action. 

The maximum rotation speed of the screw is designed at 1000 rpm, which corresponds to a shear rate at 

4082 s –1 in the gap between the tip of the screw flight and the barrel. The rotation speed for the 

experimental work in our laboratory was set at 800 rpm. The status of the immiscible alloy liquid 

during the twin-screw processing is controlled by a temperature control system which ensures a proper 

viscosity of the matrix phase from start to end [3]. 

The thermophysical properties of immiscible metallic Zn-Pb binary alloys are taken from [38], while 

phase equilibrium data are taken from [39]. 

 

4 Numerical modelling 

 

4.1  Governing equations of interface motion 

 

Metallic Zn-Pb binary alloy are here considered as two-phase immiscible fluid systems in isothermal 

state, with different density and viscosity between the two phases. The domain of interest contains an 

unknown free boundary, which undergoes severe deformation and separation.  

Several methods are available for tracking the interface motion, such as tracking methods 

(Lagrangian methods), including moving-mesh, front tracking [40], boundary integral [41] and particle 



 

 

schemes; and capturing methods (Eulerian methods), including volume tracking [42-46], volume-of-

fluid (VOF) [30], continuum convection, level set [47] and phase field. Each of these methods has its 

advantages and disadvantages. The volume-of-fluid (VOF) method provides a simple way of treating 

some topological changes of the interface, such as merging and folding, that may be difficult to handle 

accurately and directly by other methods. It seems there are advantages in the use of VOF methods for 

the simulation of drop behaviour in turbulent shear flow. 

In the VOF method, the motion of the interface between two immiscible liquids of different density 

and viscosity is defined by a volume fraction function C, and the interface is tracked by the following 

three conditions: 

 C = 0  fluid 1  (2) 

 C = 1  fluid 2  (3) 

 0 < C <1  interface between the two fluids  (4) 

According to the local value of C, appropriate properties and variables are assigned to each control 

volume within the domain. 

The volume fraction function C is governed by the volume fraction equation: 

 0=∇⋅+
∂
∂ C

t
C u   (5) 

where u is the flow velocity.  

The fluids in this study are subject to the incompressibility condition:  

 0=⋅∇  u   (6) 

The flow is governed by a single momentum equation, with the resulting velocity field shared among 

the phases: 

 Fgp
t

++∇+−∇=⎟
⎠
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⎜
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∂ ρμρ uuuu 2   (7) 

where F stands for body forces, g for gravity acceleration, and p for pressure. 

The properties appearing in the momentum equation are determined by the presence of the 

component phase in each control volume, that is, the average value of density and viscosity are 

interpolated by the following formulas 

 ρ = Cm ρm + (1-Cm) ρd  (8) 

 μ = Cm μ m + (1-Cm) μ d  (9) 



 

 

The VOF approach uses a sheared-field approximation since a single set of mass and momentum 

equations is adopted. The limitation is that when large velocity differences exist between the phases, 

the accuracy of the velocities computed near the interface can be adversely affected. A sufficient fine 

mesh is required in order to prevent the loss of mass. This may be generated adaptively at each time 

step, but results in increased computing time. 

 

4.2 Geometric reconstruction scheme for VOF 

 

The formulation of the VOF model requires that the convection and diffusion fluxes through the 

control volume faces be computed and balanced with source terms within the cell itself. The interface 

will be approximately reconstructed in each cell by a proper interpolating formulation, since interface 

information is lost when the interface is represented by a volume fraction field. The geometric 

reconstruction PLIC (piecewise linear interface construction) scheme is employed because of its 

accuracy and applicability for general unstructured meshes, compared to other methods such as the 

donor-acceptor, Euler explicit, and implicit schemes. A VOF geometric reconstruction scheme is 

divided into two parts: a reconstruction step and a propagation step. The key part of the reconstruction 

step is the determination of the orientation of the segment. This is equivalent to the determination of the 

unit normal vector n to the segment. Then, the normal vector n and the volume fraction C uniquely 

determine a straight line. Once the interface has been reconstructed, its motion by the underlying flow 

field must be modelled by a suitable algorithm [31]. 

 

4.3 Implementation of surface tension 

 

Surface tension along an interface arises as the result of attractive forces between molecules in a 

fluid. In a droplet surface, the net force is radially inward, and the combined effect of the radial 

components of forces across the entire spherical surface is to make the surface contract, thereby 

increasing the pressure on the concave side of the surface. At equilibrium in this situation, the opposing 

pressure gradient and cohesive forces balance to form spherical drops. Surface tension acts to balance 

the radially inward inter-molecular attractive force with the radially outward pressure gradient across 

the surface. Implementation of surface tension was reviewed by Scardovelli and Zaleski [28]. Here, 

surface tension is applied using the continuum surface force (CSF) scheme of Brackbill et al. [48]. The 



 

 

addition of surface tension to the VOF method is modelled by a source term in the momentum 

equation. The pressure drop across the surface depends upon the surface tension coefficient σ,  

 )11(
21 RR

p +=Δ σ   (10) 

where R1,R2 are the two radii, in orthogonal directions, to measure the surface curvature. In the CSF 

formulation, the surface curvature is computed from local gradients of the surface normal at the 

interface. The surface normal n is defined by 

 dC∇=n   (11) 

where Cd is the secondary phase volume fraction. 

The curvature k is defined in terms of the divergence of the unit normal n̂ : 
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where 
n
nn =ˆ   (13) 

The surface tension can be written in terms of the pressure jump across the interface, which is 

expressed as a volume force added to the momentum equation 

 dd CkCF ∇= σ2   (14) 

The CSF model allows for a more accurate discrete representation of surface tension without 

topological restrictions, and leads to surface tension forces that induce a minimum in the free surface 

energy configuration.  

 

4.4 Numerical approach 

 

The solution algorithm involves the use of a control-volume-based technique to convert the 

governing equations to algebraic equations that can be solved numerically. Non-linear governing 

equations are linearized by an implicit scheme to produce a system of equations for the dependent 

variable in every computational cell. A point implicit Gauss-Seidel linear equation solver is then used, 

in conjunction with an algebraic multigrid (AMG) method, to solve the resultant scalar system of 

equations for the dependent variable in each cell [49]. 

The governing equation can be discretised in the finite volume method (FVM) as follows: 
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where facesN  is the number of faces enclosing a cell 

fφ  is the  value of φ  convected through face f 

fA is the area of face f, jAiAA yx
ˆˆ( +=  in 2D) 

n)( φ∇  is the magnitude of φ∇  normal to face f 

V is the cell volume 

φΓ  is a diffusion coefficient for φ  

φS  is a source of φ  per unit volume 

A linearized form of equation (15) can be written as 

 baa nb
nb

nbp =+∑ φφ   (16) 

where the subscript nb refers to neighbour cells, and pa  and nba  are the linearized coefficients for φ  

and nbφ . 

The pressure-velocity coupling is achieved by using the pressure-implicit with splitting of operators 

(PISO) scheme [50]. Since body forces (such as surface tension) are to be considered in the calculation, 

a special treatment (body-force-weighted scheme) is adopted to deal with the equilibrium of the body 

force and pressure gradient terms in the momentum equation. This induces an extra correction in the 

source term of the pressure and face flux rate equations, and the flow generally achieves a realistic 

pressure field very early in the iterative process. The standard k-ε turbulence model is employed for 

turbulence-imposed flows. 

The computational domain in our problem requires very refined grids, because of the need to capture 

the drop formation and breakup at a very fine scale. An efficient solution is provided by the algebraic 

multigrid approach, which accelerates the convergence of the solver by computing corrections on a 

series of coarse grid levels when the domain contains a large number of control volumes.  

 

5. Results and discussion 

 

5.1 Drop formation for immiscible binary alloy in shear-induced flows 



 

 

The simulation results are shown in Fig. 4. In the immiscible Zn - Pb binary alloy system, there is a 

large difference in the density of the two phases. When the temperature is above the bimodal line, the 

immiscible Zn-Pb binary alloy system is in a single phase, a homogeneous liquid mixed in molecular 

state. If cooled below the bimodal line, it transfers to a two-phase liquid system. The Pb phase sinks to 

the bottom due to sedimentation by the effect of gravity. The two separated phases can be mixed by 

imposing an external force such as mechanical stirring. The boundary of the computation domain is 

periodic in the x-direction and z-direction, and the initial shear rate field has a non-linear profile 

produced by a stirring action. 

The numerical investigations are performed for one-sided shear-induced flows. The simulations 

ended after the first few droplets were formed due to limitations of our computer capabilities, since 

each iteration takes more than an hour after the first few droplets are formed.  

The results of numerical simulations for one-sided shear-induced flow are shown in Fig. 4. The first 

droplets were formed around 3.6 ms, and the size of a smallest droplet is quite small. The droplet 

formation occurred in the sheared layer, the wave of Pb phase appeared first at the time 2.0 ms, 

followed by a protruding finger at the time 3.2 ms. The protruding finger then broke up, and droplets 

formed at the time 3.6 ms.  

Fig. 4  Numerical evolution of droplet formation in a 2D one-sided shear-induced flow( case1). 



 

 

The process of drop formation is mainly controlled by the shear rate, and the minority phase cannot 

entirely form drops with a lower shear rate even after a long shearing time as shown in Fig. 5.  

 

Flows composed of two immiscible liquids and undergoing shearing motion can form fingers as a 

result of an interfacial instability due primarily to the viscosity jump. The jump is in the tangential 

velocity gradient across the interface, and can be though of as a viscous counterpart of the Kelvin-

Helmholtz instability [51]. The process of drop formation displays a good agreement with 

hydrodynamic characteristics observed experimentally [52~54]. 

 

5.2  Effect of initial shear rate in the drop rupturing process 

 

After drop formation, Pb metallic drops are broken up by imposed shear forces to create droplets in 

the channel of the twin-screw. The initial shear rate, as defined in Fig. 3, reflects the basic conditions of 

flow within TSE and seriously impact on the rupturing behaviour of a Pb metallic drop in Zn liquid 

metal. For Ca=3.2, λ=1, rupturing is faster in two-sided shear-induced flow and rapid profile of initial 

shear rate than one-sided shear-induced flow and linear profile of initial shear rate, as shown in Fig. 6 

and Fig. 7. 

 

5.3 Effect of viscosity variation in the rheomixing process 

 

The dynamic behaviour of droplets in flows with different viscosity ratio are very different. A 

viscosity ratio λ=1 results in a quick breakup and fine droplets. Decreasing the viscosity ratio to λ=0.5 

leads to increasing the size of daughter droplets and a delay in forming the first daughter droplet, but 

more spherical droplet shapes than in an equal viscosity flows as shown in Fig. 8.  

Fig. 5 Numerical evolution of droplet formation in a 2D two-sided shear-induced flow.(case3) 



 

 

 

Fig. 6 Numerical evolution of rupturing behaviour of a Pb metallic drop in shear-induced flow. Ca=3.2, 
λ=1, rapid profile of initial shear rate for one-sided shear (upper, case4) and two-sided shear-induced flow 
(lower, case5). 

Fig. 7 Numerical evolution of rupturing behaviour of a Pb metallic drop in shear-induced 
flow. λ=1, rapid profile of initial two-sided shear rate (upper, Ca=1.70, case6) and linear 
profile of initial shear rate (lower, Ca=1.17, case7)  

Fig.8 Results of a Pb metallic drop broken up into droplets by pure shear rate (nil profile of initial shear 
rate) at the time when the first daughter droplet was formed and complete mixing. Grid 128×32, domain 16×4, 
Ca=2.5. Case 8 (upper) is for λ=1, case 9 (lower) is for λ=0.5. The breakup of a Pb metallic drop is easier in 
high viscosity flow than in a low viscosity flow 



 

 

5.4 Effect of turbulence and dynamic flow in the mixing process 

 

In the rheomixing process, materials are in constant turbulent flow movement during the shearing 

time. The effects of turbulence and dynamic flow are shown in Fig. 9. The results show that drop 

breakup is much faster in dynamic shear turbulent flow than in pure shear turbulent flow. The 

distribution of droplets in the domain is more homogenous than in case 8 and case 9 in Fig. 8. The 

droplet size is also more uniform than in case 8 and case 9. The shapes of droplets in turbulent flow and 

low viscosity ratio are much closer to spherical.  

The coalescence of droplets occurs in an equal viscosity flow (Fig. 10) during the mixing stage, 

however, this did not appear in case 11 with high viscosity of matrix phase (Fig. 11). The shape of 

droplets in case 11 is close to spherical, as occurred in case 9 with lower viscosity ratio. 

 

Fig.9 Results of a Pb metallic drop broken up in turbulent flow at the time when first daughter droplet 
was formed and complete mixing. Grid 128×32, domain 16×4. Ca=3.2, case 10 (upper) is for λ=1, case 11 
(lower) is for λ=0.5. 

Fig.10 Illustrations of coalescence occurred in case 10, λ=1. An equal viscosity leads 
to coalescence of Pb metallic droplets at the mixing stage more easily than low viscosity 
ratio. 



 

 

 

5.5 Effect of shearing time in rupturing and mixing process 

 

Table 1 summarises the shearing time needed in each case. The shearing time to forming the first 

daughter drop and reaching full breakup of a parent drop is different in each case. The shearing time in 

the one-sided shear flow (case 4) is longer than for two-sided shear flow (case 5 and case 6). The low λ 

value (high viscosity of the matrix phase, case 9) needs much more time than an equal viscosity flow 

(case 8) to reach full breakup. Turbulent flow (case 10) leads to the forming of the first daughter drop 

earlier than laminar flow. The low λ value turbulent flow (case 11) also needs more time than an equal 

viscosity turbulent flow (case 10) to reach the full breakup. 

 
Table 1  

Comparison of shearing times for forming first daughter drop and for reaching full breakup of parent drop 

Case No. 1 2 3 4 5 6 7 8 9 10 11 
Shearing time for 
forming first daughter 
drop (ms) 

4.6 3.2 100 2.8 2.2 2.2 2.8 3.0 9.6 1.6 4.6 

Shearing time for 
reaching full breakup 
of  parent drop (ms) 

--- --- --- 11.8 6.0 6.6 6.0 6.8 22 6.0 11.8 

 

After full breakup of a parent drop, droplets are in a mixing stage with further refinement and 

coalescence. The main concerns in the rheomixing process are maximum size of daughter droplet, 

uniformity of size and homogeneity of dispersion. In order to take into account these features in a 

qualitative discussion, we define a maximum scale factor K for measuring the size of daughter droplets. 

Fig.11 Illustrations of coalescence occurred in case 11, λ=0.5. With high viscosity of matrix 
phase, these are less coalescence in the mixing stage and more spherical shape of droplets. 



 

 

The maximum scale factor of droplets Kmax is defined as the ratio of the maximum size of daughter 

droplet to the diameter of initial parent drop at each shearing time level: 

 max
maxmax dd

d

Lsize of daughter dropletK
diameter of parent drop D

= =   (17) 

The maximum scale factor of daughter droplet Kmax varies with shearing time, as shown in Fig.12, 

and generally decreases with increasing shearing time in all cases. Refinement and coalescence occur 

simultaneously. Kmax is much larger in an equal viscosity system than in a low viscosity ratio system.  

 

5.6 Comparison with experimental results 

 

The numerical evolution of droplet dispersion is compared with an experimental image in Fig.13. It 

is observed that numerical results show good qualitative agreement with the experimental image [55]. 

The Zn-Pb binary alloy was fed into the TSE at a temperature 550 °C, the shearing temperature was set 

at 423 °C, the rotational speed of TSE was 800 rpm. The numerical simulation is focused on the 

hydrodynamic behaviour of immiscible alloys in isothermal condition. Comparing the computational 

graph with the experimental image, the finest droplets in the right upper figure of Fig.13 are missing in 

the computation. In fact, in order to capture a 20μm droplet, the domain grid would need to increase 

hundreds times. Fortunately, the main concern in rheomixing is the maximum droplet size. Comparing 

the droplet distribution above 32μm of diameter, the quantitative difference is shown in the lower curve 

of Fig. 13. For a detailed image analysis, a shape factor Kk is defined as 4π times the ratio of the droplet 

area to perimeter squared: 

Fig.12 Comparison of maximum size of daughter droplet during shearing time for cases 4 to 7. 
After fully breakup of parent drop, daughter droplets are in mixing stage with further refinement 
and coalescence simultaneously. 
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π=   (18) 

A perfect circle has a shape factor of 1, and a line has a shape factor approaching 0. It is noted that 

the maximum shape factor Kk is 1.571 for both experiment and simulation. This probably means that 

the maximum droplet sizes are comparable between experiment and simulation. The present results of 

numerical simulation show that further numerical predictions can be explored to provide a deeper 

insight into the microstructure mechanism of the rheomixing process. 

 

5.7 Suggestions for optimisation of rheomixing process 

 

The numerical analysis presented in this paper aimed at improving our understanding of the 

fundamental mechanisms of the mixing of immiscible Zn-Pb metallic alloys in shear-induced flow, 

which is the main flow feature of twin-screw rheomixing process. The results basically reveal that a 

proper control of the rheomixing process is very important since immiscible Zn-Pb alloys have 

different hydrodynamic behaviours for different shearing times, shearing approaches and viscosity ratio 

of the alloy system. Some suggestions for optimisation of the rheomixing process are as follows: 

1. Stirring the Zn-Pb alloy at a higher shear rate in the phase separation stage before pouring it into the 

TSE will shorten shearing time. However, the shear rate needs to be sufficiently high to allow the 

entire minority phase to form large drops. 

2. Shearing Zn-Pb alloy in an equal viscosity system leads to fine daughter droplets and short shearing 

times, and controlling operating temperature above the monotectic temperature leads to the 

appearance of both phases for easier droplet breakup. 

Fig.13 Comparison of the morphology of droplet dispersion, experimental image (right) [55] and 
numerical simulation (left) using similarity principle approach. Comparison of the droplet distribution at 
size range above 32μm of diameter (lower chart) 
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3. Increasing the viscosity of the Zn phase results in more spherical droplets and avoids further 

coalescence. 

4. Imposing turbulence in Zn-Pb alloy system results in finer daughter droplets, uniform-sized droplets 

and homogeneous dispersion, as well as shorten shearing time. However, this can also cause 

coalescence, so flow should be kept laminar by controlling the temperature to increase the viscosity 

of the Zn phase at the certain operating point. 

5. Optimal shearing approach: to start shearing the Zn-Pb alloy above Tm with enhanced turbulent flow 

in order to quickly obtain fine droplets, then shear it near or below Tm to obtain low viscosity ratio so 

that droplets are close to spherical shape. 

6. Twin-screw configuration is very important, since enhanced turbulent flow can be generated by 

assembling suitable numbers of left handed screw, right handed screw and mixing block, as well as a 

reasonable arrangement along the axis of twin-screw, as it has been observed experimentally that 

velocity fields in a twin-screw extruder are significantly affected by the structure of the screw [20].  

 

6. Conclusion 

 

This paper presented a numerical analysis of the hydrodynamic behaviour of immiscible metallic 

alloys in shearing mixing processes for various flow configurations, which reflect the fundamental flow 

features of twin-screw rheomixing process. The numerical modelling is conducted as a 2D periodic 

isothermal problem through the VOF method with PLIC scheme, AMG approach and k-ε turbulence 

model. This paper shows that the numerical method was able to simulate the hydrodynamic behaviour 

of an immiscible Zn-Pb binary alloy in shear-induced mixing processes. The rupturing, interaction and 

dispersion of droplets are strongly influenced by the shearing forces, viscosity ratio, turbulence, and 

shearing time. Since the solidified microstructure of cast immiscible alloys is strongly influenced by 

the hydrodynamic behaviour within the melt state, the numerical simulation of the essential 

microscopic mechanisms of a prototypical rheomixing process is useful for the optimisation of the 

rheomixing process. Possible improvements for the rheomixing process have been suggested. 
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