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For functional demands, inclusions are always reserved beforehand in a structural design. In this 

paper, a follow-up optimized phononic band structure design is performed based on a 2D structure 

with reserved inclusions but no absolute band gaps for the purpose to simultaneously achieve 

acoustic abatement except for functional demands. Firstly, the strategy to optimize the band 

structure based on bidirectional evolutionary structural optimization algorithm is proposed. Then 

the effects of geometrical or physical parameters on the final optimization results are discussed. 

Numerical results show that there is a material gravitation phenomenon around the inclusions in the 

topological optimization. Factors affecting the material gravitation are discussed in details. This 

work will lead an important guidance in the multifunctional design of multi-phase phononic crystals. 

Keywords:  Phononic crystals; Topology optimization; Absolute band gap; Material gravitation 

phenomenon 
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1. Introduction 

Along with the development of electronic packaging and flexible wearable technology, the multifunctional 

dynamic design of apparatus in the limited space becomes more and more crucial. For certain apparatuses, reserved 

inclusions are periodically distributed for functional demands. In a system with periodical distributed two or more 

phases there may exist absolute band gaps (ABGs) within which the propagation of elastic waves is restrained. This 

distinct property provides an effective strategy in vibration suppression, which motivates the idea to further make 

band gap optimization based on a structure with beforehand periodically reserved inclusions but initially no ABG 

existence. 

Since the firstly proposal of the idea in 1993 [1], amounts of researches have been undertaken to explore the 

theoretical concept of phononic crystals (PnCs), in which there are certain frequency bands within which the elastic 

waves are forbidden to propagate. Liu et al. [2] fabricated PnCs and found the ABGs based on a localized resonant 

mechanism. Zhao et al. [3] studied the peculiar transmission peaks of PnCs in both theoretical analysis and 

experimental observation. Moreover, band gaps in PnCs with one [4-7], two [8-14] or three [15-18] dimensional 

lattices were widely studied. Along with the mature of ABG determination in given PnCs, PnC optimization 

according to application demands becomes essential. Considerable interests have been devoted to design PnCs with 

larger ABGs based on material design [19-22] and structural schemes [23-25]. Actually, topology optimization is an 

effective tool in PnC ABG design. Sigmund and Jensen [26] firstly introduce solid isotropic material penalization 

method (SIMP) and finite element method (FEM) in PnC ABG design. Following their work, Hussein et al. [27] 

presented a design approach based on a multi objective genetic algorithm (GA) to optimize one-dimensional PnCs 

in layered materials. Dong et al. [28] proposed a ‘coarse to fine’ two-stage genetic algorithm to optimize ABGs in 

2D solid-solid binary-component PnCs. Due to the complicated solution space in GA method, the optimal design of 
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PnCs usually needs over thousands of evolutions. Toward an efficient and reliable optimization of ABGs, 

bidirectional evolutionary structural optimization algorithm (BESO) [29] was firstly introduced in the design of 

PnCs in 2016. Following their work, Li et al. [30] proposed a BESO design for in-plane ABG in the structures 

consisting of hollow rods and circular solid. Zhang et al. [31] performed the topology optimization for ABGs in 

PnCs with sixfold symmetric hexagonal lattice. Considering a relatively high stiffness of PnCs, Li et al. [32] 

conducted optimization of cellular PnCs to simultaneously maximize band gap size, and bulk or shear modulus under 

prescribed filling fractions. 

    It is seen that numerous works have been done to obtain optimized ABGs. In real application, there exist the 

situation that reserved inclusions are periodically arranged in the space. If through certain ABG optimization based 

on the reserved periodical structures, it is possible to simultaneously realize vibration suppression except for 

functional demands. Motivated by this idea, the follow-up ABG optimization design with reserved inclusions is 

proposed. Based on the BESO method, the algorithm is firstly established for topological optimization of ABGs in 

structures with periodically reserved inclusions. The topological optimization design for binary-component solid 

PnCs, binary-component porous PnCs, and ternary-component solid PnCs is performed. The effects of material and 

geometrical parameters on ABGs are clarified in detail. At last, the conclusion is given. 

  

2. Description of the problem 

A typical representation of a 2D periodical reserved structure with a square inclusion is shown in Fig.1. Orange 

area represents the reserved inclusion (denoted by A), meanwhile blue area is the matrix material (denoted by B). 

Since it is squarely periodically distributed in 2D space, a unit cell with the length a is chosen, which is marked out 

by dark grey. The detailed structure of the unit cell is given in Fig. 1b. The inclusion is surrounded by light grey 

isolation strips with width c. An isolation ratio 
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R  = , c

c

a
                                  (1) 

is defined to indicate the strip width. The optimization is performed in the design area.  

   In the following study, for a certain unit cell length a, the filling material, Pb, is distributed optimally in the 

matrix, epoxy (for dark gray design area). The effect of isolation ratio Rc on the filling material distribution and ABG 

structures is discussed. Moreover, different materials are used for inclusions and isolation strips to see the influence 

of acoustic mismatch between different parts. For clarity, an A-B PnC is used to represent a PnC with material A for 

inclusion and material B for isolation strip.        

 

   Fig. 1 Diagrammatic sketch of (a) a representative 2D inclusion phononic crystal; (b) the unit cell, and (c) the 

first Brillouin zone of a 2D square lattice 

3. Theory 

 

As shown in Fig. 1, by now, the structure with periodically reserved inclusions is transferred to a PnC. Since the 

unit cell is squarely distributed, the dispersion relation is obtained by wave vector sweeping the edges of the first 

irreducible Brillouin zone ΓXM, which is plotted in Fig. 1c. 

For a 2D PnC system, considering that elastic waves propagate only in the xoy plane, the wave equations are given 

as 
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i i
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    
  

                
r r r u r u                 (2)

 
Here, u=(ux, uy) is the displacement vector in the transverse plane, r is the position vector. and  are the Lamé 

constant and shear modulus.  is the angular frequency,  is the mass density,  = ,x y   is 2D vector differential 

operator. 

 According to Bloch’s theorem [33], the displacement vector u can be written as  

     = , 
i

ke
k r

u r u r          (3) 

where k= (kx, ky) is the wave vector limited to the first Brillouin zone of the reciprocal lattice as shown in Fig. 1. 

uk(r) is a periodical vector function with the same PnC lattice periodicity. i is the imaginary unit. 

In the present work, the finite element method (FEM) is applied to calculate the band structures of the proposed 

PnCs. The discrete form of eigenvalue equations in a unit cell is written as 

 2 ,0   K M U                          (4) 

where K is the global stiffness matrix of the unit cell, U is the nodes displacement, M is the global mass matrix. The 

Bloch conditions, Eq. (3), should be applied on the boundaries of the unit cell, the displacement field then can be 

expressed as 

   ( ) ,ie   k a
U r a U r         (5) 

where a is the lattice basis vector that generates the point lattice associated with the PnCs. r is the position vector 

located at the boundary nodes. COMSOL with MATLAB is used here to solve the eigenvalues of Eq. (5) under the 

complex boundary condition of Eq (5). The model built in COMSOL is saved as a MATLAB-compatible ‘.m’ file. 

The unit cell is meshed by triangular Lagrange quadratic elements provided by the code. Eigen-frequency analysis 

is selected and the direct SParse Object Oriented Linear Equations Solver (SPOOLES) is chosen as the solver. The 
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proposed ‘.m’ file is programmed to let the wave vector k sweep the edges of the irreducible Brillouin zone as shown 

in Fig. 1. Then the whole dispersion relations are obtained.  

 

4. BESO optimization 

 

BESO method is a high-efficiency topology optimization method based on the material removal and addition 

scheme to determine the optimized structure. Staring from given inclusions and isolation strips, BESO will evolve 

the unit cells to the optimal ones based on sensitivity analyses in each evolution. The optimization goal is to 

open/maximize ABGs in PnCs with reserved inclusions. The objective function is  

1

1

min : ( , ) max : ( , )
Maximize : ( ) 2

min : ( , ) max : ( , )

n n

n n

f
 

 





  
  

  

k k

k k

k k

k k
，          (6) 

where f is the relative bandgap width between the nth and n+1th bands given by the relative ratio of the gap width 

and the central frequency. n is the serial number of the energy band. denotes topology of the PnC unit cell. The 

unit cell is divided into N×N square pixels. Design variable xi (i=1, 2, 3...N2) for each pixel is defined to describe 

the material distribution. In the present calculation, the square unit cell is discretized into 25×25 4-node quadrilateral 

pixels. When the reserved inclusion is given, in the following optimization, only the material type of design area 

needs to be determined. The value 1 or 0 for the pixel in design area means that the pixel is made from filling material 

(Pb) or matrix material (epoxy), respectively. To simplify the calculation, considering the square-symmetry of the 

unit cell, only one-eighth of the unit cell really needs to be considered. 

The volume fraction of the filling material (Pb) is selected as the constraint function in the whole optimization, 

that is, 

 
T

1

T
  V    0 or 1

V

i i i
f i

v x
x

 ，            (7) 


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where T is the total number of square pixels which in one-unit cell. vi denotes the volume of element i, V𝑓
∗ is the 

prescribed volume of filling material (Pb), 
TV is the total volume of square pixels in in one-unit cell. Volume 

fraction of the filling material starts from a relative small initial fraction V𝑖
∗ and gradually increases to the prescribed 

volume fraction V𝑓
∗ following  

   1 1V V 1  when V V  1,2,3... ,p p p fER p

    
       

(8) 

where ER is the evolution rate and p is the iteration number. Vp refers to the volume fraction of filling material in 

the pth iteration, which will keep constant once it has achieved the specified volume fraction V𝑓
∗.  

The removal and addition of material in BESO scheme is based on the sensitivity number ranking of the pixels 

made from matrix material and filling material together. Depending on the sensitivity ranking, the value of xi will be 

set to 1 or 0 to realize the volume evolution of filling material which is shown in Eq. (8). The calculation of the 

initial sensitivity numbers with xi =0 (matrix material) can be expressed as   

   
, 

ie

i

i i

f ff


   
 
 

              (9) 

where ={x1, x2,…, xp …, xn }T is the proposed topological distribution of the unit cell, Δ ={0, 0, …, 0+Δx i …, 

0 }T is a disturbance of Δxi on the ith design. The disturbance Δ is defined by the model module in FEM program, 

then the sensitivity number of the ith pixel with xi =0 can be obtained by the FE bandgap calculation which is 

mentioned in section 3 and Eq. (6). Sensitivity numbers for the case of xi =1 (filling material) is extrapolated by the 

following filter scheme[34]. 

  Firstly, nodal sensitivity numbers for pixels with xi =0 (matrix material) is calculated as  

n M

1 , e

i j j jw           (10) 

where M is the total number of pixels with xp =0 connected to the ith pixel. e

j  is the initial sensitive number 

calculated by Eq. (9). wj is the weight factor of the jth pixel given as 

 
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where rij is the center distance between the pixel i and pixel j. Then the modified sensitivity number of the ith pixel 

are determined by   

 
 

M n

1

M

1

,
j ij jm

i

j ij

w r

w r












        (12) 

where  is the nodal sensitivity number obtained by Eq. (10). w(rij) is the linear weight factor given as 

 
for  - 

= ,      
for  0

ij minmin ij

ij

ij min

r rr r
w r

r r





     (13) 

where rmin is the filter radius. Considering the convergence of the solution, the modified sensitivity number is further 

averaged by its historical information after the first iteration [35], that is, 

 , , 1,

1
,

2

m
i p i pi p            (14) 

where p is the current iteration number, αi,p
m  is the modified sensitivity number of the pixel i in the pth iteration 

obtained from Eq. (12). The design variable xi is updated to 1 and 0 based on the relative ranking of the final 

sensitivity number α̃i,p to realize the volume evolution until the convergence criterion is satisfied, which is defined 

as:  

N

1 1 N 1

N

1 1

error , 
i p i p i

i p i

f f

f


     

  

 
 


      (15) 

where fp is the objective function in pth iteration, τ=0.1 is an allowable convergence tolerance. N is an integer number. 

In this paper, N is defined to be 3 since the change in the mean compliance is acceptably small over the last 6 

iterations.  

The BESO procedure used to perform the PnC topological optimization is described as 

n

j
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1. Define BESO parameters, including the objective function, the objective volume of filling material, filter radius, 

evolutionary ratio ER, and allowable convergence tolerance; 

2. Establish the initial model with given inclusions, isolation strips and design area based on N×N square pixels;  

3. Conduct the FE band structure calculation; 

4. Calculate, filter and average the sensitivity numbers;  

5. Determine the volume fraction of filling material according Eq. (8); 

6. Reset the design variable xi of elements in the design area to construct a new design according to sensitivity 

numbers and the volume fraction;  

7. Repeat steps 3 to 6 until the constraint volume is achieved and the convergence criterion is satisfied. 

  

5. Results and discussion 

5.1. Phononic crystals with square scatters 

Firstly, we give the variation of the relative band width in a Pb/Epoxy PnC with respect to the length size ratio of 

square scatter and unit cell, a1/a. The relative band width is obtained according to Eq. (5). Matrix material is Epoxy 

with ρ1 =1.18 g/cm3, λ1= 4.43 GPa, μ1= 1.59 GPa; meanwhile inclusion material is Pb with ρ2 =11.6 g/cm3, λ2=42.03 

GPa, and μ2=14.9 GPa. If the value of the relative band width is larger than zero, the ABG opens.  

As shown in Fig. 2, when the inclusion is small, see, around a1/a<0.3, the ABG could not be opened. When the 

inclusion size is bigger enough, an ABG is opened at 3rd to 4th bands. As the increase of a1/a, the band width is 

increased and then gradually decreased and finally closed after a1/a>0.6.  

In the following discussion, we have a1/a=0.2 at which no ABG opens. From this initial reserved design, we 

perform the structure optimization to find ABGs.  
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Fig. 2 Variation of the relative band width with respect to the length ratio of the scatter and the unit cell.  

 

5.2. Topological optimization design for PnCs with reserved inclusions 

 

In this section, we conduct the topological optimization design for PnCs with reserved inclusions based on the 

proposed BESO method. For comparison, the fill material (Pb) and the matrix material (Epoxy) will keep unchanged. 

The volume fraction for filling material is set as Vf
* = 0.13.  

 

5.2.1. Pb-Epoxy PnCs  

 

Here, the material of the inclusion is Pb and the material in the isolation strip area is Epoxy. Filling material is Pb. 

By changing Rc, Fig. 3 shows the resulted optimized unit cells with 3 × 3 lattice and the corresponding band structures. 

When Rc =0 (Fig. 3a), which means that there is no isolation area around inclusions, the filling area is completely 

connected with inclusions and the optimized scatter likes a clover. The bandwidth of this optimized unit cell is 0.302. 

When Rc = 0.08 as shown in Fig. 3c, due to the existence of isolation area, the square inclusion is successfully 
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isolated, and the filling material distributed around the isolation area to obtain the optimized bandgap 0.196. The 

optimized structure is four trapezoids with lower line being the length of isolation strip. Along with the increase of 

Rc to 0.12, as shown in Fig. 3e, the height of the trapezoid is decreased with narrower ABG. The width of the ABG 

is decreased from 0.196 at Rc = 0.08 to 0.1 at Rc = 0.12. When Rc increase to 0.16 as shown in Fig. 3g, due to the 

relative wider of the isolation strip, the filling material is no longer distributed around the inclusion, but concentrated 

at the center of the square lattice and displays clover shape. At this time, the ABG is closed. The optimization results 

show that if the isolate strip is small, the filling material will be ‘attracted’ by the inclusion, and distributed around 

the inclusion. If the isolate strip is larger than a certain value, the inclusion gravitation is disappeared and the 

materials concentrate at the center of the square lattice. 
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Fig.3. Optimized structures of Pb-Epoxy PnCs and the corresponding band structures for the 3rd -4th ABG with different Rc

5.2.2. Au-Epoxy PnCs  

 

In order to see the influence of the inclusion material on the optimized topology structure, in this section, the 

inclusion material is changed to Au. The other conditions are the same as those used in section 5.2.1. Compared with 

Pb, Au has a higher density with the physical properties: ρ = 19.5 g/cm3, λ= 160.3 GPa; μ= 29.9 GPa. Fig. 4 shows 

the optimized unit cells of 3 × 3 lattice of Au-Pb PnCs and the corresponding band structures at different isolation 

ratio Rc.  

As shown in Fig.4, Au inclusions are marked out by orange color. Comparison with Fig. 3 shows that along with 

the increase of the isolation strip width, the optimized filling pattern are almost the same. When there is no isolation 

area around Au inclusion, the corresponding optimized band gap size is 0.298, a little smaller than that when the 
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inclusion material is Pb. Different from Pb case, there will be one more ABG opened between 2nd to 3rd bands with 

the bandwidth 0.065. When Rc = 0.08 as shown in Fig.4 c, the ABGs width are 0.214 which is a little larger than 

PnCs with Pb inclusions. Along with the further increasing of Rc to 0.12 and 0.16 as shown in Fig. 4e and g, the 

ABGs width are 0.214 and 0.111 respectively. Moreover, compared with PnCs with Pb inclusions, the 2nd-3rd ABGs 

are opened with the bandwidth 0.035 and 0.025 respectively. Moreover, when Rc =0.16, the filling material still 

distributes around the inclusion and BESO algorithm successfully finds the ABG. The results show that material 

with higher acoustic impedance has higher ‘attraction’ for filling materials.  
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Fig.4. Optimized structures of Au-Epoxy PnCs and the corresponding band structures for the 3rd -4th ABG at different Rc. 

 

5.2.3. Hole-Epoxy PnCs   

 

In order to further manifest the influence of inclusion material on the optimization result, an optimization 

calculation for a hole-Epoxy PnC is performed. In the calculation we have a1/a =0.12. As shown in Fig. 5, along 

with the variation of Rc from 0 to 0.16, the resulted optimized structure is the same. There is no material concentration 

around the hole. The filling material distributes at the square lattice center. The filling patter is square with semi-

circle at the four corners. The 3rd-4th ABG width is 0.177, for the optimized PnC, ABG between 2nd to 3rd is also 

opened with bandwidth 0.027.   
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Fig.5. Optimized structures of Holes-Epoxy PnCs and the corresponding band structures for the 3rd -4th ABG. 

 

5.2.4. Pb-Au PnCs 

 

In order to see the effect of the isolate strip, Pb-Au PnCs is discussed in this section. As shown in Fig. 6, due to 

the addition of Au material into the isolation area, inclusion and isolate strip combine together acting as a larger 

inclusion, which results in a stronger gravitation. The filling material distributes closely around the inclusion. Along 

with the increase of the isolate strip width, the ABG width is also increased. The resulted width of the ABGs for Rc 

=0, 0.08, 0.12 and 0.16 are 0.302, 0.584, 0.715 and 0.774, respectively. They are all far larger than the normal 

optimization design of PnCs with inclusions under the same condition. 
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Fig.6. Optimized structures of Pb-Au PnCs and the corresponding band structures for the 3rd -4th ABG with different Rc. 

 

  In order to see clearly the variation of ABG with respect to Rc in different systems, Fig. 7 plots the variation of 

ABG bandwidth with respect to Rc in Pb-Epoxy, Au-Epoxy, and Pb-Au PnCs, respectively. As shown in Fig. 7a and 

7b, isolation strip is shown by the black wireframe slash with grey shadow. The variation trends for upper and lower 

edges of the ABGs in Pb-Epoxy and Au-Epoxy PnCs are similar. Along with the increase of the isolation ratio Rc, 

bandwidths of ABGs in Pb-Epoxy PnCs are decreased from 0.302 at Rc = 0 to zero at Rc = 0.15. In Au-Epoxy PnCs, 

the bandwidth is decreased from 0.298 at Rc = 0 to 0.018 at Rc = 0.16. The main reason for the narrowing of the 
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bandwidth is the drop of the upper band edge. The effect of Rc on the lower band edge could be ignored. When the 

isolation area is filled with Au (black wireframe slash with orange shadow as shown in Fig. 7c), the bandwidth 

variation displays the opposite trend. It increases from 0.302 to 0.774 along with Rc increasing from 0 to 0.16.   

 

 

 

Fig. 7. Variation of upper and lower edges of the ABGs for (a) Pb-Epoxy PnCs, (b) Au-Epoxy PnCs and (c) Pb-Au PnCs. 
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6. Summary 

  

  In this paper, a follow-up bandgap optimization for structures with reserved periodically distributed inclusions but 

no ABGs is proposed based on the BESO algorithm. The influence of inclusion and isolation strip on the optimized 

PnC structures is discussed in detail. Our results indicate that 

1. Through proper topological optimization by adding filling materials, ABGs can be opened in a structure with 

periodically reserved inclusions to simultaneously achieve vibration suppression except for the functional demands;  

2. Reserved inclusions display a material gravitation that the filling material will distribute around them in the 

optimization process. The higher the inclusion acoustic impedance, and the smaller the isolation strip are, the 

stronger this phenomenon is. In a system with periodically distributed pores, the material gravitation is not observed; 

3. The material in isolation strip plays a decisive role on the optimized topology and ABG structures. When the 

acoustic impedance of isolation strip is smaller than that of inclusions, the upper band of the ABG is more sensitive 

to the expansion of isolation strip. Wider isolation strip will result in narrower ABG due to the dropping of the upper 

band; when the acoustic impedance of isolation strip is larger than that of inclusion, the ABG will become wider 

along with the isolation strip increasing, which is because in this situation the isolation strip enhances the material 

gravitation of inclusion, which is also observed in [2] .  

  The results in this paper provide a strategy to realize the multifunctional design in a structure with functional 

reserved inclusions. Our results also manifest the local resonance in the topology optimization, which is helpful in 

the acoustic design of active controlling PnCs. 
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