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Forecasting SMEs’ credit risk in supply chain finance with an 

enhanced hybrid ensemble machine learning approach

Abstract

In recent years, financial institutions (FIs) have tentatively utilized supply chain finance (SCF) 

as a means of solving the financing issues of small and medium-sized enterprises (SMEs). Thus, 

forecasting SMEs’ credit risk in SCF has become one of the most critical issues in financing 

decision-making. Nevertheless, traditional credit risk forecasting models cannot meet the needs 

of such forecasting. Many researchers argue that machine learning (ML) approaches are good 

tools. Here we propose an enhanced hybrid ensemble ML approach called RS-MultiBoosting 

by incorporating two classic ensemble ML approaches, random subspace (RS) and 

MultiBoosting, to improve the accuracy of forecasting SMEs’ credit risk. The experimental 

samples, originating from data on forty-six quoted SMEs and seven quoted core enterprises 

(CEs) in the Chinese securities market between 31 March 2014 and 31 December 2015, are 

collected to test the feasibility and effectiveness of the RS-MultiBoosting approach. The 

forecasting result shows that RS-MultiBoosting has good performance in dealing with a small 

sample size. From the SCF perspective, the results suggest that to enhance SMEs’ financing 

ability, ‘traditional’ factors, such as the current and quick ratio of SMEs, remain critical. Other 

SCF-specific factors, for instance, the features of trade goods and the CE’s profit margin, play a 

significant role.

Keywords: Supply Chain Finance, Small and Medium-sized Enterprises, Credit Risk 

Forecasting, Machine Learning, RS-MultiBoosting, Partial Dependency Plot
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1. Introduction

The development of solutions for the financing issues of small and medium-sized enterprises 

(SMEs) has attracted attention from scholars and practitioners. Especially in China, the existing 

problems of SMEs include high financial distress, high operational risk and ambiguous 

financial information. Additionally, SMEs face a more uncertain competitive environment and 

are less equipped with the human and capital resources to withstand economic adversity than 

larger companies (Stiglitz and Weiss, 1981). This may result in a high non-performing loan 

ratio of China’s SMEs. According to a report from the People’s Bank of China (PBC), the non-

performing loan ratio of China’s large enterprises is only 1.19%, in contrast to the SMEs’ ratio, 

which can reach 5.94%. Similarly, the Industrial and Commercial Bank of China (ICBC) points 

out that the non-performing loan ratio of China’s SMEs in the ICBC is more than 5%. Thus, 

FIs generally consider China’s SMEs to be of low credit quality, and they usually refuse and 

fear financing China’s SMEs (Chen et al., 2010, Wong et al., 2016, Wang and Yang, 2014). To 

overcome this problem, the Chinese government has attempted to improve the current financing 

situation of SMEs by enforcing financial policy. ‘Promoting SME Development Plan (2016-

2020)’, issued by the Ministry of Industry and Information Technology of the People’s 

Republic of China, emphasizes that the Chinese government encourages qualified FIs to make 

loans to SMEs. The solutions to SMEs’ financing issues are also proposed in this financial 

policy, which including four main aspects: the development of financial markets, the 

optimization of the financing environment, the construction of a credit guarantee system for 

SMEs and the construction of a credit system for SMEs. Under the guidance of financial policy, 

Chinese FIs have been optimizing the financing environment primarily by developing various 
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financing solutions, which has greatly enhanced SMEs’ financial capacity. According to ‘The 

PBC 2016 Annual Report’, at the end of 2016, 4.72 hundred thousand SMEs had FI loans. In 

2016, the loan balance of SMEs was 10.5 trillion Yuan RMB, an increase of 5.3% year-on-

year, which mostly benefited from new or improved financing solutions. One financing solution 

that has been widely adopted is supply chain financing (SCF), which has attracted increasing 

attention in academia, financial circles and industry (Yan et al., 2016, Xu et al., 2018). In the 

SCF solution, a high-quality core enterprise (CE) provides a credit guaranty to SMEs in the 

same supply chain, making it possible for SMEs to obtain low-cost financing from FIs (Klapper, 

2006, Xu et al., 2018).

SCF can be defined in many ways but can primarily be classified as “financial-oriented” 

and “supply chain-oriented” (Gelsomino et al., 2016). For instance, More and Basu (2013) 

define SCF as a tool of financing to create value to stakeholders within the supply chain by 

planning, steering, and controlling the flow of financial resources on an inter-organizational 

level; Stemmler (2002) and More and Basu (2013) argue that SCF integrates cash flows into 

the physical supply chain, so it is an approach to supply chain management. SCF also has 

extensive interactions with related SMEs, which is different from the traditional financing 

approach (Song et al., 2018). SCF is another arrow in the quiver, encouraging the SMEs to 

obtain loans based on their creditworthiness (Pfohl and Gomm, 2009). Based on the above point 

of view, this paper defines the SCF as a financing approach in which an FI links CEs with 

upstream and downstream SMEs to provide flexible financial products and services, allowing 

SMEs to expediently receive financing through credit binding with CEs. The SCF solution 

extricates the members of a supply chain from short-term liquidity dilemmas and long-term 



ACCEPTED MANUSCRIPT

4

financial burdens (Wuttke et al., 2013), mitigating the credit risk of the whole supply chain 

(Gomm, 2010, Hofmann, 2005). SCF mainly includes three financing patterns, i.e., the supply 

chain accounts receivable financing pattern, supply chain advance account financing pattern 

and supply chain inventory financing pattern. In SCF solutions, one CE and some SMEs 

together apply for financing by specifying their financing details, such as the CE’s credit rating 

and the SMEs’ current ratio and cash ratio, which is called ‘1+N’ SCF. Then, the FI assesses 

the overall credit risk of this financing project. When the whole financing project is found to 

have a low credit risk, the FI grants a loan to the SMEs. Otherwise, the FI refuses to finance 

the SMEs. SCF has the potential to increase the efficiency of SMEs’ financing. Moreover, FI 

managers hope that the CE can guarantee that their cooperating SMEs are free of the risk of 

fraud in the SCF. Unfortunately, this is not an easy task. First, from the supply chain point of 

view, risks can be spread once one of the members of the supply chain (either the CE or the 

SME) experiences jeopardy such as bankruptcy, disruption, and so on, which is often out of the 

SME’s control (Hendricks and Singhal, 2005, Tang, 2006, Wuttke et al., 2013). Second, from 

the SME’s point of view, as a supplier the SME might sometimes fall short of the capacity to 

meet customer demand (Richard et al., 2007). Similarly, as a buyer, the SME might encounter 

financial difficulty in paying for what is being procured. In both cases, SMEs’ risk profile 

deteriorates. In China, SMEs’ credit risk is still deemed the major source of risk in SCF the 

solution, implicating issues such as a lower credit rating, a high probability of fraud, and an 

undeveloped credit guarantee system (Su and Lu, 2015).

For this purpose, methods have been developed and applied to forecast SMEs’ credit risk 

(Zhu et al., 2016, Zhu et al., 2017, Zhu et al., 2016), e.g., logistic regression analysis (LRA), an 
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artificial neural network (ANN) and machine learning (ML). As an efficient strategy for 

achieving high performance forecasting, the hybrid ensemble ML approach has recently 

attracted increasing attention in the field of credit risk forecasting. For instance, RS-Boosting 

integrates boosting and random subspace (RS), and it is used to forecast corporate credit risk 

(Wang and Ma, 2011). RS-RAB integrates random subspace and real AdaBoost, and it is used 

to forecast SMEs’ credit risk in SCF (Zhu et al., 2016). However, these approaches struggle 

when dealing with a relatively small sample size.

In this paper, we propose a new hybrid ensemble ML approach named RS-MultiBoosting. 

This approach consists of two classical ensemble ML approaches, i.e., RS and MultiBoosting, 

and it uses a decision tree (DT) as the base classifier. The aim is to improve the forecasting 

performance of SMEs’ credit risk in SCF when the sample size is relatively small. Additionally, 

to test the feasibility and precision of the RS-MultiBoosting approach, we select a real SME 

credit dataset from a Chinese securities market and compare RS-MultiBoosting forecasting 

performance against classical ML approaches, i.e., DT, RS and MultiBoosting.

The remainder of our paper is structured as follows: Section 2 reviews the literature on 

SMEs’ credit risk and the methods of forecasting SMEs’ credit risk. Section 3 explains the 

theory and algorithms of DT, RS and MultiBoosting. Section 4 describes the construction and 

theory of the proposed RS-MultiBoosting approach. Section 5 presents the case study with 

information about the data sources and variable definitions. It also discusses the empirical 

measures and design. Section 6 discusses the results of the experiment. Section 7 contains 

concluding remarks and future research directions.

2. Literature review
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Financing difficulty is a bottleneck that restricts the development of SMEs. The current 

economic downturn and variations, as shaped after the 2008 global financial crisis, has further 

increased the financial pressure on SMEs, and thus SMEs urgently search for new ways of 

financing to obtain easy credit (Ali et al., 2018, Lekkakos and Serrano, 2016). In the past, SMEs 

would seek financing from commercial banks based on their own terms and credits (Song et 

al., 2016). However, a limited operating history, incomplete financial statements, insignificant 

performance, high levels of risk, and many other factors have constrained most SMEs to 

effectively receive financing through traditional methods (Song and Wang, 2013, Song et al., 

2016). More important, information asymmetry has been a huge challenge for SMEs when they 

seek financing to develop their businesses (Gong and Cullinane, 2018).  

In recent years, SCF has become an important product category of FIs because it can fulfil 

financing requirements and accomplish SMEs’ development targets in a timely manner (Ali et 

al., 2018). Demica, a professional consultant firm of working capital solutions from SCF, 

reports that the annual growth rate of international SCF reached 30-40% between 2011 and 

2013, and the growth rate will not fall below 10% before 2020 (Demica, 2014). SCF has also 

attracted increasing attention from academia in recent years (Xu et al., 2018). Caniato et al. 

(2016) propose that the benefits for a company of adopting an SCF solution can be categorized 

into three macro-typologies, i.e., reduced net operative working capital, increased profit and 

strategic benefits. Chen and Hu (2008) consider that SCF reduces the mismatch risk of supply 

and demand in the financial flow and creates value for the supply chain with capital constraints 

by integrating the FIs, the focal company and capital-constrained firms in the supply chain. 

Gelsomino et al. (2016) point out that the SCF provides lower debt costs, new opportunities to 
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obtain loans and reduced working capital, especially for weak supply chain players. Gelsomino 

et al. (2016) and Hofmann (2005) emphasize that the FIs can improve their risk-assessment 

ability in estimating the probability of default, especially for SMEs using the SCF solution. 

Caniato et al. (2016) and Song et al. (2018) argue that SCF is an alternative method of 

overcoming the problem of information asymmetry, so it can control potential risks and 

provides easy credit to SMEs. 

From an economic globalization perspective, Lekkakos and Serrano (2016) argue that the 

global financial crunch, credit shortages and high borrowing costs hinder SMEs from obtaining 

loans; nevertheless, the SCF promptly facilitates SMEs’ settlement of their operations in this 

modern age of globalization. As set forth above, it is appreciated that SMEs are capital-

constrained and weak supply chain members whose financing performance and 

competitiveness in supply chains are significantly improved by SCF (Song et al., 2016). 

Nevertheless, the SCF solution cannot completely avoid the credit risks of SMEs (Wuttke 

et al., 2013, Richard et al., 2007, Hendricks and Singhal, 2005, Tang and Musa, 2011). Thus, 

research on SMEs’ credit risk in SCF and its forecasting methods has attracted increasing 

interest in both academia and industry. However, the literature on SCF mainly focuses on the 

design and optimization of the flows of goods and information and financial flows between the 

members in a supply chain (Srinivasa and Mishra, 2011, Yan and Sun, 2013). Until recently, 

only a few studies have focused on SMEs’ credit risk in SCF. In the following literature review, 

we consider two research areas that are the most closely related to our work: 1) SMEs’ credit 

risk influencing factors in SCF and 2) the methods of forecasting SMEs’ credit risk in SCF.

2.1 SMEs’ credit risk influencing factors in SCF
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The Basel Committee on Banking Supervision (BCBS) is the primary global standard 

setter for the prudential regulation of banks and provides a forum for regular cooperation on 

banking supervisory matters. Its 45 members include central banks and bank supervisors from 

28 jurisdictions, such as the People’s Bank of China, the Swiss National Bank, the Board of 

Governors of the Federal Reserve System in the US, the Bank of England in the UK and so on. 

In ‘Principles for the Management of Credit Risk (PMCR)’ (Supervision, 1999), BCBS defines 

credit risk as the possibility that a borrower or a lender will not fulfil his or her legal obligations 

according to the debt contract with the corresponding banking institution. As a member of 

BCBS, China agrees and follows the definition of credit risk in PMCR. In this paper, we adopt 

the same definition. Since SCF is different from the traditional financing approach, it has 

extensive interactions with related SMEs (Song et al., 2018, Stemmler, 2002). Thus, there are 

two main influencing factors—the “SMEs itself-oriented” factor and the “supply chain finance-

oriented” factor—that may result in SMEs’ inability to fulfil their legal obligations and FIs 

facing SMEs’ credit risk in SCF (Zhu et al., 2016, Zhu et al., 2017, Zhu et al., 2016). This paper 

analyses SMEs’ credit risk influencing factors in SCF from both sides as follows. 

(1) The SMEs’ credit risk influencing factors of SMEs that are self-oriented 

Scholars argue that information asymmetry is the root cause of SMEs’ credit risk (Altman 

and Sabato, 2007, Altman et al., 2010, Chen et al., 2010, Li et al., 2016, Song and Zhang, 2017, 

Stiglitz and Weiss, 1981). To control SMEs’ credit risks, FIs attempt to overcome the problem 

of information asymmetry of SMEs through the SCF solution (Caniato et al., 2016, Song et al., 

2018). The SCF solution has extensive interactions with related SMEs compared with 

traditional financing solutions, acquires complete transaction information and business credit 
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of every member of the supply chain, and adopts specific solutions (e.g., receivable transfers, 

closed-loop business, relational embeddedness, and a combination of outcome control and 

behavioural control) that significantly reduce the information asymmetry of SMEs (Caniato et 

al., 2016, Martin and Hofmann, 2017, Song et al., 2018). However, FIs are not directly involved 

in SMEs’ actual operations and production; therefore, to reduce possible the information 

asymmetry of SMEs, FIs take better care of SMEs’ business counterparts (i.e., CEs) in the SCF 

solution (Song et al., 2018). Klapper (2006) argues that the credit risk becomes the default risk 

of the high-quality enterprise (CE) instead of the risky SMEs in the SCF solution. Thus, FIs 

pay more attention to information about the CE than to information about the SME. However, 

it is undeniable that information about SMEs remains the main influencing factor of SMEs’ 

credit risk in the SCF solution. To guarantee that FIs will avoid the information asymmetry of 

SMEs, we must first understand what information about SMEs themselves is related to SMEs’ 

credit risk in SCF.

Some scholars believe that financial information is the main factor influencing SMEs’ 

credit risk. For instance, Altman and Sabato (2007) prove that cash, total assets, earnings before 

tax, interest paid, retained earnings, short-term debt and equity are the primary influencing 

factors of SMEs’ credit risk. Chen et al. (2010) find that the asset size of an enterprise has a 

significant impact. Calabrese and Osmetti (2013) argue that the SMEs’ credit risk is affected 

by SMEs’ solvency ratio, return on equity, turnover per employee, added value per employee, 

cash flow, bank loans over turnover and total personnel costs over added. Fantazzini and Figini 

(2009) argue that SMEs’ credit risk is affected by their liquidity ratio, debt ratio, short-term 

over long-term debt, provisions over sales, equity over debt and short-term debt.
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However, other scholars believe that non-financial information also significantly affects 

SMEs’ credit risk; such information includes SMEs’ filing histories (Altman et al., 2010) and 

their existing risk information, delinquency information, historical information, historical 

delinquency information, credit and corresponding guarantee information, and demographic 

information (Derelioğlu and Gürgen, 2011). Li et al. (2016) argue that there are four main 

influencing factors of SMEs’ credit risk: their profitability, structure, liquidity, operations and 

characteristics. Figini and Giudici (2011) suggest that the main influencing factors primarily 

include quantitative risk factors and qualitative risk factors, which are composed of financial 

information and non-information.

(2) SMEs’ credit risk influencing factors of finance-oriented supply chain

Pfohl and Gomm (2009) and Hofmann (2005) describe SCF as a bridge of the supply chain 

that integrates the financing processes of all members in a supply chain for increasing the value 

of the supply chain, which is different from the traditional financing approach. Therefore, in 

SCF, SMEs’ credit risk is affected not only by SMEs themselves but also by SCF factors such 

as the financial and non-financial state of the CE (Wuttke et al., 2013, Zhu et al., 2017, Zhu et 

al., 2016), the state of supply chain operations (Zhu et al., 2017, Zhu et al., 2016, Hendricks 

and Singhal, 2005, Tang, 2006), the object’s characteristic factors of pledging (Zhu et al., 2017, 

Zhu et al., 2016) and so on. In particular, the CE is the guarantor of SMEs in the SCF and 

cooperative enterprise in a supply chain; its credit risk will be transferred to the SMEs (Wuttke 

et al., 2013). Song and Zhang (2017) find that most credit risks are borne by the guarantor in 

third-party-guaranteed loans. 

2.2 Methods for forecasting SMEs’ credit risk in SCF
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Over the past decade, traditional statistical approaches have been applied by FIs to forecast 

SMEs’ credit risk and make credit loan decisions based on these traditional financing channels. 

For example, Z-score and logistic models have been applied by most large banks in the US 

(e.g., Bank of America) (Altman and Sabato, 2007), the credit rating approach is widely 

employed by most of the banks in China (e.g., ICBC) (Chen et al., 2010) and multivariate linear 

discriminant analysis (MLDA) is being adopted by some large banks in Italy (e.g., UniCredit 

S.p.A. of Italy) (Ciampi et al., 2009). Edmister (1972) proposes a model to predict the default 

probability of small businesses using the MLDA approach, which is one of the earliest works 

in the field. Altman and Sabato (2007) develop a one-year default probability prediction model 

based on LRA, which is specifically intended to predict SMEs’ credit risk. Since then, LRA 

has been widely used; for instance, Ciampi and Gordini (2009) apply LRA to predict the credit 

risk of SMEs in northern and central Italy. Ciampi et al. (2009) and Ciampi (2015) combine 

LRA with other techniques, such as linear discriminant analysis (LDA), to predict the credit 

risk of Italian small enterprises. Calabrese and Osmetti (2013) propose a generalized extreme 

value regression (GEVR) model that is suitable to predict the loan defaults of SMEs. As 

expected, these approaches can also be used for forecasting SMEs’ credit risk in SCF. 

Nevertheless, traditional statistical approaches assume a certain data distribution that requires 

substantial historical data to classify, which makes it very challenging to collect adequate data. 

Often, the number of collected observations is too small to qualify for use in traditional 

forecasting methods (Li and Yeh, 2008, Li et al., 2012). In other words, the data gathered in 

SCF are often insufficient to perform reliable forecasting. Thus, new approaches are needed. 

ML approaches do not need to assume certain data distributions. Instead, they can extract 
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knowledge by training the model (Wang et al., 2011). Furthermore, ML may achieve acceptable 

forecasting accuracy even when the dataset is small (Li et al., 2012, Li and Lin, 2008).

There are few studies focusing on credit risk prediction that are specific to SMEs by using 

ML. For instance, Fantazzini and Figini (2009) propose a new approach based on random 

survival forests (RSF) and find it performs better than traditional statistical approaches, e.g., 

LRA. Chen et al. (2010) develop a model based on the key mediating variable (KMV) model 

to forecast the credit risk of Chinese listed SMEs, and the model is robust to the change in 

default points in SMEs. Derelioğlu and Gürgen (2011) propose a method based on multi-layer 

perceptrons (MLP) to predict SMEs’ credit risk in Turkey. Zhu et al. (2016) find that the 

performance of forecasting China’s SMEs credit risk in SCF by integrating the LRA and radial 

basis function (RBF) is better than that of individually applying LRA or RBF. It is demonstrated 

that the performance of ML is generally better than that of these traditional statistical 

approaches, especially for classifying limited data with a non-linear distribution (Wang et al., 

2011, Wang and Ma, 2012, Wang and Ma, 2011).

ML can be classified into individual ML and ensemble ML approaches. Ensemble ML 

approaches usually result in better forecasting performance than individual ML approaches 

(Chen and Huang, 2003, Nanni and Lumini, 2009, Tsai and Wu, 2008). The ensemble ML 

approach is a kind of ML that integrates multiple individual ML approaches for training the 

datasets and solving the classification problem. However, some ensemble methods are aimed 

at reducing the influence of noise data, i.e., the instance partitioning method, while others 

perform good work when there is redundant information, i.e., the attribute partitioning method. 

In other words, the existing ensemble methods lack diversity. To enforce the diversity of 
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methods, numerous enhanced hybrid ensemble ML approaches have been proposed, such as 

RS-boosting by Wang and Ma (2011) and the random subspace-support vector machine (RSB-

SVM) by Wang and Ma (2012). In particular, Zhu et al. (2017) and Zhu et al. (2016) prove that 

the performance of hybrid ensemble ML approaches in forecasting China’s SMEs credit risk in 

SCF is better than that of individual ML and ensemble ML approaches. 

In summary, the result of the literature review suggests that the factors influencing SMEs’ 

credit risk in SCF are primarily sourced from “SMEs self-oriented” and “supply chain finance-

oriented”, and these influencing factors can be generally classified into two types: financial 

information and non-information. There is also evidence that the ML is becoming the prevailing 

approach to building the model of forecasting SMEs’ credit risk; moreover, the hybrid ensemble 

ML is usually better than the individual ML and ensemble ML approaches. 

Thus, this paper makes three contributions to SCF research. First, we develop an SME 

credit risk forecasting model, considering both SME-oriented and SCF-oriented influencing 

factors instead of only one type of factor, as was done previously. Second, we propose a new 

hybrid ensemble ML approach that is useful in handling relatively small datasets. Third, the 

result of the model provides a pragmatic guide for practitioners in terms of how to enhance 

SMEs’ financial capability.

3. Existing machine learning approaches

To build the foundation for the enhanced hybrid ensemble ML approach developed in this paper, 

this section introduces each of the ML approaches that are relevant to the proposed ML model, 

i.e., the DT approach and two ensemble ML approaches, i.e., the RS and MultiBoosting 

approaches, which are widely applied to forecast credit risk.
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3.1 Decision tree (DT) approach

The DT is a type of classifier that uses a tree graph to classify a sample set by starting at 

the root and moving through branches and notes until a leaf is encountered (Quinlan, 1993). 

The DT primarily consists of a decision note (the attribute of the non-classified sample), a 

decision branch (the different values of different decision notes) and a decision leaf note (a 

possible classification result). The frequently used algorithms of DT are Iterative Dichotomiser 

3 (ID3) and C4.5, both proposed by Quinlan (1993). The ID3 algorithm concentrates on a 

multivalve attribute, which is propitious for adequately classifying the datasets. However, it is 

difficult to improve the accuracy of classification. In contrast to ID3, C4.5 can effectively solve 

the bias of multi-value attributes and improve the accuracy of classification by applying the 

information gain expansion of the gain ratio (Quinlan, 1993). In addition, the DT is widely used 

to mine non-linear data, while the C4.5 algorithm is a machine learning method that can solve 

credit risk forecasting problems with limited datasets. Wang et al. (2014) gain an 84.39% 

average prediction accuracy with 690-observation credit datasets by using the C4.5 algorithm. 

Similarly, Wang et al. (2011) obtain a 77.85% average accuracy with 239-observation datasets. 

Following the description of Quinlan (1993), the pseudo-code of C4.5 is provided in Figure 1.

3.2 Random subspace (RS) approach

Ho (1998) points out that integrating individual ML approaches might produce a highly 

successful approach, i.e., ensemble ML approaches. To effectively improve the forecasting 

accuracy and avoid the over-fitting issue of the DT approach, Ho (1998) proposes an ensemble 

ML approach, i.e., the RS approach. The RS approach consists of multiple trees that are 

constructed in randomly chosen subspaces, and it is used to improve the generalization accuracy 
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of forecasting performance on training data. Each DT classifier of the RS model is independent. 

Thus, it is better adapted to learning parallel computing quickly. Nevertheless, the RS model 

does not lead to local optimum issues. Instead, it converges to the global minimum point. Hence, 

the RS approach is widely used for forecasting credit risk. In addition, RS can accurately 

forecast credit risk problems with limited datasets. Wang and Ma (2011) obtain average 

prediction accuracy rates of 81.03% and 80.68% with 239-observation and 132-observation 

credit datasets using the RS model. Following the description of Ho (1998), the pseudo-code 

of the RS approach algorithm is specified in Figure 2.

3.3 MultiBoosting approach

As an efficient strategy for improving the forecasting accuracy of ML, researchers are 

increasingly paying attention to ensemble ML approaches, such as boosting. Based on boosting, 

Freund and Schapire (1996) propose an improved version of boosting, i.e., adaptive boosting 

(AdaBoost), and prove that the AdaBoost is more practical and easier to implement than 

boosting. Bauer and Kohavi (1999) find that AdaBoost’s abilities to decrease error and variance 

are prominent, but its ability to decrease superior variance is worse than that of other ensemble 

ML approaches, such as Bagging. Wagging is an improved version of Bagging that is better 

suited to the task of reducing superior variance than direct Bagging (Webb, 2000). In addition, 

AdaBoost can significantly reduce both error and variance, while Wagging has little effect on 

error and a greater effect on variance (Webb, 2000). Since Webb (2000) proposes a classic 

ensemble ML based on AdaBoost and Wagging, i.e., MultiBoosting. MultiBoosting has lower 

error than either AdaBoost or Wagging when using C4.5 as the base learning algorithm, which 

also suits parallel computing (Webb, 2000). MultiBoosting is seen as an appropriate credit risk 



ACCEPTED MANUSCRIPT

16

forecasting method with limited datasets, e.g., Zhu et al. (2017) obtain an 84.08% average 

prediction accuracy with 377-observation credit datasets by using the MultiBoosting model. 

The pseudo-code of the algorithm of the MultiBoosting approach is presented in Figure 3.

4. A new hybrid ensemble machine learning approach: RS-MultiBoosting

Since individual ML methods attempt to obtain a hypothesis from the training data, the noise 

data and the redundant attributes will reduce accuracy (Wang et al., 2012). In addition, 

individual ML method is difficult to obtain robust forecasting results when the datasets are 

numerically limited (Li et al., 2012). In contrast to individual ML methods, the ensemble ML 

approaches attempt to construct a set of hypotheses and combine them to solve the same 

problem (Wang et al., 2012). Accordingly, ensemble ML approaches normally are more 

accurate than to individual ML approaches, especially for limited datasets. However, Wang and 

Ma (2012) argue that a good ML approach should not only improve accuracy but also enforce 

diversity, which means that each base learning method in ML methods makes its own 

contribution to the classification decision and a different form of error from each other. Some 

ensemble methods are aimed at reducing the influence of the noise data, i.e., the instance 

partitioning method, while others work well when there is redundant information, i.e., the 

attribute partitioning method. MultiBoosting belongs to the former while RS belongs to the 

latter. Individually using either RS or MultiBoosting should results in a lack of diversity. 

Furthermore, researchers prove that diversity can significantly improve the forecasting 

performance of ML methods (Wang et al., 2011, Wang and Ma, 2011, Wang and Ma, 2012, 

Zhu et al., 2017, Zhu et al., 2016). According to the above analysis, we propose a new hybrid 

ensemble ML approach, i.e., the RS-MultiBoosting approach, which integrates the RS and 
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MultiBoosting approaches; the DT is taken as the base learning method of RS-MultiBoosting. 

This new hybrid ML approach is expected to improve the accuracy and enforce the diversity of 

the individual and ensemble ML methods. The whole working mechanism of RS-

MultiBoosting is illustrated in Figure 4.

Figure 4 shows the following: (i) The dataset is split into sub-datasets by bootstrap sampling 

with the replacement approach in MultiBoosting. (ii) The new sub-datasets are selected from 

the original sub-datasets by the RS approach. (iii) The new sub-datasets are trained by the 

MultiBoosting approach. (iv) The final results are aggregated by the majority vote approach. 

Through the above workflow, we combine the advantages of the instance partitioning approach 

(RS) with those of the attribute partitioning approach (MultiBoosting). Moreover, based on 

Opitz and Maclin (1999) and Fu et al. (2006), some researchers using C4.5 as the base learning 

algorithm of hybrid ensemble ML methods, such as Wang and Ma (2011), use it for RS-

Boosting, Zhu et al. (2016) use it for RS-RAB, Wang et al. (2012) use it for Bagging-RS and 

RS-Bagging, and so on. In this paper, we also apply the C4.5 algorithm of the DT approach as 

the base learning algorithm of the RS-MultiBoosting approach.

Based on the above discussion, we present the pseudo-code of the algorithm of the RS-

MultiBoosting approach in Figure 5.

5. Numerical example: a case study of SMEs’ credit risk forecasting in China

5.1 Data sources

To compare the performance of the ML methods in forecasting SMEs’ credit risk in SCF, 

we need a proper dataset. As a new financing solution, the SCF is not widely applied in China; 

it is difficult to obtain a complete dataset of SCF, especially for private corporations. Instead, 
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SCF applications primarily involve Chinese quoted companies, such as Yonghui Superstores, 

a quoted company in China’s Shanghai Stock Exchange; it proposes batch credit for suppliers 

by SCF solutions. The Amarsoft, a quoted company in China’s Shenzhen Stock Exchange, 

constructs SCF management platforms for banks and enterprises. Thus, we focus on Chinese 

quoted companies when searching for a proper dataset. The sample selection criteria include 

three factors. First, the SMEs must be listed on the Small and Medium Enterprise Board of the 

Shenzhen Stock Exchange. These Chinese quoted companies are representative of SMEs, 

which have problems such as insignificant performance, low creditworthiness, financial 

pressure and so on. Second, the CEs are selected from the Shanghai Stock Exchange and the 

main board of the Shenzhen Stock Exchange. These Chinese quoted companies are the leading 

enterprises, which have some superiorities such being industry leaders, having high 

creditworthiness, enjoying strong financial strength and so on. Third, all quoted SMEs must 

have real trading relationships with one of the quoted CEs that is part of a supply chain. In other 

words, among the selected samples, the SME must be either a CE’s supplier or its buyer. Hence, 

when SMEs have financing requirements, with the involvement of the CEs, SCF can take place. 

Based on the above sample selection criterion, we select forty-six quoted SMEs from the Small 

and Medium Enterprise Board of the Shenzhen Stock Exchange and seven quoted CEs from 

the Shanghai Stock Exchange and the main board of Shenzhen Stock Exchange during 31 

March 2014 - 31 December 2015. After deleting unavailable data points, a valid quarterly 365-

observation dataset remains. 

5.2 Variable definitions

The forty-six quoted SMEs comprise six star-special treatments (*ST), i.e., risky SMEs 
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(negative credit status), and forty quoted companies with normal financial indicators, i.e., non-

risky SMEs (positive credit status). Based on the credit status of SMEs, we classify the 

dependent variables into two groups, i.e., the dependent variables are assigned the value of 0 or 

1, indicating a quarterly 365-observation dataset of risky and non-risky firms. Following Zhu 

et al. (2016), Zhu et al. (2017) and Zhu et al. (2016), 18 original independent variables1 are 

selected and can be segmented into five categories: leverage, liquidity, profitability, activity 

and non-financial. Table 1 defines the Vo and their categories.

Furthermore, we need to select the most important independent variables from the above 

variables. On the one hand, selecting appropriate independent variables for ML models is 

important for improving the accuracy of forecasting and reducing computation time and over-

fitting (Gouvêa and Gonçalves, 2007). On the other hand, the selected independent variables 

can inform FI managers about which factors are important for forecasting SMEs’ credit risk in 

SCF, SME managers about which factors are important for improving financing ability and CE 

managers about which factors are important for reducing the credit risk of joint liability.

5.3 Performance measures

The forecasting performances of the RS-MultiBoosting, RS, MultiBoosting and DT 

approaches are assessed by computing the mean values of average accuracy, the type I error, 

the type II error and the F-measure. These four evaluation criteria are defined as follows:

TNFNFPTP
TNTPAccuracyAverage




 (1)

FNTP
FNErrorIType


 (2)

FPTN
FPErrorIIType


 (3)

1 The “18 original independent variables” is symbolized by Vo.
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TPPrecision Rate

TP FP



(4)

TPRecall Rate
TP FN




(5)

FNFPTP2
TP2Measure-F




 (6)

where TP, TN, FP and FN refer to true positive, true negative, false positive and false negative, 

respectively. Eqs. (1), (2) and (3) imply that a good forecasting approach should have high 

average accuracy and a low type I error and type II error. Scholars point out that the correct 

discrimination of the ‘positive samples’ can help FIs cluster credit risk customers and non-

credit risk customers (Bekhet and Eletter, 2014, Kürüm et al., 2012, West, 2000, Yap et al., 

2011). Additionally, the type I error means the model incorrectly classifies the positive samples 

into negative samples and the type II error means the model incorrectly classifies the negative 

samples into positive samples. In practice, FIs incorrectly classify non-risky customers into 

risky customers rather than classify risky customers into non-risky customers. The former 

results in FIs losing potential customers, while the latter results in FIs facing risk. Thus, Wang 

and Ma (2011) argue that decreasing the type II error is more important to a forecasting model 

than decreasing the type I error. The precision rate refers to the ratio of the number of correct 

‘real positive’ cases to the number of ‘predicted positive’ cases (see equation (4)). The higher 

the precision rate, the lower the ‘false positive rate’ that the ML approach obtains. In turn, the 

recall rate means the ratio of the number of correct predicted positive cases to the number of 

real positive cases (Powers, 2011) (see equation (5)). The higher the recall rate, the higher the 

‘true positive rate’ of the ML approach (Powers, 2011). The F-measure is the arithmetical 

average of the precision rate (i.e., positive predictive) and the recall rate (i.e., sensitivity) 

(Powers, 2011) (see equation (6)). Therefore, the higher the F-measure is, the better the 
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forecasting performance of the ML approach.

5.4 Experimental designing

To prove that the selected independent variables contribute to improving the forecasting 

performance of the RS-MultiBoosting model over the Vo, we construct and test models with Vo 

and selected independent variables. Moreover, to lower the forecasting error and the influence 

of the variability of the training set, we apply the 10-fold cross validation method to test the 

forecasting approaches based on five values (0.5, 0.6, 0.7, 0.8 and 0.9) of RS rates (i.e., the size 

of the subspace).

The experiments are performed on a PC with a 2.60 GHz Intel Core i7-6500U CPU and 

8.00 GB RAM using the Windows 10 operating system. The data mining toolkit Waikato 

Environment for Knowledge Analysis (WEKA) version 3.8.2 is used for the experiment. 

WEKA is a popular and free suite of machine learning and data mining software written with 

Java and developed by the ‘Machine Learning Group’ at the University of Waikato in New 

Zealand.

To implement the experiment, we apply the ‘Data Mining Processes’ in the ‘WEKA 

Knowledge-Flow Environment’ that performs the experiment as follows: first read the data by 

‘Arff Loader’ flow; second, choose the dependent variable by ‘Class-Assigne’ flow; third, split 

the valid data into desired sets by ‘Cross Validation Fold Maker Customizer’ flow; fourth, test 

and train the data set by 3 ‘Classifier Meta’ and 1 ‘Classifier Tree’ flows: a ‘Classifier Meta’ 

flow of RS; a ‘Classifier Meta’ flow of MultiBoostAB (the MultiBoosting model in WEKA); 

and a ‘Classifier Meta’ flow integrated by RS and MultiBoostAB; the ‘Classifier Tree’ is J48 

(the C4.5 algorithm of DT model in WEKA); fifth, separately evaluate the performances of DT, 



ACCEPTED MANUSCRIPT

22

RS, MultiBoosting and RS-MultiBoosting models using 4 ‘Classifier Performance Evaluator’ 

flows; finally, display the evaluation results of classifiers by ‘Text Viewer’ flow. The above 

experiment steps are illustrated in Figure 6.

6. Results and discussion

6.1 Selected independent variable and discussion

The selected independent variables usually have more forecasting power than the original 

independent variables. Thus, they help improve forecasting performance and provide 

managerial insights to SME, CE and FI managers. The top 12 variables2 (see Table 2) of the 

Vo are selected based on the relative importance score of the DT (Elith et al., 2008, Friedman, 

2001, Ransoma et al., 2017). Table 2 indicates that the current ratio of SMEs, the features of 

the trade goods and the credit rating of the CE have the top 3 highest relative importance scores. 

Notably, six of the Vs are SME-related factors. This finding indicates that the situation of SMEs 

is still the main effect factor in assessing SMEs’ credit risk in SCF compared with traditional 

financing. However, the other six variables are CE situation- or supply chain-related factors, 

which are newly introduced into assessing SMEs’ credit risk in SCF compared with traditional 

financing.

To facilitate discussion, we generally divided the Vs into two categories in Table 2: 

traditional financing factors and supply chain financing factors. As mentioned in section 2.1, 

the various kinds of information regarding SMEs are the main influencing factors of SMEs’ 

credit risk in traditional financing, thus, they are classified as traditional financing factors. The 

rest of the six factors are classified as supply chain financing factors.

2 The “12 selected independent variables” are symbolized by Vs. 
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6.2 Model forecasting performance evaluation

The geometric and numerical results of average accuracy, the type I error, the type II error 

and the F-measure of the RS, MultiBoosting, DT and RS-MultiBoosting models based on the 

Vo and the Vs are illustrated in Table 3.

To facilitate discussion, the experimental results of the four models based on the Vo and the 

Vs are presented in Figures 7 and 8, respectively. The findings are discussed below.

 (1) Based on the Vo, when the RS rate is set to 0.6 and 0.8, the RS and RS-MultiBoosting 

models gain the best forecasting performance among the five RS rates, respectively (see Figure 

7).

(2) Based on the Vs, when the RS rate is set to 0.6 and 0.9, the RS and RS-MultiBoosting 

models gain the best forecasting performance among the five RS rates, respectively (see Figure 

8).

(3) Notably, the forecasting performances of the DT and MultiBoosting models based on 

the Vs are worse than those of the models based on the Vo (see Table 3). However, the 

forecasting performances of the RS and RS-MultiBoosting models based on the Vs are 

improved compared with those of the models based on the Vo (see Table 3). Notably, the type 

II errors of the RS and RS-MultiBoosting models based on the Vs are lowered, which is 

important for FIs to distinguish risky SMEs from SMEs that are suitable for prospective 

financing.

(4) As an individual ML approach, the DT model obtains a better forecasting performance, 

based not only on the Vo but also on the Vs, than some ensemble ML approaches, e.g., the RS 

and MultiBoosting models (see Table 3). Unlike the previous literature (e.g., Wang and Ma 
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(2011), we find that the individual ML approach is not always weaker than the ensemble ML 

approach.

(5) More importantly, the results show that the proposed hybrid ensemble ML approach, 

i.e., RS-MultiBoosting, has the best forecasting performance among the four forecasting 

approaches (see Table 3).

6.3 Analysis of the partial dependency plot (PDP)

In section 6.1, we select the Vs from the Vo and list the ranking of the Vs based on the 

relative importance score of the DT (see Table 2). Doing so informs FI managers about which 

variables (i.e., independent variables) are important for managing SMEs’ credit risk in SCF. In 

section 6.2, we find that the proposed hybrid ensemble ML approach, i.e., the RS-

MultiBoosting, has better forecasting performance than the individual and ensemble ML 

approaches (see Table 3). Doing so helps FI managers more accurately forecast SMEs’ credit 

risk and CE managers more confidently choose an SME as a financing partner in SCF.

In practice, however, managers usually want to know not only the most important 

independent variables and the performance of forecasting but also how these independent 

variables affect the predicted responses. In this way, FI managers know how to reduce the 

financing credit risk, SME managers know how to improve financing ability, and CE managers 

know how to reduce the credit risk of joint liability. Friedman (2001) was the first to propose 

the method of partial dependency plot (PDP) analysis, which is an effective way to analyse how 

the independent variables affect the predicted responses by using graphical visualization. The 

PDP visualizes the non-linear or linear relationships between the independent variables and 

predicts responses through a training regression model, such as the regression tree model. The 
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PDP can create a line plot of the predicted responses against a single feature while 

marginalizing over the other independent variables (Friedman, 2001). In this paper, we will 

adopt PDP to analyse how the Vs affect the probability of non-risky SMEs.

Because of space limitations, a full description of the partial dependence functions is not 

provided in this paper. The experiment is performed on a PC with a 2.60 GHz Intel Core i7-

6500U CPU and 8.00 GB RAM using the Windows 10 operating system. Matrix Laboratory 

(MATLAB) version R2018a (9.4.0.813654) is used for the PDP experiment. In this section, we 

focus on how each of the variables impacts the risk assessment, as shown in Figures 9 and 10.

(1) The impact of traditional financing factors

Figure 9(a) indicates that the larger the current ratio of SMEs, the higher the probability of 

non-risky SMEs in the general trend. The probability of non-risky SMEs reaches the first 

platform (0.97) when the current ratio of SMEs is approximately 2, ranging between 1.81 and 

2.25 (see the two left broken lines in the figure). The probability slightly descends from the first 

platform (0.97) to the second platform (0.96) when the current ratio is larger than 2.25 (see the 

middle broken line). Again, the probability of non-risky SMEs descends from the second 

platform (0.96) to the third platform (0.92) when the current ratio is higher than 3.92 (see the 

right broken line). This phenomenon accords with the financial feature of the current ratio. 

Scholars and financial managers usually consider that the short-term debt-paying ability of 

enterprises is very strong when the current ratio of enterprises is 2:1. Thus, the probability of 

non-risky SMEs is the highest when the current ratio is approximately 2. However, the 

enterprise owns either excessive cash or inventory when the current ratio is much higher than 

2. Excessive cash means that the fund utilization efficiency of enterprises is low, and excessive 



ACCEPTED MANUSCRIPT

26

inventory means that the management of enterprises is poor. Thus, the probability of non-risky 

SMEs decreases progressively while the current ratio increases progressively. In summary, to 

improve their financing ability, SMEs need to control the value of the current ratio at 

approximately 2:1.

Figure 9(b) indicates that a higher profit margin on the sales of SMEs signifies a higher 

probability of non-risky SMEs in the general trend. Normally, a higher profit margin on sales 

means that enterprises have stronger profitability. To improve their financing ability, SMEs 

need to improve their profit margin on sales.

Figure 9(c) indicates that the higher quick ratio of SMEs signifies a higher probability of 

non-risky SMEs in the general trend. We also note that the probability of non-risky SMEs 

reaches the top platform (0.97) when the quick ratio of SMEs is between 1.61 and 3.01 (see the 

two broken lines in the figure). In that case, the probability of non-risky SMEs descending from 

the top platform (0.97) to the next platform (0.93) along with the quick ratio is larger than 3.01. 

Scholars and financial managers usually consider that an enterprise has poor short-term debt-

paying ability and high repayment risk when the quick ratio of the enterprise is less than 1. 

However, this does not mean that the higher the quick ratio, the better the situation of the 

enterprise. When the quick ratio is too high, it signifies that the production capacity of 

enterprises is limited. Thus, to improve their financing ability, SMEs need to control the quick 

ratio within reasonable limit.

Figure 9(d) indicates that a higher rate of return on total assets of SMEs signifies a higher 

probability of non-risky SMEs in the general trend. Additionally, the probability of non-risky 

SMEs reaches the top platform (0.78) when the rate of return on total assets of SMEs is above 
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2.38 (see the broken line in the figure). To improve their financing ability, SMEs need to 

improve their rate of return on total assets.

Figure 9(e) shows a non-linear behaviour. Normally, a higher total asset growth rate means 

a faster expansion velocity of the asset management scale of enterprises in a certain period. 

However, SMEs usually face the issue of blind expansion in a short period, which potentially 

leads to operational risk.

Figure 9(f) indicates that a higher cash ratio of SMEs signifies a higher probability of non-

risky SMEs in the general trend. Normally, a higher cash ratio means a stronger ability of 

enterprises to pay debts that are immediately due. However, the profitability of enterprises is 

poor when the cash ratio is too high. Thus, this figure indicates that the probability of non-risky 

SMEs reaches the top platform (0.99) when the cash ratio of SMEs is between 4.16 and 5.29 

(see the two broken lines in the figure). In that situation, the probability of non-risky SMEs 

descends from the top platform (0.99) to the next platform (0.95) when the cash ratio is higher 

than 5.29. To improve their financing ability, SMEs need to control the cash ratio within 

reasonable limits.

(2) The impact of SCF factors

Figure 10(a) indicates an interesting phenomenon, i.e., that the probability of non-risky 

SMEs reaches the lowest platform (0.61) when the features of trade goods are between -0.50 

and 0.72 (see the two broken lines in the figure). Normally, the higher features of trade goods 

mean a lower debt risk in SCF. However, we appreciate that the features of the trade goods 

between SMEs and the CE are classified based on factors such as price rigidity, liquidation, 

degree of vulnerability and so on, some of which are difficult to quantify, leading to unforeseeable 



ACCEPTED MANUSCRIPT

28

trends. 

Figure 10(b) indicates that the higher credit rating of the CE signifies a higher probability 

of non-risky SMEs in the general trend. The figure indicates that there are three platforms, i.e., 

the left platform, medium platform and right platform, which are divided by two broken lines 

in this figure. Notably, the probability of non-risky SMEs is significantly improved from the 

left platform to the medium platform. However, the probability of non-risky SMEs is slightly 

improved from the medium platform to the right platform. This finding means that the effect of 

the CE’s credit rating on the probability of non-risky SMEs constitutes diminishing marginal 

utility. To improve their financing ability, SMEs must cooperate with a strong CE that has a 

good credit rating.

Figure 10(c) indicates that the higher the profit margin on the sales of the CE, the higher 

the probability of non-risky SMEs in the general trend. We note that there are four platforms in 

this figure, which are divided by three broken lines. On a certain platform, the probability of 

non-risky SMEs will not be changed regardless of improving the profit margin on the sales of 

the CE. This finding helps SMEs to effectively select the CE for applying for SCF, and it helps 

FI managers make the right financing decision.

Figure 10(d) indicates the role of the industry trend. A higher value of the industry trend 

indicates the velocity of industry change. In general, in a relatively ‘stable’ industry, i.e., -0.15 

to 1.5, the SME’s credit risk is lower than in a rapidly changing industry, i.e., larger than 1.5. 

This finding reflects the reality that SMEs in conventional industry take advantage of their long-

established businesses over those in rapidly changing industry, for instance, the traditional car 

market vs. the car-sharing business model. Thus, to decrease the financing credit risk, FI 
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managers need to conduct research into the industry trends.

Figure 10(e) is a typical non-linear behaviour. The quick ratio reflects the short-term debt-

paying ability of enterprises. The enterprise has a high repayment risk when the quick ratio of 

the enterprise is too low. However, this does not mean that the higher the quick ratio, the better 

the situation of the enterprise. When the quick ratio is too high, it signifies that the production 

capacity of enterprises is limited. 

Figure 10(f) indicates that the probability of non-risky SMEs reaches the top platform (0.97) 

when the accounts receivable collection period of SMEs is between 1.06 and 1.89 (see the two 

broken lines in the figure). In that case, the probability of non-risky SMEs sharply declines 

from the top platform (0.97) to the lower platform (0.83) when the accounts receivable 

collection period is larger than 1.89. Normally, a shorter period of accounts receivable 

collection means higher efficiency in the use of the working capital of enterprises. It is widely 

accepted that a long accounts receivable collection period is one of the most important factors 

that force SMEs to apply for financing. Thus, the motivation for SMEs’ financing might be 

called into question if the accounts receivable collection period of SMEs is short. Hence, to 

minimize the financing credit risk, FI managers need to pay more attention to the period of 

accounts receivable collection of SMEs.

It is noted that although the line PDP cannot provide a complete representation of the effect 

of each feature on the predicted responses, it can provide a useful reference (Friedman and 

Meulman, 2003).

7. Conclusion and future research

Forecasting SMEs’ credit risk in SCF has become a significant task, as FIs must decide whether 
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to finance an SME that collaborates with a CE and applies for SCF services. Increasing 

forecasting accuracy by even only a small percent may prevent great losses from occurring. To 

date, ensemble ML approaches have been widely used to refine the performance in forecasting 

enterprises’ credit risk in traditional finance channels. However, there is little research focusing 

on SCF. In this paper, we first select the Vs from Vo extracted from the existing literature as 

the independent variables of the models based on the relative importance score of the DT. By 

comparing the relative importance scores of the Vs, we find that the current ratio of SMEs, the 

features of the trade goods between SMEs and the CE and the credit rating of the CE are the 

three most important factors related to SMEs’ credit risk in SCF. Second, we develop a new 

hybrid ensemble ML approach, i.e., RS-MultiBoosting, to improve performance in forecasting 

the credit risk of China’s SME in SCF, using a dataset consisting of forty-six SMEs and seven 

CEs. By comparing the forecasting performance of the DT, RS, MultiBoosting and RS-

MultiBoosting approaches based on the evaluation criteria of average accuracy, the type I error, 

the type II error and the F-measure, we find that the RS-MultiBoosting approach obtains better 

results with small datasets than directly applying the individual ML approach or ensemble ML 

approaches. In addition, MultiBoosting and RS considerably improve the diversities of instance 

and feature, which significantly reduces the test error. Moreover, we prove that screening the 

independent variables based on the relative importance score of the DT significantly improves 

the accuracy of RS-MultiBoosting in forecasting SMEs’ credit risk in SCF. Consequently, this 

paper contributes to enriching the ML approach to SMEs’ credit risk forecasting in the context 

of SCF and provides a significant reference for assessing SMEs’ credit risk in practical work, 

especially using small datasets. Third, SMEs can improve their financing ability by 
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cooperating with a CE that has strong credit standing and financial standing in SCF. 

Additionally, the credit rating of the CE, the features of the trade goods between SMEs and the 

CE, industry trends, the accounts receivable collection period of SMEs, the profit margin on 

sales of the CE and the quick ratio of the CE are the new effective evaluation indicators of 

SMEs’ credit risk in SCF compared with traditional financing. Individually fixing the financial 

standing of SMEs is not an effective way to improve their financing ability because FI 

evaluations of SMEs’ credit risk are based on the whole supply chain, not the organization 

alone. 

In view of this study, some avenues for future research on forecasting SMEs’ credit risk in 

SCF with ML approaches also emerge. First, large datasets for experiments, particularly with 

primary data on SMEs in SCF, should be collected for future research. Doing so will help verify 

the performance of the RS-MultiBoosting method. Second, in this paper, we compare the 

forecasting performance of the RS-MultiBoosting approach only with that of the DT, RS and 

MultiBoosting ML approaches. Comparing the RS-MultiBoosting approach with other hybrid 

ensemble ML approaches would be worthwhile. Third, more hybrid ensemble ML approaches 

should be researched.
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Figure 1. The pseudo-code of the C4.5 algorithm of the DT approach (Quinlan, 1993)
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Figure 2. The pseudo-code of the algorithm of the RS approach (Ho, 1998)
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Figure 3. The pseudo-code of the algorithm of the MultiBoosting approach (Webb, 2000)
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Figure 5. The pseudo-code of the RS-MultiBoosting algorithm
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Figure 7. The geometric forecasting results of the DT, RS, MultiBoosting and 

RS-MultiBoosting models based on the Vo (with RS rates of 0.5, 0.6, 0.7, 0.8 and 0.9)
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Figure 8. The geometric forecasting results of the DT, RS, MultiBoosting and 

RS-MultiBoosting models based on the Vs (with RS rates of 0.5, 0.6, 0.7, 0.8 and 0.9)
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(a)                                   (b)

(c)                                   (d)

 (e)                                  (f)

Figure 9. The line PDP of the predicted responses against each feature of the traditional 

financing factors
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(a)                                 (b)

 (c)                                  (d)
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Figure 10. The line PDP of the predicted responses against each feature of SCF factors
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Table 1. Vo of the forecasting models

Independent Variables Definitions Categories

Current ratio of SMEs Floating assets divided by floating liabilities. Non-financial

Quick ratio of SMEs Floating assets minus Inventory, then divided by 

floating liabilities.

Liquidity

Cash ratio of SMEs Cash and cash equivalent ending balance divided 

by floating liabilities.

Liquidity

Working capital turnover 

of SMEs

Operating receipt divided by average working 

capital.

Liquidity

Return on equity of SMEs Net margin divided by the average balance of the 

interests of shareholders.

Liquidity

Profit margin on the sales 

of SMEs

Net margin divided by operating receipts. Leverage

Rate of return on total 

assets of SMEs

Net margin divided by the average balance of total 

assets.

Profitability

Total assets growth rate of 

SMEs

Total assets at the end of term minus total assets at 

the end of last year, divided by total assets at the 

end of last year.

Leverage

Credit rating of the CE An evaluation of the CE’s creditworthiness, which 

is divided into 7 grades in this paper.

Activity

Quick ratio of the CE Floating assets minus inventory, divided by 

floating liabilities.

Non-financial
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Turnover of total capital of 

the CE

Operating receipts divided by average general 

assets.

Liquidity

Profit margin on the sales 

of the CE

Net margin divided by operating receipts. Liquidity

Features of the trade goods 

between SMEs and the CE

The degree of the features (e.g., price rigidity, 

liquidation, vulnerable degree and others) of trade 

goods, which are divided into 7 grades.

Profitability

Accounts receivable 

collection period of SMEs

Collection period divided by the accounts 

receivable turnover ratio.

Non-financial

Accounts receivable 

turnover ratio of SMEs

Operating receipts divided by the average accounts 

receivable occupation.

Leverage

Industry trends The patterns or trends that occur within an 

industry, which are divided into 7 grades.

Leverage

Cooperation degree 

between SMEs and the CE

The transaction frequency, which is divided into 7 

grades.

Non-financial

Credit rating of SMEs An evaluation of SMEs’ creditworthiness, which is 

divided into 7 grades.

Non-financial
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Table 2. Vs of the final forecasting models

Factors Independent Variables Scores Ranking

Current ratio of SMEs 0.0985 1

Profit margin on the sales of SMEs 0.0825 5

Quick ratio of SMEs 0.0825 5

Rate of return on total assets of SMEs 0.0816 7

Total assets growth rate of SMEs 0.0816 7

Traditional 

financing 

factors

Cash ratio of SMEs 0.0800 10

Features of trade goods between SMEs and the CE 0.0867 2

Credit rating of the CE 0.0850 3

Profit margin on sales of the CE 0.0833 4

Industry trends 0.0808 9

Quick ratio of the CE 0.0800 10

Supply 

chain 

financing 

factors

Accounts receivable collection period of SMEs 0.0774 12
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Table 3. The numerical forecasting results of the RS-MultiBoosting and other ML approaches

Evaluation Criteria DT RSa MultiBoosting RS-MultiBoostingb

Average Accuracy 82.19% 81.37% 67.67% 84.11%

Type I Error 17.80% 18.60% 32.30% 15.90%

Type II Error 22.70% 28.40% 38.50% 20.90%

Based on 

Vo

F-Measure 82.20% 80.90% 68.10% 84.10%

Evaluation Criteria DT RSc MultiBoosting RS-MultiBoostingd

Average Accuracy 82.19% 81.37% 64.93% 84.66%

Type I Error 17.80% 18.60% 35.10% 15.30%

Type II Error 23.10% 27.50% 49.10% 20.60%

Based on 

Vs

F-Measure 82.20% 81.00% 64.10% 84.60%

Note: a the RS rate is set to 0.6

b the RS rate is set to 0.8

c the RS rate is set to 0.6

d the RS rate is set to 0.9


